[Feature]add MT2731_MP2_MR2_SVN388 baseline version

Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/kernel/linux/v4.14/drivers/media/tuners/mt2060.c b/src/kernel/linux/v4.14/drivers/media/tuners/mt2060.c
new file mode 100644
index 0000000..4983eeb
--- /dev/null
+++ b/src/kernel/linux/v4.14/drivers/media/tuners/mt2060.c
@@ -0,0 +1,549 @@
+/*
+ *  Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
+ *
+ *  Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
+ *
+ *  This program is free software; you can redistribute it and/or modify
+ *  it under the terms of the GNU General Public License as published by
+ *  the Free Software Foundation; either version 2 of the License, or
+ *  (at your option) any later version.
+ *
+ *  This program is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *
+ *  GNU General Public License for more details.
+ */
+
+/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
+
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/dvb/frontend.h>
+#include <linux/i2c.h>
+#include <linux/slab.h>
+
+#include "dvb_frontend.h"
+
+#include "mt2060.h"
+#include "mt2060_priv.h"
+
+static int debug;
+module_param(debug, int, 0644);
+MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
+
+#define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
+
+// Reads a single register
+static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
+{
+	struct i2c_msg msg[2] = {
+		{ .addr = priv->cfg->i2c_address, .flags = 0, .len = 1 },
+		{ .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .len = 1 },
+	};
+	int rc = 0;
+	u8 *b;
+
+	b = kmalloc(2, GFP_KERNEL);
+	if (!b)
+		return -ENOMEM;
+
+	b[0] = reg;
+	b[1] = 0;
+
+	msg[0].buf = b;
+	msg[1].buf = b + 1;
+
+	if (i2c_transfer(priv->i2c, msg, 2) != 2) {
+		printk(KERN_WARNING "mt2060 I2C read failed\n");
+		rc = -EREMOTEIO;
+	}
+	*val = b[1];
+	kfree(b);
+
+	return rc;
+}
+
+// Writes a single register
+static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
+{
+	struct i2c_msg msg = {
+		.addr = priv->cfg->i2c_address, .flags = 0, .len = 2
+	};
+	u8 *buf;
+	int rc = 0;
+
+	buf = kmalloc(2, GFP_KERNEL);
+	if (!buf)
+		return -ENOMEM;
+
+	buf[0] = reg;
+	buf[1] = val;
+
+	msg.buf = buf;
+
+	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
+		printk(KERN_WARNING "mt2060 I2C write failed\n");
+		rc = -EREMOTEIO;
+	}
+	kfree(buf);
+	return rc;
+}
+
+// Writes a set of consecutive registers
+static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
+{
+	int rem, val_len;
+	u8 *xfer_buf;
+	int rc = 0;
+	struct i2c_msg msg = {
+		.addr = priv->cfg->i2c_address, .flags = 0
+	};
+
+	xfer_buf = kmalloc(16, GFP_KERNEL);
+	if (!xfer_buf)
+		return -ENOMEM;
+
+	msg.buf = xfer_buf;
+
+	for (rem = len - 1; rem > 0; rem -= priv->i2c_max_regs) {
+		val_len = min_t(int, rem, priv->i2c_max_regs);
+		msg.len = 1 + val_len;
+		xfer_buf[0] = buf[0] + len - 1 - rem;
+		memcpy(&xfer_buf[1], &buf[1 + len - 1 - rem], val_len);
+
+		if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
+			printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n", val_len);
+			rc = -EREMOTEIO;
+			break;
+		}
+	}
+
+	kfree(xfer_buf);
+	return rc;
+}
+
+// Initialisation sequences
+// LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
+static u8 mt2060_config1[] = {
+	REG_LO1C1,
+	0x3F,	0x74,	0x00,	0x08,	0x93
+};
+
+// FMCG=2, GP2=0, GP1=0
+static u8 mt2060_config2[] = {
+	REG_MISC_CTRL,
+	0x20,	0x1E,	0x30,	0xff,	0x80,	0xff,	0x00,	0x2c,	0x42
+};
+
+//  VGAG=3, V1CSE=1
+
+#ifdef  MT2060_SPURCHECK
+/* The function below calculates the frequency offset between the output frequency if2
+ and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
+static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
+{
+	int I,J;
+	int dia,diamin,diff;
+	diamin=1000000;
+	for (I = 1; I < 10; I++) {
+		J = ((2*I*lo1)/lo2+1)/2;
+		diff = I*(int)lo1-J*(int)lo2;
+		if (diff < 0) diff=-diff;
+		dia = (diff-(int)if2);
+		if (dia < 0) dia=-dia;
+		if (diamin > dia) diamin=dia;
+	}
+	return diamin;
+}
+
+#define BANDWIDTH 4000 // kHz
+
+/* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
+static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
+{
+	u32 Spur,Sp1,Sp2;
+	int I,J;
+	I=0;
+	J=1000;
+
+	Spur=mt2060_spurcalc(lo1,lo2,if2);
+	if (Spur < BANDWIDTH) {
+		/* Potential spurs detected */
+		dprintk("Spurs before : f_lo1: %d  f_lo2: %d  (kHz)",
+			(int)lo1,(int)lo2);
+		I=1000;
+		Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
+		Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
+
+		if (Sp1 < Sp2) {
+			J=-J; I=-I; Spur=Sp2;
+		} else
+			Spur=Sp1;
+
+		while (Spur < BANDWIDTH) {
+			I += J;
+			Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
+		}
+		dprintk("Spurs after  : f_lo1: %d  f_lo2: %d  (kHz)",
+			(int)(lo1+I),(int)(lo2+I));
+	}
+	return I;
+}
+#endif
+
+#define IF2  36150       // IF2 frequency = 36.150 MHz
+#define FREF 16000       // Quartz oscillator 16 MHz
+
+static int mt2060_set_params(struct dvb_frontend *fe)
+{
+	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+	struct mt2060_priv *priv;
+	int i=0;
+	u32 freq;
+	u8  lnaband;
+	u32 f_lo1,f_lo2;
+	u32 div1,num1,div2,num2;
+	u8  b[8];
+	u32 if1;
+
+	priv = fe->tuner_priv;
+
+	if1 = priv->if1_freq;
+	b[0] = REG_LO1B1;
+	b[1] = 0xFF;
+
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
+
+	mt2060_writeregs(priv,b,2);
+
+	freq = c->frequency / 1000; /* Hz -> kHz */
+
+	f_lo1 = freq + if1 * 1000;
+	f_lo1 = (f_lo1 / 250) * 250;
+	f_lo2 = f_lo1 - freq - IF2;
+	// From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
+	f_lo2 = ((f_lo2 + 25) / 50) * 50;
+	priv->frequency =  (f_lo1 - f_lo2 - IF2) * 1000,
+
+#ifdef MT2060_SPURCHECK
+	// LO-related spurs detection and correction
+	num1   = mt2060_spurcheck(f_lo1,f_lo2,IF2);
+	f_lo1 += num1;
+	f_lo2 += num1;
+#endif
+	//Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
+	num1 = f_lo1 / (FREF / 64);
+	div1 = num1 / 64;
+	num1 &= 0x3f;
+
+	// Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
+	num2 = f_lo2 * 64 / (FREF / 128);
+	div2 = num2 / 8192;
+	num2 &= 0x1fff;
+
+	if (freq <=  95000) lnaband = 0xB0; else
+	if (freq <= 180000) lnaband = 0xA0; else
+	if (freq <= 260000) lnaband = 0x90; else
+	if (freq <= 335000) lnaband = 0x80; else
+	if (freq <= 425000) lnaband = 0x70; else
+	if (freq <= 480000) lnaband = 0x60; else
+	if (freq <= 570000) lnaband = 0x50; else
+	if (freq <= 645000) lnaband = 0x40; else
+	if (freq <= 730000) lnaband = 0x30; else
+	if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
+
+	b[0] = REG_LO1C1;
+	b[1] = lnaband | ((num1 >>2) & 0x0F);
+	b[2] = div1;
+	b[3] = (num2 & 0x0F)  | ((num1 & 3) << 4);
+	b[4] = num2 >> 4;
+	b[5] = ((num2 >>12) & 1) | (div2 << 1);
+
+	dprintk("IF1: %dMHz",(int)if1);
+	dprintk("PLL freq=%dkHz  f_lo1=%dkHz  f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
+	dprintk("PLL div1=%d  num1=%d  div2=%d  num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
+	dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
+
+	mt2060_writeregs(priv,b,6);
+
+	//Waits for pll lock or timeout
+	i = 0;
+	do {
+		mt2060_readreg(priv,REG_LO_STATUS,b);
+		if ((b[0] & 0x88)==0x88)
+			break;
+		msleep(4);
+		i++;
+	} while (i<10);
+
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
+
+	return 0;
+}
+
+static void mt2060_calibrate(struct mt2060_priv *priv)
+{
+	u8 b = 0;
+	int i = 0;
+
+	if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
+		return;
+	if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
+		return;
+
+	/* initialize the clock output */
+	mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
+
+	do {
+		b |= (1 << 6); // FM1SS;
+		mt2060_writereg(priv, REG_LO2C1,b);
+		msleep(20);
+
+		if (i == 0) {
+			b |= (1 << 7); // FM1CA;
+			mt2060_writereg(priv, REG_LO2C1,b);
+			b &= ~(1 << 7); // FM1CA;
+			msleep(20);
+		}
+
+		b &= ~(1 << 6); // FM1SS
+		mt2060_writereg(priv, REG_LO2C1,b);
+
+		msleep(20);
+		i++;
+	} while (i < 9);
+
+	i = 0;
+	while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
+		msleep(20);
+
+	if (i <= 10) {
+		mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
+		dprintk("calibration was successful: %d", (int)priv->fmfreq);
+	} else
+		dprintk("FMCAL timed out");
+}
+
+static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
+{
+	struct mt2060_priv *priv = fe->tuner_priv;
+	*frequency = priv->frequency;
+	return 0;
+}
+
+static int mt2060_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
+{
+	*frequency = IF2 * 1000;
+	return 0;
+}
+
+static int mt2060_init(struct dvb_frontend *fe)
+{
+	struct mt2060_priv *priv = fe->tuner_priv;
+	int ret;
+
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
+
+	if (priv->sleep) {
+		ret = mt2060_writereg(priv, REG_MISC_CTRL, 0x20);
+		if (ret)
+			goto err_i2c_gate_ctrl;
+	}
+
+	ret = mt2060_writereg(priv, REG_VGAG,
+			      (priv->cfg->clock_out << 6) | 0x33);
+
+err_i2c_gate_ctrl:
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
+
+	return ret;
+}
+
+static int mt2060_sleep(struct dvb_frontend *fe)
+{
+	struct mt2060_priv *priv = fe->tuner_priv;
+	int ret;
+
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
+
+	ret = mt2060_writereg(priv, REG_VGAG,
+			      (priv->cfg->clock_out << 6) | 0x30);
+	if (ret)
+		goto err_i2c_gate_ctrl;
+
+	if (priv->sleep)
+		ret = mt2060_writereg(priv, REG_MISC_CTRL, 0xe8);
+
+err_i2c_gate_ctrl:
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
+
+	return ret;
+}
+
+static void mt2060_release(struct dvb_frontend *fe)
+{
+	kfree(fe->tuner_priv);
+	fe->tuner_priv = NULL;
+}
+
+static const struct dvb_tuner_ops mt2060_tuner_ops = {
+	.info = {
+		.name           = "Microtune MT2060",
+		.frequency_min  =  48000000,
+		.frequency_max  = 860000000,
+		.frequency_step =     50000,
+	},
+
+	.release       = mt2060_release,
+
+	.init          = mt2060_init,
+	.sleep         = mt2060_sleep,
+
+	.set_params    = mt2060_set_params,
+	.get_frequency = mt2060_get_frequency,
+	.get_if_frequency = mt2060_get_if_frequency,
+};
+
+/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
+struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
+{
+	struct mt2060_priv *priv = NULL;
+	u8 id = 0;
+
+	priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
+	if (priv == NULL)
+		return NULL;
+
+	priv->cfg      = cfg;
+	priv->i2c      = i2c;
+	priv->if1_freq = if1;
+	priv->i2c_max_regs = ~0;
+
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
+
+	if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
+		kfree(priv);
+		return NULL;
+	}
+
+	if (id != PART_REV) {
+		kfree(priv);
+		return NULL;
+	}
+	printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
+	memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
+
+	fe->tuner_priv = priv;
+
+	mt2060_calibrate(priv);
+
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
+
+	return fe;
+}
+EXPORT_SYMBOL(mt2060_attach);
+
+static int mt2060_probe(struct i2c_client *client,
+			const struct i2c_device_id *id)
+{
+	struct mt2060_platform_data *pdata = client->dev.platform_data;
+	struct dvb_frontend *fe;
+	struct mt2060_priv *dev;
+	int ret;
+	u8 chip_id;
+
+	dev_dbg(&client->dev, "\n");
+
+	if (!pdata) {
+		dev_err(&client->dev, "Cannot proceed without platform data\n");
+		ret = -EINVAL;
+		goto err;
+	}
+
+	dev = devm_kzalloc(&client->dev, sizeof(*dev), GFP_KERNEL);
+	if (!dev) {
+		ret = -ENOMEM;
+		goto err;
+	}
+
+	fe = pdata->dvb_frontend;
+	dev->config.i2c_address = client->addr;
+	dev->config.clock_out = pdata->clock_out;
+	dev->cfg = &dev->config;
+	dev->i2c = client->adapter;
+	dev->if1_freq = pdata->if1 ? pdata->if1 : 1220;
+	dev->client = client;
+	dev->i2c_max_regs = pdata->i2c_write_max ? pdata->i2c_write_max - 1 : ~0;
+	dev->sleep = true;
+
+	ret = mt2060_readreg(dev, REG_PART_REV, &chip_id);
+	if (ret) {
+		ret = -ENODEV;
+		goto err;
+	}
+
+	dev_dbg(&client->dev, "chip id=%02x\n", chip_id);
+
+	if (chip_id != PART_REV) {
+		ret = -ENODEV;
+		goto err;
+	}
+
+	/* Power on, calibrate, sleep */
+	ret = mt2060_writereg(dev, REG_MISC_CTRL, 0x20);
+	if (ret)
+		goto err;
+	mt2060_calibrate(dev);
+	ret = mt2060_writereg(dev, REG_MISC_CTRL, 0xe8);
+	if (ret)
+		goto err;
+
+	dev_info(&client->dev, "Microtune MT2060 successfully identified\n");
+	memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(fe->ops.tuner_ops));
+	fe->ops.tuner_ops.release = NULL;
+	fe->tuner_priv = dev;
+	i2c_set_clientdata(client, dev);
+
+	return 0;
+err:
+	dev_dbg(&client->dev, "failed=%d\n", ret);
+	return ret;
+}
+
+static int mt2060_remove(struct i2c_client *client)
+{
+	dev_dbg(&client->dev, "\n");
+
+	return 0;
+}
+
+static const struct i2c_device_id mt2060_id_table[] = {
+	{"mt2060", 0},
+	{}
+};
+MODULE_DEVICE_TABLE(i2c, mt2060_id_table);
+
+static struct i2c_driver mt2060_driver = {
+	.driver = {
+		.name = "mt2060",
+		.suppress_bind_attrs = true,
+	},
+	.probe		= mt2060_probe,
+	.remove		= mt2060_remove,
+	.id_table	= mt2060_id_table,
+};
+
+module_i2c_driver(mt2060_driver);
+
+MODULE_AUTHOR("Olivier DANET");
+MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
+MODULE_LICENSE("GPL");