[Feature]add MT2731_MP2_MR2_SVN388 baseline version
Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/kernel/linux/v4.14/drivers/nvme/host/fc.c b/src/kernel/linux/v4.14/drivers/nvme/host/fc.c
new file mode 100644
index 0000000..e95d2f7
--- /dev/null
+++ b/src/kernel/linux/v4.14/drivers/nvme/host/fc.c
@@ -0,0 +1,3068 @@
+/*
+ * Copyright (c) 2016 Avago Technologies. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of version 2 of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful.
+ * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
+ * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
+ * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
+ * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
+ * See the GNU General Public License for more details, a copy of which
+ * can be found in the file COPYING included with this package
+ *
+ */
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+#include <linux/module.h>
+#include <linux/parser.h>
+#include <uapi/scsi/fc/fc_fs.h>
+#include <uapi/scsi/fc/fc_els.h>
+#include <linux/delay.h>
+
+#include "nvme.h"
+#include "fabrics.h"
+#include <linux/nvme-fc-driver.h>
+#include <linux/nvme-fc.h>
+
+
+/* *************************** Data Structures/Defines ****************** */
+
+
+/*
+ * We handle AEN commands ourselves and don't even let the
+ * block layer know about them.
+ */
+#define NVME_FC_NR_AEN_COMMANDS 1
+#define NVME_FC_AQ_BLKMQ_DEPTH \
+ (NVME_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
+#define AEN_CMDID_BASE (NVME_FC_AQ_BLKMQ_DEPTH + 1)
+
+enum nvme_fc_queue_flags {
+ NVME_FC_Q_CONNECTED = (1 << 0),
+ NVME_FC_Q_LIVE = (1 << 1),
+};
+
+#define NVMEFC_QUEUE_DELAY 3 /* ms units */
+
+struct nvme_fc_queue {
+ struct nvme_fc_ctrl *ctrl;
+ struct device *dev;
+ struct blk_mq_hw_ctx *hctx;
+ void *lldd_handle;
+ int queue_size;
+ size_t cmnd_capsule_len;
+ u32 qnum;
+ u32 rqcnt;
+ u32 seqno;
+
+ u64 connection_id;
+ atomic_t csn;
+
+ unsigned long flags;
+} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
+
+enum nvme_fcop_flags {
+ FCOP_FLAGS_TERMIO = (1 << 0),
+ FCOP_FLAGS_RELEASED = (1 << 1),
+ FCOP_FLAGS_COMPLETE = (1 << 2),
+ FCOP_FLAGS_AEN = (1 << 3),
+};
+
+struct nvmefc_ls_req_op {
+ struct nvmefc_ls_req ls_req;
+
+ struct nvme_fc_rport *rport;
+ struct nvme_fc_queue *queue;
+ struct request *rq;
+ u32 flags;
+
+ int ls_error;
+ struct completion ls_done;
+ struct list_head lsreq_list; /* rport->ls_req_list */
+ bool req_queued;
+};
+
+enum nvme_fcpop_state {
+ FCPOP_STATE_UNINIT = 0,
+ FCPOP_STATE_IDLE = 1,
+ FCPOP_STATE_ACTIVE = 2,
+ FCPOP_STATE_ABORTED = 3,
+ FCPOP_STATE_COMPLETE = 4,
+};
+
+struct nvme_fc_fcp_op {
+ struct nvme_request nreq; /*
+ * nvme/host/core.c
+ * requires this to be
+ * the 1st element in the
+ * private structure
+ * associated with the
+ * request.
+ */
+ struct nvmefc_fcp_req fcp_req;
+
+ struct nvme_fc_ctrl *ctrl;
+ struct nvme_fc_queue *queue;
+ struct request *rq;
+
+ atomic_t state;
+ u32 flags;
+ u32 rqno;
+ u32 nents;
+
+ struct nvme_fc_cmd_iu cmd_iu;
+ struct nvme_fc_ersp_iu rsp_iu;
+};
+
+struct nvme_fc_lport {
+ struct nvme_fc_local_port localport;
+
+ struct ida endp_cnt;
+ struct list_head port_list; /* nvme_fc_port_list */
+ struct list_head endp_list;
+ struct device *dev; /* physical device for dma */
+ struct nvme_fc_port_template *ops;
+ struct kref ref;
+} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
+
+struct nvme_fc_rport {
+ struct nvme_fc_remote_port remoteport;
+
+ struct list_head endp_list; /* for lport->endp_list */
+ struct list_head ctrl_list;
+ struct list_head ls_req_list;
+ struct device *dev; /* physical device for dma */
+ struct nvme_fc_lport *lport;
+ spinlock_t lock;
+ struct kref ref;
+} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
+
+enum nvme_fcctrl_flags {
+ FCCTRL_TERMIO = (1 << 0),
+};
+
+struct nvme_fc_ctrl {
+ spinlock_t lock;
+ struct nvme_fc_queue *queues;
+ struct device *dev;
+ struct nvme_fc_lport *lport;
+ struct nvme_fc_rport *rport;
+ u32 cnum;
+
+ u64 association_id;
+
+ struct list_head ctrl_list; /* rport->ctrl_list */
+
+ struct blk_mq_tag_set admin_tag_set;
+ struct blk_mq_tag_set tag_set;
+
+ struct work_struct delete_work;
+ struct delayed_work connect_work;
+
+ struct kref ref;
+ u32 flags;
+ u32 iocnt;
+ wait_queue_head_t ioabort_wait;
+
+ struct nvme_fc_fcp_op aen_ops[NVME_FC_NR_AEN_COMMANDS];
+
+ struct nvme_ctrl ctrl;
+};
+
+static inline struct nvme_fc_ctrl *
+to_fc_ctrl(struct nvme_ctrl *ctrl)
+{
+ return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
+}
+
+static inline struct nvme_fc_lport *
+localport_to_lport(struct nvme_fc_local_port *portptr)
+{
+ return container_of(portptr, struct nvme_fc_lport, localport);
+}
+
+static inline struct nvme_fc_rport *
+remoteport_to_rport(struct nvme_fc_remote_port *portptr)
+{
+ return container_of(portptr, struct nvme_fc_rport, remoteport);
+}
+
+static inline struct nvmefc_ls_req_op *
+ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
+{
+ return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
+}
+
+static inline struct nvme_fc_fcp_op *
+fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
+{
+ return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
+}
+
+
+
+/* *************************** Globals **************************** */
+
+
+static DEFINE_SPINLOCK(nvme_fc_lock);
+
+static LIST_HEAD(nvme_fc_lport_list);
+static DEFINE_IDA(nvme_fc_local_port_cnt);
+static DEFINE_IDA(nvme_fc_ctrl_cnt);
+
+
+
+
+/* *********************** FC-NVME Port Management ************************ */
+
+static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
+static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
+ struct nvme_fc_queue *, unsigned int);
+
+static void
+nvme_fc_free_lport(struct kref *ref)
+{
+ struct nvme_fc_lport *lport =
+ container_of(ref, struct nvme_fc_lport, ref);
+ unsigned long flags;
+
+ WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
+ WARN_ON(!list_empty(&lport->endp_list));
+
+ /* remove from transport list */
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+ list_del(&lport->port_list);
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ /* let the LLDD know we've finished tearing it down */
+ lport->ops->localport_delete(&lport->localport);
+
+ ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
+ ida_destroy(&lport->endp_cnt);
+
+ put_device(lport->dev);
+
+ kfree(lport);
+}
+
+static void
+nvme_fc_lport_put(struct nvme_fc_lport *lport)
+{
+ kref_put(&lport->ref, nvme_fc_free_lport);
+}
+
+static int
+nvme_fc_lport_get(struct nvme_fc_lport *lport)
+{
+ return kref_get_unless_zero(&lport->ref);
+}
+
+
+static struct nvme_fc_lport *
+nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo)
+{
+ struct nvme_fc_lport *lport;
+ unsigned long flags;
+
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+
+ list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
+ if (lport->localport.node_name != pinfo->node_name ||
+ lport->localport.port_name != pinfo->port_name)
+ continue;
+
+ if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
+ lport = ERR_PTR(-EEXIST);
+ goto out_done;
+ }
+
+ if (!nvme_fc_lport_get(lport)) {
+ /*
+ * fails if ref cnt already 0. If so,
+ * act as if lport already deleted
+ */
+ lport = NULL;
+ goto out_done;
+ }
+
+ /* resume the lport */
+
+ lport->localport.port_role = pinfo->port_role;
+ lport->localport.port_id = pinfo->port_id;
+ lport->localport.port_state = FC_OBJSTATE_ONLINE;
+
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ return lport;
+ }
+
+ lport = NULL;
+
+out_done:
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ return lport;
+}
+
+/**
+ * nvme_fc_register_localport - transport entry point called by an
+ * LLDD to register the existence of a NVME
+ * host FC port.
+ * @pinfo: pointer to information about the port to be registered
+ * @template: LLDD entrypoints and operational parameters for the port
+ * @dev: physical hardware device node port corresponds to. Will be
+ * used for DMA mappings
+ * @lport_p: pointer to a local port pointer. Upon success, the routine
+ * will allocate a nvme_fc_local_port structure and place its
+ * address in the local port pointer. Upon failure, local port
+ * pointer will be set to 0.
+ *
+ * Returns:
+ * a completion status. Must be 0 upon success; a negative errno
+ * (ex: -ENXIO) upon failure.
+ */
+int
+nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
+ struct nvme_fc_port_template *template,
+ struct device *dev,
+ struct nvme_fc_local_port **portptr)
+{
+ struct nvme_fc_lport *newrec;
+ unsigned long flags;
+ int ret, idx;
+
+ if (!template->localport_delete || !template->remoteport_delete ||
+ !template->ls_req || !template->fcp_io ||
+ !template->ls_abort || !template->fcp_abort ||
+ !template->max_hw_queues || !template->max_sgl_segments ||
+ !template->max_dif_sgl_segments || !template->dma_boundary) {
+ ret = -EINVAL;
+ goto out_reghost_failed;
+ }
+
+ /*
+ * look to see if there is already a localport that had been
+ * deregistered and in the process of waiting for all the
+ * references to fully be removed. If the references haven't
+ * expired, we can simply re-enable the localport. Remoteports
+ * and controller reconnections should resume naturally.
+ */
+ newrec = nvme_fc_attach_to_unreg_lport(pinfo);
+
+ /* found an lport, but something about its state is bad */
+ if (IS_ERR(newrec)) {
+ ret = PTR_ERR(newrec);
+ goto out_reghost_failed;
+
+ /* found existing lport, which was resumed */
+ } else if (newrec) {
+ *portptr = &newrec->localport;
+ return 0;
+ }
+
+ /* nothing found - allocate a new localport struct */
+
+ newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
+ GFP_KERNEL);
+ if (!newrec) {
+ ret = -ENOMEM;
+ goto out_reghost_failed;
+ }
+
+ idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
+ if (idx < 0) {
+ ret = -ENOSPC;
+ goto out_fail_kfree;
+ }
+
+ if (!get_device(dev) && dev) {
+ ret = -ENODEV;
+ goto out_ida_put;
+ }
+
+ INIT_LIST_HEAD(&newrec->port_list);
+ INIT_LIST_HEAD(&newrec->endp_list);
+ kref_init(&newrec->ref);
+ newrec->ops = template;
+ newrec->dev = dev;
+ ida_init(&newrec->endp_cnt);
+ newrec->localport.private = &newrec[1];
+ newrec->localport.node_name = pinfo->node_name;
+ newrec->localport.port_name = pinfo->port_name;
+ newrec->localport.port_role = pinfo->port_role;
+ newrec->localport.port_id = pinfo->port_id;
+ newrec->localport.port_state = FC_OBJSTATE_ONLINE;
+ newrec->localport.port_num = idx;
+
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+ list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ if (dev)
+ dma_set_seg_boundary(dev, template->dma_boundary);
+
+ *portptr = &newrec->localport;
+ return 0;
+
+out_ida_put:
+ ida_simple_remove(&nvme_fc_local_port_cnt, idx);
+out_fail_kfree:
+ kfree(newrec);
+out_reghost_failed:
+ *portptr = NULL;
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
+
+/**
+ * nvme_fc_unregister_localport - transport entry point called by an
+ * LLDD to deregister/remove a previously
+ * registered a NVME host FC port.
+ * @localport: pointer to the (registered) local port that is to be
+ * deregistered.
+ *
+ * Returns:
+ * a completion status. Must be 0 upon success; a negative errno
+ * (ex: -ENXIO) upon failure.
+ */
+int
+nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
+{
+ struct nvme_fc_lport *lport = localport_to_lport(portptr);
+ unsigned long flags;
+
+ if (!portptr)
+ return -EINVAL;
+
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+
+ if (portptr->port_state != FC_OBJSTATE_ONLINE) {
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+ return -EINVAL;
+ }
+ portptr->port_state = FC_OBJSTATE_DELETED;
+
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ nvme_fc_lport_put(lport);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
+
+/**
+ * nvme_fc_register_remoteport - transport entry point called by an
+ * LLDD to register the existence of a NVME
+ * subsystem FC port on its fabric.
+ * @localport: pointer to the (registered) local port that the remote
+ * subsystem port is connected to.
+ * @pinfo: pointer to information about the port to be registered
+ * @rport_p: pointer to a remote port pointer. Upon success, the routine
+ * will allocate a nvme_fc_remote_port structure and place its
+ * address in the remote port pointer. Upon failure, remote port
+ * pointer will be set to 0.
+ *
+ * Returns:
+ * a completion status. Must be 0 upon success; a negative errno
+ * (ex: -ENXIO) upon failure.
+ */
+int
+nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
+ struct nvme_fc_port_info *pinfo,
+ struct nvme_fc_remote_port **portptr)
+{
+ struct nvme_fc_lport *lport = localport_to_lport(localport);
+ struct nvme_fc_rport *newrec;
+ unsigned long flags;
+ int ret, idx;
+
+ newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
+ GFP_KERNEL);
+ if (!newrec) {
+ ret = -ENOMEM;
+ goto out_reghost_failed;
+ }
+
+ if (!nvme_fc_lport_get(lport)) {
+ ret = -ESHUTDOWN;
+ goto out_kfree_rport;
+ }
+
+ idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
+ if (idx < 0) {
+ ret = -ENOSPC;
+ goto out_lport_put;
+ }
+
+ INIT_LIST_HEAD(&newrec->endp_list);
+ INIT_LIST_HEAD(&newrec->ctrl_list);
+ INIT_LIST_HEAD(&newrec->ls_req_list);
+ kref_init(&newrec->ref);
+ spin_lock_init(&newrec->lock);
+ newrec->remoteport.localport = &lport->localport;
+ newrec->dev = lport->dev;
+ newrec->lport = lport;
+ newrec->remoteport.private = &newrec[1];
+ newrec->remoteport.port_role = pinfo->port_role;
+ newrec->remoteport.node_name = pinfo->node_name;
+ newrec->remoteport.port_name = pinfo->port_name;
+ newrec->remoteport.port_id = pinfo->port_id;
+ newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
+ newrec->remoteport.port_num = idx;
+
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+ list_add_tail(&newrec->endp_list, &lport->endp_list);
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ *portptr = &newrec->remoteport;
+ return 0;
+
+out_lport_put:
+ nvme_fc_lport_put(lport);
+out_kfree_rport:
+ kfree(newrec);
+out_reghost_failed:
+ *portptr = NULL;
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
+
+static void
+nvme_fc_free_rport(struct kref *ref)
+{
+ struct nvme_fc_rport *rport =
+ container_of(ref, struct nvme_fc_rport, ref);
+ struct nvme_fc_lport *lport =
+ localport_to_lport(rport->remoteport.localport);
+ unsigned long flags;
+
+ WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
+ WARN_ON(!list_empty(&rport->ctrl_list));
+
+ /* remove from lport list */
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+ list_del(&rport->endp_list);
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ /* let the LLDD know we've finished tearing it down */
+ lport->ops->remoteport_delete(&rport->remoteport);
+
+ ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
+
+ kfree(rport);
+
+ nvme_fc_lport_put(lport);
+}
+
+static void
+nvme_fc_rport_put(struct nvme_fc_rport *rport)
+{
+ kref_put(&rport->ref, nvme_fc_free_rport);
+}
+
+static int
+nvme_fc_rport_get(struct nvme_fc_rport *rport)
+{
+ return kref_get_unless_zero(&rport->ref);
+}
+
+static int
+nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
+{
+ struct nvmefc_ls_req_op *lsop;
+ unsigned long flags;
+
+restart:
+ spin_lock_irqsave(&rport->lock, flags);
+
+ list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
+ if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
+ lsop->flags |= FCOP_FLAGS_TERMIO;
+ spin_unlock_irqrestore(&rport->lock, flags);
+ rport->lport->ops->ls_abort(&rport->lport->localport,
+ &rport->remoteport,
+ &lsop->ls_req);
+ goto restart;
+ }
+ }
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ return 0;
+}
+
+/**
+ * nvme_fc_unregister_remoteport - transport entry point called by an
+ * LLDD to deregister/remove a previously
+ * registered a NVME subsystem FC port.
+ * @remoteport: pointer to the (registered) remote port that is to be
+ * deregistered.
+ *
+ * Returns:
+ * a completion status. Must be 0 upon success; a negative errno
+ * (ex: -ENXIO) upon failure.
+ */
+int
+nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
+{
+ struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
+ struct nvme_fc_ctrl *ctrl;
+ unsigned long flags;
+
+ if (!portptr)
+ return -EINVAL;
+
+ spin_lock_irqsave(&rport->lock, flags);
+
+ if (portptr->port_state != FC_OBJSTATE_ONLINE) {
+ spin_unlock_irqrestore(&rport->lock, flags);
+ return -EINVAL;
+ }
+ portptr->port_state = FC_OBJSTATE_DELETED;
+
+ /* tear down all associations to the remote port */
+ list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
+ __nvme_fc_del_ctrl(ctrl);
+
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ nvme_fc_abort_lsops(rport);
+
+ nvme_fc_rport_put(rport);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
+
+
+/* *********************** FC-NVME DMA Handling **************************** */
+
+/*
+ * The fcloop device passes in a NULL device pointer. Real LLD's will
+ * pass in a valid device pointer. If NULL is passed to the dma mapping
+ * routines, depending on the platform, it may or may not succeed, and
+ * may crash.
+ *
+ * As such:
+ * Wrapper all the dma routines and check the dev pointer.
+ *
+ * If simple mappings (return just a dma address, we'll noop them,
+ * returning a dma address of 0.
+ *
+ * On more complex mappings (dma_map_sg), a pseudo routine fills
+ * in the scatter list, setting all dma addresses to 0.
+ */
+
+static inline dma_addr_t
+fc_dma_map_single(struct device *dev, void *ptr, size_t size,
+ enum dma_data_direction dir)
+{
+ return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
+}
+
+static inline int
+fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
+{
+ return dev ? dma_mapping_error(dev, dma_addr) : 0;
+}
+
+static inline void
+fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
+ enum dma_data_direction dir)
+{
+ if (dev)
+ dma_unmap_single(dev, addr, size, dir);
+}
+
+static inline void
+fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
+ enum dma_data_direction dir)
+{
+ if (dev)
+ dma_sync_single_for_cpu(dev, addr, size, dir);
+}
+
+static inline void
+fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
+ enum dma_data_direction dir)
+{
+ if (dev)
+ dma_sync_single_for_device(dev, addr, size, dir);
+}
+
+/* pseudo dma_map_sg call */
+static int
+fc_map_sg(struct scatterlist *sg, int nents)
+{
+ struct scatterlist *s;
+ int i;
+
+ WARN_ON(nents == 0 || sg[0].length == 0);
+
+ for_each_sg(sg, s, nents, i) {
+ s->dma_address = 0L;
+#ifdef CONFIG_NEED_SG_DMA_LENGTH
+ s->dma_length = s->length;
+#endif
+ }
+ return nents;
+}
+
+static inline int
+fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
+ enum dma_data_direction dir)
+{
+ return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
+}
+
+static inline void
+fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
+ enum dma_data_direction dir)
+{
+ if (dev)
+ dma_unmap_sg(dev, sg, nents, dir);
+}
+
+
+/* *********************** FC-NVME LS Handling **************************** */
+
+static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
+static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
+
+
+static void
+__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
+{
+ struct nvme_fc_rport *rport = lsop->rport;
+ struct nvmefc_ls_req *lsreq = &lsop->ls_req;
+ unsigned long flags;
+
+ spin_lock_irqsave(&rport->lock, flags);
+
+ if (!lsop->req_queued) {
+ spin_unlock_irqrestore(&rport->lock, flags);
+ return;
+ }
+
+ list_del(&lsop->lsreq_list);
+
+ lsop->req_queued = false;
+
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
+ (lsreq->rqstlen + lsreq->rsplen),
+ DMA_BIDIRECTIONAL);
+
+ nvme_fc_rport_put(rport);
+}
+
+static int
+__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
+ struct nvmefc_ls_req_op *lsop,
+ void (*done)(struct nvmefc_ls_req *req, int status))
+{
+ struct nvmefc_ls_req *lsreq = &lsop->ls_req;
+ unsigned long flags;
+ int ret = 0;
+
+ if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
+ return -ECONNREFUSED;
+
+ if (!nvme_fc_rport_get(rport))
+ return -ESHUTDOWN;
+
+ lsreq->done = done;
+ lsop->rport = rport;
+ lsop->req_queued = false;
+ INIT_LIST_HEAD(&lsop->lsreq_list);
+ init_completion(&lsop->ls_done);
+
+ lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
+ lsreq->rqstlen + lsreq->rsplen,
+ DMA_BIDIRECTIONAL);
+ if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
+ ret = -EFAULT;
+ goto out_putrport;
+ }
+ lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
+
+ spin_lock_irqsave(&rport->lock, flags);
+
+ list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
+
+ lsop->req_queued = true;
+
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ ret = rport->lport->ops->ls_req(&rport->lport->localport,
+ &rport->remoteport, lsreq);
+ if (ret)
+ goto out_unlink;
+
+ return 0;
+
+out_unlink:
+ lsop->ls_error = ret;
+ spin_lock_irqsave(&rport->lock, flags);
+ lsop->req_queued = false;
+ list_del(&lsop->lsreq_list);
+ spin_unlock_irqrestore(&rport->lock, flags);
+ fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
+ (lsreq->rqstlen + lsreq->rsplen),
+ DMA_BIDIRECTIONAL);
+out_putrport:
+ nvme_fc_rport_put(rport);
+
+ return ret;
+}
+
+static void
+nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
+{
+ struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
+
+ lsop->ls_error = status;
+ complete(&lsop->ls_done);
+}
+
+static int
+nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
+{
+ struct nvmefc_ls_req *lsreq = &lsop->ls_req;
+ struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
+ int ret;
+
+ ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
+
+ if (!ret) {
+ /*
+ * No timeout/not interruptible as we need the struct
+ * to exist until the lldd calls us back. Thus mandate
+ * wait until driver calls back. lldd responsible for
+ * the timeout action
+ */
+ wait_for_completion(&lsop->ls_done);
+
+ __nvme_fc_finish_ls_req(lsop);
+
+ ret = lsop->ls_error;
+ }
+
+ if (ret)
+ return ret;
+
+ /* ACC or RJT payload ? */
+ if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
+ return -ENXIO;
+
+ return 0;
+}
+
+static int
+nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
+ struct nvmefc_ls_req_op *lsop,
+ void (*done)(struct nvmefc_ls_req *req, int status))
+{
+ /* don't wait for completion */
+
+ return __nvme_fc_send_ls_req(rport, lsop, done);
+}
+
+/* Validation Error indexes into the string table below */
+enum {
+ VERR_NO_ERROR = 0,
+ VERR_LSACC = 1,
+ VERR_LSDESC_RQST = 2,
+ VERR_LSDESC_RQST_LEN = 3,
+ VERR_ASSOC_ID = 4,
+ VERR_ASSOC_ID_LEN = 5,
+ VERR_CONN_ID = 6,
+ VERR_CONN_ID_LEN = 7,
+ VERR_CR_ASSOC = 8,
+ VERR_CR_ASSOC_ACC_LEN = 9,
+ VERR_CR_CONN = 10,
+ VERR_CR_CONN_ACC_LEN = 11,
+ VERR_DISCONN = 12,
+ VERR_DISCONN_ACC_LEN = 13,
+};
+
+static char *validation_errors[] = {
+ "OK",
+ "Not LS_ACC",
+ "Not LSDESC_RQST",
+ "Bad LSDESC_RQST Length",
+ "Not Association ID",
+ "Bad Association ID Length",
+ "Not Connection ID",
+ "Bad Connection ID Length",
+ "Not CR_ASSOC Rqst",
+ "Bad CR_ASSOC ACC Length",
+ "Not CR_CONN Rqst",
+ "Bad CR_CONN ACC Length",
+ "Not Disconnect Rqst",
+ "Bad Disconnect ACC Length",
+};
+
+static int
+nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
+ struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
+{
+ struct nvmefc_ls_req_op *lsop;
+ struct nvmefc_ls_req *lsreq;
+ struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
+ struct fcnvme_ls_cr_assoc_acc *assoc_acc;
+ int ret, fcret = 0;
+
+ lsop = kzalloc((sizeof(*lsop) +
+ ctrl->lport->ops->lsrqst_priv_sz +
+ sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
+ if (!lsop) {
+ ret = -ENOMEM;
+ goto out_no_memory;
+ }
+ lsreq = &lsop->ls_req;
+
+ lsreq->private = (void *)&lsop[1];
+ assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
+ (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
+ assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
+
+ assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
+ assoc_rqst->desc_list_len =
+ cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
+
+ assoc_rqst->assoc_cmd.desc_tag =
+ cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
+ assoc_rqst->assoc_cmd.desc_len =
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
+
+ assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
+ assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
+ /* Linux supports only Dynamic controllers */
+ assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
+ uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
+ strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
+ min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
+ strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
+ min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
+
+ lsop->queue = queue;
+ lsreq->rqstaddr = assoc_rqst;
+ lsreq->rqstlen = sizeof(*assoc_rqst);
+ lsreq->rspaddr = assoc_acc;
+ lsreq->rsplen = sizeof(*assoc_acc);
+ lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
+
+ ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
+ if (ret)
+ goto out_free_buffer;
+
+ /* process connect LS completion */
+
+ /* validate the ACC response */
+ if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
+ fcret = VERR_LSACC;
+ else if (assoc_acc->hdr.desc_list_len !=
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_ls_cr_assoc_acc)))
+ fcret = VERR_CR_ASSOC_ACC_LEN;
+ else if (assoc_acc->hdr.rqst.desc_tag !=
+ cpu_to_be32(FCNVME_LSDESC_RQST))
+ fcret = VERR_LSDESC_RQST;
+ else if (assoc_acc->hdr.rqst.desc_len !=
+ fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
+ fcret = VERR_LSDESC_RQST_LEN;
+ else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
+ fcret = VERR_CR_ASSOC;
+ else if (assoc_acc->associd.desc_tag !=
+ cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
+ fcret = VERR_ASSOC_ID;
+ else if (assoc_acc->associd.desc_len !=
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_lsdesc_assoc_id)))
+ fcret = VERR_ASSOC_ID_LEN;
+ else if (assoc_acc->connectid.desc_tag !=
+ cpu_to_be32(FCNVME_LSDESC_CONN_ID))
+ fcret = VERR_CONN_ID;
+ else if (assoc_acc->connectid.desc_len !=
+ fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
+ fcret = VERR_CONN_ID_LEN;
+
+ if (fcret) {
+ ret = -EBADF;
+ dev_err(ctrl->dev,
+ "q %d connect failed: %s\n",
+ queue->qnum, validation_errors[fcret]);
+ } else {
+ ctrl->association_id =
+ be64_to_cpu(assoc_acc->associd.association_id);
+ queue->connection_id =
+ be64_to_cpu(assoc_acc->connectid.connection_id);
+ set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
+ }
+
+out_free_buffer:
+ kfree(lsop);
+out_no_memory:
+ if (ret)
+ dev_err(ctrl->dev,
+ "queue %d connect admin queue failed (%d).\n",
+ queue->qnum, ret);
+ return ret;
+}
+
+static int
+nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
+ u16 qsize, u16 ersp_ratio)
+{
+ struct nvmefc_ls_req_op *lsop;
+ struct nvmefc_ls_req *lsreq;
+ struct fcnvme_ls_cr_conn_rqst *conn_rqst;
+ struct fcnvme_ls_cr_conn_acc *conn_acc;
+ int ret, fcret = 0;
+
+ lsop = kzalloc((sizeof(*lsop) +
+ ctrl->lport->ops->lsrqst_priv_sz +
+ sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
+ if (!lsop) {
+ ret = -ENOMEM;
+ goto out_no_memory;
+ }
+ lsreq = &lsop->ls_req;
+
+ lsreq->private = (void *)&lsop[1];
+ conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
+ (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
+ conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
+
+ conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
+ conn_rqst->desc_list_len = cpu_to_be32(
+ sizeof(struct fcnvme_lsdesc_assoc_id) +
+ sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
+
+ conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
+ conn_rqst->associd.desc_len =
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_lsdesc_assoc_id));
+ conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
+ conn_rqst->connect_cmd.desc_tag =
+ cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
+ conn_rqst->connect_cmd.desc_len =
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
+ conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
+ conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
+ conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
+
+ lsop->queue = queue;
+ lsreq->rqstaddr = conn_rqst;
+ lsreq->rqstlen = sizeof(*conn_rqst);
+ lsreq->rspaddr = conn_acc;
+ lsreq->rsplen = sizeof(*conn_acc);
+ lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
+
+ ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
+ if (ret)
+ goto out_free_buffer;
+
+ /* process connect LS completion */
+
+ /* validate the ACC response */
+ if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
+ fcret = VERR_LSACC;
+ else if (conn_acc->hdr.desc_list_len !=
+ fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
+ fcret = VERR_CR_CONN_ACC_LEN;
+ else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
+ fcret = VERR_LSDESC_RQST;
+ else if (conn_acc->hdr.rqst.desc_len !=
+ fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
+ fcret = VERR_LSDESC_RQST_LEN;
+ else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
+ fcret = VERR_CR_CONN;
+ else if (conn_acc->connectid.desc_tag !=
+ cpu_to_be32(FCNVME_LSDESC_CONN_ID))
+ fcret = VERR_CONN_ID;
+ else if (conn_acc->connectid.desc_len !=
+ fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
+ fcret = VERR_CONN_ID_LEN;
+
+ if (fcret) {
+ ret = -EBADF;
+ dev_err(ctrl->dev,
+ "q %d connect failed: %s\n",
+ queue->qnum, validation_errors[fcret]);
+ } else {
+ queue->connection_id =
+ be64_to_cpu(conn_acc->connectid.connection_id);
+ set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
+ }
+
+out_free_buffer:
+ kfree(lsop);
+out_no_memory:
+ if (ret)
+ dev_err(ctrl->dev,
+ "queue %d connect command failed (%d).\n",
+ queue->qnum, ret);
+ return ret;
+}
+
+static void
+nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
+{
+ struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
+
+ __nvme_fc_finish_ls_req(lsop);
+
+ /* fc-nvme iniator doesn't care about success or failure of cmd */
+
+ kfree(lsop);
+}
+
+/*
+ * This routine sends a FC-NVME LS to disconnect (aka terminate)
+ * the FC-NVME Association. Terminating the association also
+ * terminates the FC-NVME connections (per queue, both admin and io
+ * queues) that are part of the association. E.g. things are torn
+ * down, and the related FC-NVME Association ID and Connection IDs
+ * become invalid.
+ *
+ * The behavior of the fc-nvme initiator is such that it's
+ * understanding of the association and connections will implicitly
+ * be torn down. The action is implicit as it may be due to a loss of
+ * connectivity with the fc-nvme target, so you may never get a
+ * response even if you tried. As such, the action of this routine
+ * is to asynchronously send the LS, ignore any results of the LS, and
+ * continue on with terminating the association. If the fc-nvme target
+ * is present and receives the LS, it too can tear down.
+ */
+static void
+nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
+{
+ struct fcnvme_ls_disconnect_rqst *discon_rqst;
+ struct fcnvme_ls_disconnect_acc *discon_acc;
+ struct nvmefc_ls_req_op *lsop;
+ struct nvmefc_ls_req *lsreq;
+ int ret;
+
+ lsop = kzalloc((sizeof(*lsop) +
+ ctrl->lport->ops->lsrqst_priv_sz +
+ sizeof(*discon_rqst) + sizeof(*discon_acc)),
+ GFP_KERNEL);
+ if (!lsop)
+ /* couldn't sent it... too bad */
+ return;
+
+ lsreq = &lsop->ls_req;
+
+ lsreq->private = (void *)&lsop[1];
+ discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
+ (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
+ discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
+
+ discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
+ discon_rqst->desc_list_len = cpu_to_be32(
+ sizeof(struct fcnvme_lsdesc_assoc_id) +
+ sizeof(struct fcnvme_lsdesc_disconn_cmd));
+
+ discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
+ discon_rqst->associd.desc_len =
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_lsdesc_assoc_id));
+
+ discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
+
+ discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
+ FCNVME_LSDESC_DISCONN_CMD);
+ discon_rqst->discon_cmd.desc_len =
+ fcnvme_lsdesc_len(
+ sizeof(struct fcnvme_lsdesc_disconn_cmd));
+ discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
+ discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
+
+ lsreq->rqstaddr = discon_rqst;
+ lsreq->rqstlen = sizeof(*discon_rqst);
+ lsreq->rspaddr = discon_acc;
+ lsreq->rsplen = sizeof(*discon_acc);
+ lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
+
+ ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
+ nvme_fc_disconnect_assoc_done);
+ if (ret)
+ kfree(lsop);
+
+ /* only meaningful part to terminating the association */
+ ctrl->association_id = 0;
+}
+
+
+/* *********************** NVME Ctrl Routines **************************** */
+
+static void __nvme_fc_final_op_cleanup(struct request *rq);
+static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
+
+static int
+nvme_fc_reinit_request(void *data, struct request *rq)
+{
+ struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
+ struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
+
+ memset(cmdiu, 0, sizeof(*cmdiu));
+ cmdiu->scsi_id = NVME_CMD_SCSI_ID;
+ cmdiu->fc_id = NVME_CMD_FC_ID;
+ cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
+ memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
+
+ return 0;
+}
+
+static void
+__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
+ struct nvme_fc_fcp_op *op)
+{
+ fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
+ sizeof(op->rsp_iu), DMA_FROM_DEVICE);
+ fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
+ sizeof(op->cmd_iu), DMA_TO_DEVICE);
+
+ atomic_set(&op->state, FCPOP_STATE_UNINIT);
+}
+
+static void
+nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
+ unsigned int hctx_idx)
+{
+ struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
+
+ return __nvme_fc_exit_request(set->driver_data, op);
+}
+
+static int
+__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
+{
+ int state;
+
+ state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
+ if (state != FCPOP_STATE_ACTIVE) {
+ atomic_set(&op->state, state);
+ return -ECANCELED;
+ }
+
+ ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
+ &ctrl->rport->remoteport,
+ op->queue->lldd_handle,
+ &op->fcp_req);
+
+ return 0;
+}
+
+static void
+nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
+ unsigned long flags;
+ int i, ret;
+
+ for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
+ if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
+ continue;
+
+ spin_lock_irqsave(&ctrl->lock, flags);
+ if (ctrl->flags & FCCTRL_TERMIO) {
+ ctrl->iocnt++;
+ aen_op->flags |= FCOP_FLAGS_TERMIO;
+ }
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+
+ ret = __nvme_fc_abort_op(ctrl, aen_op);
+ if (ret) {
+ /*
+ * if __nvme_fc_abort_op failed the io wasn't
+ * active. Thus this call path is running in
+ * parallel to the io complete. Treat as non-error.
+ */
+
+ /* back out the flags/counters */
+ spin_lock_irqsave(&ctrl->lock, flags);
+ if (ctrl->flags & FCCTRL_TERMIO)
+ ctrl->iocnt--;
+ aen_op->flags &= ~FCOP_FLAGS_TERMIO;
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+ return;
+ }
+ }
+}
+
+static inline int
+__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
+ struct nvme_fc_fcp_op *op)
+{
+ unsigned long flags;
+ bool complete_rq = false;
+
+ spin_lock_irqsave(&ctrl->lock, flags);
+ if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
+ if (ctrl->flags & FCCTRL_TERMIO) {
+ if (!--ctrl->iocnt)
+ wake_up(&ctrl->ioabort_wait);
+ }
+ }
+ if (op->flags & FCOP_FLAGS_RELEASED)
+ complete_rq = true;
+ else
+ op->flags |= FCOP_FLAGS_COMPLETE;
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+
+ return complete_rq;
+}
+
+static void
+nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
+{
+ struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
+ struct request *rq = op->rq;
+ struct nvmefc_fcp_req *freq = &op->fcp_req;
+ struct nvme_fc_ctrl *ctrl = op->ctrl;
+ struct nvme_fc_queue *queue = op->queue;
+ struct nvme_completion *cqe = &op->rsp_iu.cqe;
+ struct nvme_command *sqe = &op->cmd_iu.sqe;
+ __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
+ union nvme_result result;
+ bool complete_rq, terminate_assoc = true;
+
+ /*
+ * WARNING:
+ * The current linux implementation of a nvme controller
+ * allocates a single tag set for all io queues and sizes
+ * the io queues to fully hold all possible tags. Thus, the
+ * implementation does not reference or care about the sqhd
+ * value as it never needs to use the sqhd/sqtail pointers
+ * for submission pacing.
+ *
+ * This affects the FC-NVME implementation in two ways:
+ * 1) As the value doesn't matter, we don't need to waste
+ * cycles extracting it from ERSPs and stamping it in the
+ * cases where the transport fabricates CQEs on successful
+ * completions.
+ * 2) The FC-NVME implementation requires that delivery of
+ * ERSP completions are to go back to the nvme layer in order
+ * relative to the rsn, such that the sqhd value will always
+ * be "in order" for the nvme layer. As the nvme layer in
+ * linux doesn't care about sqhd, there's no need to return
+ * them in order.
+ *
+ * Additionally:
+ * As the core nvme layer in linux currently does not look at
+ * every field in the cqe - in cases where the FC transport must
+ * fabricate a CQE, the following fields will not be set as they
+ * are not referenced:
+ * cqe.sqid, cqe.sqhd, cqe.command_id
+ *
+ * Failure or error of an individual i/o, in a transport
+ * detected fashion unrelated to the nvme completion status,
+ * potentially cause the initiator and target sides to get out
+ * of sync on SQ head/tail (aka outstanding io count allowed).
+ * Per FC-NVME spec, failure of an individual command requires
+ * the connection to be terminated, which in turn requires the
+ * association to be terminated.
+ */
+
+ fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
+ sizeof(op->rsp_iu), DMA_FROM_DEVICE);
+
+ if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
+ status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
+ else if (freq->status)
+ status = cpu_to_le16(NVME_SC_INTERNAL << 1);
+
+ /*
+ * For the linux implementation, if we have an unsuccesful
+ * status, they blk-mq layer can typically be called with the
+ * non-zero status and the content of the cqe isn't important.
+ */
+ if (status)
+ goto done;
+
+ /*
+ * command completed successfully relative to the wire
+ * protocol. However, validate anything received and
+ * extract the status and result from the cqe (create it
+ * where necessary).
+ */
+
+ switch (freq->rcv_rsplen) {
+
+ case 0:
+ case NVME_FC_SIZEOF_ZEROS_RSP:
+ /*
+ * No response payload or 12 bytes of payload (which
+ * should all be zeros) are considered successful and
+ * no payload in the CQE by the transport.
+ */
+ if (freq->transferred_length !=
+ be32_to_cpu(op->cmd_iu.data_len)) {
+ status = cpu_to_le16(NVME_SC_INTERNAL << 1);
+ goto done;
+ }
+ result.u64 = 0;
+ break;
+
+ case sizeof(struct nvme_fc_ersp_iu):
+ /*
+ * The ERSP IU contains a full completion with CQE.
+ * Validate ERSP IU and look at cqe.
+ */
+ if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
+ (freq->rcv_rsplen / 4) ||
+ be32_to_cpu(op->rsp_iu.xfrd_len) !=
+ freq->transferred_length ||
+ op->rsp_iu.status_code ||
+ sqe->common.command_id != cqe->command_id)) {
+ status = cpu_to_le16(NVME_SC_INTERNAL << 1);
+ goto done;
+ }
+ result = cqe->result;
+ status = cqe->status;
+ break;
+
+ default:
+ status = cpu_to_le16(NVME_SC_INTERNAL << 1);
+ goto done;
+ }
+
+ terminate_assoc = false;
+
+done:
+ if (op->flags & FCOP_FLAGS_AEN) {
+ nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
+ complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
+ atomic_set(&op->state, FCPOP_STATE_IDLE);
+ op->flags = FCOP_FLAGS_AEN; /* clear other flags */
+ nvme_fc_ctrl_put(ctrl);
+ goto check_error;
+ }
+
+ complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
+ if (!complete_rq) {
+ if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
+ status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
+ if (blk_queue_dying(rq->q))
+ status |= cpu_to_le16(NVME_SC_DNR << 1);
+ }
+ nvme_end_request(rq, status, result);
+ } else
+ __nvme_fc_final_op_cleanup(rq);
+
+check_error:
+ if (terminate_assoc)
+ nvme_fc_error_recovery(ctrl, "transport detected io error");
+}
+
+static int
+__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
+ struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
+ struct request *rq, u32 rqno)
+{
+ struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
+ int ret = 0;
+
+ memset(op, 0, sizeof(*op));
+ op->fcp_req.cmdaddr = &op->cmd_iu;
+ op->fcp_req.cmdlen = sizeof(op->cmd_iu);
+ op->fcp_req.rspaddr = &op->rsp_iu;
+ op->fcp_req.rsplen = sizeof(op->rsp_iu);
+ op->fcp_req.done = nvme_fc_fcpio_done;
+ op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
+ op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
+ op->ctrl = ctrl;
+ op->queue = queue;
+ op->rq = rq;
+ op->rqno = rqno;
+
+ cmdiu->scsi_id = NVME_CMD_SCSI_ID;
+ cmdiu->fc_id = NVME_CMD_FC_ID;
+ cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
+
+ op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
+ &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
+ if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
+ dev_err(ctrl->dev,
+ "FCP Op failed - cmdiu dma mapping failed.\n");
+ ret = -EFAULT;
+ goto out_on_error;
+ }
+
+ op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
+ &op->rsp_iu, sizeof(op->rsp_iu),
+ DMA_FROM_DEVICE);
+ if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
+ dev_err(ctrl->dev,
+ "FCP Op failed - rspiu dma mapping failed.\n");
+ ret = -EFAULT;
+ }
+
+ atomic_set(&op->state, FCPOP_STATE_IDLE);
+out_on_error:
+ return ret;
+}
+
+static int
+nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
+ unsigned int hctx_idx, unsigned int numa_node)
+{
+ struct nvme_fc_ctrl *ctrl = set->driver_data;
+ struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
+ int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
+ struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
+
+ return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
+}
+
+static int
+nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvme_fc_fcp_op *aen_op;
+ struct nvme_fc_cmd_iu *cmdiu;
+ struct nvme_command *sqe;
+ void *private;
+ int i, ret;
+
+ aen_op = ctrl->aen_ops;
+ for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
+ private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
+ GFP_KERNEL);
+ if (!private)
+ return -ENOMEM;
+
+ cmdiu = &aen_op->cmd_iu;
+ sqe = &cmdiu->sqe;
+ ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
+ aen_op, (struct request *)NULL,
+ (AEN_CMDID_BASE + i));
+ if (ret) {
+ kfree(private);
+ return ret;
+ }
+
+ aen_op->flags = FCOP_FLAGS_AEN;
+ aen_op->fcp_req.first_sgl = NULL; /* no sg list */
+ aen_op->fcp_req.private = private;
+
+ memset(sqe, 0, sizeof(*sqe));
+ sqe->common.opcode = nvme_admin_async_event;
+ /* Note: core layer may overwrite the sqe.command_id value */
+ sqe->common.command_id = AEN_CMDID_BASE + i;
+ }
+ return 0;
+}
+
+static void
+nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvme_fc_fcp_op *aen_op;
+ int i;
+
+ cancel_work_sync(&ctrl->ctrl.async_event_work);
+ aen_op = ctrl->aen_ops;
+ for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
+ if (!aen_op->fcp_req.private)
+ continue;
+
+ __nvme_fc_exit_request(ctrl, aen_op);
+
+ kfree(aen_op->fcp_req.private);
+ aen_op->fcp_req.private = NULL;
+ }
+}
+
+static inline void
+__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
+ unsigned int qidx)
+{
+ struct nvme_fc_queue *queue = &ctrl->queues[qidx];
+
+ hctx->driver_data = queue;
+ queue->hctx = hctx;
+}
+
+static int
+nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
+ unsigned int hctx_idx)
+{
+ struct nvme_fc_ctrl *ctrl = data;
+
+ __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
+
+ return 0;
+}
+
+static int
+nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
+ unsigned int hctx_idx)
+{
+ struct nvme_fc_ctrl *ctrl = data;
+
+ __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
+
+ return 0;
+}
+
+static void
+nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
+{
+ struct nvme_fc_queue *queue;
+
+ queue = &ctrl->queues[idx];
+ memset(queue, 0, sizeof(*queue));
+ queue->ctrl = ctrl;
+ queue->qnum = idx;
+ atomic_set(&queue->csn, 1);
+ queue->dev = ctrl->dev;
+
+ if (idx > 0)
+ queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
+ else
+ queue->cmnd_capsule_len = sizeof(struct nvme_command);
+
+ queue->queue_size = queue_size;
+
+ /*
+ * Considered whether we should allocate buffers for all SQEs
+ * and CQEs and dma map them - mapping their respective entries
+ * into the request structures (kernel vm addr and dma address)
+ * thus the driver could use the buffers/mappings directly.
+ * It only makes sense if the LLDD would use them for its
+ * messaging api. It's very unlikely most adapter api's would use
+ * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
+ * structures were used instead.
+ */
+}
+
+/*
+ * This routine terminates a queue at the transport level.
+ * The transport has already ensured that all outstanding ios on
+ * the queue have been terminated.
+ * The transport will send a Disconnect LS request to terminate
+ * the queue's connection. Termination of the admin queue will also
+ * terminate the association at the target.
+ */
+static void
+nvme_fc_free_queue(struct nvme_fc_queue *queue)
+{
+ if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
+ return;
+
+ clear_bit(NVME_FC_Q_LIVE, &queue->flags);
+ /*
+ * Current implementation never disconnects a single queue.
+ * It always terminates a whole association. So there is never
+ * a disconnect(queue) LS sent to the target.
+ */
+
+ queue->connection_id = 0;
+}
+
+static void
+__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
+ struct nvme_fc_queue *queue, unsigned int qidx)
+{
+ if (ctrl->lport->ops->delete_queue)
+ ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
+ queue->lldd_handle);
+ queue->lldd_handle = NULL;
+}
+
+static void
+nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
+{
+ int i;
+
+ for (i = 1; i < ctrl->ctrl.queue_count; i++)
+ nvme_fc_free_queue(&ctrl->queues[i]);
+}
+
+static int
+__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
+ struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
+{
+ int ret = 0;
+
+ queue->lldd_handle = NULL;
+ if (ctrl->lport->ops->create_queue)
+ ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
+ qidx, qsize, &queue->lldd_handle);
+
+ return ret;
+}
+
+static void
+nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
+ int i;
+
+ for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
+ __nvme_fc_delete_hw_queue(ctrl, queue, i);
+}
+
+static int
+nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
+{
+ struct nvme_fc_queue *queue = &ctrl->queues[1];
+ int i, ret;
+
+ for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
+ ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
+ if (ret)
+ goto delete_queues;
+ }
+
+ return 0;
+
+delete_queues:
+ for (; i >= 0; i--)
+ __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
+ return ret;
+}
+
+static int
+nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
+{
+ int i, ret = 0;
+
+ for (i = 1; i < ctrl->ctrl.queue_count; i++) {
+ ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
+ (qsize / 5));
+ if (ret)
+ break;
+ ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
+ if (ret)
+ break;
+
+ set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
+ }
+
+ return ret;
+}
+
+static void
+nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
+{
+ int i;
+
+ for (i = 1; i < ctrl->ctrl.queue_count; i++)
+ nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
+}
+
+static void
+nvme_fc_ctrl_free(struct kref *ref)
+{
+ struct nvme_fc_ctrl *ctrl =
+ container_of(ref, struct nvme_fc_ctrl, ref);
+ unsigned long flags;
+
+ if (ctrl->ctrl.tagset) {
+ blk_cleanup_queue(ctrl->ctrl.connect_q);
+ blk_mq_free_tag_set(&ctrl->tag_set);
+ }
+
+ /* remove from rport list */
+ spin_lock_irqsave(&ctrl->rport->lock, flags);
+ list_del(&ctrl->ctrl_list);
+ spin_unlock_irqrestore(&ctrl->rport->lock, flags);
+
+ blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
+ blk_cleanup_queue(ctrl->ctrl.admin_q);
+ blk_mq_free_tag_set(&ctrl->admin_tag_set);
+
+ kfree(ctrl->queues);
+
+ put_device(ctrl->dev);
+ nvme_fc_rport_put(ctrl->rport);
+
+ ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
+ if (ctrl->ctrl.opts)
+ nvmf_free_options(ctrl->ctrl.opts);
+ kfree(ctrl);
+}
+
+static void
+nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
+{
+ kref_put(&ctrl->ref, nvme_fc_ctrl_free);
+}
+
+static int
+nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
+{
+ return kref_get_unless_zero(&ctrl->ref);
+}
+
+/*
+ * All accesses from nvme core layer done - can now free the
+ * controller. Called after last nvme_put_ctrl() call
+ */
+static void
+nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
+{
+ struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
+
+ WARN_ON(nctrl != &ctrl->ctrl);
+
+ nvme_fc_ctrl_put(ctrl);
+}
+
+static void
+nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
+{
+ /* only proceed if in LIVE state - e.g. on first error */
+ if (ctrl->ctrl.state != NVME_CTRL_LIVE)
+ return;
+
+ dev_warn(ctrl->ctrl.device,
+ "NVME-FC{%d}: transport association error detected: %s\n",
+ ctrl->cnum, errmsg);
+ dev_warn(ctrl->ctrl.device,
+ "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
+
+ if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
+ dev_err(ctrl->ctrl.device,
+ "NVME-FC{%d}: error_recovery: Couldn't change state "
+ "to RECONNECTING\n", ctrl->cnum);
+ return;
+ }
+
+ nvme_reset_ctrl(&ctrl->ctrl);
+}
+
+static enum blk_eh_timer_return
+nvme_fc_timeout(struct request *rq, bool reserved)
+{
+ struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
+ struct nvme_fc_ctrl *ctrl = op->ctrl;
+ int ret;
+
+ if (reserved)
+ return BLK_EH_RESET_TIMER;
+
+ ret = __nvme_fc_abort_op(ctrl, op);
+ if (ret)
+ /* io wasn't active to abort consider it done */
+ return BLK_EH_HANDLED;
+
+ /*
+ * we can't individually ABTS an io without affecting the queue,
+ * thus killing the queue, adn thus the association.
+ * So resolve by performing a controller reset, which will stop
+ * the host/io stack, terminate the association on the link,
+ * and recreate an association on the link.
+ */
+ nvme_fc_error_recovery(ctrl, "io timeout error");
+
+ return BLK_EH_HANDLED;
+}
+
+static int
+nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
+ struct nvme_fc_fcp_op *op)
+{
+ struct nvmefc_fcp_req *freq = &op->fcp_req;
+ enum dma_data_direction dir;
+ int ret;
+
+ freq->sg_cnt = 0;
+
+ if (!blk_rq_payload_bytes(rq))
+ return 0;
+
+ freq->sg_table.sgl = freq->first_sgl;
+ ret = sg_alloc_table_chained(&freq->sg_table,
+ blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
+ if (ret)
+ return -ENOMEM;
+
+ op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
+ WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
+ dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
+ freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
+ op->nents, dir);
+ if (unlikely(freq->sg_cnt <= 0)) {
+ sg_free_table_chained(&freq->sg_table, true);
+ freq->sg_cnt = 0;
+ return -EFAULT;
+ }
+
+ /*
+ * TODO: blk_integrity_rq(rq) for DIF
+ */
+ return 0;
+}
+
+static void
+nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
+ struct nvme_fc_fcp_op *op)
+{
+ struct nvmefc_fcp_req *freq = &op->fcp_req;
+
+ if (!freq->sg_cnt)
+ return;
+
+ fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
+ ((rq_data_dir(rq) == WRITE) ?
+ DMA_TO_DEVICE : DMA_FROM_DEVICE));
+
+ nvme_cleanup_cmd(rq);
+
+ sg_free_table_chained(&freq->sg_table, true);
+
+ freq->sg_cnt = 0;
+}
+
+/*
+ * In FC, the queue is a logical thing. At transport connect, the target
+ * creates its "queue" and returns a handle that is to be given to the
+ * target whenever it posts something to the corresponding SQ. When an
+ * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
+ * command contained within the SQE, an io, and assigns a FC exchange
+ * to it. The SQE and the associated SQ handle are sent in the initial
+ * CMD IU sents on the exchange. All transfers relative to the io occur
+ * as part of the exchange. The CQE is the last thing for the io,
+ * which is transferred (explicitly or implicitly) with the RSP IU
+ * sent on the exchange. After the CQE is received, the FC exchange is
+ * terminaed and the Exchange may be used on a different io.
+ *
+ * The transport to LLDD api has the transport making a request for a
+ * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
+ * resource and transfers the command. The LLDD will then process all
+ * steps to complete the io. Upon completion, the transport done routine
+ * is called.
+ *
+ * So - while the operation is outstanding to the LLDD, there is a link
+ * level FC exchange resource that is also outstanding. This must be
+ * considered in all cleanup operations.
+ */
+static blk_status_t
+nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
+ struct nvme_fc_fcp_op *op, u32 data_len,
+ enum nvmefc_fcp_datadir io_dir)
+{
+ struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
+ struct nvme_command *sqe = &cmdiu->sqe;
+ u32 csn;
+ int ret;
+
+ /*
+ * before attempting to send the io, check to see if we believe
+ * the target device is present
+ */
+ if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
+ goto busy;
+
+ if (!nvme_fc_ctrl_get(ctrl))
+ return BLK_STS_IOERR;
+
+ /* format the FC-NVME CMD IU and fcp_req */
+ cmdiu->connection_id = cpu_to_be64(queue->connection_id);
+ csn = atomic_inc_return(&queue->csn);
+ cmdiu->csn = cpu_to_be32(csn);
+ cmdiu->data_len = cpu_to_be32(data_len);
+ switch (io_dir) {
+ case NVMEFC_FCP_WRITE:
+ cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
+ break;
+ case NVMEFC_FCP_READ:
+ cmdiu->flags = FCNVME_CMD_FLAGS_READ;
+ break;
+ case NVMEFC_FCP_NODATA:
+ cmdiu->flags = 0;
+ break;
+ }
+ op->fcp_req.payload_length = data_len;
+ op->fcp_req.io_dir = io_dir;
+ op->fcp_req.transferred_length = 0;
+ op->fcp_req.rcv_rsplen = 0;
+ op->fcp_req.status = NVME_SC_SUCCESS;
+ op->fcp_req.sqid = cpu_to_le16(queue->qnum);
+
+ /*
+ * validate per fabric rules, set fields mandated by fabric spec
+ * as well as those by FC-NVME spec.
+ */
+ WARN_ON_ONCE(sqe->common.metadata);
+ sqe->common.flags |= NVME_CMD_SGL_METABUF;
+
+ /*
+ * format SQE DPTR field per FC-NVME rules:
+ * type=0x5 Transport SGL Data Block Descriptor
+ * subtype=0xA Transport-specific value
+ * address=0
+ * length=length of the data series
+ */
+ sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
+ NVME_SGL_FMT_TRANSPORT_A;
+ sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
+ sqe->rw.dptr.sgl.addr = 0;
+
+ if (!(op->flags & FCOP_FLAGS_AEN)) {
+ ret = nvme_fc_map_data(ctrl, op->rq, op);
+ if (ret < 0) {
+ nvme_cleanup_cmd(op->rq);
+ nvme_fc_ctrl_put(ctrl);
+ if (ret == -ENOMEM || ret == -EAGAIN)
+ return BLK_STS_RESOURCE;
+ return BLK_STS_IOERR;
+ }
+ }
+
+ fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
+ sizeof(op->cmd_iu), DMA_TO_DEVICE);
+
+ atomic_set(&op->state, FCPOP_STATE_ACTIVE);
+
+ if (!(op->flags & FCOP_FLAGS_AEN))
+ blk_mq_start_request(op->rq);
+
+ ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
+ &ctrl->rport->remoteport,
+ queue->lldd_handle, &op->fcp_req);
+
+ if (ret) {
+ if (!(op->flags & FCOP_FLAGS_AEN))
+ nvme_fc_unmap_data(ctrl, op->rq, op);
+
+ nvme_fc_ctrl_put(ctrl);
+
+ if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
+ ret != -EBUSY)
+ return BLK_STS_IOERR;
+
+ goto busy;
+ }
+
+ return BLK_STS_OK;
+
+busy:
+ if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx)
+ blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
+
+ return BLK_STS_RESOURCE;
+}
+
+static inline blk_status_t nvme_fc_is_ready(struct nvme_fc_queue *queue,
+ struct request *rq)
+{
+ if (unlikely(!test_bit(NVME_FC_Q_LIVE, &queue->flags)))
+ return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
+ return BLK_STS_OK;
+}
+
+static blk_status_t
+nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
+ const struct blk_mq_queue_data *bd)
+{
+ struct nvme_ns *ns = hctx->queue->queuedata;
+ struct nvme_fc_queue *queue = hctx->driver_data;
+ struct nvme_fc_ctrl *ctrl = queue->ctrl;
+ struct request *rq = bd->rq;
+ struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
+ struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
+ struct nvme_command *sqe = &cmdiu->sqe;
+ enum nvmefc_fcp_datadir io_dir;
+ u32 data_len;
+ blk_status_t ret;
+
+ ret = nvme_fc_is_ready(queue, rq);
+ if (unlikely(ret))
+ return ret;
+
+ ret = nvme_setup_cmd(ns, rq, sqe);
+ if (ret)
+ return ret;
+
+ data_len = blk_rq_payload_bytes(rq);
+ if (data_len)
+ io_dir = ((rq_data_dir(rq) == WRITE) ?
+ NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
+ else
+ io_dir = NVMEFC_FCP_NODATA;
+
+ return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
+}
+
+static struct blk_mq_tags *
+nvme_fc_tagset(struct nvme_fc_queue *queue)
+{
+ if (queue->qnum == 0)
+ return queue->ctrl->admin_tag_set.tags[queue->qnum];
+
+ return queue->ctrl->tag_set.tags[queue->qnum - 1];
+}
+
+static int
+nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
+
+{
+ struct nvme_fc_queue *queue = hctx->driver_data;
+ struct nvme_fc_ctrl *ctrl = queue->ctrl;
+ struct request *req;
+ struct nvme_fc_fcp_op *op;
+
+ req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
+ if (!req)
+ return 0;
+
+ op = blk_mq_rq_to_pdu(req);
+
+ if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
+ (ctrl->lport->ops->poll_queue))
+ ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
+ queue->lldd_handle);
+
+ return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
+}
+
+static void
+nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
+{
+ struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
+ struct nvme_fc_fcp_op *aen_op;
+ unsigned long flags;
+ bool terminating = false;
+ blk_status_t ret;
+
+ if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
+ return;
+
+ spin_lock_irqsave(&ctrl->lock, flags);
+ if (ctrl->flags & FCCTRL_TERMIO)
+ terminating = true;
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+
+ if (terminating)
+ return;
+
+ aen_op = &ctrl->aen_ops[aer_idx];
+
+ ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
+ NVMEFC_FCP_NODATA);
+ if (ret)
+ dev_err(ctrl->ctrl.device,
+ "failed async event work [%d]\n", aer_idx);
+}
+
+static void
+__nvme_fc_final_op_cleanup(struct request *rq)
+{
+ struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
+ struct nvme_fc_ctrl *ctrl = op->ctrl;
+
+ atomic_set(&op->state, FCPOP_STATE_IDLE);
+ op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
+ FCOP_FLAGS_COMPLETE);
+
+ nvme_fc_unmap_data(ctrl, rq, op);
+ nvme_complete_rq(rq);
+ nvme_fc_ctrl_put(ctrl);
+
+}
+
+static void
+nvme_fc_complete_rq(struct request *rq)
+{
+ struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
+ struct nvme_fc_ctrl *ctrl = op->ctrl;
+ unsigned long flags;
+ bool completed = false;
+
+ /*
+ * the core layer, on controller resets after calling
+ * nvme_shutdown_ctrl(), calls complete_rq without our
+ * calling blk_mq_complete_request(), thus there may still
+ * be live i/o outstanding with the LLDD. Means transport has
+ * to track complete calls vs fcpio_done calls to know what
+ * path to take on completes and dones.
+ */
+ spin_lock_irqsave(&ctrl->lock, flags);
+ if (op->flags & FCOP_FLAGS_COMPLETE)
+ completed = true;
+ else
+ op->flags |= FCOP_FLAGS_RELEASED;
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+
+ if (completed)
+ __nvme_fc_final_op_cleanup(rq);
+}
+
+/*
+ * This routine is used by the transport when it needs to find active
+ * io on a queue that is to be terminated. The transport uses
+ * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
+ * this routine to kill them on a 1 by 1 basis.
+ *
+ * As FC allocates FC exchange for each io, the transport must contact
+ * the LLDD to terminate the exchange, thus releasing the FC exchange.
+ * After terminating the exchange the LLDD will call the transport's
+ * normal io done path for the request, but it will have an aborted
+ * status. The done path will return the io request back to the block
+ * layer with an error status.
+ */
+static void
+nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
+{
+ struct nvme_ctrl *nctrl = data;
+ struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
+ struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
+ unsigned long flags;
+ int status;
+
+ if (!blk_mq_request_started(req))
+ return;
+
+ spin_lock_irqsave(&ctrl->lock, flags);
+ if (ctrl->flags & FCCTRL_TERMIO) {
+ ctrl->iocnt++;
+ op->flags |= FCOP_FLAGS_TERMIO;
+ }
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+
+ status = __nvme_fc_abort_op(ctrl, op);
+ if (status) {
+ /*
+ * if __nvme_fc_abort_op failed the io wasn't
+ * active. Thus this call path is running in
+ * parallel to the io complete. Treat as non-error.
+ */
+
+ /* back out the flags/counters */
+ spin_lock_irqsave(&ctrl->lock, flags);
+ if (ctrl->flags & FCCTRL_TERMIO)
+ ctrl->iocnt--;
+ op->flags &= ~FCOP_FLAGS_TERMIO;
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+ return;
+ }
+}
+
+
+static const struct blk_mq_ops nvme_fc_mq_ops = {
+ .queue_rq = nvme_fc_queue_rq,
+ .complete = nvme_fc_complete_rq,
+ .init_request = nvme_fc_init_request,
+ .exit_request = nvme_fc_exit_request,
+ .init_hctx = nvme_fc_init_hctx,
+ .poll = nvme_fc_poll,
+ .timeout = nvme_fc_timeout,
+};
+
+static int
+nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
+ unsigned int nr_io_queues;
+ int ret;
+
+ nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
+ ctrl->lport->ops->max_hw_queues);
+ ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
+ if (ret) {
+ dev_info(ctrl->ctrl.device,
+ "set_queue_count failed: %d\n", ret);
+ return ret;
+ }
+
+ ctrl->ctrl.queue_count = nr_io_queues + 1;
+ if (!nr_io_queues)
+ return 0;
+
+ nvme_fc_init_io_queues(ctrl);
+
+ memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
+ ctrl->tag_set.ops = &nvme_fc_mq_ops;
+ ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
+ ctrl->tag_set.reserved_tags = 1; /* fabric connect */
+ ctrl->tag_set.numa_node = NUMA_NO_NODE;
+ ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
+ ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
+ (SG_CHUNK_SIZE *
+ sizeof(struct scatterlist)) +
+ ctrl->lport->ops->fcprqst_priv_sz;
+ ctrl->tag_set.driver_data = ctrl;
+ ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
+ ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
+
+ ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
+ if (ret)
+ return ret;
+
+ ctrl->ctrl.tagset = &ctrl->tag_set;
+
+ ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
+ if (IS_ERR(ctrl->ctrl.connect_q)) {
+ ret = PTR_ERR(ctrl->ctrl.connect_q);
+ goto out_free_tag_set;
+ }
+
+ ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
+ if (ret)
+ goto out_cleanup_blk_queue;
+
+ ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
+ if (ret)
+ goto out_delete_hw_queues;
+
+ return 0;
+
+out_delete_hw_queues:
+ nvme_fc_delete_hw_io_queues(ctrl);
+out_cleanup_blk_queue:
+ blk_cleanup_queue(ctrl->ctrl.connect_q);
+out_free_tag_set:
+ blk_mq_free_tag_set(&ctrl->tag_set);
+ nvme_fc_free_io_queues(ctrl);
+
+ /* force put free routine to ignore io queues */
+ ctrl->ctrl.tagset = NULL;
+
+ return ret;
+}
+
+static int
+nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
+ unsigned int nr_io_queues;
+ int ret;
+
+ nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
+ ctrl->lport->ops->max_hw_queues);
+ ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
+ if (ret) {
+ dev_info(ctrl->ctrl.device,
+ "set_queue_count failed: %d\n", ret);
+ return ret;
+ }
+
+ ctrl->ctrl.queue_count = nr_io_queues + 1;
+ /* check for io queues existing */
+ if (ctrl->ctrl.queue_count == 1)
+ return 0;
+
+ nvme_fc_init_io_queues(ctrl);
+
+ ret = blk_mq_reinit_tagset(&ctrl->tag_set, nvme_fc_reinit_request);
+ if (ret)
+ goto out_free_io_queues;
+
+ ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
+ if (ret)
+ goto out_free_io_queues;
+
+ ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
+ if (ret)
+ goto out_delete_hw_queues;
+
+ blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
+
+ return 0;
+
+out_delete_hw_queues:
+ nvme_fc_delete_hw_io_queues(ctrl);
+out_free_io_queues:
+ nvme_fc_free_io_queues(ctrl);
+ return ret;
+}
+
+/*
+ * This routine restarts the controller on the host side, and
+ * on the link side, recreates the controller association.
+ */
+static int
+nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
+{
+ struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
+ u32 segs;
+ int ret;
+ bool changed;
+
+ ++ctrl->ctrl.nr_reconnects;
+
+ /*
+ * Create the admin queue
+ */
+
+ nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
+
+ ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
+ NVME_FC_AQ_BLKMQ_DEPTH);
+ if (ret)
+ goto out_free_queue;
+
+ ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
+ NVME_FC_AQ_BLKMQ_DEPTH,
+ (NVME_FC_AQ_BLKMQ_DEPTH / 4));
+ if (ret)
+ goto out_delete_hw_queue;
+
+ if (ctrl->ctrl.state != NVME_CTRL_NEW)
+ blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
+
+ ret = nvmf_connect_admin_queue(&ctrl->ctrl);
+ if (ret)
+ goto out_disconnect_admin_queue;
+
+ set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
+
+ /*
+ * Check controller capabilities
+ *
+ * todo:- add code to check if ctrl attributes changed from
+ * prior connection values
+ */
+
+ ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
+ if (ret) {
+ dev_err(ctrl->ctrl.device,
+ "prop_get NVME_REG_CAP failed\n");
+ goto out_disconnect_admin_queue;
+ }
+
+ ctrl->ctrl.sqsize =
+ min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
+
+ ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
+ if (ret)
+ goto out_disconnect_admin_queue;
+
+ segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
+ ctrl->lport->ops->max_sgl_segments);
+ ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
+
+ ret = nvme_init_identify(&ctrl->ctrl);
+ if (ret)
+ goto out_disconnect_admin_queue;
+
+ /* sanity checks */
+
+ /* FC-NVME does not have other data in the capsule */
+ if (ctrl->ctrl.icdoff) {
+ dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
+ ctrl->ctrl.icdoff);
+ goto out_disconnect_admin_queue;
+ }
+
+ /* FC-NVME supports normal SGL Data Block Descriptors */
+
+ if (opts->queue_size > ctrl->ctrl.maxcmd) {
+ /* warn if maxcmd is lower than queue_size */
+ dev_warn(ctrl->ctrl.device,
+ "queue_size %zu > ctrl maxcmd %u, reducing "
+ "to queue_size\n",
+ opts->queue_size, ctrl->ctrl.maxcmd);
+ opts->queue_size = ctrl->ctrl.maxcmd;
+ }
+
+ ret = nvme_fc_init_aen_ops(ctrl);
+ if (ret)
+ goto out_term_aen_ops;
+
+ /*
+ * Create the io queues
+ */
+
+ if (ctrl->ctrl.queue_count > 1) {
+ if (ctrl->ctrl.state == NVME_CTRL_NEW)
+ ret = nvme_fc_create_io_queues(ctrl);
+ else
+ ret = nvme_fc_reinit_io_queues(ctrl);
+ if (ret)
+ goto out_term_aen_ops;
+ }
+
+ changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
+ WARN_ON_ONCE(!changed);
+
+ ctrl->ctrl.nr_reconnects = 0;
+
+ nvme_start_ctrl(&ctrl->ctrl);
+
+ return 0; /* Success */
+
+out_term_aen_ops:
+ nvme_fc_term_aen_ops(ctrl);
+out_disconnect_admin_queue:
+ /* send a Disconnect(association) LS to fc-nvme target */
+ nvme_fc_xmt_disconnect_assoc(ctrl);
+out_delete_hw_queue:
+ __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
+out_free_queue:
+ nvme_fc_free_queue(&ctrl->queues[0]);
+
+ return ret;
+}
+
+/*
+ * This routine stops operation of the controller on the host side.
+ * On the host os stack side: Admin and IO queues are stopped,
+ * outstanding ios on them terminated via FC ABTS.
+ * On the link side: the association is terminated.
+ */
+static void
+nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&ctrl->lock, flags);
+ ctrl->flags |= FCCTRL_TERMIO;
+ ctrl->iocnt = 0;
+ spin_unlock_irqrestore(&ctrl->lock, flags);
+
+ /*
+ * If io queues are present, stop them and terminate all outstanding
+ * ios on them. As FC allocates FC exchange for each io, the
+ * transport must contact the LLDD to terminate the exchange,
+ * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
+ * to tell us what io's are busy and invoke a transport routine
+ * to kill them with the LLDD. After terminating the exchange
+ * the LLDD will call the transport's normal io done path, but it
+ * will have an aborted status. The done path will return the
+ * io requests back to the block layer as part of normal completions
+ * (but with error status).
+ */
+ if (ctrl->ctrl.queue_count > 1) {
+ nvme_stop_queues(&ctrl->ctrl);
+ blk_mq_tagset_busy_iter(&ctrl->tag_set,
+ nvme_fc_terminate_exchange, &ctrl->ctrl);
+ }
+
+ /*
+ * Other transports, which don't have link-level contexts bound
+ * to sqe's, would try to gracefully shutdown the controller by
+ * writing the registers for shutdown and polling (call
+ * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
+ * just aborted and we will wait on those contexts, and given
+ * there was no indication of how live the controlelr is on the
+ * link, don't send more io to create more contexts for the
+ * shutdown. Let the controller fail via keepalive failure if
+ * its still present.
+ */
+
+ /*
+ * clean up the admin queue. Same thing as above.
+ * use blk_mq_tagset_busy_itr() and the transport routine to
+ * terminate the exchanges.
+ */
+ blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
+ blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
+ nvme_fc_terminate_exchange, &ctrl->ctrl);
+
+ /* kill the aens as they are a separate path */
+ nvme_fc_abort_aen_ops(ctrl);
+
+ /* wait for all io that had to be aborted */
+ spin_lock_irq(&ctrl->lock);
+ wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
+ ctrl->flags &= ~FCCTRL_TERMIO;
+ spin_unlock_irq(&ctrl->lock);
+
+ nvme_fc_term_aen_ops(ctrl);
+
+ /*
+ * send a Disconnect(association) LS to fc-nvme target
+ * Note: could have been sent at top of process, but
+ * cleaner on link traffic if after the aborts complete.
+ * Note: if association doesn't exist, association_id will be 0
+ */
+ if (ctrl->association_id)
+ nvme_fc_xmt_disconnect_assoc(ctrl);
+
+ if (ctrl->ctrl.tagset) {
+ nvme_fc_delete_hw_io_queues(ctrl);
+ nvme_fc_free_io_queues(ctrl);
+ }
+
+ __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
+ nvme_fc_free_queue(&ctrl->queues[0]);
+}
+
+static void
+nvme_fc_delete_ctrl_work(struct work_struct *work)
+{
+ struct nvme_fc_ctrl *ctrl =
+ container_of(work, struct nvme_fc_ctrl, delete_work);
+
+ cancel_work_sync(&ctrl->ctrl.reset_work);
+ cancel_delayed_work_sync(&ctrl->connect_work);
+ nvme_stop_ctrl(&ctrl->ctrl);
+ nvme_remove_namespaces(&ctrl->ctrl);
+ /*
+ * kill the association on the link side. this will block
+ * waiting for io to terminate
+ */
+ nvme_fc_delete_association(ctrl);
+
+ /*
+ * tear down the controller
+ * After the last reference on the nvme ctrl is removed,
+ * the transport nvme_fc_nvme_ctrl_freed() callback will be
+ * invoked. From there, the transport will tear down it's
+ * logical queues and association.
+ */
+ nvme_uninit_ctrl(&ctrl->ctrl);
+
+ nvme_put_ctrl(&ctrl->ctrl);
+}
+
+static bool
+__nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
+{
+ if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
+ return true;
+
+ if (!queue_work(nvme_wq, &ctrl->delete_work))
+ return true;
+
+ return false;
+}
+
+static int
+__nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
+{
+ return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
+}
+
+/*
+ * Request from nvme core layer to delete the controller
+ */
+static int
+nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
+{
+ struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
+ int ret;
+
+ if (!kref_get_unless_zero(&ctrl->ctrl.kref))
+ return -EBUSY;
+
+ ret = __nvme_fc_del_ctrl(ctrl);
+
+ if (!ret)
+ flush_workqueue(nvme_wq);
+
+ nvme_put_ctrl(&ctrl->ctrl);
+
+ return ret;
+}
+
+static void
+nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
+{
+ /* If we are resetting/deleting then do nothing */
+ if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
+ WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
+ ctrl->ctrl.state == NVME_CTRL_LIVE);
+ return;
+ }
+
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
+ ctrl->cnum, status);
+
+ if (nvmf_should_reconnect(&ctrl->ctrl)) {
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
+ ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
+ queue_delayed_work(nvme_wq, &ctrl->connect_work,
+ ctrl->ctrl.opts->reconnect_delay * HZ);
+ } else {
+ dev_warn(ctrl->ctrl.device,
+ "NVME-FC{%d}: Max reconnect attempts (%d) "
+ "reached. Removing controller\n",
+ ctrl->cnum, ctrl->ctrl.nr_reconnects);
+ WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
+ }
+}
+
+static void
+nvme_fc_reset_ctrl_work(struct work_struct *work)
+{
+ struct nvme_fc_ctrl *ctrl =
+ container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
+ int ret;
+
+ nvme_stop_ctrl(&ctrl->ctrl);
+ /* will block will waiting for io to terminate */
+ nvme_fc_delete_association(ctrl);
+
+ ret = nvme_fc_create_association(ctrl);
+ if (ret)
+ nvme_fc_reconnect_or_delete(ctrl, ret);
+ else
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
+}
+
+static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
+ .name = "fc",
+ .module = THIS_MODULE,
+ .flags = NVME_F_FABRICS,
+ .reg_read32 = nvmf_reg_read32,
+ .reg_read64 = nvmf_reg_read64,
+ .reg_write32 = nvmf_reg_write32,
+ .free_ctrl = nvme_fc_nvme_ctrl_freed,
+ .submit_async_event = nvme_fc_submit_async_event,
+ .delete_ctrl = nvme_fc_del_nvme_ctrl,
+ .get_address = nvmf_get_address,
+};
+
+static void
+nvme_fc_connect_ctrl_work(struct work_struct *work)
+{
+ int ret;
+
+ struct nvme_fc_ctrl *ctrl =
+ container_of(to_delayed_work(work),
+ struct nvme_fc_ctrl, connect_work);
+
+ ret = nvme_fc_create_association(ctrl);
+ if (ret)
+ nvme_fc_reconnect_or_delete(ctrl, ret);
+ else
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: controller reconnect complete\n",
+ ctrl->cnum);
+}
+
+
+static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
+ .queue_rq = nvme_fc_queue_rq,
+ .complete = nvme_fc_complete_rq,
+ .init_request = nvme_fc_init_request,
+ .exit_request = nvme_fc_exit_request,
+ .init_hctx = nvme_fc_init_admin_hctx,
+ .timeout = nvme_fc_timeout,
+};
+
+
+static struct nvme_ctrl *
+nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
+ struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
+{
+ struct nvme_fc_ctrl *ctrl;
+ unsigned long flags;
+ int ret, idx, retry;
+
+ if (!(rport->remoteport.port_role &
+ (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
+ ret = -EBADR;
+ goto out_fail;
+ }
+
+ ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
+ if (!ctrl) {
+ ret = -ENOMEM;
+ goto out_fail;
+ }
+
+ idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
+ if (idx < 0) {
+ ret = -ENOSPC;
+ goto out_free_ctrl;
+ }
+
+ ctrl->ctrl.opts = opts;
+ INIT_LIST_HEAD(&ctrl->ctrl_list);
+ ctrl->lport = lport;
+ ctrl->rport = rport;
+ ctrl->dev = lport->dev;
+ ctrl->cnum = idx;
+ init_waitqueue_head(&ctrl->ioabort_wait);
+
+ get_device(ctrl->dev);
+ kref_init(&ctrl->ref);
+
+ INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
+ INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
+ INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
+ spin_lock_init(&ctrl->lock);
+
+ /* io queue count */
+ ctrl->ctrl.queue_count = min_t(unsigned int,
+ opts->nr_io_queues,
+ lport->ops->max_hw_queues);
+ ctrl->ctrl.queue_count++; /* +1 for admin queue */
+
+ ctrl->ctrl.sqsize = opts->queue_size - 1;
+ ctrl->ctrl.kato = opts->kato;
+
+ ret = -ENOMEM;
+ ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
+ sizeof(struct nvme_fc_queue), GFP_KERNEL);
+ if (!ctrl->queues)
+ goto out_free_ida;
+
+ memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
+ ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
+ ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
+ ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
+ ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
+ ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
+ (SG_CHUNK_SIZE *
+ sizeof(struct scatterlist)) +
+ ctrl->lport->ops->fcprqst_priv_sz;
+ ctrl->admin_tag_set.driver_data = ctrl;
+ ctrl->admin_tag_set.nr_hw_queues = 1;
+ ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
+
+ ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
+ if (ret)
+ goto out_free_queues;
+ ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
+
+ ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
+ if (IS_ERR(ctrl->ctrl.admin_q)) {
+ ret = PTR_ERR(ctrl->ctrl.admin_q);
+ goto out_free_admin_tag_set;
+ }
+
+ /*
+ * Would have been nice to init io queues tag set as well.
+ * However, we require interaction from the controller
+ * for max io queue count before we can do so.
+ * Defer this to the connect path.
+ */
+
+ ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
+ if (ret)
+ goto out_cleanup_admin_q;
+
+ /* at this point, teardown path changes to ref counting on nvme ctrl */
+
+ spin_lock_irqsave(&rport->lock, flags);
+ list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
+ spin_unlock_irqrestore(&rport->lock, flags);
+
+ /*
+ * It's possible that transactions used to create the association
+ * may fail. Examples: CreateAssociation LS or CreateIOConnection
+ * LS gets dropped/corrupted/fails; or a frame gets dropped or a
+ * command times out for one of the actions to init the controller
+ * (Connect, Get/Set_Property, Set_Features, etc). Many of these
+ * transport errors (frame drop, LS failure) inherently must kill
+ * the association. The transport is coded so that any command used
+ * to create the association (prior to a LIVE state transition
+ * while NEW or RECONNECTING) will fail if it completes in error or
+ * times out.
+ *
+ * As such: as the connect request was mostly likely due to a
+ * udev event that discovered the remote port, meaning there is
+ * not an admin or script there to restart if the connect
+ * request fails, retry the initial connection creation up to
+ * three times before giving up and declaring failure.
+ */
+ for (retry = 0; retry < 3; retry++) {
+ ret = nvme_fc_create_association(ctrl);
+ if (!ret)
+ break;
+ }
+
+ if (ret) {
+ nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
+ cancel_work_sync(&ctrl->ctrl.reset_work);
+ cancel_delayed_work_sync(&ctrl->connect_work);
+
+ /* couldn't schedule retry - fail out */
+ dev_err(ctrl->ctrl.device,
+ "NVME-FC{%d}: Connect retry failed\n", ctrl->cnum);
+
+ ctrl->ctrl.opts = NULL;
+
+ /* initiate nvme ctrl ref counting teardown */
+ nvme_uninit_ctrl(&ctrl->ctrl);
+
+ /* Remove core ctrl ref. */
+ nvme_put_ctrl(&ctrl->ctrl);
+
+ /* as we're past the point where we transition to the ref
+ * counting teardown path, if we return a bad pointer here,
+ * the calling routine, thinking it's prior to the
+ * transition, will do an rport put. Since the teardown
+ * path also does a rport put, we do an extra get here to
+ * so proper order/teardown happens.
+ */
+ nvme_fc_rport_get(rport);
+
+ if (ret > 0)
+ ret = -EIO;
+ return ERR_PTR(ret);
+ }
+
+ kref_get(&ctrl->ctrl.kref);
+
+ dev_info(ctrl->ctrl.device,
+ "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
+ ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
+
+ return &ctrl->ctrl;
+
+out_cleanup_admin_q:
+ blk_cleanup_queue(ctrl->ctrl.admin_q);
+out_free_admin_tag_set:
+ blk_mq_free_tag_set(&ctrl->admin_tag_set);
+out_free_queues:
+ kfree(ctrl->queues);
+out_free_ida:
+ put_device(ctrl->dev);
+ ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
+out_free_ctrl:
+ kfree(ctrl);
+out_fail:
+ /* exit via here doesn't follow ctlr ref points */
+ return ERR_PTR(ret);
+}
+
+
+struct nvmet_fc_traddr {
+ u64 nn;
+ u64 pn;
+};
+
+static int
+__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
+{
+ u64 token64;
+
+ if (match_u64(sstr, &token64))
+ return -EINVAL;
+ *val = token64;
+
+ return 0;
+}
+
+/*
+ * This routine validates and extracts the WWN's from the TRADDR string.
+ * As kernel parsers need the 0x to determine number base, universally
+ * build string to parse with 0x prefix before parsing name strings.
+ */
+static int
+nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
+{
+ char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
+ substring_t wwn = { name, &name[sizeof(name)-1] };
+ int nnoffset, pnoffset;
+
+ /* validate it string one of the 2 allowed formats */
+ if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
+ !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
+ !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
+ "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
+ nnoffset = NVME_FC_TRADDR_OXNNLEN;
+ pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
+ NVME_FC_TRADDR_OXNNLEN;
+ } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
+ !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
+ !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
+ "pn-", NVME_FC_TRADDR_NNLEN))) {
+ nnoffset = NVME_FC_TRADDR_NNLEN;
+ pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
+ } else
+ goto out_einval;
+
+ name[0] = '0';
+ name[1] = 'x';
+ name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
+
+ memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
+ if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
+ goto out_einval;
+
+ memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
+ if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
+ goto out_einval;
+
+ return 0;
+
+out_einval:
+ pr_warn("%s: bad traddr string\n", __func__);
+ return -EINVAL;
+}
+
+static struct nvme_ctrl *
+nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
+{
+ struct nvme_fc_lport *lport;
+ struct nvme_fc_rport *rport;
+ struct nvme_ctrl *ctrl;
+ struct nvmet_fc_traddr laddr = { 0L, 0L };
+ struct nvmet_fc_traddr raddr = { 0L, 0L };
+ unsigned long flags;
+ int ret;
+
+ ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
+ if (ret || !raddr.nn || !raddr.pn)
+ return ERR_PTR(-EINVAL);
+
+ ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
+ if (ret || !laddr.nn || !laddr.pn)
+ return ERR_PTR(-EINVAL);
+
+ /* find the host and remote ports to connect together */
+ spin_lock_irqsave(&nvme_fc_lock, flags);
+ list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
+ if (lport->localport.node_name != laddr.nn ||
+ lport->localport.port_name != laddr.pn)
+ continue;
+
+ list_for_each_entry(rport, &lport->endp_list, endp_list) {
+ if (rport->remoteport.node_name != raddr.nn ||
+ rport->remoteport.port_name != raddr.pn)
+ continue;
+
+ /* if fail to get reference fall through. Will error */
+ if (!nvme_fc_rport_get(rport))
+ break;
+
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
+ if (IS_ERR(ctrl))
+ nvme_fc_rport_put(rport);
+ return ctrl;
+ }
+ }
+ spin_unlock_irqrestore(&nvme_fc_lock, flags);
+
+ return ERR_PTR(-ENOENT);
+}
+
+
+static struct nvmf_transport_ops nvme_fc_transport = {
+ .name = "fc",
+ .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
+ .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
+ .create_ctrl = nvme_fc_create_ctrl,
+};
+
+static int __init nvme_fc_init_module(void)
+{
+ return nvmf_register_transport(&nvme_fc_transport);
+}
+
+static void __exit nvme_fc_exit_module(void)
+{
+ /* sanity check - all lports should be removed */
+ if (!list_empty(&nvme_fc_lport_list))
+ pr_warn("%s: localport list not empty\n", __func__);
+
+ nvmf_unregister_transport(&nvme_fc_transport);
+
+ ida_destroy(&nvme_fc_local_port_cnt);
+ ida_destroy(&nvme_fc_ctrl_cnt);
+}
+
+module_init(nvme_fc_init_module);
+module_exit(nvme_fc_exit_module);
+
+MODULE_LICENSE("GPL v2");