[Feature]add MT2731_MP2_MR2_SVN388 baseline version

Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/kernel/linux/v4.14/drivers/scsi/hpsa.c b/src/kernel/linux/v4.14/drivers/scsi/hpsa.c
new file mode 100644
index 0000000..3b89291
--- /dev/null
+++ b/src/kernel/linux/v4.14/drivers/scsi/hpsa.c
@@ -0,0 +1,9673 @@
+/*
+ *    Disk Array driver for HP Smart Array SAS controllers
+ *    Copyright 2016 Microsemi Corporation
+ *    Copyright 2014-2015 PMC-Sierra, Inc.
+ *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
+ *
+ *    This program is free software; you can redistribute it and/or modify
+ *    it under the terms of the GNU General Public License as published by
+ *    the Free Software Foundation; version 2 of the License.
+ *
+ *    This program is distributed in the hope that it will be useful,
+ *    but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
+ *    NON INFRINGEMENT.  See the GNU General Public License for more details.
+ *
+ *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/types.h>
+#include <linux/pci.h>
+#include <linux/pci-aspm.h>
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/fs.h>
+#include <linux/timer.h>
+#include <linux/init.h>
+#include <linux/spinlock.h>
+#include <linux/compat.h>
+#include <linux/blktrace_api.h>
+#include <linux/uaccess.h>
+#include <linux/io.h>
+#include <linux/dma-mapping.h>
+#include <linux/completion.h>
+#include <linux/moduleparam.h>
+#include <scsi/scsi.h>
+#include <scsi/scsi_cmnd.h>
+#include <scsi/scsi_device.h>
+#include <scsi/scsi_host.h>
+#include <scsi/scsi_tcq.h>
+#include <scsi/scsi_eh.h>
+#include <scsi/scsi_transport_sas.h>
+#include <scsi/scsi_dbg.h>
+#include <linux/cciss_ioctl.h>
+#include <linux/string.h>
+#include <linux/bitmap.h>
+#include <linux/atomic.h>
+#include <linux/jiffies.h>
+#include <linux/percpu-defs.h>
+#include <linux/percpu.h>
+#include <asm/unaligned.h>
+#include <asm/div64.h>
+#include "hpsa_cmd.h"
+#include "hpsa.h"
+
+/*
+ * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
+ * with an optional trailing '-' followed by a byte value (0-255).
+ */
+#define HPSA_DRIVER_VERSION "3.4.20-0"
+#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
+#define HPSA "hpsa"
+
+/* How long to wait for CISS doorbell communication */
+#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
+#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
+#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
+#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
+#define MAX_IOCTL_CONFIG_WAIT 1000
+
+/*define how many times we will try a command because of bus resets */
+#define MAX_CMD_RETRIES 3
+
+/* Embedded module documentation macros - see modules.h */
+MODULE_AUTHOR("Hewlett-Packard Company");
+MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
+	HPSA_DRIVER_VERSION);
+MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
+MODULE_VERSION(HPSA_DRIVER_VERSION);
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("cciss");
+
+static int hpsa_simple_mode;
+module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
+MODULE_PARM_DESC(hpsa_simple_mode,
+	"Use 'simple mode' rather than 'performant mode'");
+
+/* define the PCI info for the cards we can control */
+static const struct pci_device_id hpsa_pci_device_id[] = {
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
+	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
+	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
+	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
+	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
+	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
+	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
+	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
+	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
+	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
+	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
+	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
+	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
+	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
+		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
+	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
+		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
+	{0,}
+};
+
+MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
+
+/*  board_id = Subsystem Device ID & Vendor ID
+ *  product = Marketing Name for the board
+ *  access = Address of the struct of function pointers
+ */
+static struct board_type products[] = {
+	{0x40700E11, "Smart Array 5300", &SA5A_access},
+	{0x40800E11, "Smart Array 5i", &SA5B_access},
+	{0x40820E11, "Smart Array 532", &SA5B_access},
+	{0x40830E11, "Smart Array 5312", &SA5B_access},
+	{0x409A0E11, "Smart Array 641", &SA5A_access},
+	{0x409B0E11, "Smart Array 642", &SA5A_access},
+	{0x409C0E11, "Smart Array 6400", &SA5A_access},
+	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
+	{0x40910E11, "Smart Array 6i", &SA5A_access},
+	{0x3225103C, "Smart Array P600", &SA5A_access},
+	{0x3223103C, "Smart Array P800", &SA5A_access},
+	{0x3234103C, "Smart Array P400", &SA5A_access},
+	{0x3235103C, "Smart Array P400i", &SA5A_access},
+	{0x3211103C, "Smart Array E200i", &SA5A_access},
+	{0x3212103C, "Smart Array E200", &SA5A_access},
+	{0x3213103C, "Smart Array E200i", &SA5A_access},
+	{0x3214103C, "Smart Array E200i", &SA5A_access},
+	{0x3215103C, "Smart Array E200i", &SA5A_access},
+	{0x3237103C, "Smart Array E500", &SA5A_access},
+	{0x323D103C, "Smart Array P700m", &SA5A_access},
+	{0x3241103C, "Smart Array P212", &SA5_access},
+	{0x3243103C, "Smart Array P410", &SA5_access},
+	{0x3245103C, "Smart Array P410i", &SA5_access},
+	{0x3247103C, "Smart Array P411", &SA5_access},
+	{0x3249103C, "Smart Array P812", &SA5_access},
+	{0x324A103C, "Smart Array P712m", &SA5_access},
+	{0x324B103C, "Smart Array P711m", &SA5_access},
+	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
+	{0x3350103C, "Smart Array P222", &SA5_access},
+	{0x3351103C, "Smart Array P420", &SA5_access},
+	{0x3352103C, "Smart Array P421", &SA5_access},
+	{0x3353103C, "Smart Array P822", &SA5_access},
+	{0x3354103C, "Smart Array P420i", &SA5_access},
+	{0x3355103C, "Smart Array P220i", &SA5_access},
+	{0x3356103C, "Smart Array P721m", &SA5_access},
+	{0x1920103C, "Smart Array P430i", &SA5_access},
+	{0x1921103C, "Smart Array P830i", &SA5_access},
+	{0x1922103C, "Smart Array P430", &SA5_access},
+	{0x1923103C, "Smart Array P431", &SA5_access},
+	{0x1924103C, "Smart Array P830", &SA5_access},
+	{0x1925103C, "Smart Array P831", &SA5_access},
+	{0x1926103C, "Smart Array P731m", &SA5_access},
+	{0x1928103C, "Smart Array P230i", &SA5_access},
+	{0x1929103C, "Smart Array P530", &SA5_access},
+	{0x21BD103C, "Smart Array P244br", &SA5_access},
+	{0x21BE103C, "Smart Array P741m", &SA5_access},
+	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
+	{0x21C0103C, "Smart Array P440ar", &SA5_access},
+	{0x21C1103C, "Smart Array P840ar", &SA5_access},
+	{0x21C2103C, "Smart Array P440", &SA5_access},
+	{0x21C3103C, "Smart Array P441", &SA5_access},
+	{0x21C4103C, "Smart Array", &SA5_access},
+	{0x21C5103C, "Smart Array P841", &SA5_access},
+	{0x21C6103C, "Smart HBA H244br", &SA5_access},
+	{0x21C7103C, "Smart HBA H240", &SA5_access},
+	{0x21C8103C, "Smart HBA H241", &SA5_access},
+	{0x21C9103C, "Smart Array", &SA5_access},
+	{0x21CA103C, "Smart Array P246br", &SA5_access},
+	{0x21CB103C, "Smart Array P840", &SA5_access},
+	{0x21CC103C, "Smart Array", &SA5_access},
+	{0x21CD103C, "Smart Array", &SA5_access},
+	{0x21CE103C, "Smart HBA", &SA5_access},
+	{0x05809005, "SmartHBA-SA", &SA5_access},
+	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
+	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
+	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
+	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
+	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
+	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
+	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
+	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
+	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
+	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
+	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
+};
+
+static struct scsi_transport_template *hpsa_sas_transport_template;
+static int hpsa_add_sas_host(struct ctlr_info *h);
+static void hpsa_delete_sas_host(struct ctlr_info *h);
+static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
+			struct hpsa_scsi_dev_t *device);
+static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
+static struct hpsa_scsi_dev_t
+	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
+		struct sas_rphy *rphy);
+
+#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
+static const struct scsi_cmnd hpsa_cmd_busy;
+#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
+static const struct scsi_cmnd hpsa_cmd_idle;
+static int number_of_controllers;
+
+static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
+static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
+static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
+
+#ifdef CONFIG_COMPAT
+static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
+	void __user *arg);
+#endif
+
+static void cmd_free(struct ctlr_info *h, struct CommandList *c);
+static struct CommandList *cmd_alloc(struct ctlr_info *h);
+static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
+static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
+					    struct scsi_cmnd *scmd);
+static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
+	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
+	int cmd_type);
+static void hpsa_free_cmd_pool(struct ctlr_info *h);
+#define VPD_PAGE (1 << 8)
+#define HPSA_SIMPLE_ERROR_BITS 0x03
+
+static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
+static void hpsa_scan_start(struct Scsi_Host *);
+static int hpsa_scan_finished(struct Scsi_Host *sh,
+	unsigned long elapsed_time);
+static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
+
+static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
+static int hpsa_slave_alloc(struct scsi_device *sdev);
+static int hpsa_slave_configure(struct scsi_device *sdev);
+static void hpsa_slave_destroy(struct scsi_device *sdev);
+
+static void hpsa_update_scsi_devices(struct ctlr_info *h);
+static int check_for_unit_attention(struct ctlr_info *h,
+	struct CommandList *c);
+static void check_ioctl_unit_attention(struct ctlr_info *h,
+	struct CommandList *c);
+/* performant mode helper functions */
+static void calc_bucket_map(int *bucket, int num_buckets,
+	int nsgs, int min_blocks, u32 *bucket_map);
+static void hpsa_free_performant_mode(struct ctlr_info *h);
+static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
+static inline u32 next_command(struct ctlr_info *h, u8 q);
+static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
+			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
+			       u64 *cfg_offset);
+static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
+				    unsigned long *memory_bar);
+static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
+				bool *legacy_board);
+static int wait_for_device_to_become_ready(struct ctlr_info *h,
+					   unsigned char lunaddr[],
+					   int reply_queue);
+static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
+				     int wait_for_ready);
+static inline void finish_cmd(struct CommandList *c);
+static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
+#define BOARD_NOT_READY 0
+#define BOARD_READY 1
+static void hpsa_drain_accel_commands(struct ctlr_info *h);
+static void hpsa_flush_cache(struct ctlr_info *h);
+static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
+	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
+	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
+static void hpsa_command_resubmit_worker(struct work_struct *work);
+static u32 lockup_detected(struct ctlr_info *h);
+static int detect_controller_lockup(struct ctlr_info *h);
+static void hpsa_disable_rld_caching(struct ctlr_info *h);
+static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
+	struct ReportExtendedLUNdata *buf, int bufsize);
+static bool hpsa_vpd_page_supported(struct ctlr_info *h,
+	unsigned char scsi3addr[], u8 page);
+static int hpsa_luns_changed(struct ctlr_info *h);
+static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
+			       struct hpsa_scsi_dev_t *dev,
+			       unsigned char *scsi3addr);
+
+static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
+{
+	unsigned long *priv = shost_priv(sdev->host);
+	return (struct ctlr_info *) *priv;
+}
+
+static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
+{
+	unsigned long *priv = shost_priv(sh);
+	return (struct ctlr_info *) *priv;
+}
+
+static inline bool hpsa_is_cmd_idle(struct CommandList *c)
+{
+	return c->scsi_cmd == SCSI_CMD_IDLE;
+}
+
+static inline bool hpsa_is_pending_event(struct CommandList *c)
+{
+	return c->reset_pending;
+}
+
+/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
+static void decode_sense_data(const u8 *sense_data, int sense_data_len,
+			u8 *sense_key, u8 *asc, u8 *ascq)
+{
+	struct scsi_sense_hdr sshdr;
+	bool rc;
+
+	*sense_key = -1;
+	*asc = -1;
+	*ascq = -1;
+
+	if (sense_data_len < 1)
+		return;
+
+	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
+	if (rc) {
+		*sense_key = sshdr.sense_key;
+		*asc = sshdr.asc;
+		*ascq = sshdr.ascq;
+	}
+}
+
+static int check_for_unit_attention(struct ctlr_info *h,
+	struct CommandList *c)
+{
+	u8 sense_key, asc, ascq;
+	int sense_len;
+
+	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
+		sense_len = sizeof(c->err_info->SenseInfo);
+	else
+		sense_len = c->err_info->SenseLen;
+
+	decode_sense_data(c->err_info->SenseInfo, sense_len,
+				&sense_key, &asc, &ascq);
+	if (sense_key != UNIT_ATTENTION || asc == 0xff)
+		return 0;
+
+	switch (asc) {
+	case STATE_CHANGED:
+		dev_warn(&h->pdev->dev,
+			"%s: a state change detected, command retried\n",
+			h->devname);
+		break;
+	case LUN_FAILED:
+		dev_warn(&h->pdev->dev,
+			"%s: LUN failure detected\n", h->devname);
+		break;
+	case REPORT_LUNS_CHANGED:
+		dev_warn(&h->pdev->dev,
+			"%s: report LUN data changed\n", h->devname);
+	/*
+	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
+	 * target (array) devices.
+	 */
+		break;
+	case POWER_OR_RESET:
+		dev_warn(&h->pdev->dev,
+			"%s: a power on or device reset detected\n",
+			h->devname);
+		break;
+	case UNIT_ATTENTION_CLEARED:
+		dev_warn(&h->pdev->dev,
+			"%s: unit attention cleared by another initiator\n",
+			h->devname);
+		break;
+	default:
+		dev_warn(&h->pdev->dev,
+			"%s: unknown unit attention detected\n",
+			h->devname);
+		break;
+	}
+	return 1;
+}
+
+static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
+{
+	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
+		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
+		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
+		return 0;
+	dev_warn(&h->pdev->dev, HPSA "device busy");
+	return 1;
+}
+
+static u32 lockup_detected(struct ctlr_info *h);
+static ssize_t host_show_lockup_detected(struct device *dev,
+		struct device_attribute *attr, char *buf)
+{
+	int ld;
+	struct ctlr_info *h;
+	struct Scsi_Host *shost = class_to_shost(dev);
+
+	h = shost_to_hba(shost);
+	ld = lockup_detected(h);
+
+	return sprintf(buf, "ld=%d\n", ld);
+}
+
+static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
+					 struct device_attribute *attr,
+					 const char *buf, size_t count)
+{
+	int status, len;
+	struct ctlr_info *h;
+	struct Scsi_Host *shost = class_to_shost(dev);
+	char tmpbuf[10];
+
+	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
+		return -EACCES;
+	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
+	strncpy(tmpbuf, buf, len);
+	tmpbuf[len] = '\0';
+	if (sscanf(tmpbuf, "%d", &status) != 1)
+		return -EINVAL;
+	h = shost_to_hba(shost);
+	h->acciopath_status = !!status;
+	dev_warn(&h->pdev->dev,
+		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
+		h->acciopath_status ? "enabled" : "disabled");
+	return count;
+}
+
+static ssize_t host_store_raid_offload_debug(struct device *dev,
+					 struct device_attribute *attr,
+					 const char *buf, size_t count)
+{
+	int debug_level, len;
+	struct ctlr_info *h;
+	struct Scsi_Host *shost = class_to_shost(dev);
+	char tmpbuf[10];
+
+	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
+		return -EACCES;
+	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
+	strncpy(tmpbuf, buf, len);
+	tmpbuf[len] = '\0';
+	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
+		return -EINVAL;
+	if (debug_level < 0)
+		debug_level = 0;
+	h = shost_to_hba(shost);
+	h->raid_offload_debug = debug_level;
+	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
+		h->raid_offload_debug);
+	return count;
+}
+
+static ssize_t host_store_rescan(struct device *dev,
+				 struct device_attribute *attr,
+				 const char *buf, size_t count)
+{
+	struct ctlr_info *h;
+	struct Scsi_Host *shost = class_to_shost(dev);
+	h = shost_to_hba(shost);
+	hpsa_scan_start(h->scsi_host);
+	return count;
+}
+
+static ssize_t host_show_firmware_revision(struct device *dev,
+	     struct device_attribute *attr, char *buf)
+{
+	struct ctlr_info *h;
+	struct Scsi_Host *shost = class_to_shost(dev);
+	unsigned char *fwrev;
+
+	h = shost_to_hba(shost);
+	if (!h->hba_inquiry_data)
+		return 0;
+	fwrev = &h->hba_inquiry_data[32];
+	return snprintf(buf, 20, "%c%c%c%c\n",
+		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
+}
+
+static ssize_t host_show_commands_outstanding(struct device *dev,
+	     struct device_attribute *attr, char *buf)
+{
+	struct Scsi_Host *shost = class_to_shost(dev);
+	struct ctlr_info *h = shost_to_hba(shost);
+
+	return snprintf(buf, 20, "%d\n",
+			atomic_read(&h->commands_outstanding));
+}
+
+static ssize_t host_show_transport_mode(struct device *dev,
+	struct device_attribute *attr, char *buf)
+{
+	struct ctlr_info *h;
+	struct Scsi_Host *shost = class_to_shost(dev);
+
+	h = shost_to_hba(shost);
+	return snprintf(buf, 20, "%s\n",
+		h->transMethod & CFGTBL_Trans_Performant ?
+			"performant" : "simple");
+}
+
+static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
+	struct device_attribute *attr, char *buf)
+{
+	struct ctlr_info *h;
+	struct Scsi_Host *shost = class_to_shost(dev);
+
+	h = shost_to_hba(shost);
+	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
+		(h->acciopath_status == 1) ?  "enabled" : "disabled");
+}
+
+/* List of controllers which cannot be hard reset on kexec with reset_devices */
+static u32 unresettable_controller[] = {
+	0x324a103C, /* Smart Array P712m */
+	0x324b103C, /* Smart Array P711m */
+	0x3223103C, /* Smart Array P800 */
+	0x3234103C, /* Smart Array P400 */
+	0x3235103C, /* Smart Array P400i */
+	0x3211103C, /* Smart Array E200i */
+	0x3212103C, /* Smart Array E200 */
+	0x3213103C, /* Smart Array E200i */
+	0x3214103C, /* Smart Array E200i */
+	0x3215103C, /* Smart Array E200i */
+	0x3237103C, /* Smart Array E500 */
+	0x323D103C, /* Smart Array P700m */
+	0x40800E11, /* Smart Array 5i */
+	0x409C0E11, /* Smart Array 6400 */
+	0x409D0E11, /* Smart Array 6400 EM */
+	0x40700E11, /* Smart Array 5300 */
+	0x40820E11, /* Smart Array 532 */
+	0x40830E11, /* Smart Array 5312 */
+	0x409A0E11, /* Smart Array 641 */
+	0x409B0E11, /* Smart Array 642 */
+	0x40910E11, /* Smart Array 6i */
+};
+
+/* List of controllers which cannot even be soft reset */
+static u32 soft_unresettable_controller[] = {
+	0x40800E11, /* Smart Array 5i */
+	0x40700E11, /* Smart Array 5300 */
+	0x40820E11, /* Smart Array 532 */
+	0x40830E11, /* Smart Array 5312 */
+	0x409A0E11, /* Smart Array 641 */
+	0x409B0E11, /* Smart Array 642 */
+	0x40910E11, /* Smart Array 6i */
+	/* Exclude 640x boards.  These are two pci devices in one slot
+	 * which share a battery backed cache module.  One controls the
+	 * cache, the other accesses the cache through the one that controls
+	 * it.  If we reset the one controlling the cache, the other will
+	 * likely not be happy.  Just forbid resetting this conjoined mess.
+	 * The 640x isn't really supported by hpsa anyway.
+	 */
+	0x409C0E11, /* Smart Array 6400 */
+	0x409D0E11, /* Smart Array 6400 EM */
+};
+
+static int board_id_in_array(u32 a[], int nelems, u32 board_id)
+{
+	int i;
+
+	for (i = 0; i < nelems; i++)
+		if (a[i] == board_id)
+			return 1;
+	return 0;
+}
+
+static int ctlr_is_hard_resettable(u32 board_id)
+{
+	return !board_id_in_array(unresettable_controller,
+			ARRAY_SIZE(unresettable_controller), board_id);
+}
+
+static int ctlr_is_soft_resettable(u32 board_id)
+{
+	return !board_id_in_array(soft_unresettable_controller,
+			ARRAY_SIZE(soft_unresettable_controller), board_id);
+}
+
+static int ctlr_is_resettable(u32 board_id)
+{
+	return ctlr_is_hard_resettable(board_id) ||
+		ctlr_is_soft_resettable(board_id);
+}
+
+static ssize_t host_show_resettable(struct device *dev,
+	struct device_attribute *attr, char *buf)
+{
+	struct ctlr_info *h;
+	struct Scsi_Host *shost = class_to_shost(dev);
+
+	h = shost_to_hba(shost);
+	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
+}
+
+static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
+{
+	return (scsi3addr[3] & 0xC0) == 0x40;
+}
+
+static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
+	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
+};
+#define HPSA_RAID_0	0
+#define HPSA_RAID_4	1
+#define HPSA_RAID_1	2	/* also used for RAID 10 */
+#define HPSA_RAID_5	3	/* also used for RAID 50 */
+#define HPSA_RAID_51	4
+#define HPSA_RAID_6	5	/* also used for RAID 60 */
+#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
+#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
+#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
+
+static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
+{
+	return !device->physical_device;
+}
+
+static ssize_t raid_level_show(struct device *dev,
+	     struct device_attribute *attr, char *buf)
+{
+	ssize_t l = 0;
+	unsigned char rlevel;
+	struct ctlr_info *h;
+	struct scsi_device *sdev;
+	struct hpsa_scsi_dev_t *hdev;
+	unsigned long flags;
+
+	sdev = to_scsi_device(dev);
+	h = sdev_to_hba(sdev);
+	spin_lock_irqsave(&h->lock, flags);
+	hdev = sdev->hostdata;
+	if (!hdev) {
+		spin_unlock_irqrestore(&h->lock, flags);
+		return -ENODEV;
+	}
+
+	/* Is this even a logical drive? */
+	if (!is_logical_device(hdev)) {
+		spin_unlock_irqrestore(&h->lock, flags);
+		l = snprintf(buf, PAGE_SIZE, "N/A\n");
+		return l;
+	}
+
+	rlevel = hdev->raid_level;
+	spin_unlock_irqrestore(&h->lock, flags);
+	if (rlevel > RAID_UNKNOWN)
+		rlevel = RAID_UNKNOWN;
+	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
+	return l;
+}
+
+static ssize_t lunid_show(struct device *dev,
+	     struct device_attribute *attr, char *buf)
+{
+	struct ctlr_info *h;
+	struct scsi_device *sdev;
+	struct hpsa_scsi_dev_t *hdev;
+	unsigned long flags;
+	unsigned char lunid[8];
+
+	sdev = to_scsi_device(dev);
+	h = sdev_to_hba(sdev);
+	spin_lock_irqsave(&h->lock, flags);
+	hdev = sdev->hostdata;
+	if (!hdev) {
+		spin_unlock_irqrestore(&h->lock, flags);
+		return -ENODEV;
+	}
+	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
+	spin_unlock_irqrestore(&h->lock, flags);
+	return snprintf(buf, 20, "0x%8phN\n", lunid);
+}
+
+static ssize_t unique_id_show(struct device *dev,
+	     struct device_attribute *attr, char *buf)
+{
+	struct ctlr_info *h;
+	struct scsi_device *sdev;
+	struct hpsa_scsi_dev_t *hdev;
+	unsigned long flags;
+	unsigned char sn[16];
+
+	sdev = to_scsi_device(dev);
+	h = sdev_to_hba(sdev);
+	spin_lock_irqsave(&h->lock, flags);
+	hdev = sdev->hostdata;
+	if (!hdev) {
+		spin_unlock_irqrestore(&h->lock, flags);
+		return -ENODEV;
+	}
+	memcpy(sn, hdev->device_id, sizeof(sn));
+	spin_unlock_irqrestore(&h->lock, flags);
+	return snprintf(buf, 16 * 2 + 2,
+			"%02X%02X%02X%02X%02X%02X%02X%02X"
+			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
+			sn[0], sn[1], sn[2], sn[3],
+			sn[4], sn[5], sn[6], sn[7],
+			sn[8], sn[9], sn[10], sn[11],
+			sn[12], sn[13], sn[14], sn[15]);
+}
+
+static ssize_t sas_address_show(struct device *dev,
+	      struct device_attribute *attr, char *buf)
+{
+	struct ctlr_info *h;
+	struct scsi_device *sdev;
+	struct hpsa_scsi_dev_t *hdev;
+	unsigned long flags;
+	u64 sas_address;
+
+	sdev = to_scsi_device(dev);
+	h = sdev_to_hba(sdev);
+	spin_lock_irqsave(&h->lock, flags);
+	hdev = sdev->hostdata;
+	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
+		spin_unlock_irqrestore(&h->lock, flags);
+		return -ENODEV;
+	}
+	sas_address = hdev->sas_address;
+	spin_unlock_irqrestore(&h->lock, flags);
+
+	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
+}
+
+static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
+	     struct device_attribute *attr, char *buf)
+{
+	struct ctlr_info *h;
+	struct scsi_device *sdev;
+	struct hpsa_scsi_dev_t *hdev;
+	unsigned long flags;
+	int offload_enabled;
+
+	sdev = to_scsi_device(dev);
+	h = sdev_to_hba(sdev);
+	spin_lock_irqsave(&h->lock, flags);
+	hdev = sdev->hostdata;
+	if (!hdev) {
+		spin_unlock_irqrestore(&h->lock, flags);
+		return -ENODEV;
+	}
+	offload_enabled = hdev->offload_enabled;
+	spin_unlock_irqrestore(&h->lock, flags);
+	return snprintf(buf, 20, "%d\n", offload_enabled);
+}
+
+#define MAX_PATHS 8
+static ssize_t path_info_show(struct device *dev,
+	     struct device_attribute *attr, char *buf)
+{
+	struct ctlr_info *h;
+	struct scsi_device *sdev;
+	struct hpsa_scsi_dev_t *hdev;
+	unsigned long flags;
+	int i;
+	int output_len = 0;
+	u8 box;
+	u8 bay;
+	u8 path_map_index = 0;
+	char *active;
+	unsigned char phys_connector[2];
+
+	sdev = to_scsi_device(dev);
+	h = sdev_to_hba(sdev);
+	spin_lock_irqsave(&h->devlock, flags);
+	hdev = sdev->hostdata;
+	if (!hdev) {
+		spin_unlock_irqrestore(&h->devlock, flags);
+		return -ENODEV;
+	}
+
+	bay = hdev->bay;
+	for (i = 0; i < MAX_PATHS; i++) {
+		path_map_index = 1<<i;
+		if (i == hdev->active_path_index)
+			active = "Active";
+		else if (hdev->path_map & path_map_index)
+			active = "Inactive";
+		else
+			continue;
+
+		output_len += scnprintf(buf + output_len,
+				PAGE_SIZE - output_len,
+				"[%d:%d:%d:%d] %20.20s ",
+				h->scsi_host->host_no,
+				hdev->bus, hdev->target, hdev->lun,
+				scsi_device_type(hdev->devtype));
+
+		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
+			output_len += scnprintf(buf + output_len,
+						PAGE_SIZE - output_len,
+						"%s\n", active);
+			continue;
+		}
+
+		box = hdev->box[i];
+		memcpy(&phys_connector, &hdev->phys_connector[i],
+			sizeof(phys_connector));
+		if (phys_connector[0] < '0')
+			phys_connector[0] = '0';
+		if (phys_connector[1] < '0')
+			phys_connector[1] = '0';
+		output_len += scnprintf(buf + output_len,
+				PAGE_SIZE - output_len,
+				"PORT: %.2s ",
+				phys_connector);
+		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
+			hdev->expose_device) {
+			if (box == 0 || box == 0xFF) {
+				output_len += scnprintf(buf + output_len,
+					PAGE_SIZE - output_len,
+					"BAY: %hhu %s\n",
+					bay, active);
+			} else {
+				output_len += scnprintf(buf + output_len,
+					PAGE_SIZE - output_len,
+					"BOX: %hhu BAY: %hhu %s\n",
+					box, bay, active);
+			}
+		} else if (box != 0 && box != 0xFF) {
+			output_len += scnprintf(buf + output_len,
+				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
+				box, active);
+		} else
+			output_len += scnprintf(buf + output_len,
+				PAGE_SIZE - output_len, "%s\n", active);
+	}
+
+	spin_unlock_irqrestore(&h->devlock, flags);
+	return output_len;
+}
+
+static ssize_t host_show_ctlr_num(struct device *dev,
+	struct device_attribute *attr, char *buf)
+{
+	struct ctlr_info *h;
+	struct Scsi_Host *shost = class_to_shost(dev);
+
+	h = shost_to_hba(shost);
+	return snprintf(buf, 20, "%d\n", h->ctlr);
+}
+
+static ssize_t host_show_legacy_board(struct device *dev,
+	struct device_attribute *attr, char *buf)
+{
+	struct ctlr_info *h;
+	struct Scsi_Host *shost = class_to_shost(dev);
+
+	h = shost_to_hba(shost);
+	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
+}
+
+static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
+static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
+static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
+static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
+static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
+static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
+			host_show_hp_ssd_smart_path_enabled, NULL);
+static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
+static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
+		host_show_hp_ssd_smart_path_status,
+		host_store_hp_ssd_smart_path_status);
+static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
+			host_store_raid_offload_debug);
+static DEVICE_ATTR(firmware_revision, S_IRUGO,
+	host_show_firmware_revision, NULL);
+static DEVICE_ATTR(commands_outstanding, S_IRUGO,
+	host_show_commands_outstanding, NULL);
+static DEVICE_ATTR(transport_mode, S_IRUGO,
+	host_show_transport_mode, NULL);
+static DEVICE_ATTR(resettable, S_IRUGO,
+	host_show_resettable, NULL);
+static DEVICE_ATTR(lockup_detected, S_IRUGO,
+	host_show_lockup_detected, NULL);
+static DEVICE_ATTR(ctlr_num, S_IRUGO,
+	host_show_ctlr_num, NULL);
+static DEVICE_ATTR(legacy_board, S_IRUGO,
+	host_show_legacy_board, NULL);
+
+static struct device_attribute *hpsa_sdev_attrs[] = {
+	&dev_attr_raid_level,
+	&dev_attr_lunid,
+	&dev_attr_unique_id,
+	&dev_attr_hp_ssd_smart_path_enabled,
+	&dev_attr_path_info,
+	&dev_attr_sas_address,
+	NULL,
+};
+
+static struct device_attribute *hpsa_shost_attrs[] = {
+	&dev_attr_rescan,
+	&dev_attr_firmware_revision,
+	&dev_attr_commands_outstanding,
+	&dev_attr_transport_mode,
+	&dev_attr_resettable,
+	&dev_attr_hp_ssd_smart_path_status,
+	&dev_attr_raid_offload_debug,
+	&dev_attr_lockup_detected,
+	&dev_attr_ctlr_num,
+	&dev_attr_legacy_board,
+	NULL,
+};
+
+#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
+				 HPSA_MAX_CONCURRENT_PASSTHRUS)
+
+static struct scsi_host_template hpsa_driver_template = {
+	.module			= THIS_MODULE,
+	.name			= HPSA,
+	.proc_name		= HPSA,
+	.queuecommand		= hpsa_scsi_queue_command,
+	.scan_start		= hpsa_scan_start,
+	.scan_finished		= hpsa_scan_finished,
+	.change_queue_depth	= hpsa_change_queue_depth,
+	.this_id		= -1,
+	.use_clustering		= ENABLE_CLUSTERING,
+	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
+	.ioctl			= hpsa_ioctl,
+	.slave_alloc		= hpsa_slave_alloc,
+	.slave_configure	= hpsa_slave_configure,
+	.slave_destroy		= hpsa_slave_destroy,
+#ifdef CONFIG_COMPAT
+	.compat_ioctl		= hpsa_compat_ioctl,
+#endif
+	.sdev_attrs = hpsa_sdev_attrs,
+	.shost_attrs = hpsa_shost_attrs,
+	.max_sectors = 1024,
+	.no_write_same = 1,
+};
+
+static inline u32 next_command(struct ctlr_info *h, u8 q)
+{
+	u32 a;
+	struct reply_queue_buffer *rq = &h->reply_queue[q];
+
+	if (h->transMethod & CFGTBL_Trans_io_accel1)
+		return h->access.command_completed(h, q);
+
+	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
+		return h->access.command_completed(h, q);
+
+	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
+		a = rq->head[rq->current_entry];
+		rq->current_entry++;
+		atomic_dec(&h->commands_outstanding);
+	} else {
+		a = FIFO_EMPTY;
+	}
+	/* Check for wraparound */
+	if (rq->current_entry == h->max_commands) {
+		rq->current_entry = 0;
+		rq->wraparound ^= 1;
+	}
+	return a;
+}
+
+/*
+ * There are some special bits in the bus address of the
+ * command that we have to set for the controller to know
+ * how to process the command:
+ *
+ * Normal performant mode:
+ * bit 0: 1 means performant mode, 0 means simple mode.
+ * bits 1-3 = block fetch table entry
+ * bits 4-6 = command type (== 0)
+ *
+ * ioaccel1 mode:
+ * bit 0 = "performant mode" bit.
+ * bits 1-3 = block fetch table entry
+ * bits 4-6 = command type (== 110)
+ * (command type is needed because ioaccel1 mode
+ * commands are submitted through the same register as normal
+ * mode commands, so this is how the controller knows whether
+ * the command is normal mode or ioaccel1 mode.)
+ *
+ * ioaccel2 mode:
+ * bit 0 = "performant mode" bit.
+ * bits 1-4 = block fetch table entry (note extra bit)
+ * bits 4-6 = not needed, because ioaccel2 mode has
+ * a separate special register for submitting commands.
+ */
+
+/*
+ * set_performant_mode: Modify the tag for cciss performant
+ * set bit 0 for pull model, bits 3-1 for block fetch
+ * register number
+ */
+#define DEFAULT_REPLY_QUEUE (-1)
+static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
+					int reply_queue)
+{
+	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
+		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
+		if (unlikely(!h->msix_vectors))
+			return;
+		c->Header.ReplyQueue = reply_queue;
+	}
+}
+
+static void set_ioaccel1_performant_mode(struct ctlr_info *h,
+						struct CommandList *c,
+						int reply_queue)
+{
+	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
+
+	/*
+	 * Tell the controller to post the reply to the queue for this
+	 * processor.  This seems to give the best I/O throughput.
+	 */
+	cp->ReplyQueue = reply_queue;
+	/*
+	 * Set the bits in the address sent down to include:
+	 *  - performant mode bit (bit 0)
+	 *  - pull count (bits 1-3)
+	 *  - command type (bits 4-6)
+	 */
+	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
+					IOACCEL1_BUSADDR_CMDTYPE;
+}
+
+static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
+						struct CommandList *c,
+						int reply_queue)
+{
+	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
+		&h->ioaccel2_cmd_pool[c->cmdindex];
+
+	/* Tell the controller to post the reply to the queue for this
+	 * processor.  This seems to give the best I/O throughput.
+	 */
+	cp->reply_queue = reply_queue;
+	/* Set the bits in the address sent down to include:
+	 *  - performant mode bit not used in ioaccel mode 2
+	 *  - pull count (bits 0-3)
+	 *  - command type isn't needed for ioaccel2
+	 */
+	c->busaddr |= h->ioaccel2_blockFetchTable[0];
+}
+
+static void set_ioaccel2_performant_mode(struct ctlr_info *h,
+						struct CommandList *c,
+						int reply_queue)
+{
+	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
+
+	/*
+	 * Tell the controller to post the reply to the queue for this
+	 * processor.  This seems to give the best I/O throughput.
+	 */
+	cp->reply_queue = reply_queue;
+	/*
+	 * Set the bits in the address sent down to include:
+	 *  - performant mode bit not used in ioaccel mode 2
+	 *  - pull count (bits 0-3)
+	 *  - command type isn't needed for ioaccel2
+	 */
+	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
+}
+
+static int is_firmware_flash_cmd(u8 *cdb)
+{
+	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
+}
+
+/*
+ * During firmware flash, the heartbeat register may not update as frequently
+ * as it should.  So we dial down lockup detection during firmware flash. and
+ * dial it back up when firmware flash completes.
+ */
+#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
+#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
+#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
+static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
+		struct CommandList *c)
+{
+	if (!is_firmware_flash_cmd(c->Request.CDB))
+		return;
+	atomic_inc(&h->firmware_flash_in_progress);
+	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
+}
+
+static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
+		struct CommandList *c)
+{
+	if (is_firmware_flash_cmd(c->Request.CDB) &&
+		atomic_dec_and_test(&h->firmware_flash_in_progress))
+		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
+}
+
+static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
+	struct CommandList *c, int reply_queue)
+{
+	dial_down_lockup_detection_during_fw_flash(h, c);
+	atomic_inc(&h->commands_outstanding);
+
+	reply_queue = h->reply_map[raw_smp_processor_id()];
+	switch (c->cmd_type) {
+	case CMD_IOACCEL1:
+		set_ioaccel1_performant_mode(h, c, reply_queue);
+		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
+		break;
+	case CMD_IOACCEL2:
+		set_ioaccel2_performant_mode(h, c, reply_queue);
+		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
+		break;
+	case IOACCEL2_TMF:
+		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
+		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
+		break;
+	default:
+		set_performant_mode(h, c, reply_queue);
+		h->access.submit_command(h, c);
+	}
+}
+
+static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
+{
+	if (unlikely(hpsa_is_pending_event(c)))
+		return finish_cmd(c);
+
+	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
+}
+
+static inline int is_hba_lunid(unsigned char scsi3addr[])
+{
+	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
+}
+
+static inline int is_scsi_rev_5(struct ctlr_info *h)
+{
+	if (!h->hba_inquiry_data)
+		return 0;
+	if ((h->hba_inquiry_data[2] & 0x07) == 5)
+		return 1;
+	return 0;
+}
+
+static int hpsa_find_target_lun(struct ctlr_info *h,
+	unsigned char scsi3addr[], int bus, int *target, int *lun)
+{
+	/* finds an unused bus, target, lun for a new physical device
+	 * assumes h->devlock is held
+	 */
+	int i, found = 0;
+	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
+
+	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
+
+	for (i = 0; i < h->ndevices; i++) {
+		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
+			__set_bit(h->dev[i]->target, lun_taken);
+	}
+
+	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
+	if (i < HPSA_MAX_DEVICES) {
+		/* *bus = 1; */
+		*target = i;
+		*lun = 0;
+		found = 1;
+	}
+	return !found;
+}
+
+static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
+	struct hpsa_scsi_dev_t *dev, char *description)
+{
+#define LABEL_SIZE 25
+	char label[LABEL_SIZE];
+
+	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
+		return;
+
+	switch (dev->devtype) {
+	case TYPE_RAID:
+		snprintf(label, LABEL_SIZE, "controller");
+		break;
+	case TYPE_ENCLOSURE:
+		snprintf(label, LABEL_SIZE, "enclosure");
+		break;
+	case TYPE_DISK:
+	case TYPE_ZBC:
+		if (dev->external)
+			snprintf(label, LABEL_SIZE, "external");
+		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
+			snprintf(label, LABEL_SIZE, "%s",
+				raid_label[PHYSICAL_DRIVE]);
+		else
+			snprintf(label, LABEL_SIZE, "RAID-%s",
+				dev->raid_level > RAID_UNKNOWN ? "?" :
+				raid_label[dev->raid_level]);
+		break;
+	case TYPE_ROM:
+		snprintf(label, LABEL_SIZE, "rom");
+		break;
+	case TYPE_TAPE:
+		snprintf(label, LABEL_SIZE, "tape");
+		break;
+	case TYPE_MEDIUM_CHANGER:
+		snprintf(label, LABEL_SIZE, "changer");
+		break;
+	default:
+		snprintf(label, LABEL_SIZE, "UNKNOWN");
+		break;
+	}
+
+	dev_printk(level, &h->pdev->dev,
+			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
+			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
+			description,
+			scsi_device_type(dev->devtype),
+			dev->vendor,
+			dev->model,
+			label,
+			dev->offload_config ? '+' : '-',
+			dev->offload_enabled ? '+' : '-',
+			dev->expose_device);
+}
+
+/* Add an entry into h->dev[] array. */
+static int hpsa_scsi_add_entry(struct ctlr_info *h,
+		struct hpsa_scsi_dev_t *device,
+		struct hpsa_scsi_dev_t *added[], int *nadded)
+{
+	/* assumes h->devlock is held */
+	int n = h->ndevices;
+	int i;
+	unsigned char addr1[8], addr2[8];
+	struct hpsa_scsi_dev_t *sd;
+
+	if (n >= HPSA_MAX_DEVICES) {
+		dev_err(&h->pdev->dev, "too many devices, some will be "
+			"inaccessible.\n");
+		return -1;
+	}
+
+	/* physical devices do not have lun or target assigned until now. */
+	if (device->lun != -1)
+		/* Logical device, lun is already assigned. */
+		goto lun_assigned;
+
+	/* If this device a non-zero lun of a multi-lun device
+	 * byte 4 of the 8-byte LUN addr will contain the logical
+	 * unit no, zero otherwise.
+	 */
+	if (device->scsi3addr[4] == 0) {
+		/* This is not a non-zero lun of a multi-lun device */
+		if (hpsa_find_target_lun(h, device->scsi3addr,
+			device->bus, &device->target, &device->lun) != 0)
+			return -1;
+		goto lun_assigned;
+	}
+
+	/* This is a non-zero lun of a multi-lun device.
+	 * Search through our list and find the device which
+	 * has the same 8 byte LUN address, excepting byte 4 and 5.
+	 * Assign the same bus and target for this new LUN.
+	 * Use the logical unit number from the firmware.
+	 */
+	memcpy(addr1, device->scsi3addr, 8);
+	addr1[4] = 0;
+	addr1[5] = 0;
+	for (i = 0; i < n; i++) {
+		sd = h->dev[i];
+		memcpy(addr2, sd->scsi3addr, 8);
+		addr2[4] = 0;
+		addr2[5] = 0;
+		/* differ only in byte 4 and 5? */
+		if (memcmp(addr1, addr2, 8) == 0) {
+			device->bus = sd->bus;
+			device->target = sd->target;
+			device->lun = device->scsi3addr[4];
+			break;
+		}
+	}
+	if (device->lun == -1) {
+		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
+			" suspect firmware bug or unsupported hardware "
+			"configuration.\n");
+			return -1;
+	}
+
+lun_assigned:
+
+	h->dev[n] = device;
+	h->ndevices++;
+	added[*nadded] = device;
+	(*nadded)++;
+	hpsa_show_dev_msg(KERN_INFO, h, device,
+		device->expose_device ? "added" : "masked");
+	device->offload_to_be_enabled = device->offload_enabled;
+	device->offload_enabled = 0;
+	return 0;
+}
+
+/* Update an entry in h->dev[] array. */
+static void hpsa_scsi_update_entry(struct ctlr_info *h,
+	int entry, struct hpsa_scsi_dev_t *new_entry)
+{
+	int offload_enabled;
+	/* assumes h->devlock is held */
+	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
+
+	/* Raid level changed. */
+	h->dev[entry]->raid_level = new_entry->raid_level;
+
+	/* Raid offload parameters changed.  Careful about the ordering. */
+	if (new_entry->offload_config && new_entry->offload_enabled) {
+		/*
+		 * if drive is newly offload_enabled, we want to copy the
+		 * raid map data first.  If previously offload_enabled and
+		 * offload_config were set, raid map data had better be
+		 * the same as it was before.  if raid map data is changed
+		 * then it had better be the case that
+		 * h->dev[entry]->offload_enabled is currently 0.
+		 */
+		h->dev[entry]->raid_map = new_entry->raid_map;
+		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
+	}
+	if (new_entry->hba_ioaccel_enabled) {
+		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
+		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
+	}
+	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
+	h->dev[entry]->offload_config = new_entry->offload_config;
+	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
+	h->dev[entry]->queue_depth = new_entry->queue_depth;
+
+	/*
+	 * We can turn off ioaccel offload now, but need to delay turning
+	 * it on until we can update h->dev[entry]->phys_disk[], but we
+	 * can't do that until all the devices are updated.
+	 */
+	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
+	if (!new_entry->offload_enabled)
+		h->dev[entry]->offload_enabled = 0;
+
+	offload_enabled = h->dev[entry]->offload_enabled;
+	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
+	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
+	h->dev[entry]->offload_enabled = offload_enabled;
+}
+
+/* Replace an entry from h->dev[] array. */
+static void hpsa_scsi_replace_entry(struct ctlr_info *h,
+	int entry, struct hpsa_scsi_dev_t *new_entry,
+	struct hpsa_scsi_dev_t *added[], int *nadded,
+	struct hpsa_scsi_dev_t *removed[], int *nremoved)
+{
+	/* assumes h->devlock is held */
+	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
+	removed[*nremoved] = h->dev[entry];
+	(*nremoved)++;
+
+	/*
+	 * New physical devices won't have target/lun assigned yet
+	 * so we need to preserve the values in the slot we are replacing.
+	 */
+	if (new_entry->target == -1) {
+		new_entry->target = h->dev[entry]->target;
+		new_entry->lun = h->dev[entry]->lun;
+	}
+
+	h->dev[entry] = new_entry;
+	added[*nadded] = new_entry;
+	(*nadded)++;
+	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
+	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
+	new_entry->offload_enabled = 0;
+}
+
+/* Remove an entry from h->dev[] array. */
+static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
+	struct hpsa_scsi_dev_t *removed[], int *nremoved)
+{
+	/* assumes h->devlock is held */
+	int i;
+	struct hpsa_scsi_dev_t *sd;
+
+	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
+
+	sd = h->dev[entry];
+	removed[*nremoved] = h->dev[entry];
+	(*nremoved)++;
+
+	for (i = entry; i < h->ndevices-1; i++)
+		h->dev[i] = h->dev[i+1];
+	h->ndevices--;
+	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
+}
+
+#define SCSI3ADDR_EQ(a, b) ( \
+	(a)[7] == (b)[7] && \
+	(a)[6] == (b)[6] && \
+	(a)[5] == (b)[5] && \
+	(a)[4] == (b)[4] && \
+	(a)[3] == (b)[3] && \
+	(a)[2] == (b)[2] && \
+	(a)[1] == (b)[1] && \
+	(a)[0] == (b)[0])
+
+static void fixup_botched_add(struct ctlr_info *h,
+	struct hpsa_scsi_dev_t *added)
+{
+	/* called when scsi_add_device fails in order to re-adjust
+	 * h->dev[] to match the mid layer's view.
+	 */
+	unsigned long flags;
+	int i, j;
+
+	spin_lock_irqsave(&h->lock, flags);
+	for (i = 0; i < h->ndevices; i++) {
+		if (h->dev[i] == added) {
+			for (j = i; j < h->ndevices-1; j++)
+				h->dev[j] = h->dev[j+1];
+			h->ndevices--;
+			break;
+		}
+	}
+	spin_unlock_irqrestore(&h->lock, flags);
+	kfree(added);
+}
+
+static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
+	struct hpsa_scsi_dev_t *dev2)
+{
+	/* we compare everything except lun and target as these
+	 * are not yet assigned.  Compare parts likely
+	 * to differ first
+	 */
+	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
+		sizeof(dev1->scsi3addr)) != 0)
+		return 0;
+	if (memcmp(dev1->device_id, dev2->device_id,
+		sizeof(dev1->device_id)) != 0)
+		return 0;
+	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
+		return 0;
+	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
+		return 0;
+	if (dev1->devtype != dev2->devtype)
+		return 0;
+	if (dev1->bus != dev2->bus)
+		return 0;
+	return 1;
+}
+
+static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
+	struct hpsa_scsi_dev_t *dev2)
+{
+	/* Device attributes that can change, but don't mean
+	 * that the device is a different device, nor that the OS
+	 * needs to be told anything about the change.
+	 */
+	if (dev1->raid_level != dev2->raid_level)
+		return 1;
+	if (dev1->offload_config != dev2->offload_config)
+		return 1;
+	if (dev1->offload_enabled != dev2->offload_enabled)
+		return 1;
+	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
+		if (dev1->queue_depth != dev2->queue_depth)
+			return 1;
+	return 0;
+}
+
+/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
+ * and return needle location in *index.  If scsi3addr matches, but not
+ * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
+ * location in *index.
+ * In the case of a minor device attribute change, such as RAID level, just
+ * return DEVICE_UPDATED, along with the updated device's location in index.
+ * If needle not found, return DEVICE_NOT_FOUND.
+ */
+static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
+	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
+	int *index)
+{
+	int i;
+#define DEVICE_NOT_FOUND 0
+#define DEVICE_CHANGED 1
+#define DEVICE_SAME 2
+#define DEVICE_UPDATED 3
+	if (needle == NULL)
+		return DEVICE_NOT_FOUND;
+
+	for (i = 0; i < haystack_size; i++) {
+		if (haystack[i] == NULL) /* previously removed. */
+			continue;
+		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
+			*index = i;
+			if (device_is_the_same(needle, haystack[i])) {
+				if (device_updated(needle, haystack[i]))
+					return DEVICE_UPDATED;
+				return DEVICE_SAME;
+			} else {
+				/* Keep offline devices offline */
+				if (needle->volume_offline)
+					return DEVICE_NOT_FOUND;
+				return DEVICE_CHANGED;
+			}
+		}
+	}
+	*index = -1;
+	return DEVICE_NOT_FOUND;
+}
+
+static void hpsa_monitor_offline_device(struct ctlr_info *h,
+					unsigned char scsi3addr[])
+{
+	struct offline_device_entry *device;
+	unsigned long flags;
+
+	/* Check to see if device is already on the list */
+	spin_lock_irqsave(&h->offline_device_lock, flags);
+	list_for_each_entry(device, &h->offline_device_list, offline_list) {
+		if (memcmp(device->scsi3addr, scsi3addr,
+			sizeof(device->scsi3addr)) == 0) {
+			spin_unlock_irqrestore(&h->offline_device_lock, flags);
+			return;
+		}
+	}
+	spin_unlock_irqrestore(&h->offline_device_lock, flags);
+
+	/* Device is not on the list, add it. */
+	device = kmalloc(sizeof(*device), GFP_KERNEL);
+	if (!device)
+		return;
+
+	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
+	spin_lock_irqsave(&h->offline_device_lock, flags);
+	list_add_tail(&device->offline_list, &h->offline_device_list);
+	spin_unlock_irqrestore(&h->offline_device_lock, flags);
+}
+
+/* Print a message explaining various offline volume states */
+static void hpsa_show_volume_status(struct ctlr_info *h,
+	struct hpsa_scsi_dev_t *sd)
+{
+	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
+		dev_info(&h->pdev->dev,
+			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
+			h->scsi_host->host_no,
+			sd->bus, sd->target, sd->lun);
+	switch (sd->volume_offline) {
+	case HPSA_LV_OK:
+		break;
+	case HPSA_LV_UNDERGOING_ERASE:
+		dev_info(&h->pdev->dev,
+			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
+			h->scsi_host->host_no,
+			sd->bus, sd->target, sd->lun);
+		break;
+	case HPSA_LV_NOT_AVAILABLE:
+		dev_info(&h->pdev->dev,
+			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
+			h->scsi_host->host_no,
+			sd->bus, sd->target, sd->lun);
+		break;
+	case HPSA_LV_UNDERGOING_RPI:
+		dev_info(&h->pdev->dev,
+			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
+			h->scsi_host->host_no,
+			sd->bus, sd->target, sd->lun);
+		break;
+	case HPSA_LV_PENDING_RPI:
+		dev_info(&h->pdev->dev,
+			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
+			h->scsi_host->host_no,
+			sd->bus, sd->target, sd->lun);
+		break;
+	case HPSA_LV_ENCRYPTED_NO_KEY:
+		dev_info(&h->pdev->dev,
+			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
+			h->scsi_host->host_no,
+			sd->bus, sd->target, sd->lun);
+		break;
+	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
+		dev_info(&h->pdev->dev,
+			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
+			h->scsi_host->host_no,
+			sd->bus, sd->target, sd->lun);
+		break;
+	case HPSA_LV_UNDERGOING_ENCRYPTION:
+		dev_info(&h->pdev->dev,
+			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
+			h->scsi_host->host_no,
+			sd->bus, sd->target, sd->lun);
+		break;
+	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
+		dev_info(&h->pdev->dev,
+			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
+			h->scsi_host->host_no,
+			sd->bus, sd->target, sd->lun);
+		break;
+	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
+		dev_info(&h->pdev->dev,
+			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
+			h->scsi_host->host_no,
+			sd->bus, sd->target, sd->lun);
+		break;
+	case HPSA_LV_PENDING_ENCRYPTION:
+		dev_info(&h->pdev->dev,
+			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
+			h->scsi_host->host_no,
+			sd->bus, sd->target, sd->lun);
+		break;
+	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
+		dev_info(&h->pdev->dev,
+			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
+			h->scsi_host->host_no,
+			sd->bus, sd->target, sd->lun);
+		break;
+	}
+}
+
+/*
+ * Figure the list of physical drive pointers for a logical drive with
+ * raid offload configured.
+ */
+static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
+				struct hpsa_scsi_dev_t *dev[], int ndevices,
+				struct hpsa_scsi_dev_t *logical_drive)
+{
+	struct raid_map_data *map = &logical_drive->raid_map;
+	struct raid_map_disk_data *dd = &map->data[0];
+	int i, j;
+	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
+				le16_to_cpu(map->metadata_disks_per_row);
+	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
+				le16_to_cpu(map->layout_map_count) *
+				total_disks_per_row;
+	int nphys_disk = le16_to_cpu(map->layout_map_count) *
+				total_disks_per_row;
+	int qdepth;
+
+	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
+		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
+
+	logical_drive->nphysical_disks = nraid_map_entries;
+
+	qdepth = 0;
+	for (i = 0; i < nraid_map_entries; i++) {
+		logical_drive->phys_disk[i] = NULL;
+		if (!logical_drive->offload_config)
+			continue;
+		for (j = 0; j < ndevices; j++) {
+			if (dev[j] == NULL)
+				continue;
+			if (dev[j]->devtype != TYPE_DISK &&
+			    dev[j]->devtype != TYPE_ZBC)
+				continue;
+			if (is_logical_device(dev[j]))
+				continue;
+			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
+				continue;
+
+			logical_drive->phys_disk[i] = dev[j];
+			if (i < nphys_disk)
+				qdepth = min(h->nr_cmds, qdepth +
+				    logical_drive->phys_disk[i]->queue_depth);
+			break;
+		}
+
+		/*
+		 * This can happen if a physical drive is removed and
+		 * the logical drive is degraded.  In that case, the RAID
+		 * map data will refer to a physical disk which isn't actually
+		 * present.  And in that case offload_enabled should already
+		 * be 0, but we'll turn it off here just in case
+		 */
+		if (!logical_drive->phys_disk[i]) {
+			logical_drive->offload_enabled = 0;
+			logical_drive->offload_to_be_enabled = 0;
+			logical_drive->queue_depth = 8;
+		}
+	}
+	if (nraid_map_entries)
+		/*
+		 * This is correct for reads, too high for full stripe writes,
+		 * way too high for partial stripe writes
+		 */
+		logical_drive->queue_depth = qdepth;
+	else
+		logical_drive->queue_depth = h->nr_cmds;
+}
+
+static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
+				struct hpsa_scsi_dev_t *dev[], int ndevices)
+{
+	int i;
+
+	for (i = 0; i < ndevices; i++) {
+		if (dev[i] == NULL)
+			continue;
+		if (dev[i]->devtype != TYPE_DISK &&
+		    dev[i]->devtype != TYPE_ZBC)
+			continue;
+		if (!is_logical_device(dev[i]))
+			continue;
+
+		/*
+		 * If offload is currently enabled, the RAID map and
+		 * phys_disk[] assignment *better* not be changing
+		 * and since it isn't changing, we do not need to
+		 * update it.
+		 */
+		if (dev[i]->offload_enabled)
+			continue;
+
+		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
+	}
+}
+
+static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
+{
+	int rc = 0;
+
+	if (!h->scsi_host)
+		return 1;
+
+	if (is_logical_device(device)) /* RAID */
+		rc = scsi_add_device(h->scsi_host, device->bus,
+					device->target, device->lun);
+	else /* HBA */
+		rc = hpsa_add_sas_device(h->sas_host, device);
+
+	return rc;
+}
+
+static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
+						struct hpsa_scsi_dev_t *dev)
+{
+	int i;
+	int count = 0;
+
+	for (i = 0; i < h->nr_cmds; i++) {
+		struct CommandList *c = h->cmd_pool + i;
+		int refcount = atomic_inc_return(&c->refcount);
+
+		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
+				dev->scsi3addr)) {
+			unsigned long flags;
+
+			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
+			if (!hpsa_is_cmd_idle(c))
+				++count;
+			spin_unlock_irqrestore(&h->lock, flags);
+		}
+
+		cmd_free(h, c);
+	}
+
+	return count;
+}
+
+static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
+						struct hpsa_scsi_dev_t *device)
+{
+	int cmds = 0;
+	int waits = 0;
+
+	while (1) {
+		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
+		if (cmds == 0)
+			break;
+		if (++waits > 20)
+			break;
+		dev_warn(&h->pdev->dev,
+			"%s: removing device with %d outstanding commands!\n",
+			__func__, cmds);
+		msleep(1000);
+	}
+}
+
+static void hpsa_remove_device(struct ctlr_info *h,
+			struct hpsa_scsi_dev_t *device)
+{
+	struct scsi_device *sdev = NULL;
+
+	if (!h->scsi_host)
+		return;
+
+	if (is_logical_device(device)) { /* RAID */
+		sdev = scsi_device_lookup(h->scsi_host, device->bus,
+						device->target, device->lun);
+		if (sdev) {
+			scsi_remove_device(sdev);
+			scsi_device_put(sdev);
+		} else {
+			/*
+			 * We don't expect to get here.  Future commands
+			 * to this device will get a selection timeout as
+			 * if the device were gone.
+			 */
+			hpsa_show_dev_msg(KERN_WARNING, h, device,
+					"didn't find device for removal.");
+		}
+	} else { /* HBA */
+
+		device->removed = 1;
+		hpsa_wait_for_outstanding_commands_for_dev(h, device);
+
+		hpsa_remove_sas_device(device);
+	}
+}
+
+static void adjust_hpsa_scsi_table(struct ctlr_info *h,
+	struct hpsa_scsi_dev_t *sd[], int nsds)
+{
+	/* sd contains scsi3 addresses and devtypes, and inquiry
+	 * data.  This function takes what's in sd to be the current
+	 * reality and updates h->dev[] to reflect that reality.
+	 */
+	int i, entry, device_change, changes = 0;
+	struct hpsa_scsi_dev_t *csd;
+	unsigned long flags;
+	struct hpsa_scsi_dev_t **added, **removed;
+	int nadded, nremoved;
+
+	/*
+	 * A reset can cause a device status to change
+	 * re-schedule the scan to see what happened.
+	 */
+	spin_lock_irqsave(&h->reset_lock, flags);
+	if (h->reset_in_progress) {
+		h->drv_req_rescan = 1;
+		spin_unlock_irqrestore(&h->reset_lock, flags);
+		return;
+	}
+	spin_unlock_irqrestore(&h->reset_lock, flags);
+
+	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
+	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
+
+	if (!added || !removed) {
+		dev_warn(&h->pdev->dev, "out of memory in "
+			"adjust_hpsa_scsi_table\n");
+		goto free_and_out;
+	}
+
+	spin_lock_irqsave(&h->devlock, flags);
+
+	/* find any devices in h->dev[] that are not in
+	 * sd[] and remove them from h->dev[], and for any
+	 * devices which have changed, remove the old device
+	 * info and add the new device info.
+	 * If minor device attributes change, just update
+	 * the existing device structure.
+	 */
+	i = 0;
+	nremoved = 0;
+	nadded = 0;
+	while (i < h->ndevices) {
+		csd = h->dev[i];
+		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
+		if (device_change == DEVICE_NOT_FOUND) {
+			changes++;
+			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
+			continue; /* remove ^^^, hence i not incremented */
+		} else if (device_change == DEVICE_CHANGED) {
+			changes++;
+			hpsa_scsi_replace_entry(h, i, sd[entry],
+				added, &nadded, removed, &nremoved);
+			/* Set it to NULL to prevent it from being freed
+			 * at the bottom of hpsa_update_scsi_devices()
+			 */
+			sd[entry] = NULL;
+		} else if (device_change == DEVICE_UPDATED) {
+			hpsa_scsi_update_entry(h, i, sd[entry]);
+		}
+		i++;
+	}
+
+	/* Now, make sure every device listed in sd[] is also
+	 * listed in h->dev[], adding them if they aren't found
+	 */
+
+	for (i = 0; i < nsds; i++) {
+		if (!sd[i]) /* if already added above. */
+			continue;
+
+		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
+		 * as the SCSI mid-layer does not handle such devices well.
+		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
+		 * at 160Hz, and prevents the system from coming up.
+		 */
+		if (sd[i]->volume_offline) {
+			hpsa_show_volume_status(h, sd[i]);
+			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
+			continue;
+		}
+
+		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
+					h->ndevices, &entry);
+		if (device_change == DEVICE_NOT_FOUND) {
+			changes++;
+			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
+				break;
+			sd[i] = NULL; /* prevent from being freed later. */
+		} else if (device_change == DEVICE_CHANGED) {
+			/* should never happen... */
+			changes++;
+			dev_warn(&h->pdev->dev,
+				"device unexpectedly changed.\n");
+			/* but if it does happen, we just ignore that device */
+		}
+	}
+	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
+
+	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
+	 * any logical drives that need it enabled.
+	 */
+	for (i = 0; i < h->ndevices; i++) {
+		if (h->dev[i] == NULL)
+			continue;
+		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
+	}
+
+	spin_unlock_irqrestore(&h->devlock, flags);
+
+	/* Monitor devices which are in one of several NOT READY states to be
+	 * brought online later. This must be done without holding h->devlock,
+	 * so don't touch h->dev[]
+	 */
+	for (i = 0; i < nsds; i++) {
+		if (!sd[i]) /* if already added above. */
+			continue;
+		if (sd[i]->volume_offline)
+			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
+	}
+
+	/* Don't notify scsi mid layer of any changes the first time through
+	 * (or if there are no changes) scsi_scan_host will do it later the
+	 * first time through.
+	 */
+	if (!changes)
+		goto free_and_out;
+
+	/* Notify scsi mid layer of any removed devices */
+	for (i = 0; i < nremoved; i++) {
+		if (removed[i] == NULL)
+			continue;
+		if (removed[i]->expose_device)
+			hpsa_remove_device(h, removed[i]);
+		kfree(removed[i]);
+		removed[i] = NULL;
+	}
+
+	/* Notify scsi mid layer of any added devices */
+	for (i = 0; i < nadded; i++) {
+		int rc = 0;
+
+		if (added[i] == NULL)
+			continue;
+		if (!(added[i]->expose_device))
+			continue;
+		rc = hpsa_add_device(h, added[i]);
+		if (!rc)
+			continue;
+		dev_warn(&h->pdev->dev,
+			"addition failed %d, device not added.", rc);
+		/* now we have to remove it from h->dev,
+		 * since it didn't get added to scsi mid layer
+		 */
+		fixup_botched_add(h, added[i]);
+		h->drv_req_rescan = 1;
+	}
+
+free_and_out:
+	kfree(added);
+	kfree(removed);
+}
+
+/*
+ * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
+ * Assume's h->devlock is held.
+ */
+static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
+	int bus, int target, int lun)
+{
+	int i;
+	struct hpsa_scsi_dev_t *sd;
+
+	for (i = 0; i < h->ndevices; i++) {
+		sd = h->dev[i];
+		if (sd->bus == bus && sd->target == target && sd->lun == lun)
+			return sd;
+	}
+	return NULL;
+}
+
+static int hpsa_slave_alloc(struct scsi_device *sdev)
+{
+	struct hpsa_scsi_dev_t *sd = NULL;
+	unsigned long flags;
+	struct ctlr_info *h;
+
+	h = sdev_to_hba(sdev);
+	spin_lock_irqsave(&h->devlock, flags);
+	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
+		struct scsi_target *starget;
+		struct sas_rphy *rphy;
+
+		starget = scsi_target(sdev);
+		rphy = target_to_rphy(starget);
+		sd = hpsa_find_device_by_sas_rphy(h, rphy);
+		if (sd) {
+			sd->target = sdev_id(sdev);
+			sd->lun = sdev->lun;
+		}
+	}
+	if (!sd)
+		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
+					sdev_id(sdev), sdev->lun);
+
+	if (sd && sd->expose_device) {
+		atomic_set(&sd->ioaccel_cmds_out, 0);
+		sdev->hostdata = sd;
+	} else
+		sdev->hostdata = NULL;
+	spin_unlock_irqrestore(&h->devlock, flags);
+	return 0;
+}
+
+/* configure scsi device based on internal per-device structure */
+static int hpsa_slave_configure(struct scsi_device *sdev)
+{
+	struct hpsa_scsi_dev_t *sd;
+	int queue_depth;
+
+	sd = sdev->hostdata;
+	sdev->no_uld_attach = !sd || !sd->expose_device;
+
+	if (sd) {
+		if (sd->external)
+			queue_depth = EXTERNAL_QD;
+		else
+			queue_depth = sd->queue_depth != 0 ?
+					sd->queue_depth : sdev->host->can_queue;
+	} else
+		queue_depth = sdev->host->can_queue;
+
+	scsi_change_queue_depth(sdev, queue_depth);
+
+	return 0;
+}
+
+static void hpsa_slave_destroy(struct scsi_device *sdev)
+{
+	/* nothing to do. */
+}
+
+static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
+{
+	int i;
+
+	if (!h->ioaccel2_cmd_sg_list)
+		return;
+	for (i = 0; i < h->nr_cmds; i++) {
+		kfree(h->ioaccel2_cmd_sg_list[i]);
+		h->ioaccel2_cmd_sg_list[i] = NULL;
+	}
+	kfree(h->ioaccel2_cmd_sg_list);
+	h->ioaccel2_cmd_sg_list = NULL;
+}
+
+static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
+{
+	int i;
+
+	if (h->chainsize <= 0)
+		return 0;
+
+	h->ioaccel2_cmd_sg_list =
+		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
+					GFP_KERNEL);
+	if (!h->ioaccel2_cmd_sg_list)
+		return -ENOMEM;
+	for (i = 0; i < h->nr_cmds; i++) {
+		h->ioaccel2_cmd_sg_list[i] =
+			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
+					h->maxsgentries, GFP_KERNEL);
+		if (!h->ioaccel2_cmd_sg_list[i])
+			goto clean;
+	}
+	return 0;
+
+clean:
+	hpsa_free_ioaccel2_sg_chain_blocks(h);
+	return -ENOMEM;
+}
+
+static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
+{
+	int i;
+
+	if (!h->cmd_sg_list)
+		return;
+	for (i = 0; i < h->nr_cmds; i++) {
+		kfree(h->cmd_sg_list[i]);
+		h->cmd_sg_list[i] = NULL;
+	}
+	kfree(h->cmd_sg_list);
+	h->cmd_sg_list = NULL;
+}
+
+static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
+{
+	int i;
+
+	if (h->chainsize <= 0)
+		return 0;
+
+	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
+				GFP_KERNEL);
+	if (!h->cmd_sg_list)
+		return -ENOMEM;
+
+	for (i = 0; i < h->nr_cmds; i++) {
+		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
+						h->chainsize, GFP_KERNEL);
+		if (!h->cmd_sg_list[i])
+			goto clean;
+
+	}
+	return 0;
+
+clean:
+	hpsa_free_sg_chain_blocks(h);
+	return -ENOMEM;
+}
+
+static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
+	struct io_accel2_cmd *cp, struct CommandList *c)
+{
+	struct ioaccel2_sg_element *chain_block;
+	u64 temp64;
+	u32 chain_size;
+
+	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
+	chain_size = le32_to_cpu(cp->sg[0].length);
+	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
+				PCI_DMA_TODEVICE);
+	if (dma_mapping_error(&h->pdev->dev, temp64)) {
+		/* prevent subsequent unmapping */
+		cp->sg->address = 0;
+		return -1;
+	}
+	cp->sg->address = cpu_to_le64(temp64);
+	return 0;
+}
+
+static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
+	struct io_accel2_cmd *cp)
+{
+	struct ioaccel2_sg_element *chain_sg;
+	u64 temp64;
+	u32 chain_size;
+
+	chain_sg = cp->sg;
+	temp64 = le64_to_cpu(chain_sg->address);
+	chain_size = le32_to_cpu(cp->sg[0].length);
+	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
+}
+
+static int hpsa_map_sg_chain_block(struct ctlr_info *h,
+	struct CommandList *c)
+{
+	struct SGDescriptor *chain_sg, *chain_block;
+	u64 temp64;
+	u32 chain_len;
+
+	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
+	chain_block = h->cmd_sg_list[c->cmdindex];
+	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
+	chain_len = sizeof(*chain_sg) *
+		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
+	chain_sg->Len = cpu_to_le32(chain_len);
+	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
+				PCI_DMA_TODEVICE);
+	if (dma_mapping_error(&h->pdev->dev, temp64)) {
+		/* prevent subsequent unmapping */
+		chain_sg->Addr = cpu_to_le64(0);
+		return -1;
+	}
+	chain_sg->Addr = cpu_to_le64(temp64);
+	return 0;
+}
+
+static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
+	struct CommandList *c)
+{
+	struct SGDescriptor *chain_sg;
+
+	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
+		return;
+
+	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
+	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
+			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
+}
+
+
+/* Decode the various types of errors on ioaccel2 path.
+ * Return 1 for any error that should generate a RAID path retry.
+ * Return 0 for errors that don't require a RAID path retry.
+ */
+static int handle_ioaccel_mode2_error(struct ctlr_info *h,
+					struct CommandList *c,
+					struct scsi_cmnd *cmd,
+					struct io_accel2_cmd *c2,
+					struct hpsa_scsi_dev_t *dev)
+{
+	int data_len;
+	int retry = 0;
+	u32 ioaccel2_resid = 0;
+
+	switch (c2->error_data.serv_response) {
+	case IOACCEL2_SERV_RESPONSE_COMPLETE:
+		switch (c2->error_data.status) {
+		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
+			if (cmd)
+				cmd->result = 0;
+			break;
+		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
+			cmd->result |= SAM_STAT_CHECK_CONDITION;
+			if (c2->error_data.data_present !=
+					IOACCEL2_SENSE_DATA_PRESENT) {
+				memset(cmd->sense_buffer, 0,
+					SCSI_SENSE_BUFFERSIZE);
+				break;
+			}
+			/* copy the sense data */
+			data_len = c2->error_data.sense_data_len;
+			if (data_len > SCSI_SENSE_BUFFERSIZE)
+				data_len = SCSI_SENSE_BUFFERSIZE;
+			if (data_len > sizeof(c2->error_data.sense_data_buff))
+				data_len =
+					sizeof(c2->error_data.sense_data_buff);
+			memcpy(cmd->sense_buffer,
+				c2->error_data.sense_data_buff, data_len);
+			retry = 1;
+			break;
+		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
+			retry = 1;
+			break;
+		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
+			retry = 1;
+			break;
+		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
+			retry = 1;
+			break;
+		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
+			retry = 1;
+			break;
+		default:
+			retry = 1;
+			break;
+		}
+		break;
+	case IOACCEL2_SERV_RESPONSE_FAILURE:
+		switch (c2->error_data.status) {
+		case IOACCEL2_STATUS_SR_IO_ERROR:
+		case IOACCEL2_STATUS_SR_IO_ABORTED:
+		case IOACCEL2_STATUS_SR_OVERRUN:
+			retry = 1;
+			break;
+		case IOACCEL2_STATUS_SR_UNDERRUN:
+			cmd->result = (DID_OK << 16);		/* host byte */
+			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
+			ioaccel2_resid = get_unaligned_le32(
+						&c2->error_data.resid_cnt[0]);
+			scsi_set_resid(cmd, ioaccel2_resid);
+			break;
+		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
+		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
+		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
+			/*
+			 * Did an HBA disk disappear? We will eventually
+			 * get a state change event from the controller but
+			 * in the meantime, we need to tell the OS that the
+			 * HBA disk is no longer there and stop I/O
+			 * from going down. This allows the potential re-insert
+			 * of the disk to get the same device node.
+			 */
+			if (dev->physical_device && dev->expose_device) {
+				cmd->result = DID_NO_CONNECT << 16;
+				dev->removed = 1;
+				h->drv_req_rescan = 1;
+				dev_warn(&h->pdev->dev,
+					"%s: device is gone!\n", __func__);
+			} else
+				/*
+				 * Retry by sending down the RAID path.
+				 * We will get an event from ctlr to
+				 * trigger rescan regardless.
+				 */
+				retry = 1;
+			break;
+		default:
+			retry = 1;
+		}
+		break;
+	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
+		break;
+	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
+		break;
+	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
+		retry = 1;
+		break;
+	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
+		break;
+	default:
+		retry = 1;
+		break;
+	}
+
+	return retry;	/* retry on raid path? */
+}
+
+static void hpsa_cmd_resolve_events(struct ctlr_info *h,
+		struct CommandList *c)
+{
+	bool do_wake = false;
+
+	/*
+	 * Reset c->scsi_cmd here so that the reset handler will know
+	 * this command has completed.  Then, check to see if the handler is
+	 * waiting for this command, and, if so, wake it.
+	 */
+	c->scsi_cmd = SCSI_CMD_IDLE;
+	mb();	/* Declare command idle before checking for pending events. */
+	if (c->reset_pending) {
+		unsigned long flags;
+		struct hpsa_scsi_dev_t *dev;
+
+		/*
+		 * There appears to be a reset pending; lock the lock and
+		 * reconfirm.  If so, then decrement the count of outstanding
+		 * commands and wake the reset command if this is the last one.
+		 */
+		spin_lock_irqsave(&h->lock, flags);
+		dev = c->reset_pending;		/* Re-fetch under the lock. */
+		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
+			do_wake = true;
+		c->reset_pending = NULL;
+		spin_unlock_irqrestore(&h->lock, flags);
+	}
+
+	if (do_wake)
+		wake_up_all(&h->event_sync_wait_queue);
+}
+
+static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
+				      struct CommandList *c)
+{
+	hpsa_cmd_resolve_events(h, c);
+	cmd_tagged_free(h, c);
+}
+
+static void hpsa_cmd_free_and_done(struct ctlr_info *h,
+		struct CommandList *c, struct scsi_cmnd *cmd)
+{
+	hpsa_cmd_resolve_and_free(h, c);
+	if (cmd && cmd->scsi_done)
+		cmd->scsi_done(cmd);
+}
+
+static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
+{
+	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
+	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
+}
+
+static void process_ioaccel2_completion(struct ctlr_info *h,
+		struct CommandList *c, struct scsi_cmnd *cmd,
+		struct hpsa_scsi_dev_t *dev)
+{
+	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
+
+	/* check for good status */
+	if (likely(c2->error_data.serv_response == 0 &&
+			c2->error_data.status == 0)) {
+		cmd->result = 0;
+		return hpsa_cmd_free_and_done(h, c, cmd);
+	}
+
+	/*
+	 * Any RAID offload error results in retry which will use
+	 * the normal I/O path so the controller can handle whatever's
+	 * wrong.
+	 */
+	if (is_logical_device(dev) &&
+		c2->error_data.serv_response ==
+			IOACCEL2_SERV_RESPONSE_FAILURE) {
+		if (c2->error_data.status ==
+			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
+			dev->offload_enabled = 0;
+			dev->offload_to_be_enabled = 0;
+		}
+
+		return hpsa_retry_cmd(h, c);
+	}
+
+	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
+		return hpsa_retry_cmd(h, c);
+
+	return hpsa_cmd_free_and_done(h, c, cmd);
+}
+
+/* Returns 0 on success, < 0 otherwise. */
+static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
+					struct CommandList *cp)
+{
+	u8 tmf_status = cp->err_info->ScsiStatus;
+
+	switch (tmf_status) {
+	case CISS_TMF_COMPLETE:
+		/*
+		 * CISS_TMF_COMPLETE never happens, instead,
+		 * ei->CommandStatus == 0 for this case.
+		 */
+	case CISS_TMF_SUCCESS:
+		return 0;
+	case CISS_TMF_INVALID_FRAME:
+	case CISS_TMF_NOT_SUPPORTED:
+	case CISS_TMF_FAILED:
+	case CISS_TMF_WRONG_LUN:
+	case CISS_TMF_OVERLAPPED_TAG:
+		break;
+	default:
+		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
+				tmf_status);
+		break;
+	}
+	return -tmf_status;
+}
+
+static void complete_scsi_command(struct CommandList *cp)
+{
+	struct scsi_cmnd *cmd;
+	struct ctlr_info *h;
+	struct ErrorInfo *ei;
+	struct hpsa_scsi_dev_t *dev;
+	struct io_accel2_cmd *c2;
+
+	u8 sense_key;
+	u8 asc;      /* additional sense code */
+	u8 ascq;     /* additional sense code qualifier */
+	unsigned long sense_data_size;
+
+	ei = cp->err_info;
+	cmd = cp->scsi_cmd;
+	h = cp->h;
+
+	if (!cmd->device) {
+		cmd->result = DID_NO_CONNECT << 16;
+		return hpsa_cmd_free_and_done(h, cp, cmd);
+	}
+
+	dev = cmd->device->hostdata;
+	if (!dev) {
+		cmd->result = DID_NO_CONNECT << 16;
+		return hpsa_cmd_free_and_done(h, cp, cmd);
+	}
+	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
+
+	scsi_dma_unmap(cmd); /* undo the DMA mappings */
+	if ((cp->cmd_type == CMD_SCSI) &&
+		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
+		hpsa_unmap_sg_chain_block(h, cp);
+
+	if ((cp->cmd_type == CMD_IOACCEL2) &&
+		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
+		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
+
+	cmd->result = (DID_OK << 16); 		/* host byte */
+	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
+
+	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
+		if (dev->physical_device && dev->expose_device &&
+			dev->removed) {
+			cmd->result = DID_NO_CONNECT << 16;
+			return hpsa_cmd_free_and_done(h, cp, cmd);
+		}
+		if (likely(cp->phys_disk != NULL))
+			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
+	}
+
+	/*
+	 * We check for lockup status here as it may be set for
+	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
+	 * fail_all_oustanding_cmds()
+	 */
+	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
+		/* DID_NO_CONNECT will prevent a retry */
+		cmd->result = DID_NO_CONNECT << 16;
+		return hpsa_cmd_free_and_done(h, cp, cmd);
+	}
+
+	if ((unlikely(hpsa_is_pending_event(cp))))
+		if (cp->reset_pending)
+			return hpsa_cmd_free_and_done(h, cp, cmd);
+
+	if (cp->cmd_type == CMD_IOACCEL2)
+		return process_ioaccel2_completion(h, cp, cmd, dev);
+
+	scsi_set_resid(cmd, ei->ResidualCnt);
+	if (ei->CommandStatus == 0)
+		return hpsa_cmd_free_and_done(h, cp, cmd);
+
+	/* For I/O accelerator commands, copy over some fields to the normal
+	 * CISS header used below for error handling.
+	 */
+	if (cp->cmd_type == CMD_IOACCEL1) {
+		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
+		cp->Header.SGList = scsi_sg_count(cmd);
+		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
+		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
+			IOACCEL1_IOFLAGS_CDBLEN_MASK;
+		cp->Header.tag = c->tag;
+		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
+		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
+
+		/* Any RAID offload error results in retry which will use
+		 * the normal I/O path so the controller can handle whatever's
+		 * wrong.
+		 */
+		if (is_logical_device(dev)) {
+			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
+				dev->offload_enabled = 0;
+			return hpsa_retry_cmd(h, cp);
+		}
+	}
+
+	/* an error has occurred */
+	switch (ei->CommandStatus) {
+
+	case CMD_TARGET_STATUS:
+		cmd->result |= ei->ScsiStatus;
+		/* copy the sense data */
+		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
+			sense_data_size = SCSI_SENSE_BUFFERSIZE;
+		else
+			sense_data_size = sizeof(ei->SenseInfo);
+		if (ei->SenseLen < sense_data_size)
+			sense_data_size = ei->SenseLen;
+		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
+		if (ei->ScsiStatus)
+			decode_sense_data(ei->SenseInfo, sense_data_size,
+				&sense_key, &asc, &ascq);
+		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
+			if (sense_key == ABORTED_COMMAND) {
+				cmd->result |= DID_SOFT_ERROR << 16;
+				break;
+			}
+			break;
+		}
+		/* Problem was not a check condition
+		 * Pass it up to the upper layers...
+		 */
+		if (ei->ScsiStatus) {
+			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
+				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
+				"Returning result: 0x%x\n",
+				cp, ei->ScsiStatus,
+				sense_key, asc, ascq,
+				cmd->result);
+		} else {  /* scsi status is zero??? How??? */
+			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
+				"Returning no connection.\n", cp),
+
+			/* Ordinarily, this case should never happen,
+			 * but there is a bug in some released firmware
+			 * revisions that allows it to happen if, for
+			 * example, a 4100 backplane loses power and
+			 * the tape drive is in it.  We assume that
+			 * it's a fatal error of some kind because we
+			 * can't show that it wasn't. We will make it
+			 * look like selection timeout since that is
+			 * the most common reason for this to occur,
+			 * and it's severe enough.
+			 */
+
+			cmd->result = DID_NO_CONNECT << 16;
+		}
+		break;
+
+	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
+		break;
+	case CMD_DATA_OVERRUN:
+		dev_warn(&h->pdev->dev,
+			"CDB %16phN data overrun\n", cp->Request.CDB);
+		break;
+	case CMD_INVALID: {
+		/* print_bytes(cp, sizeof(*cp), 1, 0);
+		print_cmd(cp); */
+		/* We get CMD_INVALID if you address a non-existent device
+		 * instead of a selection timeout (no response).  You will
+		 * see this if you yank out a drive, then try to access it.
+		 * This is kind of a shame because it means that any other
+		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
+		 * missing target. */
+		cmd->result = DID_NO_CONNECT << 16;
+	}
+		break;
+	case CMD_PROTOCOL_ERR:
+		cmd->result = DID_ERROR << 16;
+		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
+				cp->Request.CDB);
+		break;
+	case CMD_HARDWARE_ERR:
+		cmd->result = DID_ERROR << 16;
+		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
+			cp->Request.CDB);
+		break;
+	case CMD_CONNECTION_LOST:
+		cmd->result = DID_ERROR << 16;
+		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
+			cp->Request.CDB);
+		break;
+	case CMD_ABORTED:
+		cmd->result = DID_ABORT << 16;
+		break;
+	case CMD_ABORT_FAILED:
+		cmd->result = DID_ERROR << 16;
+		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
+			cp->Request.CDB);
+		break;
+	case CMD_UNSOLICITED_ABORT:
+		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
+		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
+			cp->Request.CDB);
+		break;
+	case CMD_TIMEOUT:
+		cmd->result = DID_TIME_OUT << 16;
+		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
+			cp->Request.CDB);
+		break;
+	case CMD_UNABORTABLE:
+		cmd->result = DID_ERROR << 16;
+		dev_warn(&h->pdev->dev, "Command unabortable\n");
+		break;
+	case CMD_TMF_STATUS:
+		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
+			cmd->result = DID_ERROR << 16;
+		break;
+	case CMD_IOACCEL_DISABLED:
+		/* This only handles the direct pass-through case since RAID
+		 * offload is handled above.  Just attempt a retry.
+		 */
+		cmd->result = DID_SOFT_ERROR << 16;
+		dev_warn(&h->pdev->dev,
+				"cp %p had HP SSD Smart Path error\n", cp);
+		break;
+	default:
+		cmd->result = DID_ERROR << 16;
+		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
+				cp, ei->CommandStatus);
+	}
+
+	return hpsa_cmd_free_and_done(h, cp, cmd);
+}
+
+static void hpsa_pci_unmap(struct pci_dev *pdev,
+	struct CommandList *c, int sg_used, int data_direction)
+{
+	int i;
+
+	for (i = 0; i < sg_used; i++)
+		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
+				le32_to_cpu(c->SG[i].Len),
+				data_direction);
+}
+
+static int hpsa_map_one(struct pci_dev *pdev,
+		struct CommandList *cp,
+		unsigned char *buf,
+		size_t buflen,
+		int data_direction)
+{
+	u64 addr64;
+
+	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
+		cp->Header.SGList = 0;
+		cp->Header.SGTotal = cpu_to_le16(0);
+		return 0;
+	}
+
+	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
+	if (dma_mapping_error(&pdev->dev, addr64)) {
+		/* Prevent subsequent unmap of something never mapped */
+		cp->Header.SGList = 0;
+		cp->Header.SGTotal = cpu_to_le16(0);
+		return -1;
+	}
+	cp->SG[0].Addr = cpu_to_le64(addr64);
+	cp->SG[0].Len = cpu_to_le32(buflen);
+	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
+	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
+	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
+	return 0;
+}
+
+#define NO_TIMEOUT ((unsigned long) -1)
+#define DEFAULT_TIMEOUT 30000 /* milliseconds */
+static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
+	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
+{
+	DECLARE_COMPLETION_ONSTACK(wait);
+
+	c->waiting = &wait;
+	__enqueue_cmd_and_start_io(h, c, reply_queue);
+	if (timeout_msecs == NO_TIMEOUT) {
+		/* TODO: get rid of this no-timeout thing */
+		wait_for_completion_io(&wait);
+		return IO_OK;
+	}
+	if (!wait_for_completion_io_timeout(&wait,
+					msecs_to_jiffies(timeout_msecs))) {
+		dev_warn(&h->pdev->dev, "Command timed out.\n");
+		return -ETIMEDOUT;
+	}
+	return IO_OK;
+}
+
+static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
+				   int reply_queue, unsigned long timeout_msecs)
+{
+	if (unlikely(lockup_detected(h))) {
+		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
+		return IO_OK;
+	}
+	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
+}
+
+static u32 lockup_detected(struct ctlr_info *h)
+{
+	int cpu;
+	u32 rc, *lockup_detected;
+
+	cpu = get_cpu();
+	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
+	rc = *lockup_detected;
+	put_cpu();
+	return rc;
+}
+
+#define MAX_DRIVER_CMD_RETRIES 25
+static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
+	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
+{
+	int backoff_time = 10, retry_count = 0;
+	int rc;
+
+	do {
+		memset(c->err_info, 0, sizeof(*c->err_info));
+		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
+						  timeout_msecs);
+		if (rc)
+			break;
+		retry_count++;
+		if (retry_count > 3) {
+			msleep(backoff_time);
+			if (backoff_time < 1000)
+				backoff_time *= 2;
+		}
+	} while ((check_for_unit_attention(h, c) ||
+			check_for_busy(h, c)) &&
+			retry_count <= MAX_DRIVER_CMD_RETRIES);
+	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
+	if (retry_count > MAX_DRIVER_CMD_RETRIES)
+		rc = -EIO;
+	return rc;
+}
+
+static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
+				struct CommandList *c)
+{
+	const u8 *cdb = c->Request.CDB;
+	const u8 *lun = c->Header.LUN.LunAddrBytes;
+
+	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
+		 txt, lun, cdb);
+}
+
+static void hpsa_scsi_interpret_error(struct ctlr_info *h,
+			struct CommandList *cp)
+{
+	const struct ErrorInfo *ei = cp->err_info;
+	struct device *d = &cp->h->pdev->dev;
+	u8 sense_key, asc, ascq;
+	int sense_len;
+
+	switch (ei->CommandStatus) {
+	case CMD_TARGET_STATUS:
+		if (ei->SenseLen > sizeof(ei->SenseInfo))
+			sense_len = sizeof(ei->SenseInfo);
+		else
+			sense_len = ei->SenseLen;
+		decode_sense_data(ei->SenseInfo, sense_len,
+					&sense_key, &asc, &ascq);
+		hpsa_print_cmd(h, "SCSI status", cp);
+		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
+			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
+				sense_key, asc, ascq);
+		else
+			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
+		if (ei->ScsiStatus == 0)
+			dev_warn(d, "SCSI status is abnormally zero.  "
+			"(probably indicates selection timeout "
+			"reported incorrectly due to a known "
+			"firmware bug, circa July, 2001.)\n");
+		break;
+	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
+		break;
+	case CMD_DATA_OVERRUN:
+		hpsa_print_cmd(h, "overrun condition", cp);
+		break;
+	case CMD_INVALID: {
+		/* controller unfortunately reports SCSI passthru's
+		 * to non-existent targets as invalid commands.
+		 */
+		hpsa_print_cmd(h, "invalid command", cp);
+		dev_warn(d, "probably means device no longer present\n");
+		}
+		break;
+	case CMD_PROTOCOL_ERR:
+		hpsa_print_cmd(h, "protocol error", cp);
+		break;
+	case CMD_HARDWARE_ERR:
+		hpsa_print_cmd(h, "hardware error", cp);
+		break;
+	case CMD_CONNECTION_LOST:
+		hpsa_print_cmd(h, "connection lost", cp);
+		break;
+	case CMD_ABORTED:
+		hpsa_print_cmd(h, "aborted", cp);
+		break;
+	case CMD_ABORT_FAILED:
+		hpsa_print_cmd(h, "abort failed", cp);
+		break;
+	case CMD_UNSOLICITED_ABORT:
+		hpsa_print_cmd(h, "unsolicited abort", cp);
+		break;
+	case CMD_TIMEOUT:
+		hpsa_print_cmd(h, "timed out", cp);
+		break;
+	case CMD_UNABORTABLE:
+		hpsa_print_cmd(h, "unabortable", cp);
+		break;
+	case CMD_CTLR_LOCKUP:
+		hpsa_print_cmd(h, "controller lockup detected", cp);
+		break;
+	default:
+		hpsa_print_cmd(h, "unknown status", cp);
+		dev_warn(d, "Unknown command status %x\n",
+				ei->CommandStatus);
+	}
+}
+
+static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
+			u16 page, unsigned char *buf,
+			unsigned char bufsize)
+{
+	int rc = IO_OK;
+	struct CommandList *c;
+	struct ErrorInfo *ei;
+
+	c = cmd_alloc(h);
+
+	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
+			page, scsi3addr, TYPE_CMD)) {
+		rc = -1;
+		goto out;
+	}
+	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
+					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
+	if (rc)
+		goto out;
+	ei = c->err_info;
+	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
+		hpsa_scsi_interpret_error(h, c);
+		rc = -1;
+	}
+out:
+	cmd_free(h, c);
+	return rc;
+}
+
+static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
+	u8 reset_type, int reply_queue)
+{
+	int rc = IO_OK;
+	struct CommandList *c;
+	struct ErrorInfo *ei;
+
+	c = cmd_alloc(h);
+
+
+	/* fill_cmd can't fail here, no data buffer to map. */
+	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
+			scsi3addr, TYPE_MSG);
+	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
+	if (rc) {
+		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
+		goto out;
+	}
+	/* no unmap needed here because no data xfer. */
+
+	ei = c->err_info;
+	if (ei->CommandStatus != 0) {
+		hpsa_scsi_interpret_error(h, c);
+		rc = -1;
+	}
+out:
+	cmd_free(h, c);
+	return rc;
+}
+
+static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
+			       struct hpsa_scsi_dev_t *dev,
+			       unsigned char *scsi3addr)
+{
+	int i;
+	bool match = false;
+	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
+	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
+
+	if (hpsa_is_cmd_idle(c))
+		return false;
+
+	switch (c->cmd_type) {
+	case CMD_SCSI:
+	case CMD_IOCTL_PEND:
+		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
+				sizeof(c->Header.LUN.LunAddrBytes));
+		break;
+
+	case CMD_IOACCEL1:
+	case CMD_IOACCEL2:
+		if (c->phys_disk == dev) {
+			/* HBA mode match */
+			match = true;
+		} else {
+			/* Possible RAID mode -- check each phys dev. */
+			/* FIXME:  Do we need to take out a lock here?  If
+			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
+			 * instead. */
+			for (i = 0; i < dev->nphysical_disks && !match; i++) {
+				/* FIXME: an alternate test might be
+				 *
+				 * match = dev->phys_disk[i]->ioaccel_handle
+				 *              == c2->scsi_nexus;      */
+				match = dev->phys_disk[i] == c->phys_disk;
+			}
+		}
+		break;
+
+	case IOACCEL2_TMF:
+		for (i = 0; i < dev->nphysical_disks && !match; i++) {
+			match = dev->phys_disk[i]->ioaccel_handle ==
+					le32_to_cpu(ac->it_nexus);
+		}
+		break;
+
+	case 0:		/* The command is in the middle of being initialized. */
+		match = false;
+		break;
+
+	default:
+		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
+			c->cmd_type);
+		BUG();
+	}
+
+	return match;
+}
+
+static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
+	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
+{
+	int i;
+	int rc = 0;
+
+	/* We can really only handle one reset at a time */
+	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
+		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
+		return -EINTR;
+	}
+
+	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
+
+	for (i = 0; i < h->nr_cmds; i++) {
+		struct CommandList *c = h->cmd_pool + i;
+		int refcount = atomic_inc_return(&c->refcount);
+
+		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
+			unsigned long flags;
+
+			/*
+			 * Mark the target command as having a reset pending,
+			 * then lock a lock so that the command cannot complete
+			 * while we're considering it.  If the command is not
+			 * idle then count it; otherwise revoke the event.
+			 */
+			c->reset_pending = dev;
+			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
+			if (!hpsa_is_cmd_idle(c))
+				atomic_inc(&dev->reset_cmds_out);
+			else
+				c->reset_pending = NULL;
+			spin_unlock_irqrestore(&h->lock, flags);
+		}
+
+		cmd_free(h, c);
+	}
+
+	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
+	if (!rc)
+		wait_event(h->event_sync_wait_queue,
+			atomic_read(&dev->reset_cmds_out) == 0 ||
+			lockup_detected(h));
+
+	if (unlikely(lockup_detected(h))) {
+		dev_warn(&h->pdev->dev,
+			 "Controller lockup detected during reset wait\n");
+		rc = -ENODEV;
+	}
+
+	if (unlikely(rc))
+		atomic_set(&dev->reset_cmds_out, 0);
+	else
+		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
+
+	mutex_unlock(&h->reset_mutex);
+	return rc;
+}
+
+static void hpsa_get_raid_level(struct ctlr_info *h,
+	unsigned char *scsi3addr, unsigned char *raid_level)
+{
+	int rc;
+	unsigned char *buf;
+
+	*raid_level = RAID_UNKNOWN;
+	buf = kzalloc(64, GFP_KERNEL);
+	if (!buf)
+		return;
+
+	if (!hpsa_vpd_page_supported(h, scsi3addr,
+		HPSA_VPD_LV_DEVICE_GEOMETRY))
+		goto exit;
+
+	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
+		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
+
+	if (rc == 0)
+		*raid_level = buf[8];
+	if (*raid_level > RAID_UNKNOWN)
+		*raid_level = RAID_UNKNOWN;
+exit:
+	kfree(buf);
+	return;
+}
+
+#define HPSA_MAP_DEBUG
+#ifdef HPSA_MAP_DEBUG
+static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
+				struct raid_map_data *map_buff)
+{
+	struct raid_map_disk_data *dd = &map_buff->data[0];
+	int map, row, col;
+	u16 map_cnt, row_cnt, disks_per_row;
+
+	if (rc != 0)
+		return;
+
+	/* Show details only if debugging has been activated. */
+	if (h->raid_offload_debug < 2)
+		return;
+
+	dev_info(&h->pdev->dev, "structure_size = %u\n",
+				le32_to_cpu(map_buff->structure_size));
+	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
+			le32_to_cpu(map_buff->volume_blk_size));
+	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
+			le64_to_cpu(map_buff->volume_blk_cnt));
+	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
+			map_buff->phys_blk_shift);
+	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
+			map_buff->parity_rotation_shift);
+	dev_info(&h->pdev->dev, "strip_size = %u\n",
+			le16_to_cpu(map_buff->strip_size));
+	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
+			le64_to_cpu(map_buff->disk_starting_blk));
+	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
+			le64_to_cpu(map_buff->disk_blk_cnt));
+	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
+			le16_to_cpu(map_buff->data_disks_per_row));
+	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
+			le16_to_cpu(map_buff->metadata_disks_per_row));
+	dev_info(&h->pdev->dev, "row_cnt = %u\n",
+			le16_to_cpu(map_buff->row_cnt));
+	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
+			le16_to_cpu(map_buff->layout_map_count));
+	dev_info(&h->pdev->dev, "flags = 0x%x\n",
+			le16_to_cpu(map_buff->flags));
+	dev_info(&h->pdev->dev, "encryption = %s\n",
+			le16_to_cpu(map_buff->flags) &
+			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
+	dev_info(&h->pdev->dev, "dekindex = %u\n",
+			le16_to_cpu(map_buff->dekindex));
+	map_cnt = le16_to_cpu(map_buff->layout_map_count);
+	for (map = 0; map < map_cnt; map++) {
+		dev_info(&h->pdev->dev, "Map%u:\n", map);
+		row_cnt = le16_to_cpu(map_buff->row_cnt);
+		for (row = 0; row < row_cnt; row++) {
+			dev_info(&h->pdev->dev, "  Row%u:\n", row);
+			disks_per_row =
+				le16_to_cpu(map_buff->data_disks_per_row);
+			for (col = 0; col < disks_per_row; col++, dd++)
+				dev_info(&h->pdev->dev,
+					"    D%02u: h=0x%04x xor=%u,%u\n",
+					col, dd->ioaccel_handle,
+					dd->xor_mult[0], dd->xor_mult[1]);
+			disks_per_row =
+				le16_to_cpu(map_buff->metadata_disks_per_row);
+			for (col = 0; col < disks_per_row; col++, dd++)
+				dev_info(&h->pdev->dev,
+					"    M%02u: h=0x%04x xor=%u,%u\n",
+					col, dd->ioaccel_handle,
+					dd->xor_mult[0], dd->xor_mult[1]);
+		}
+	}
+}
+#else
+static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
+			__attribute__((unused)) int rc,
+			__attribute__((unused)) struct raid_map_data *map_buff)
+{
+}
+#endif
+
+static int hpsa_get_raid_map(struct ctlr_info *h,
+	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
+{
+	int rc = 0;
+	struct CommandList *c;
+	struct ErrorInfo *ei;
+
+	c = cmd_alloc(h);
+
+	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
+			sizeof(this_device->raid_map), 0,
+			scsi3addr, TYPE_CMD)) {
+		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
+		cmd_free(h, c);
+		return -1;
+	}
+	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
+					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
+	if (rc)
+		goto out;
+	ei = c->err_info;
+	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
+		hpsa_scsi_interpret_error(h, c);
+		rc = -1;
+		goto out;
+	}
+	cmd_free(h, c);
+
+	/* @todo in the future, dynamically allocate RAID map memory */
+	if (le32_to_cpu(this_device->raid_map.structure_size) >
+				sizeof(this_device->raid_map)) {
+		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
+		rc = -1;
+	}
+	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
+	return rc;
+out:
+	cmd_free(h, c);
+	return rc;
+}
+
+static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
+		unsigned char scsi3addr[], u16 bmic_device_index,
+		struct bmic_sense_subsystem_info *buf, size_t bufsize)
+{
+	int rc = IO_OK;
+	struct CommandList *c;
+	struct ErrorInfo *ei;
+
+	c = cmd_alloc(h);
+
+	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
+		0, RAID_CTLR_LUNID, TYPE_CMD);
+	if (rc)
+		goto out;
+
+	c->Request.CDB[2] = bmic_device_index & 0xff;
+	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
+
+	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
+				PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
+	if (rc)
+		goto out;
+	ei = c->err_info;
+	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
+		hpsa_scsi_interpret_error(h, c);
+		rc = -1;
+	}
+out:
+	cmd_free(h, c);
+	return rc;
+}
+
+static int hpsa_bmic_id_controller(struct ctlr_info *h,
+	struct bmic_identify_controller *buf, size_t bufsize)
+{
+	int rc = IO_OK;
+	struct CommandList *c;
+	struct ErrorInfo *ei;
+
+	c = cmd_alloc(h);
+
+	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
+		0, RAID_CTLR_LUNID, TYPE_CMD);
+	if (rc)
+		goto out;
+
+	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
+		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
+	if (rc)
+		goto out;
+	ei = c->err_info;
+	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
+		hpsa_scsi_interpret_error(h, c);
+		rc = -1;
+	}
+out:
+	cmd_free(h, c);
+	return rc;
+}
+
+static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
+		unsigned char scsi3addr[], u16 bmic_device_index,
+		struct bmic_identify_physical_device *buf, size_t bufsize)
+{
+	int rc = IO_OK;
+	struct CommandList *c;
+	struct ErrorInfo *ei;
+
+	c = cmd_alloc(h);
+	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
+		0, RAID_CTLR_LUNID, TYPE_CMD);
+	if (rc)
+		goto out;
+
+	c->Request.CDB[2] = bmic_device_index & 0xff;
+	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
+
+	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
+						DEFAULT_TIMEOUT);
+	ei = c->err_info;
+	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
+		hpsa_scsi_interpret_error(h, c);
+		rc = -1;
+	}
+out:
+	cmd_free(h, c);
+
+	return rc;
+}
+
+/*
+ * get enclosure information
+ * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
+ * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
+ * Uses id_physical_device to determine the box_index.
+ */
+static void hpsa_get_enclosure_info(struct ctlr_info *h,
+			unsigned char *scsi3addr,
+			struct ReportExtendedLUNdata *rlep, int rle_index,
+			struct hpsa_scsi_dev_t *encl_dev)
+{
+	int rc = -1;
+	struct CommandList *c = NULL;
+	struct ErrorInfo *ei = NULL;
+	struct bmic_sense_storage_box_params *bssbp = NULL;
+	struct bmic_identify_physical_device *id_phys = NULL;
+	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
+	u16 bmic_device_index = 0;
+
+	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
+
+	if (encl_dev->target == -1 || encl_dev->lun == -1) {
+		rc = IO_OK;
+		goto out;
+	}
+
+	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
+		rc = IO_OK;
+		goto out;
+	}
+
+	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
+	if (!bssbp)
+		goto out;
+
+	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
+	if (!id_phys)
+		goto out;
+
+	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
+						id_phys, sizeof(*id_phys));
+	if (rc) {
+		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
+			__func__, encl_dev->external, bmic_device_index);
+		goto out;
+	}
+
+	c = cmd_alloc(h);
+
+	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
+			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
+
+	if (rc)
+		goto out;
+
+	if (id_phys->phys_connector[1] == 'E')
+		c->Request.CDB[5] = id_phys->box_index;
+	else
+		c->Request.CDB[5] = 0;
+
+	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
+						DEFAULT_TIMEOUT);
+	if (rc)
+		goto out;
+
+	ei = c->err_info;
+	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
+		rc = -1;
+		goto out;
+	}
+
+	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
+	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
+		bssbp->phys_connector, sizeof(bssbp->phys_connector));
+
+	rc = IO_OK;
+out:
+	kfree(bssbp);
+	kfree(id_phys);
+
+	if (c)
+		cmd_free(h, c);
+
+	if (rc != IO_OK)
+		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
+			"Error, could not get enclosure information\n");
+}
+
+static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
+						unsigned char *scsi3addr)
+{
+	struct ReportExtendedLUNdata *physdev;
+	u32 nphysicals;
+	u64 sa = 0;
+	int i;
+
+	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
+	if (!physdev)
+		return 0;
+
+	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
+		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
+		kfree(physdev);
+		return 0;
+	}
+	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
+
+	for (i = 0; i < nphysicals; i++)
+		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
+			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
+			break;
+		}
+
+	kfree(physdev);
+
+	return sa;
+}
+
+static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
+					struct hpsa_scsi_dev_t *dev)
+{
+	int rc;
+	u64 sa = 0;
+
+	if (is_hba_lunid(scsi3addr)) {
+		struct bmic_sense_subsystem_info *ssi;
+
+		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
+		if (!ssi)
+			return;
+
+		rc = hpsa_bmic_sense_subsystem_information(h,
+					scsi3addr, 0, ssi, sizeof(*ssi));
+		if (rc == 0) {
+			sa = get_unaligned_be64(ssi->primary_world_wide_id);
+			h->sas_address = sa;
+		}
+
+		kfree(ssi);
+	} else
+		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
+
+	dev->sas_address = sa;
+}
+
+/* Get a device id from inquiry page 0x83 */
+static bool hpsa_vpd_page_supported(struct ctlr_info *h,
+	unsigned char scsi3addr[], u8 page)
+{
+	int rc;
+	int i;
+	int pages;
+	unsigned char *buf, bufsize;
+
+	buf = kzalloc(256, GFP_KERNEL);
+	if (!buf)
+		return false;
+
+	/* Get the size of the page list first */
+	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
+				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
+				buf, HPSA_VPD_HEADER_SZ);
+	if (rc != 0)
+		goto exit_unsupported;
+	pages = buf[3];
+	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
+		bufsize = pages + HPSA_VPD_HEADER_SZ;
+	else
+		bufsize = 255;
+
+	/* Get the whole VPD page list */
+	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
+				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
+				buf, bufsize);
+	if (rc != 0)
+		goto exit_unsupported;
+
+	pages = buf[3];
+	for (i = 1; i <= pages; i++)
+		if (buf[3 + i] == page)
+			goto exit_supported;
+exit_unsupported:
+	kfree(buf);
+	return false;
+exit_supported:
+	kfree(buf);
+	return true;
+}
+
+static void hpsa_get_ioaccel_status(struct ctlr_info *h,
+	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
+{
+	int rc;
+	unsigned char *buf;
+	u8 ioaccel_status;
+
+	this_device->offload_config = 0;
+	this_device->offload_enabled = 0;
+	this_device->offload_to_be_enabled = 0;
+
+	buf = kzalloc(64, GFP_KERNEL);
+	if (!buf)
+		return;
+	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
+		goto out;
+	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
+			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
+	if (rc != 0)
+		goto out;
+
+#define IOACCEL_STATUS_BYTE 4
+#define OFFLOAD_CONFIGURED_BIT 0x01
+#define OFFLOAD_ENABLED_BIT 0x02
+	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
+	this_device->offload_config =
+		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
+	if (this_device->offload_config) {
+		this_device->offload_enabled =
+			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
+		if (hpsa_get_raid_map(h, scsi3addr, this_device))
+			this_device->offload_enabled = 0;
+	}
+	this_device->offload_to_be_enabled = this_device->offload_enabled;
+out:
+	kfree(buf);
+	return;
+}
+
+/* Get the device id from inquiry page 0x83 */
+static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
+	unsigned char *device_id, int index, int buflen)
+{
+	int rc;
+	unsigned char *buf;
+
+	/* Does controller have VPD for device id? */
+	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
+		return 1; /* not supported */
+
+	buf = kzalloc(64, GFP_KERNEL);
+	if (!buf)
+		return -ENOMEM;
+
+	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
+					HPSA_VPD_LV_DEVICE_ID, buf, 64);
+	if (rc == 0) {
+		if (buflen > 16)
+			buflen = 16;
+		memcpy(device_id, &buf[8], buflen);
+	}
+
+	kfree(buf);
+
+	return rc; /*0 - got id,  otherwise, didn't */
+}
+
+static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
+		void *buf, int bufsize,
+		int extended_response)
+{
+	int rc = IO_OK;
+	struct CommandList *c;
+	unsigned char scsi3addr[8];
+	struct ErrorInfo *ei;
+
+	c = cmd_alloc(h);
+
+	/* address the controller */
+	memset(scsi3addr, 0, sizeof(scsi3addr));
+	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
+		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
+		rc = -EAGAIN;
+		goto out;
+	}
+	if (extended_response)
+		c->Request.CDB[1] = extended_response;
+	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
+					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
+	if (rc)
+		goto out;
+	ei = c->err_info;
+	if (ei->CommandStatus != 0 &&
+	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
+		hpsa_scsi_interpret_error(h, c);
+		rc = -EIO;
+	} else {
+		struct ReportLUNdata *rld = buf;
+
+		if (rld->extended_response_flag != extended_response) {
+			if (!h->legacy_board) {
+				dev_err(&h->pdev->dev,
+					"report luns requested format %u, got %u\n",
+					extended_response,
+					rld->extended_response_flag);
+				rc = -EINVAL;
+			} else
+				rc = -EOPNOTSUPP;
+		}
+	}
+out:
+	cmd_free(h, c);
+	return rc;
+}
+
+static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
+		struct ReportExtendedLUNdata *buf, int bufsize)
+{
+	int rc;
+	struct ReportLUNdata *lbuf;
+
+	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
+				      HPSA_REPORT_PHYS_EXTENDED);
+	if (!rc || rc != -EOPNOTSUPP)
+		return rc;
+
+	/* REPORT PHYS EXTENDED is not supported */
+	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
+	if (!lbuf)
+		return -ENOMEM;
+
+	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
+	if (!rc) {
+		int i;
+		u32 nphys;
+
+		/* Copy ReportLUNdata header */
+		memcpy(buf, lbuf, 8);
+		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
+		for (i = 0; i < nphys; i++)
+			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
+	}
+	kfree(lbuf);
+	return rc;
+}
+
+static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
+		struct ReportLUNdata *buf, int bufsize)
+{
+	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
+}
+
+static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
+	int bus, int target, int lun)
+{
+	device->bus = bus;
+	device->target = target;
+	device->lun = lun;
+}
+
+/* Use VPD inquiry to get details of volume status */
+static int hpsa_get_volume_status(struct ctlr_info *h,
+					unsigned char scsi3addr[])
+{
+	int rc;
+	int status;
+	int size;
+	unsigned char *buf;
+
+	buf = kzalloc(64, GFP_KERNEL);
+	if (!buf)
+		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
+
+	/* Does controller have VPD for logical volume status? */
+	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
+		goto exit_failed;
+
+	/* Get the size of the VPD return buffer */
+	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
+					buf, HPSA_VPD_HEADER_SZ);
+	if (rc != 0)
+		goto exit_failed;
+	size = buf[3];
+
+	/* Now get the whole VPD buffer */
+	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
+					buf, size + HPSA_VPD_HEADER_SZ);
+	if (rc != 0)
+		goto exit_failed;
+	status = buf[4]; /* status byte */
+
+	kfree(buf);
+	return status;
+exit_failed:
+	kfree(buf);
+	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
+}
+
+/* Determine offline status of a volume.
+ * Return either:
+ *  0 (not offline)
+ *  0xff (offline for unknown reasons)
+ *  # (integer code indicating one of several NOT READY states
+ *     describing why a volume is to be kept offline)
+ */
+static unsigned char hpsa_volume_offline(struct ctlr_info *h,
+					unsigned char scsi3addr[])
+{
+	struct CommandList *c;
+	unsigned char *sense;
+	u8 sense_key, asc, ascq;
+	int sense_len;
+	int rc, ldstat = 0;
+	u16 cmd_status;
+	u8 scsi_status;
+#define ASC_LUN_NOT_READY 0x04
+#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
+#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
+
+	c = cmd_alloc(h);
+
+	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
+	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
+					DEFAULT_TIMEOUT);
+	if (rc) {
+		cmd_free(h, c);
+		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
+	}
+	sense = c->err_info->SenseInfo;
+	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
+		sense_len = sizeof(c->err_info->SenseInfo);
+	else
+		sense_len = c->err_info->SenseLen;
+	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
+	cmd_status = c->err_info->CommandStatus;
+	scsi_status = c->err_info->ScsiStatus;
+	cmd_free(h, c);
+
+	/* Determine the reason for not ready state */
+	ldstat = hpsa_get_volume_status(h, scsi3addr);
+
+	/* Keep volume offline in certain cases: */
+	switch (ldstat) {
+	case HPSA_LV_FAILED:
+	case HPSA_LV_UNDERGOING_ERASE:
+	case HPSA_LV_NOT_AVAILABLE:
+	case HPSA_LV_UNDERGOING_RPI:
+	case HPSA_LV_PENDING_RPI:
+	case HPSA_LV_ENCRYPTED_NO_KEY:
+	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
+	case HPSA_LV_UNDERGOING_ENCRYPTION:
+	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
+	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
+		return ldstat;
+	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
+		/* If VPD status page isn't available,
+		 * use ASC/ASCQ to determine state
+		 */
+		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
+			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
+			return ldstat;
+		break;
+	default:
+		break;
+	}
+	return HPSA_LV_OK;
+}
+
+static int hpsa_update_device_info(struct ctlr_info *h,
+	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
+	unsigned char *is_OBDR_device)
+{
+
+#define OBDR_SIG_OFFSET 43
+#define OBDR_TAPE_SIG "$DR-10"
+#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
+#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
+
+	unsigned char *inq_buff;
+	unsigned char *obdr_sig;
+	int rc = 0;
+
+	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
+	if (!inq_buff) {
+		rc = -ENOMEM;
+		goto bail_out;
+	}
+
+	/* Do an inquiry to the device to see what it is. */
+	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
+		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
+		dev_err(&h->pdev->dev,
+			"%s: inquiry failed, device will be skipped.\n",
+			__func__);
+		rc = HPSA_INQUIRY_FAILED;
+		goto bail_out;
+	}
+
+	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
+	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
+
+	this_device->devtype = (inq_buff[0] & 0x1f);
+	memcpy(this_device->scsi3addr, scsi3addr, 8);
+	memcpy(this_device->vendor, &inq_buff[8],
+		sizeof(this_device->vendor));
+	memcpy(this_device->model, &inq_buff[16],
+		sizeof(this_device->model));
+	this_device->rev = inq_buff[2];
+	memset(this_device->device_id, 0,
+		sizeof(this_device->device_id));
+	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
+		sizeof(this_device->device_id)) < 0)
+		dev_err(&h->pdev->dev,
+			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
+			h->ctlr, __func__,
+			h->scsi_host->host_no,
+			this_device->target, this_device->lun,
+			scsi_device_type(this_device->devtype),
+			this_device->model);
+
+	if ((this_device->devtype == TYPE_DISK ||
+		this_device->devtype == TYPE_ZBC) &&
+		is_logical_dev_addr_mode(scsi3addr)) {
+		unsigned char volume_offline;
+
+		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
+		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
+			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
+		volume_offline = hpsa_volume_offline(h, scsi3addr);
+		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
+		    h->legacy_board) {
+			/*
+			 * Legacy boards might not support volume status
+			 */
+			dev_info(&h->pdev->dev,
+				 "C0:T%d:L%d Volume status not available, assuming online.\n",
+				 this_device->target, this_device->lun);
+			volume_offline = 0;
+		}
+		this_device->volume_offline = volume_offline;
+		if (volume_offline == HPSA_LV_FAILED) {
+			rc = HPSA_LV_FAILED;
+			dev_err(&h->pdev->dev,
+				"%s: LV failed, device will be skipped.\n",
+				__func__);
+			goto bail_out;
+		}
+	} else {
+		this_device->raid_level = RAID_UNKNOWN;
+		this_device->offload_config = 0;
+		this_device->offload_enabled = 0;
+		this_device->offload_to_be_enabled = 0;
+		this_device->hba_ioaccel_enabled = 0;
+		this_device->volume_offline = 0;
+		this_device->queue_depth = h->nr_cmds;
+	}
+
+	if (this_device->external)
+		this_device->queue_depth = EXTERNAL_QD;
+
+	if (is_OBDR_device) {
+		/* See if this is a One-Button-Disaster-Recovery device
+		 * by looking for "$DR-10" at offset 43 in inquiry data.
+		 */
+		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
+		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
+					strncmp(obdr_sig, OBDR_TAPE_SIG,
+						OBDR_SIG_LEN) == 0);
+	}
+	kfree(inq_buff);
+	return 0;
+
+bail_out:
+	kfree(inq_buff);
+	return rc;
+}
+
+/*
+ * Helper function to assign bus, target, lun mapping of devices.
+ * Logical drive target and lun are assigned at this time, but
+ * physical device lun and target assignment are deferred (assigned
+ * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
+*/
+static void figure_bus_target_lun(struct ctlr_info *h,
+	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
+{
+	u32 lunid = get_unaligned_le32(lunaddrbytes);
+
+	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
+		/* physical device, target and lun filled in later */
+		if (is_hba_lunid(lunaddrbytes)) {
+			int bus = HPSA_HBA_BUS;
+
+			if (!device->rev)
+				bus = HPSA_LEGACY_HBA_BUS;
+			hpsa_set_bus_target_lun(device,
+					bus, 0, lunid & 0x3fff);
+		} else
+			/* defer target, lun assignment for physical devices */
+			hpsa_set_bus_target_lun(device,
+					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
+		return;
+	}
+	/* It's a logical device */
+	if (device->external) {
+		hpsa_set_bus_target_lun(device,
+			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
+			lunid & 0x00ff);
+		return;
+	}
+	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
+				0, lunid & 0x3fff);
+}
+
+static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
+	int i, int nphysicals, int nlocal_logicals)
+{
+	/* In report logicals, local logicals are listed first,
+	* then any externals.
+	*/
+	int logicals_start = nphysicals + (raid_ctlr_position == 0);
+
+	if (i == raid_ctlr_position)
+		return 0;
+
+	if (i < logicals_start)
+		return 0;
+
+	/* i is in logicals range, but still within local logicals */
+	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
+		return 0;
+
+	return 1; /* it's an external lun */
+}
+
+/*
+ * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
+ * logdev.  The number of luns in physdev and logdev are returned in
+ * *nphysicals and *nlogicals, respectively.
+ * Returns 0 on success, -1 otherwise.
+ */
+static int hpsa_gather_lun_info(struct ctlr_info *h,
+	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
+	struct ReportLUNdata *logdev, u32 *nlogicals)
+{
+	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
+		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
+		return -1;
+	}
+	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
+	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
+		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
+			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
+		*nphysicals = HPSA_MAX_PHYS_LUN;
+	}
+	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
+		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
+		return -1;
+	}
+	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
+	/* Reject Logicals in excess of our max capability. */
+	if (*nlogicals > HPSA_MAX_LUN) {
+		dev_warn(&h->pdev->dev,
+			"maximum logical LUNs (%d) exceeded.  "
+			"%d LUNs ignored.\n", HPSA_MAX_LUN,
+			*nlogicals - HPSA_MAX_LUN);
+			*nlogicals = HPSA_MAX_LUN;
+	}
+	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
+		dev_warn(&h->pdev->dev,
+			"maximum logical + physical LUNs (%d) exceeded. "
+			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
+			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
+		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
+	}
+	return 0;
+}
+
+static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
+	int i, int nphysicals, int nlogicals,
+	struct ReportExtendedLUNdata *physdev_list,
+	struct ReportLUNdata *logdev_list)
+{
+	/* Helper function, figure out where the LUN ID info is coming from
+	 * given index i, lists of physical and logical devices, where in
+	 * the list the raid controller is supposed to appear (first or last)
+	 */
+
+	int logicals_start = nphysicals + (raid_ctlr_position == 0);
+	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
+
+	if (i == raid_ctlr_position)
+		return RAID_CTLR_LUNID;
+
+	if (i < logicals_start)
+		return &physdev_list->LUN[i -
+				(raid_ctlr_position == 0)].lunid[0];
+
+	if (i < last_device)
+		return &logdev_list->LUN[i - nphysicals -
+			(raid_ctlr_position == 0)][0];
+	BUG();
+	return NULL;
+}
+
+/* get physical drive ioaccel handle and queue depth */
+static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
+		struct hpsa_scsi_dev_t *dev,
+		struct ReportExtendedLUNdata *rlep, int rle_index,
+		struct bmic_identify_physical_device *id_phys)
+{
+	int rc;
+	struct ext_report_lun_entry *rle;
+
+	rle = &rlep->LUN[rle_index];
+
+	dev->ioaccel_handle = rle->ioaccel_handle;
+	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
+		dev->hba_ioaccel_enabled = 1;
+	memset(id_phys, 0, sizeof(*id_phys));
+	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
+			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
+			sizeof(*id_phys));
+	if (!rc)
+		/* Reserve space for FW operations */
+#define DRIVE_CMDS_RESERVED_FOR_FW 2
+#define DRIVE_QUEUE_DEPTH 7
+		dev->queue_depth =
+			le16_to_cpu(id_phys->current_queue_depth_limit) -
+				DRIVE_CMDS_RESERVED_FOR_FW;
+	else
+		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
+}
+
+static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
+	struct ReportExtendedLUNdata *rlep, int rle_index,
+	struct bmic_identify_physical_device *id_phys)
+{
+	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
+
+	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
+		this_device->hba_ioaccel_enabled = 1;
+
+	memcpy(&this_device->active_path_index,
+		&id_phys->active_path_number,
+		sizeof(this_device->active_path_index));
+	memcpy(&this_device->path_map,
+		&id_phys->redundant_path_present_map,
+		sizeof(this_device->path_map));
+	memcpy(&this_device->box,
+		&id_phys->alternate_paths_phys_box_on_port,
+		sizeof(this_device->box));
+	memcpy(&this_device->phys_connector,
+		&id_phys->alternate_paths_phys_connector,
+		sizeof(this_device->phys_connector));
+	memcpy(&this_device->bay,
+		&id_phys->phys_bay_in_box,
+		sizeof(this_device->bay));
+}
+
+/* get number of local logical disks. */
+static int hpsa_set_local_logical_count(struct ctlr_info *h,
+	struct bmic_identify_controller *id_ctlr,
+	u32 *nlocals)
+{
+	int rc;
+
+	if (!id_ctlr) {
+		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
+			__func__);
+		return -ENOMEM;
+	}
+	memset(id_ctlr, 0, sizeof(*id_ctlr));
+	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
+	if (!rc)
+		if (id_ctlr->configured_logical_drive_count < 255)
+			*nlocals = id_ctlr->configured_logical_drive_count;
+		else
+			*nlocals = le16_to_cpu(
+					id_ctlr->extended_logical_unit_count);
+	else
+		*nlocals = -1;
+	return rc;
+}
+
+static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
+{
+	struct bmic_identify_physical_device *id_phys;
+	bool is_spare = false;
+	int rc;
+
+	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
+	if (!id_phys)
+		return false;
+
+	rc = hpsa_bmic_id_physical_device(h,
+					lunaddrbytes,
+					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
+					id_phys, sizeof(*id_phys));
+	if (rc == 0)
+		is_spare = (id_phys->more_flags >> 6) & 0x01;
+
+	kfree(id_phys);
+	return is_spare;
+}
+
+#define RPL_DEV_FLAG_NON_DISK                           0x1
+#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
+#define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
+
+#define BMIC_DEVICE_TYPE_ENCLOSURE  6
+
+static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
+				struct ext_report_lun_entry *rle)
+{
+	u8 device_flags;
+	u8 device_type;
+
+	if (!MASKED_DEVICE(lunaddrbytes))
+		return false;
+
+	device_flags = rle->device_flags;
+	device_type = rle->device_type;
+
+	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
+		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
+			return false;
+		return true;
+	}
+
+	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
+		return false;
+
+	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
+		return false;
+
+	/*
+	 * Spares may be spun down, we do not want to
+	 * do an Inquiry to a RAID set spare drive as
+	 * that would have them spun up, that is a
+	 * performance hit because I/O to the RAID device
+	 * stops while the spin up occurs which can take
+	 * over 50 seconds.
+	 */
+	if (hpsa_is_disk_spare(h, lunaddrbytes))
+		return true;
+
+	return false;
+}
+
+static void hpsa_update_scsi_devices(struct ctlr_info *h)
+{
+	/* the idea here is we could get notified
+	 * that some devices have changed, so we do a report
+	 * physical luns and report logical luns cmd, and adjust
+	 * our list of devices accordingly.
+	 *
+	 * The scsi3addr's of devices won't change so long as the
+	 * adapter is not reset.  That means we can rescan and
+	 * tell which devices we already know about, vs. new
+	 * devices, vs.  disappearing devices.
+	 */
+	struct ReportExtendedLUNdata *physdev_list = NULL;
+	struct ReportLUNdata *logdev_list = NULL;
+	struct bmic_identify_physical_device *id_phys = NULL;
+	struct bmic_identify_controller *id_ctlr = NULL;
+	u32 nphysicals = 0;
+	u32 nlogicals = 0;
+	u32 nlocal_logicals = 0;
+	u32 ndev_allocated = 0;
+	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
+	int ncurrent = 0;
+	int i, n_ext_target_devs, ndevs_to_allocate;
+	int raid_ctlr_position;
+	bool physical_device;
+	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
+
+	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
+	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
+	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
+	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
+	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
+	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
+
+	if (!currentsd || !physdev_list || !logdev_list ||
+		!tmpdevice || !id_phys || !id_ctlr) {
+		dev_err(&h->pdev->dev, "out of memory\n");
+		goto out;
+	}
+	memset(lunzerobits, 0, sizeof(lunzerobits));
+
+	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
+
+	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
+			logdev_list, &nlogicals)) {
+		h->drv_req_rescan = 1;
+		goto out;
+	}
+
+	/* Set number of local logicals (non PTRAID) */
+	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
+		dev_warn(&h->pdev->dev,
+			"%s: Can't determine number of local logical devices.\n",
+			__func__);
+	}
+
+	/* We might see up to the maximum number of logical and physical disks
+	 * plus external target devices, and a device for the local RAID
+	 * controller.
+	 */
+	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
+
+	/* Allocate the per device structures */
+	for (i = 0; i < ndevs_to_allocate; i++) {
+		if (i >= HPSA_MAX_DEVICES) {
+			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
+				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
+				ndevs_to_allocate - HPSA_MAX_DEVICES);
+			break;
+		}
+
+		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
+		if (!currentsd[i]) {
+			h->drv_req_rescan = 1;
+			goto out;
+		}
+		ndev_allocated++;
+	}
+
+	if (is_scsi_rev_5(h))
+		raid_ctlr_position = 0;
+	else
+		raid_ctlr_position = nphysicals + nlogicals;
+
+	/* adjust our table of devices */
+	n_ext_target_devs = 0;
+	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
+		u8 *lunaddrbytes, is_OBDR = 0;
+		int rc = 0;
+		int phys_dev_index = i - (raid_ctlr_position == 0);
+		bool skip_device = false;
+
+		physical_device = i < nphysicals + (raid_ctlr_position == 0);
+
+		/* Figure out where the LUN ID info is coming from */
+		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
+			i, nphysicals, nlogicals, physdev_list, logdev_list);
+
+		/* Determine if this is a lun from an external target array */
+		tmpdevice->external =
+			figure_external_status(h, raid_ctlr_position, i,
+						nphysicals, nlocal_logicals);
+
+		/*
+		 * Skip over some devices such as a spare.
+		 */
+		if (!tmpdevice->external && physical_device) {
+			skip_device = hpsa_skip_device(h, lunaddrbytes,
+					&physdev_list->LUN[phys_dev_index]);
+			if (skip_device)
+				continue;
+		}
+
+		/* Get device type, vendor, model, device id */
+		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
+							&is_OBDR);
+		if (rc == -ENOMEM) {
+			dev_warn(&h->pdev->dev,
+				"Out of memory, rescan deferred.\n");
+			h->drv_req_rescan = 1;
+			goto out;
+		}
+		if (rc) {
+			h->drv_req_rescan = 1;
+			continue;
+		}
+
+		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
+		this_device = currentsd[ncurrent];
+
+		/* Turn on discovery_polling if there are ext target devices.
+		 * Event-based change notification is unreliable for those.
+		 */
+		if (!h->discovery_polling) {
+			if (tmpdevice->external) {
+				h->discovery_polling = 1;
+				dev_info(&h->pdev->dev,
+					"External target, activate discovery polling.\n");
+			}
+		}
+
+
+		*this_device = *tmpdevice;
+		this_device->physical_device = physical_device;
+
+		/*
+		 * Expose all devices except for physical devices that
+		 * are masked.
+		 */
+		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
+			this_device->expose_device = 0;
+		else
+			this_device->expose_device = 1;
+
+
+		/*
+		 * Get the SAS address for physical devices that are exposed.
+		 */
+		if (this_device->physical_device && this_device->expose_device)
+			hpsa_get_sas_address(h, lunaddrbytes, this_device);
+
+		switch (this_device->devtype) {
+		case TYPE_ROM:
+			/* We don't *really* support actual CD-ROM devices,
+			 * just "One Button Disaster Recovery" tape drive
+			 * which temporarily pretends to be a CD-ROM drive.
+			 * So we check that the device is really an OBDR tape
+			 * device by checking for "$DR-10" in bytes 43-48 of
+			 * the inquiry data.
+			 */
+			if (is_OBDR)
+				ncurrent++;
+			break;
+		case TYPE_DISK:
+		case TYPE_ZBC:
+			if (this_device->physical_device) {
+				/* The disk is in HBA mode. */
+				/* Never use RAID mapper in HBA mode. */
+				this_device->offload_enabled = 0;
+				hpsa_get_ioaccel_drive_info(h, this_device,
+					physdev_list, phys_dev_index, id_phys);
+				hpsa_get_path_info(this_device,
+					physdev_list, phys_dev_index, id_phys);
+			}
+			ncurrent++;
+			break;
+		case TYPE_TAPE:
+		case TYPE_MEDIUM_CHANGER:
+			ncurrent++;
+			break;
+		case TYPE_ENCLOSURE:
+			if (!this_device->external)
+				hpsa_get_enclosure_info(h, lunaddrbytes,
+						physdev_list, phys_dev_index,
+						this_device);
+			ncurrent++;
+			break;
+		case TYPE_RAID:
+			/* Only present the Smartarray HBA as a RAID controller.
+			 * If it's a RAID controller other than the HBA itself
+			 * (an external RAID controller, MSA500 or similar)
+			 * don't present it.
+			 */
+			if (!is_hba_lunid(lunaddrbytes))
+				break;
+			ncurrent++;
+			break;
+		default:
+			break;
+		}
+		if (ncurrent >= HPSA_MAX_DEVICES)
+			break;
+	}
+
+	if (h->sas_host == NULL) {
+		int rc = 0;
+
+		rc = hpsa_add_sas_host(h);
+		if (rc) {
+			dev_warn(&h->pdev->dev,
+				"Could not add sas host %d\n", rc);
+			goto out;
+		}
+	}
+
+	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
+out:
+	kfree(tmpdevice);
+	for (i = 0; i < ndev_allocated; i++)
+		kfree(currentsd[i]);
+	kfree(currentsd);
+	kfree(physdev_list);
+	kfree(logdev_list);
+	kfree(id_ctlr);
+	kfree(id_phys);
+}
+
+static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
+				   struct scatterlist *sg)
+{
+	u64 addr64 = (u64) sg_dma_address(sg);
+	unsigned int len = sg_dma_len(sg);
+
+	desc->Addr = cpu_to_le64(addr64);
+	desc->Len = cpu_to_le32(len);
+	desc->Ext = 0;
+}
+
+/*
+ * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
+ * dma mapping  and fills in the scatter gather entries of the
+ * hpsa command, cp.
+ */
+static int hpsa_scatter_gather(struct ctlr_info *h,
+		struct CommandList *cp,
+		struct scsi_cmnd *cmd)
+{
+	struct scatterlist *sg;
+	int use_sg, i, sg_limit, chained, last_sg;
+	struct SGDescriptor *curr_sg;
+
+	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
+
+	use_sg = scsi_dma_map(cmd);
+	if (use_sg < 0)
+		return use_sg;
+
+	if (!use_sg)
+		goto sglist_finished;
+
+	/*
+	 * If the number of entries is greater than the max for a single list,
+	 * then we have a chained list; we will set up all but one entry in the
+	 * first list (the last entry is saved for link information);
+	 * otherwise, we don't have a chained list and we'll set up at each of
+	 * the entries in the one list.
+	 */
+	curr_sg = cp->SG;
+	chained = use_sg > h->max_cmd_sg_entries;
+	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
+	last_sg = scsi_sg_count(cmd) - 1;
+	scsi_for_each_sg(cmd, sg, sg_limit, i) {
+		hpsa_set_sg_descriptor(curr_sg, sg);
+		curr_sg++;
+	}
+
+	if (chained) {
+		/*
+		 * Continue with the chained list.  Set curr_sg to the chained
+		 * list.  Modify the limit to the total count less the entries
+		 * we've already set up.  Resume the scan at the list entry
+		 * where the previous loop left off.
+		 */
+		curr_sg = h->cmd_sg_list[cp->cmdindex];
+		sg_limit = use_sg - sg_limit;
+		for_each_sg(sg, sg, sg_limit, i) {
+			hpsa_set_sg_descriptor(curr_sg, sg);
+			curr_sg++;
+		}
+	}
+
+	/* Back the pointer up to the last entry and mark it as "last". */
+	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
+
+	if (use_sg + chained > h->maxSG)
+		h->maxSG = use_sg + chained;
+
+	if (chained) {
+		cp->Header.SGList = h->max_cmd_sg_entries;
+		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
+		if (hpsa_map_sg_chain_block(h, cp)) {
+			scsi_dma_unmap(cmd);
+			return -1;
+		}
+		return 0;
+	}
+
+sglist_finished:
+
+	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
+	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
+	return 0;
+}
+
+#define BUFLEN 128
+static inline void warn_zero_length_transfer(struct ctlr_info *h,
+						u8 *cdb, int cdb_len,
+						const char *func)
+{
+	char buf[BUFLEN];
+	int outlen;
+	int i;
+
+	outlen = scnprintf(buf, BUFLEN,
+				"%s: Blocking zero-length request: CDB:", func);
+	for (i = 0; i < cdb_len; i++)
+		outlen += scnprintf(buf+outlen, BUFLEN - outlen,
+					"%02hhx", cdb[i]);
+	dev_warn(&h->pdev->dev, "%s\n", buf);
+}
+
+#define IO_ACCEL_INELIGIBLE 1
+/* zero-length transfers trigger hardware errors. */
+static bool is_zero_length_transfer(u8 *cdb)
+{
+	u32 block_cnt;
+
+	/* Block zero-length transfer sizes on certain commands. */
+	switch (cdb[0]) {
+	case READ_10:
+	case WRITE_10:
+	case VERIFY:		/* 0x2F */
+	case WRITE_VERIFY:	/* 0x2E */
+		block_cnt = get_unaligned_be16(&cdb[7]);
+		break;
+	case READ_12:
+	case WRITE_12:
+	case VERIFY_12: /* 0xAF */
+	case WRITE_VERIFY_12:	/* 0xAE */
+		block_cnt = get_unaligned_be32(&cdb[6]);
+		break;
+	case READ_16:
+	case WRITE_16:
+	case VERIFY_16:		/* 0x8F */
+		block_cnt = get_unaligned_be32(&cdb[10]);
+		break;
+	default:
+		return false;
+	}
+
+	return block_cnt == 0;
+}
+
+static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
+{
+	int is_write = 0;
+	u32 block;
+	u32 block_cnt;
+
+	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
+	switch (cdb[0]) {
+	case WRITE_6:
+	case WRITE_12:
+		is_write = 1;
+	case READ_6:
+	case READ_12:
+		if (*cdb_len == 6) {
+			block = (((cdb[1] & 0x1F) << 16) |
+				(cdb[2] << 8) |
+				cdb[3]);
+			block_cnt = cdb[4];
+			if (block_cnt == 0)
+				block_cnt = 256;
+		} else {
+			BUG_ON(*cdb_len != 12);
+			block = get_unaligned_be32(&cdb[2]);
+			block_cnt = get_unaligned_be32(&cdb[6]);
+		}
+		if (block_cnt > 0xffff)
+			return IO_ACCEL_INELIGIBLE;
+
+		cdb[0] = is_write ? WRITE_10 : READ_10;
+		cdb[1] = 0;
+		cdb[2] = (u8) (block >> 24);
+		cdb[3] = (u8) (block >> 16);
+		cdb[4] = (u8) (block >> 8);
+		cdb[5] = (u8) (block);
+		cdb[6] = 0;
+		cdb[7] = (u8) (block_cnt >> 8);
+		cdb[8] = (u8) (block_cnt);
+		cdb[9] = 0;
+		*cdb_len = 10;
+		break;
+	}
+	return 0;
+}
+
+static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
+	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
+	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
+{
+	struct scsi_cmnd *cmd = c->scsi_cmd;
+	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
+	unsigned int len;
+	unsigned int total_len = 0;
+	struct scatterlist *sg;
+	u64 addr64;
+	int use_sg, i;
+	struct SGDescriptor *curr_sg;
+	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
+
+	/* TODO: implement chaining support */
+	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
+		atomic_dec(&phys_disk->ioaccel_cmds_out);
+		return IO_ACCEL_INELIGIBLE;
+	}
+
+	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
+
+	if (is_zero_length_transfer(cdb)) {
+		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
+		atomic_dec(&phys_disk->ioaccel_cmds_out);
+		return IO_ACCEL_INELIGIBLE;
+	}
+
+	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
+		atomic_dec(&phys_disk->ioaccel_cmds_out);
+		return IO_ACCEL_INELIGIBLE;
+	}
+
+	c->cmd_type = CMD_IOACCEL1;
+
+	/* Adjust the DMA address to point to the accelerated command buffer */
+	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
+				(c->cmdindex * sizeof(*cp));
+	BUG_ON(c->busaddr & 0x0000007F);
+
+	use_sg = scsi_dma_map(cmd);
+	if (use_sg < 0) {
+		atomic_dec(&phys_disk->ioaccel_cmds_out);
+		return use_sg;
+	}
+
+	if (use_sg) {
+		curr_sg = cp->SG;
+		scsi_for_each_sg(cmd, sg, use_sg, i) {
+			addr64 = (u64) sg_dma_address(sg);
+			len  = sg_dma_len(sg);
+			total_len += len;
+			curr_sg->Addr = cpu_to_le64(addr64);
+			curr_sg->Len = cpu_to_le32(len);
+			curr_sg->Ext = cpu_to_le32(0);
+			curr_sg++;
+		}
+		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
+
+		switch (cmd->sc_data_direction) {
+		case DMA_TO_DEVICE:
+			control |= IOACCEL1_CONTROL_DATA_OUT;
+			break;
+		case DMA_FROM_DEVICE:
+			control |= IOACCEL1_CONTROL_DATA_IN;
+			break;
+		case DMA_NONE:
+			control |= IOACCEL1_CONTROL_NODATAXFER;
+			break;
+		default:
+			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
+			cmd->sc_data_direction);
+			BUG();
+			break;
+		}
+	} else {
+		control |= IOACCEL1_CONTROL_NODATAXFER;
+	}
+
+	c->Header.SGList = use_sg;
+	/* Fill out the command structure to submit */
+	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
+	cp->transfer_len = cpu_to_le32(total_len);
+	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
+			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
+	cp->control = cpu_to_le32(control);
+	memcpy(cp->CDB, cdb, cdb_len);
+	memcpy(cp->CISS_LUN, scsi3addr, 8);
+	/* Tag was already set at init time. */
+	enqueue_cmd_and_start_io(h, c);
+	return 0;
+}
+
+/*
+ * Queue a command directly to a device behind the controller using the
+ * I/O accelerator path.
+ */
+static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
+	struct CommandList *c)
+{
+	struct scsi_cmnd *cmd = c->scsi_cmd;
+	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
+
+	if (!dev)
+		return -1;
+
+	c->phys_disk = dev;
+
+	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
+		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
+}
+
+/*
+ * Set encryption parameters for the ioaccel2 request
+ */
+static void set_encrypt_ioaccel2(struct ctlr_info *h,
+	struct CommandList *c, struct io_accel2_cmd *cp)
+{
+	struct scsi_cmnd *cmd = c->scsi_cmd;
+	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
+	struct raid_map_data *map = &dev->raid_map;
+	u64 first_block;
+
+	/* Are we doing encryption on this device */
+	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
+		return;
+	/* Set the data encryption key index. */
+	cp->dekindex = map->dekindex;
+
+	/* Set the encryption enable flag, encoded into direction field. */
+	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
+
+	/* Set encryption tweak values based on logical block address
+	 * If block size is 512, tweak value is LBA.
+	 * For other block sizes, tweak is (LBA * block size)/ 512)
+	 */
+	switch (cmd->cmnd[0]) {
+	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
+	case READ_6:
+	case WRITE_6:
+		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
+				(cmd->cmnd[2] << 8) |
+				cmd->cmnd[3]);
+		break;
+	case WRITE_10:
+	case READ_10:
+	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
+	case WRITE_12:
+	case READ_12:
+		first_block = get_unaligned_be32(&cmd->cmnd[2]);
+		break;
+	case WRITE_16:
+	case READ_16:
+		first_block = get_unaligned_be64(&cmd->cmnd[2]);
+		break;
+	default:
+		dev_err(&h->pdev->dev,
+			"ERROR: %s: size (0x%x) not supported for encryption\n",
+			__func__, cmd->cmnd[0]);
+		BUG();
+		break;
+	}
+
+	if (le32_to_cpu(map->volume_blk_size) != 512)
+		first_block = first_block *
+				le32_to_cpu(map->volume_blk_size)/512;
+
+	cp->tweak_lower = cpu_to_le32(first_block);
+	cp->tweak_upper = cpu_to_le32(first_block >> 32);
+}
+
+static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
+	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
+	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
+{
+	struct scsi_cmnd *cmd = c->scsi_cmd;
+	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
+	struct ioaccel2_sg_element *curr_sg;
+	int use_sg, i;
+	struct scatterlist *sg;
+	u64 addr64;
+	u32 len;
+	u32 total_len = 0;
+
+	if (!cmd->device)
+		return -1;
+
+	if (!cmd->device->hostdata)
+		return -1;
+
+	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
+
+	if (is_zero_length_transfer(cdb)) {
+		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
+		atomic_dec(&phys_disk->ioaccel_cmds_out);
+		return IO_ACCEL_INELIGIBLE;
+	}
+
+	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
+		atomic_dec(&phys_disk->ioaccel_cmds_out);
+		return IO_ACCEL_INELIGIBLE;
+	}
+
+	c->cmd_type = CMD_IOACCEL2;
+	/* Adjust the DMA address to point to the accelerated command buffer */
+	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
+				(c->cmdindex * sizeof(*cp));
+	BUG_ON(c->busaddr & 0x0000007F);
+
+	memset(cp, 0, sizeof(*cp));
+	cp->IU_type = IOACCEL2_IU_TYPE;
+
+	use_sg = scsi_dma_map(cmd);
+	if (use_sg < 0) {
+		atomic_dec(&phys_disk->ioaccel_cmds_out);
+		return use_sg;
+	}
+
+	if (use_sg) {
+		curr_sg = cp->sg;
+		if (use_sg > h->ioaccel_maxsg) {
+			addr64 = le64_to_cpu(
+				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
+			curr_sg->address = cpu_to_le64(addr64);
+			curr_sg->length = 0;
+			curr_sg->reserved[0] = 0;
+			curr_sg->reserved[1] = 0;
+			curr_sg->reserved[2] = 0;
+			curr_sg->chain_indicator = IOACCEL2_CHAIN;
+
+			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
+		}
+		scsi_for_each_sg(cmd, sg, use_sg, i) {
+			addr64 = (u64) sg_dma_address(sg);
+			len  = sg_dma_len(sg);
+			total_len += len;
+			curr_sg->address = cpu_to_le64(addr64);
+			curr_sg->length = cpu_to_le32(len);
+			curr_sg->reserved[0] = 0;
+			curr_sg->reserved[1] = 0;
+			curr_sg->reserved[2] = 0;
+			curr_sg->chain_indicator = 0;
+			curr_sg++;
+		}
+
+		/*
+		 * Set the last s/g element bit
+		 */
+		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
+
+		switch (cmd->sc_data_direction) {
+		case DMA_TO_DEVICE:
+			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
+			cp->direction |= IOACCEL2_DIR_DATA_OUT;
+			break;
+		case DMA_FROM_DEVICE:
+			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
+			cp->direction |= IOACCEL2_DIR_DATA_IN;
+			break;
+		case DMA_NONE:
+			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
+			cp->direction |= IOACCEL2_DIR_NO_DATA;
+			break;
+		default:
+			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
+				cmd->sc_data_direction);
+			BUG();
+			break;
+		}
+	} else {
+		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
+		cp->direction |= IOACCEL2_DIR_NO_DATA;
+	}
+
+	/* Set encryption parameters, if necessary */
+	set_encrypt_ioaccel2(h, c, cp);
+
+	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
+	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
+	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
+
+	cp->data_len = cpu_to_le32(total_len);
+	cp->err_ptr = cpu_to_le64(c->busaddr +
+			offsetof(struct io_accel2_cmd, error_data));
+	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
+
+	/* fill in sg elements */
+	if (use_sg > h->ioaccel_maxsg) {
+		cp->sg_count = 1;
+		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
+		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
+			atomic_dec(&phys_disk->ioaccel_cmds_out);
+			scsi_dma_unmap(cmd);
+			return -1;
+		}
+	} else
+		cp->sg_count = (u8) use_sg;
+
+	enqueue_cmd_and_start_io(h, c);
+	return 0;
+}
+
+/*
+ * Queue a command to the correct I/O accelerator path.
+ */
+static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
+	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
+	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
+{
+	if (!c->scsi_cmd->device)
+		return -1;
+
+	if (!c->scsi_cmd->device->hostdata)
+		return -1;
+
+	/* Try to honor the device's queue depth */
+	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
+					phys_disk->queue_depth) {
+		atomic_dec(&phys_disk->ioaccel_cmds_out);
+		return IO_ACCEL_INELIGIBLE;
+	}
+	if (h->transMethod & CFGTBL_Trans_io_accel1)
+		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
+						cdb, cdb_len, scsi3addr,
+						phys_disk);
+	else
+		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
+						cdb, cdb_len, scsi3addr,
+						phys_disk);
+}
+
+static void raid_map_helper(struct raid_map_data *map,
+		int offload_to_mirror, u32 *map_index, u32 *current_group)
+{
+	if (offload_to_mirror == 0)  {
+		/* use physical disk in the first mirrored group. */
+		*map_index %= le16_to_cpu(map->data_disks_per_row);
+		return;
+	}
+	do {
+		/* determine mirror group that *map_index indicates */
+		*current_group = *map_index /
+			le16_to_cpu(map->data_disks_per_row);
+		if (offload_to_mirror == *current_group)
+			continue;
+		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
+			/* select map index from next group */
+			*map_index += le16_to_cpu(map->data_disks_per_row);
+			(*current_group)++;
+		} else {
+			/* select map index from first group */
+			*map_index %= le16_to_cpu(map->data_disks_per_row);
+			*current_group = 0;
+		}
+	} while (offload_to_mirror != *current_group);
+}
+
+/*
+ * Attempt to perform offload RAID mapping for a logical volume I/O.
+ */
+static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
+	struct CommandList *c)
+{
+	struct scsi_cmnd *cmd = c->scsi_cmd;
+	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
+	struct raid_map_data *map = &dev->raid_map;
+	struct raid_map_disk_data *dd = &map->data[0];
+	int is_write = 0;
+	u32 map_index;
+	u64 first_block, last_block;
+	u32 block_cnt;
+	u32 blocks_per_row;
+	u64 first_row, last_row;
+	u32 first_row_offset, last_row_offset;
+	u32 first_column, last_column;
+	u64 r0_first_row, r0_last_row;
+	u32 r5or6_blocks_per_row;
+	u64 r5or6_first_row, r5or6_last_row;
+	u32 r5or6_first_row_offset, r5or6_last_row_offset;
+	u32 r5or6_first_column, r5or6_last_column;
+	u32 total_disks_per_row;
+	u32 stripesize;
+	u32 first_group, last_group, current_group;
+	u32 map_row;
+	u32 disk_handle;
+	u64 disk_block;
+	u32 disk_block_cnt;
+	u8 cdb[16];
+	u8 cdb_len;
+	u16 strip_size;
+#if BITS_PER_LONG == 32
+	u64 tmpdiv;
+#endif
+	int offload_to_mirror;
+
+	if (!dev)
+		return -1;
+
+	/* check for valid opcode, get LBA and block count */
+	switch (cmd->cmnd[0]) {
+	case WRITE_6:
+		is_write = 1;
+	case READ_6:
+		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
+				(cmd->cmnd[2] << 8) |
+				cmd->cmnd[3]);
+		block_cnt = cmd->cmnd[4];
+		if (block_cnt == 0)
+			block_cnt = 256;
+		break;
+	case WRITE_10:
+		is_write = 1;
+	case READ_10:
+		first_block =
+			(((u64) cmd->cmnd[2]) << 24) |
+			(((u64) cmd->cmnd[3]) << 16) |
+			(((u64) cmd->cmnd[4]) << 8) |
+			cmd->cmnd[5];
+		block_cnt =
+			(((u32) cmd->cmnd[7]) << 8) |
+			cmd->cmnd[8];
+		break;
+	case WRITE_12:
+		is_write = 1;
+	case READ_12:
+		first_block =
+			(((u64) cmd->cmnd[2]) << 24) |
+			(((u64) cmd->cmnd[3]) << 16) |
+			(((u64) cmd->cmnd[4]) << 8) |
+			cmd->cmnd[5];
+		block_cnt =
+			(((u32) cmd->cmnd[6]) << 24) |
+			(((u32) cmd->cmnd[7]) << 16) |
+			(((u32) cmd->cmnd[8]) << 8) |
+		cmd->cmnd[9];
+		break;
+	case WRITE_16:
+		is_write = 1;
+	case READ_16:
+		first_block =
+			(((u64) cmd->cmnd[2]) << 56) |
+			(((u64) cmd->cmnd[3]) << 48) |
+			(((u64) cmd->cmnd[4]) << 40) |
+			(((u64) cmd->cmnd[5]) << 32) |
+			(((u64) cmd->cmnd[6]) << 24) |
+			(((u64) cmd->cmnd[7]) << 16) |
+			(((u64) cmd->cmnd[8]) << 8) |
+			cmd->cmnd[9];
+		block_cnt =
+			(((u32) cmd->cmnd[10]) << 24) |
+			(((u32) cmd->cmnd[11]) << 16) |
+			(((u32) cmd->cmnd[12]) << 8) |
+			cmd->cmnd[13];
+		break;
+	default:
+		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
+	}
+	last_block = first_block + block_cnt - 1;
+
+	/* check for write to non-RAID-0 */
+	if (is_write && dev->raid_level != 0)
+		return IO_ACCEL_INELIGIBLE;
+
+	/* check for invalid block or wraparound */
+	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
+		last_block < first_block)
+		return IO_ACCEL_INELIGIBLE;
+
+	/* calculate stripe information for the request */
+	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
+				le16_to_cpu(map->strip_size);
+	strip_size = le16_to_cpu(map->strip_size);
+#if BITS_PER_LONG == 32
+	tmpdiv = first_block;
+	(void) do_div(tmpdiv, blocks_per_row);
+	first_row = tmpdiv;
+	tmpdiv = last_block;
+	(void) do_div(tmpdiv, blocks_per_row);
+	last_row = tmpdiv;
+	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
+	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
+	tmpdiv = first_row_offset;
+	(void) do_div(tmpdiv, strip_size);
+	first_column = tmpdiv;
+	tmpdiv = last_row_offset;
+	(void) do_div(tmpdiv, strip_size);
+	last_column = tmpdiv;
+#else
+	first_row = first_block / blocks_per_row;
+	last_row = last_block / blocks_per_row;
+	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
+	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
+	first_column = first_row_offset / strip_size;
+	last_column = last_row_offset / strip_size;
+#endif
+
+	/* if this isn't a single row/column then give to the controller */
+	if ((first_row != last_row) || (first_column != last_column))
+		return IO_ACCEL_INELIGIBLE;
+
+	/* proceeding with driver mapping */
+	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
+				le16_to_cpu(map->metadata_disks_per_row);
+	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
+				le16_to_cpu(map->row_cnt);
+	map_index = (map_row * total_disks_per_row) + first_column;
+
+	switch (dev->raid_level) {
+	case HPSA_RAID_0:
+		break; /* nothing special to do */
+	case HPSA_RAID_1:
+		/* Handles load balance across RAID 1 members.
+		 * (2-drive R1 and R10 with even # of drives.)
+		 * Appropriate for SSDs, not optimal for HDDs
+		 */
+		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
+		if (dev->offload_to_mirror)
+			map_index += le16_to_cpu(map->data_disks_per_row);
+		dev->offload_to_mirror = !dev->offload_to_mirror;
+		break;
+	case HPSA_RAID_ADM:
+		/* Handles N-way mirrors  (R1-ADM)
+		 * and R10 with # of drives divisible by 3.)
+		 */
+		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
+
+		offload_to_mirror = dev->offload_to_mirror;
+		raid_map_helper(map, offload_to_mirror,
+				&map_index, &current_group);
+		/* set mirror group to use next time */
+		offload_to_mirror =
+			(offload_to_mirror >=
+			le16_to_cpu(map->layout_map_count) - 1)
+			? 0 : offload_to_mirror + 1;
+		dev->offload_to_mirror = offload_to_mirror;
+		/* Avoid direct use of dev->offload_to_mirror within this
+		 * function since multiple threads might simultaneously
+		 * increment it beyond the range of dev->layout_map_count -1.
+		 */
+		break;
+	case HPSA_RAID_5:
+	case HPSA_RAID_6:
+		if (le16_to_cpu(map->layout_map_count) <= 1)
+			break;
+
+		/* Verify first and last block are in same RAID group */
+		r5or6_blocks_per_row =
+			le16_to_cpu(map->strip_size) *
+			le16_to_cpu(map->data_disks_per_row);
+		BUG_ON(r5or6_blocks_per_row == 0);
+		stripesize = r5or6_blocks_per_row *
+			le16_to_cpu(map->layout_map_count);
+#if BITS_PER_LONG == 32
+		tmpdiv = first_block;
+		first_group = do_div(tmpdiv, stripesize);
+		tmpdiv = first_group;
+		(void) do_div(tmpdiv, r5or6_blocks_per_row);
+		first_group = tmpdiv;
+		tmpdiv = last_block;
+		last_group = do_div(tmpdiv, stripesize);
+		tmpdiv = last_group;
+		(void) do_div(tmpdiv, r5or6_blocks_per_row);
+		last_group = tmpdiv;
+#else
+		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
+		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
+#endif
+		if (first_group != last_group)
+			return IO_ACCEL_INELIGIBLE;
+
+		/* Verify request is in a single row of RAID 5/6 */
+#if BITS_PER_LONG == 32
+		tmpdiv = first_block;
+		(void) do_div(tmpdiv, stripesize);
+		first_row = r5or6_first_row = r0_first_row = tmpdiv;
+		tmpdiv = last_block;
+		(void) do_div(tmpdiv, stripesize);
+		r5or6_last_row = r0_last_row = tmpdiv;
+#else
+		first_row = r5or6_first_row = r0_first_row =
+						first_block / stripesize;
+		r5or6_last_row = r0_last_row = last_block / stripesize;
+#endif
+		if (r5or6_first_row != r5or6_last_row)
+			return IO_ACCEL_INELIGIBLE;
+
+
+		/* Verify request is in a single column */
+#if BITS_PER_LONG == 32
+		tmpdiv = first_block;
+		first_row_offset = do_div(tmpdiv, stripesize);
+		tmpdiv = first_row_offset;
+		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
+		r5or6_first_row_offset = first_row_offset;
+		tmpdiv = last_block;
+		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
+		tmpdiv = r5or6_last_row_offset;
+		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
+		tmpdiv = r5or6_first_row_offset;
+		(void) do_div(tmpdiv, map->strip_size);
+		first_column = r5or6_first_column = tmpdiv;
+		tmpdiv = r5or6_last_row_offset;
+		(void) do_div(tmpdiv, map->strip_size);
+		r5or6_last_column = tmpdiv;
+#else
+		first_row_offset = r5or6_first_row_offset =
+			(u32)((first_block % stripesize) %
+						r5or6_blocks_per_row);
+
+		r5or6_last_row_offset =
+			(u32)((last_block % stripesize) %
+						r5or6_blocks_per_row);
+
+		first_column = r5or6_first_column =
+			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
+		r5or6_last_column =
+			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
+#endif
+		if (r5or6_first_column != r5or6_last_column)
+			return IO_ACCEL_INELIGIBLE;
+
+		/* Request is eligible */
+		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
+			le16_to_cpu(map->row_cnt);
+
+		map_index = (first_group *
+			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
+			(map_row * total_disks_per_row) + first_column;
+		break;
+	default:
+		return IO_ACCEL_INELIGIBLE;
+	}
+
+	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
+		return IO_ACCEL_INELIGIBLE;
+
+	c->phys_disk = dev->phys_disk[map_index];
+	if (!c->phys_disk)
+		return IO_ACCEL_INELIGIBLE;
+
+	disk_handle = dd[map_index].ioaccel_handle;
+	disk_block = le64_to_cpu(map->disk_starting_blk) +
+			first_row * le16_to_cpu(map->strip_size) +
+			(first_row_offset - first_column *
+			le16_to_cpu(map->strip_size));
+	disk_block_cnt = block_cnt;
+
+	/* handle differing logical/physical block sizes */
+	if (map->phys_blk_shift) {
+		disk_block <<= map->phys_blk_shift;
+		disk_block_cnt <<= map->phys_blk_shift;
+	}
+	BUG_ON(disk_block_cnt > 0xffff);
+
+	/* build the new CDB for the physical disk I/O */
+	if (disk_block > 0xffffffff) {
+		cdb[0] = is_write ? WRITE_16 : READ_16;
+		cdb[1] = 0;
+		cdb[2] = (u8) (disk_block >> 56);
+		cdb[3] = (u8) (disk_block >> 48);
+		cdb[4] = (u8) (disk_block >> 40);
+		cdb[5] = (u8) (disk_block >> 32);
+		cdb[6] = (u8) (disk_block >> 24);
+		cdb[7] = (u8) (disk_block >> 16);
+		cdb[8] = (u8) (disk_block >> 8);
+		cdb[9] = (u8) (disk_block);
+		cdb[10] = (u8) (disk_block_cnt >> 24);
+		cdb[11] = (u8) (disk_block_cnt >> 16);
+		cdb[12] = (u8) (disk_block_cnt >> 8);
+		cdb[13] = (u8) (disk_block_cnt);
+		cdb[14] = 0;
+		cdb[15] = 0;
+		cdb_len = 16;
+	} else {
+		cdb[0] = is_write ? WRITE_10 : READ_10;
+		cdb[1] = 0;
+		cdb[2] = (u8) (disk_block >> 24);
+		cdb[3] = (u8) (disk_block >> 16);
+		cdb[4] = (u8) (disk_block >> 8);
+		cdb[5] = (u8) (disk_block);
+		cdb[6] = 0;
+		cdb[7] = (u8) (disk_block_cnt >> 8);
+		cdb[8] = (u8) (disk_block_cnt);
+		cdb[9] = 0;
+		cdb_len = 10;
+	}
+	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
+						dev->scsi3addr,
+						dev->phys_disk[map_index]);
+}
+
+/*
+ * Submit commands down the "normal" RAID stack path
+ * All callers to hpsa_ciss_submit must check lockup_detected
+ * beforehand, before (opt.) and after calling cmd_alloc
+ */
+static int hpsa_ciss_submit(struct ctlr_info *h,
+	struct CommandList *c, struct scsi_cmnd *cmd,
+	unsigned char scsi3addr[])
+{
+	cmd->host_scribble = (unsigned char *) c;
+	c->cmd_type = CMD_SCSI;
+	c->scsi_cmd = cmd;
+	c->Header.ReplyQueue = 0;  /* unused in simple mode */
+	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
+	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
+
+	/* Fill in the request block... */
+
+	c->Request.Timeout = 0;
+	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
+	c->Request.CDBLen = cmd->cmd_len;
+	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
+	switch (cmd->sc_data_direction) {
+	case DMA_TO_DEVICE:
+		c->Request.type_attr_dir =
+			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
+		break;
+	case DMA_FROM_DEVICE:
+		c->Request.type_attr_dir =
+			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
+		break;
+	case DMA_NONE:
+		c->Request.type_attr_dir =
+			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
+		break;
+	case DMA_BIDIRECTIONAL:
+		/* This can happen if a buggy application does a scsi passthru
+		 * and sets both inlen and outlen to non-zero. ( see
+		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
+		 */
+
+		c->Request.type_attr_dir =
+			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
+		/* This is technically wrong, and hpsa controllers should
+		 * reject it with CMD_INVALID, which is the most correct
+		 * response, but non-fibre backends appear to let it
+		 * slide by, and give the same results as if this field
+		 * were set correctly.  Either way is acceptable for
+		 * our purposes here.
+		 */
+
+		break;
+
+	default:
+		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
+			cmd->sc_data_direction);
+		BUG();
+		break;
+	}
+
+	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
+		hpsa_cmd_resolve_and_free(h, c);
+		return SCSI_MLQUEUE_HOST_BUSY;
+	}
+	enqueue_cmd_and_start_io(h, c);
+	/* the cmd'll come back via intr handler in complete_scsi_command()  */
+	return 0;
+}
+
+static void hpsa_cmd_init(struct ctlr_info *h, int index,
+				struct CommandList *c)
+{
+	dma_addr_t cmd_dma_handle, err_dma_handle;
+
+	/* Zero out all of commandlist except the last field, refcount */
+	memset(c, 0, offsetof(struct CommandList, refcount));
+	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
+	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
+	c->err_info = h->errinfo_pool + index;
+	memset(c->err_info, 0, sizeof(*c->err_info));
+	err_dma_handle = h->errinfo_pool_dhandle
+	    + index * sizeof(*c->err_info);
+	c->cmdindex = index;
+	c->busaddr = (u32) cmd_dma_handle;
+	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
+	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
+	c->h = h;
+	c->scsi_cmd = SCSI_CMD_IDLE;
+}
+
+static void hpsa_preinitialize_commands(struct ctlr_info *h)
+{
+	int i;
+
+	for (i = 0; i < h->nr_cmds; i++) {
+		struct CommandList *c = h->cmd_pool + i;
+
+		hpsa_cmd_init(h, i, c);
+		atomic_set(&c->refcount, 0);
+	}
+}
+
+static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
+				struct CommandList *c)
+{
+	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
+
+	BUG_ON(c->cmdindex != index);
+
+	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
+	memset(c->err_info, 0, sizeof(*c->err_info));
+	c->busaddr = (u32) cmd_dma_handle;
+}
+
+static int hpsa_ioaccel_submit(struct ctlr_info *h,
+		struct CommandList *c, struct scsi_cmnd *cmd,
+		unsigned char *scsi3addr)
+{
+	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
+	int rc = IO_ACCEL_INELIGIBLE;
+
+	if (!dev)
+		return SCSI_MLQUEUE_HOST_BUSY;
+
+	cmd->host_scribble = (unsigned char *) c;
+
+	if (dev->offload_enabled) {
+		hpsa_cmd_init(h, c->cmdindex, c);
+		c->cmd_type = CMD_SCSI;
+		c->scsi_cmd = cmd;
+		rc = hpsa_scsi_ioaccel_raid_map(h, c);
+		if (rc < 0)     /* scsi_dma_map failed. */
+			rc = SCSI_MLQUEUE_HOST_BUSY;
+	} else if (dev->hba_ioaccel_enabled) {
+		hpsa_cmd_init(h, c->cmdindex, c);
+		c->cmd_type = CMD_SCSI;
+		c->scsi_cmd = cmd;
+		rc = hpsa_scsi_ioaccel_direct_map(h, c);
+		if (rc < 0)     /* scsi_dma_map failed. */
+			rc = SCSI_MLQUEUE_HOST_BUSY;
+	}
+	return rc;
+}
+
+static void hpsa_command_resubmit_worker(struct work_struct *work)
+{
+	struct scsi_cmnd *cmd;
+	struct hpsa_scsi_dev_t *dev;
+	struct CommandList *c = container_of(work, struct CommandList, work);
+
+	cmd = c->scsi_cmd;
+	dev = cmd->device->hostdata;
+	if (!dev) {
+		cmd->result = DID_NO_CONNECT << 16;
+		return hpsa_cmd_free_and_done(c->h, c, cmd);
+	}
+	if (c->reset_pending)
+		return hpsa_cmd_free_and_done(c->h, c, cmd);
+	if (c->cmd_type == CMD_IOACCEL2) {
+		struct ctlr_info *h = c->h;
+		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
+		int rc;
+
+		if (c2->error_data.serv_response ==
+				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
+			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
+			if (rc == 0)
+				return;
+			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
+				/*
+				 * If we get here, it means dma mapping failed.
+				 * Try again via scsi mid layer, which will
+				 * then get SCSI_MLQUEUE_HOST_BUSY.
+				 */
+				cmd->result = DID_IMM_RETRY << 16;
+				return hpsa_cmd_free_and_done(h, c, cmd);
+			}
+			/* else, fall thru and resubmit down CISS path */
+		}
+	}
+	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
+	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
+		/*
+		 * If we get here, it means dma mapping failed. Try
+		 * again via scsi mid layer, which will then get
+		 * SCSI_MLQUEUE_HOST_BUSY.
+		 *
+		 * hpsa_ciss_submit will have already freed c
+		 * if it encountered a dma mapping failure.
+		 */
+		cmd->result = DID_IMM_RETRY << 16;
+		cmd->scsi_done(cmd);
+	}
+}
+
+/* Running in struct Scsi_Host->host_lock less mode */
+static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
+{
+	struct ctlr_info *h;
+	struct hpsa_scsi_dev_t *dev;
+	unsigned char scsi3addr[8];
+	struct CommandList *c;
+	int rc = 0;
+
+	/* Get the ptr to our adapter structure out of cmd->host. */
+	h = sdev_to_hba(cmd->device);
+
+	BUG_ON(cmd->request->tag < 0);
+
+	dev = cmd->device->hostdata;
+	if (!dev) {
+		cmd->result = DID_NO_CONNECT << 16;
+		cmd->scsi_done(cmd);
+		return 0;
+	}
+
+	if (dev->removed) {
+		cmd->result = DID_NO_CONNECT << 16;
+		cmd->scsi_done(cmd);
+		return 0;
+	}
+
+	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
+
+	if (unlikely(lockup_detected(h))) {
+		cmd->result = DID_NO_CONNECT << 16;
+		cmd->scsi_done(cmd);
+		return 0;
+	}
+	c = cmd_tagged_alloc(h, cmd);
+
+	/*
+	 * This is necessary because the SML doesn't zero out this field during
+	 * error recovery.
+	 */
+	cmd->result = 0;
+
+	/*
+	 * Call alternate submit routine for I/O accelerated commands.
+	 * Retries always go down the normal I/O path.
+	 */
+	if (likely(cmd->retries == 0 &&
+			!blk_rq_is_passthrough(cmd->request) &&
+			h->acciopath_status)) {
+		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
+		if (rc == 0)
+			return 0;
+		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
+			hpsa_cmd_resolve_and_free(h, c);
+			return SCSI_MLQUEUE_HOST_BUSY;
+		}
+	}
+	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
+}
+
+static void hpsa_scan_complete(struct ctlr_info *h)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&h->scan_lock, flags);
+	h->scan_finished = 1;
+	wake_up(&h->scan_wait_queue);
+	spin_unlock_irqrestore(&h->scan_lock, flags);
+}
+
+static void hpsa_scan_start(struct Scsi_Host *sh)
+{
+	struct ctlr_info *h = shost_to_hba(sh);
+	unsigned long flags;
+
+	/*
+	 * Don't let rescans be initiated on a controller known to be locked
+	 * up.  If the controller locks up *during* a rescan, that thread is
+	 * probably hosed, but at least we can prevent new rescan threads from
+	 * piling up on a locked up controller.
+	 */
+	if (unlikely(lockup_detected(h)))
+		return hpsa_scan_complete(h);
+
+	/*
+	 * If a scan is already waiting to run, no need to add another
+	 */
+	spin_lock_irqsave(&h->scan_lock, flags);
+	if (h->scan_waiting) {
+		spin_unlock_irqrestore(&h->scan_lock, flags);
+		return;
+	}
+
+	spin_unlock_irqrestore(&h->scan_lock, flags);
+
+	/* wait until any scan already in progress is finished. */
+	while (1) {
+		spin_lock_irqsave(&h->scan_lock, flags);
+		if (h->scan_finished)
+			break;
+		h->scan_waiting = 1;
+		spin_unlock_irqrestore(&h->scan_lock, flags);
+		wait_event(h->scan_wait_queue, h->scan_finished);
+		/* Note: We don't need to worry about a race between this
+		 * thread and driver unload because the midlayer will
+		 * have incremented the reference count, so unload won't
+		 * happen if we're in here.
+		 */
+	}
+	h->scan_finished = 0; /* mark scan as in progress */
+	h->scan_waiting = 0;
+	spin_unlock_irqrestore(&h->scan_lock, flags);
+
+	if (unlikely(lockup_detected(h)))
+		return hpsa_scan_complete(h);
+
+	/*
+	 * Do the scan after a reset completion
+	 */
+	spin_lock_irqsave(&h->reset_lock, flags);
+	if (h->reset_in_progress) {
+		h->drv_req_rescan = 1;
+		spin_unlock_irqrestore(&h->reset_lock, flags);
+		hpsa_scan_complete(h);
+		return;
+	}
+	spin_unlock_irqrestore(&h->reset_lock, flags);
+
+	hpsa_update_scsi_devices(h);
+
+	hpsa_scan_complete(h);
+}
+
+static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
+{
+	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
+
+	if (!logical_drive)
+		return -ENODEV;
+
+	if (qdepth < 1)
+		qdepth = 1;
+	else if (qdepth > logical_drive->queue_depth)
+		qdepth = logical_drive->queue_depth;
+
+	return scsi_change_queue_depth(sdev, qdepth);
+}
+
+static int hpsa_scan_finished(struct Scsi_Host *sh,
+	unsigned long elapsed_time)
+{
+	struct ctlr_info *h = shost_to_hba(sh);
+	unsigned long flags;
+	int finished;
+
+	spin_lock_irqsave(&h->scan_lock, flags);
+	finished = h->scan_finished;
+	spin_unlock_irqrestore(&h->scan_lock, flags);
+	return finished;
+}
+
+static int hpsa_scsi_host_alloc(struct ctlr_info *h)
+{
+	struct Scsi_Host *sh;
+
+	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
+	if (sh == NULL) {
+		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
+		return -ENOMEM;
+	}
+
+	sh->io_port = 0;
+	sh->n_io_port = 0;
+	sh->this_id = -1;
+	sh->max_channel = 3;
+	sh->max_cmd_len = MAX_COMMAND_SIZE;
+	sh->max_lun = HPSA_MAX_LUN;
+	sh->max_id = HPSA_MAX_LUN;
+	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
+	sh->cmd_per_lun = sh->can_queue;
+	sh->sg_tablesize = h->maxsgentries;
+	sh->transportt = hpsa_sas_transport_template;
+	sh->hostdata[0] = (unsigned long) h;
+	sh->irq = pci_irq_vector(h->pdev, 0);
+	sh->unique_id = sh->irq;
+
+	h->scsi_host = sh;
+	return 0;
+}
+
+static int hpsa_scsi_add_host(struct ctlr_info *h)
+{
+	int rv;
+
+	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
+	if (rv) {
+		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
+		return rv;
+	}
+	scsi_scan_host(h->scsi_host);
+	return 0;
+}
+
+/*
+ * The block layer has already gone to the trouble of picking out a unique,
+ * small-integer tag for this request.  We use an offset from that value as
+ * an index to select our command block.  (The offset allows us to reserve the
+ * low-numbered entries for our own uses.)
+ */
+static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
+{
+	int idx = scmd->request->tag;
+
+	if (idx < 0)
+		return idx;
+
+	/* Offset to leave space for internal cmds. */
+	return idx += HPSA_NRESERVED_CMDS;
+}
+
+/*
+ * Send a TEST_UNIT_READY command to the specified LUN using the specified
+ * reply queue; returns zero if the unit is ready, and non-zero otherwise.
+ */
+static int hpsa_send_test_unit_ready(struct ctlr_info *h,
+				struct CommandList *c, unsigned char lunaddr[],
+				int reply_queue)
+{
+	int rc;
+
+	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
+	(void) fill_cmd(c, TEST_UNIT_READY, h,
+			NULL, 0, 0, lunaddr, TYPE_CMD);
+	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
+	if (rc)
+		return rc;
+	/* no unmap needed here because no data xfer. */
+
+	/* Check if the unit is already ready. */
+	if (c->err_info->CommandStatus == CMD_SUCCESS)
+		return 0;
+
+	/*
+	 * The first command sent after reset will receive "unit attention" to
+	 * indicate that the LUN has been reset...this is actually what we're
+	 * looking for (but, success is good too).
+	 */
+	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
+		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
+			(c->err_info->SenseInfo[2] == NO_SENSE ||
+			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
+		return 0;
+
+	return 1;
+}
+
+/*
+ * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
+ * returns zero when the unit is ready, and non-zero when giving up.
+ */
+static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
+				struct CommandList *c,
+				unsigned char lunaddr[], int reply_queue)
+{
+	int rc;
+	int count = 0;
+	int waittime = 1; /* seconds */
+
+	/* Send test unit ready until device ready, or give up. */
+	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
+
+		/*
+		 * Wait for a bit.  do this first, because if we send
+		 * the TUR right away, the reset will just abort it.
+		 */
+		msleep(1000 * waittime);
+
+		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
+		if (!rc)
+			break;
+
+		/* Increase wait time with each try, up to a point. */
+		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
+			waittime *= 2;
+
+		dev_warn(&h->pdev->dev,
+			 "waiting %d secs for device to become ready.\n",
+			 waittime);
+	}
+
+	return rc;
+}
+
+static int wait_for_device_to_become_ready(struct ctlr_info *h,
+					   unsigned char lunaddr[],
+					   int reply_queue)
+{
+	int first_queue;
+	int last_queue;
+	int rq;
+	int rc = 0;
+	struct CommandList *c;
+
+	c = cmd_alloc(h);
+
+	/*
+	 * If no specific reply queue was requested, then send the TUR
+	 * repeatedly, requesting a reply on each reply queue; otherwise execute
+	 * the loop exactly once using only the specified queue.
+	 */
+	if (reply_queue == DEFAULT_REPLY_QUEUE) {
+		first_queue = 0;
+		last_queue = h->nreply_queues - 1;
+	} else {
+		first_queue = reply_queue;
+		last_queue = reply_queue;
+	}
+
+	for (rq = first_queue; rq <= last_queue; rq++) {
+		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
+		if (rc)
+			break;
+	}
+
+	if (rc)
+		dev_warn(&h->pdev->dev, "giving up on device.\n");
+	else
+		dev_warn(&h->pdev->dev, "device is ready.\n");
+
+	cmd_free(h, c);
+	return rc;
+}
+
+/* Need at least one of these error handlers to keep ../scsi/hosts.c from
+ * complaining.  Doing a host- or bus-reset can't do anything good here.
+ */
+static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
+{
+	int rc = SUCCESS;
+	struct ctlr_info *h;
+	struct hpsa_scsi_dev_t *dev;
+	u8 reset_type;
+	char msg[48];
+	unsigned long flags;
+
+	/* find the controller to which the command to be aborted was sent */
+	h = sdev_to_hba(scsicmd->device);
+	if (h == NULL) /* paranoia */
+		return FAILED;
+
+	spin_lock_irqsave(&h->reset_lock, flags);
+	h->reset_in_progress = 1;
+	spin_unlock_irqrestore(&h->reset_lock, flags);
+
+	if (lockup_detected(h)) {
+		rc = FAILED;
+		goto return_reset_status;
+	}
+
+	dev = scsicmd->device->hostdata;
+	if (!dev) {
+		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
+		rc = FAILED;
+		goto return_reset_status;
+	}
+
+	if (dev->devtype == TYPE_ENCLOSURE) {
+		rc = SUCCESS;
+		goto return_reset_status;
+	}
+
+	/* if controller locked up, we can guarantee command won't complete */
+	if (lockup_detected(h)) {
+		snprintf(msg, sizeof(msg),
+			 "cmd %d RESET FAILED, lockup detected",
+			 hpsa_get_cmd_index(scsicmd));
+		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
+		rc = FAILED;
+		goto return_reset_status;
+	}
+
+	/* this reset request might be the result of a lockup; check */
+	if (detect_controller_lockup(h)) {
+		snprintf(msg, sizeof(msg),
+			 "cmd %d RESET FAILED, new lockup detected",
+			 hpsa_get_cmd_index(scsicmd));
+		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
+		rc = FAILED;
+		goto return_reset_status;
+	}
+
+	/* Do not attempt on controller */
+	if (is_hba_lunid(dev->scsi3addr)) {
+		rc = SUCCESS;
+		goto return_reset_status;
+	}
+
+	if (is_logical_dev_addr_mode(dev->scsi3addr))
+		reset_type = HPSA_DEVICE_RESET_MSG;
+	else
+		reset_type = HPSA_PHYS_TARGET_RESET;
+
+	sprintf(msg, "resetting %s",
+		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
+	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
+
+	/* send a reset to the SCSI LUN which the command was sent to */
+	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
+			   DEFAULT_REPLY_QUEUE);
+	if (rc == 0)
+		rc = SUCCESS;
+	else
+		rc = FAILED;
+
+	sprintf(msg, "reset %s %s",
+		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
+		rc == SUCCESS ? "completed successfully" : "failed");
+	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
+
+return_reset_status:
+	spin_lock_irqsave(&h->reset_lock, flags);
+	h->reset_in_progress = 0;
+	spin_unlock_irqrestore(&h->reset_lock, flags);
+	return rc;
+}
+
+/*
+ * For operations with an associated SCSI command, a command block is allocated
+ * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
+ * block request tag as an index into a table of entries.  cmd_tagged_free() is
+ * the complement, although cmd_free() may be called instead.
+ */
+static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
+					    struct scsi_cmnd *scmd)
+{
+	int idx = hpsa_get_cmd_index(scmd);
+	struct CommandList *c = h->cmd_pool + idx;
+
+	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
+		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
+			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
+		/* The index value comes from the block layer, so if it's out of
+		 * bounds, it's probably not our bug.
+		 */
+		BUG();
+	}
+
+	atomic_inc(&c->refcount);
+	if (unlikely(!hpsa_is_cmd_idle(c))) {
+		/*
+		 * We expect that the SCSI layer will hand us a unique tag
+		 * value.  Thus, there should never be a collision here between
+		 * two requests...because if the selected command isn't idle
+		 * then someone is going to be very disappointed.
+		 */
+		dev_err(&h->pdev->dev,
+			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
+			idx);
+		if (c->scsi_cmd != NULL)
+			scsi_print_command(c->scsi_cmd);
+		scsi_print_command(scmd);
+	}
+
+	hpsa_cmd_partial_init(h, idx, c);
+	return c;
+}
+
+static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
+{
+	/*
+	 * Release our reference to the block.  We don't need to do anything
+	 * else to free it, because it is accessed by index.
+	 */
+	(void)atomic_dec(&c->refcount);
+}
+
+/*
+ * For operations that cannot sleep, a command block is allocated at init,
+ * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
+ * which ones are free or in use.  Lock must be held when calling this.
+ * cmd_free() is the complement.
+ * This function never gives up and returns NULL.  If it hangs,
+ * another thread must call cmd_free() to free some tags.
+ */
+
+static struct CommandList *cmd_alloc(struct ctlr_info *h)
+{
+	struct CommandList *c;
+	int refcount, i;
+	int offset = 0;
+
+	/*
+	 * There is some *extremely* small but non-zero chance that that
+	 * multiple threads could get in here, and one thread could
+	 * be scanning through the list of bits looking for a free
+	 * one, but the free ones are always behind him, and other
+	 * threads sneak in behind him and eat them before he can
+	 * get to them, so that while there is always a free one, a
+	 * very unlucky thread might be starved anyway, never able to
+	 * beat the other threads.  In reality, this happens so
+	 * infrequently as to be indistinguishable from never.
+	 *
+	 * Note that we start allocating commands before the SCSI host structure
+	 * is initialized.  Since the search starts at bit zero, this
+	 * all works, since we have at least one command structure available;
+	 * however, it means that the structures with the low indexes have to be
+	 * reserved for driver-initiated requests, while requests from the block
+	 * layer will use the higher indexes.
+	 */
+
+	for (;;) {
+		i = find_next_zero_bit(h->cmd_pool_bits,
+					HPSA_NRESERVED_CMDS,
+					offset);
+		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
+			offset = 0;
+			continue;
+		}
+		c = h->cmd_pool + i;
+		refcount = atomic_inc_return(&c->refcount);
+		if (unlikely(refcount > 1)) {
+			cmd_free(h, c); /* already in use */
+			offset = (i + 1) % HPSA_NRESERVED_CMDS;
+			continue;
+		}
+		set_bit(i & (BITS_PER_LONG - 1),
+			h->cmd_pool_bits + (i / BITS_PER_LONG));
+		break; /* it's ours now. */
+	}
+	hpsa_cmd_partial_init(h, i, c);
+	return c;
+}
+
+/*
+ * This is the complementary operation to cmd_alloc().  Note, however, in some
+ * corner cases it may also be used to free blocks allocated by
+ * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
+ * the clear-bit is harmless.
+ */
+static void cmd_free(struct ctlr_info *h, struct CommandList *c)
+{
+	if (atomic_dec_and_test(&c->refcount)) {
+		int i;
+
+		i = c - h->cmd_pool;
+		clear_bit(i & (BITS_PER_LONG - 1),
+			  h->cmd_pool_bits + (i / BITS_PER_LONG));
+	}
+}
+
+#ifdef CONFIG_COMPAT
+
+static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
+	void __user *arg)
+{
+	IOCTL32_Command_struct __user *arg32 =
+	    (IOCTL32_Command_struct __user *) arg;
+	IOCTL_Command_struct arg64;
+	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
+	int err;
+	u32 cp;
+
+	memset(&arg64, 0, sizeof(arg64));
+	err = 0;
+	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
+			   sizeof(arg64.LUN_info));
+	err |= copy_from_user(&arg64.Request, &arg32->Request,
+			   sizeof(arg64.Request));
+	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
+			   sizeof(arg64.error_info));
+	err |= get_user(arg64.buf_size, &arg32->buf_size);
+	err |= get_user(cp, &arg32->buf);
+	arg64.buf = compat_ptr(cp);
+	err |= copy_to_user(p, &arg64, sizeof(arg64));
+
+	if (err)
+		return -EFAULT;
+
+	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
+	if (err)
+		return err;
+	err |= copy_in_user(&arg32->error_info, &p->error_info,
+			 sizeof(arg32->error_info));
+	if (err)
+		return -EFAULT;
+	return err;
+}
+
+static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
+	int cmd, void __user *arg)
+{
+	BIG_IOCTL32_Command_struct __user *arg32 =
+	    (BIG_IOCTL32_Command_struct __user *) arg;
+	BIG_IOCTL_Command_struct arg64;
+	BIG_IOCTL_Command_struct __user *p =
+	    compat_alloc_user_space(sizeof(arg64));
+	int err;
+	u32 cp;
+
+	memset(&arg64, 0, sizeof(arg64));
+	err = 0;
+	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
+			   sizeof(arg64.LUN_info));
+	err |= copy_from_user(&arg64.Request, &arg32->Request,
+			   sizeof(arg64.Request));
+	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
+			   sizeof(arg64.error_info));
+	err |= get_user(arg64.buf_size, &arg32->buf_size);
+	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
+	err |= get_user(cp, &arg32->buf);
+	arg64.buf = compat_ptr(cp);
+	err |= copy_to_user(p, &arg64, sizeof(arg64));
+
+	if (err)
+		return -EFAULT;
+
+	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
+	if (err)
+		return err;
+	err |= copy_in_user(&arg32->error_info, &p->error_info,
+			 sizeof(arg32->error_info));
+	if (err)
+		return -EFAULT;
+	return err;
+}
+
+static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
+{
+	switch (cmd) {
+	case CCISS_GETPCIINFO:
+	case CCISS_GETINTINFO:
+	case CCISS_SETINTINFO:
+	case CCISS_GETNODENAME:
+	case CCISS_SETNODENAME:
+	case CCISS_GETHEARTBEAT:
+	case CCISS_GETBUSTYPES:
+	case CCISS_GETFIRMVER:
+	case CCISS_GETDRIVVER:
+	case CCISS_REVALIDVOLS:
+	case CCISS_DEREGDISK:
+	case CCISS_REGNEWDISK:
+	case CCISS_REGNEWD:
+	case CCISS_RESCANDISK:
+	case CCISS_GETLUNINFO:
+		return hpsa_ioctl(dev, cmd, arg);
+
+	case CCISS_PASSTHRU32:
+		return hpsa_ioctl32_passthru(dev, cmd, arg);
+	case CCISS_BIG_PASSTHRU32:
+		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
+
+	default:
+		return -ENOIOCTLCMD;
+	}
+}
+#endif
+
+static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
+{
+	struct hpsa_pci_info pciinfo;
+
+	if (!argp)
+		return -EINVAL;
+	pciinfo.domain = pci_domain_nr(h->pdev->bus);
+	pciinfo.bus = h->pdev->bus->number;
+	pciinfo.dev_fn = h->pdev->devfn;
+	pciinfo.board_id = h->board_id;
+	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
+		return -EFAULT;
+	return 0;
+}
+
+static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
+{
+	DriverVer_type DriverVer;
+	unsigned char vmaj, vmin, vsubmin;
+	int rc;
+
+	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
+		&vmaj, &vmin, &vsubmin);
+	if (rc != 3) {
+		dev_info(&h->pdev->dev, "driver version string '%s' "
+			"unrecognized.", HPSA_DRIVER_VERSION);
+		vmaj = 0;
+		vmin = 0;
+		vsubmin = 0;
+	}
+	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
+	if (!argp)
+		return -EINVAL;
+	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
+		return -EFAULT;
+	return 0;
+}
+
+static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
+{
+	IOCTL_Command_struct iocommand;
+	struct CommandList *c;
+	char *buff = NULL;
+	u64 temp64;
+	int rc = 0;
+
+	if (!argp)
+		return -EINVAL;
+	if (!capable(CAP_SYS_RAWIO))
+		return -EPERM;
+	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
+		return -EFAULT;
+	if ((iocommand.buf_size < 1) &&
+	    (iocommand.Request.Type.Direction != XFER_NONE)) {
+		return -EINVAL;
+	}
+	if (iocommand.buf_size > 0) {
+		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
+		if (buff == NULL)
+			return -ENOMEM;
+		if (iocommand.Request.Type.Direction & XFER_WRITE) {
+			/* Copy the data into the buffer we created */
+			if (copy_from_user(buff, iocommand.buf,
+				iocommand.buf_size)) {
+				rc = -EFAULT;
+				goto out_kfree;
+			}
+		} else {
+			memset(buff, 0, iocommand.buf_size);
+		}
+	}
+	c = cmd_alloc(h);
+
+	/* Fill in the command type */
+	c->cmd_type = CMD_IOCTL_PEND;
+	c->scsi_cmd = SCSI_CMD_BUSY;
+	/* Fill in Command Header */
+	c->Header.ReplyQueue = 0; /* unused in simple mode */
+	if (iocommand.buf_size > 0) {	/* buffer to fill */
+		c->Header.SGList = 1;
+		c->Header.SGTotal = cpu_to_le16(1);
+	} else	{ /* no buffers to fill */
+		c->Header.SGList = 0;
+		c->Header.SGTotal = cpu_to_le16(0);
+	}
+	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
+
+	/* Fill in Request block */
+	memcpy(&c->Request, &iocommand.Request,
+		sizeof(c->Request));
+
+	/* Fill in the scatter gather information */
+	if (iocommand.buf_size > 0) {
+		temp64 = pci_map_single(h->pdev, buff,
+			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
+		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
+			c->SG[0].Addr = cpu_to_le64(0);
+			c->SG[0].Len = cpu_to_le32(0);
+			rc = -ENOMEM;
+			goto out;
+		}
+		c->SG[0].Addr = cpu_to_le64(temp64);
+		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
+		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
+	}
+	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
+					NO_TIMEOUT);
+	if (iocommand.buf_size > 0)
+		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
+	check_ioctl_unit_attention(h, c);
+	if (rc) {
+		rc = -EIO;
+		goto out;
+	}
+
+	/* Copy the error information out */
+	memcpy(&iocommand.error_info, c->err_info,
+		sizeof(iocommand.error_info));
+	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
+		rc = -EFAULT;
+		goto out;
+	}
+	if ((iocommand.Request.Type.Direction & XFER_READ) &&
+		iocommand.buf_size > 0) {
+		/* Copy the data out of the buffer we created */
+		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
+			rc = -EFAULT;
+			goto out;
+		}
+	}
+out:
+	cmd_free(h, c);
+out_kfree:
+	kfree(buff);
+	return rc;
+}
+
+static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
+{
+	BIG_IOCTL_Command_struct *ioc;
+	struct CommandList *c;
+	unsigned char **buff = NULL;
+	int *buff_size = NULL;
+	u64 temp64;
+	BYTE sg_used = 0;
+	int status = 0;
+	u32 left;
+	u32 sz;
+	BYTE __user *data_ptr;
+
+	if (!argp)
+		return -EINVAL;
+	if (!capable(CAP_SYS_RAWIO))
+		return -EPERM;
+	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
+	if (!ioc) {
+		status = -ENOMEM;
+		goto cleanup1;
+	}
+	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
+		status = -EFAULT;
+		goto cleanup1;
+	}
+	if ((ioc->buf_size < 1) &&
+	    (ioc->Request.Type.Direction != XFER_NONE)) {
+		status = -EINVAL;
+		goto cleanup1;
+	}
+	/* Check kmalloc limits  using all SGs */
+	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
+		status = -EINVAL;
+		goto cleanup1;
+	}
+	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
+		status = -EINVAL;
+		goto cleanup1;
+	}
+	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
+	if (!buff) {
+		status = -ENOMEM;
+		goto cleanup1;
+	}
+	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
+	if (!buff_size) {
+		status = -ENOMEM;
+		goto cleanup1;
+	}
+	left = ioc->buf_size;
+	data_ptr = ioc->buf;
+	while (left) {
+		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
+		buff_size[sg_used] = sz;
+		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
+		if (buff[sg_used] == NULL) {
+			status = -ENOMEM;
+			goto cleanup1;
+		}
+		if (ioc->Request.Type.Direction & XFER_WRITE) {
+			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
+				status = -EFAULT;
+				goto cleanup1;
+			}
+		} else
+			memset(buff[sg_used], 0, sz);
+		left -= sz;
+		data_ptr += sz;
+		sg_used++;
+	}
+	c = cmd_alloc(h);
+
+	c->cmd_type = CMD_IOCTL_PEND;
+	c->scsi_cmd = SCSI_CMD_BUSY;
+	c->Header.ReplyQueue = 0;
+	c->Header.SGList = (u8) sg_used;
+	c->Header.SGTotal = cpu_to_le16(sg_used);
+	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
+	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
+	if (ioc->buf_size > 0) {
+		int i;
+		for (i = 0; i < sg_used; i++) {
+			temp64 = pci_map_single(h->pdev, buff[i],
+				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
+			if (dma_mapping_error(&h->pdev->dev,
+							(dma_addr_t) temp64)) {
+				c->SG[i].Addr = cpu_to_le64(0);
+				c->SG[i].Len = cpu_to_le32(0);
+				hpsa_pci_unmap(h->pdev, c, i,
+					PCI_DMA_BIDIRECTIONAL);
+				status = -ENOMEM;
+				goto cleanup0;
+			}
+			c->SG[i].Addr = cpu_to_le64(temp64);
+			c->SG[i].Len = cpu_to_le32(buff_size[i]);
+			c->SG[i].Ext = cpu_to_le32(0);
+		}
+		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
+	}
+	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
+						NO_TIMEOUT);
+	if (sg_used)
+		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
+	check_ioctl_unit_attention(h, c);
+	if (status) {
+		status = -EIO;
+		goto cleanup0;
+	}
+
+	/* Copy the error information out */
+	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
+	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
+		status = -EFAULT;
+		goto cleanup0;
+	}
+	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
+		int i;
+
+		/* Copy the data out of the buffer we created */
+		BYTE __user *ptr = ioc->buf;
+		for (i = 0; i < sg_used; i++) {
+			if (copy_to_user(ptr, buff[i], buff_size[i])) {
+				status = -EFAULT;
+				goto cleanup0;
+			}
+			ptr += buff_size[i];
+		}
+	}
+	status = 0;
+cleanup0:
+	cmd_free(h, c);
+cleanup1:
+	if (buff) {
+		int i;
+
+		for (i = 0; i < sg_used; i++)
+			kfree(buff[i]);
+		kfree(buff);
+	}
+	kfree(buff_size);
+	kfree(ioc);
+	return status;
+}
+
+static void check_ioctl_unit_attention(struct ctlr_info *h,
+	struct CommandList *c)
+{
+	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
+			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
+		(void) check_for_unit_attention(h, c);
+}
+
+/*
+ * ioctl
+ */
+static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
+{
+	struct ctlr_info *h;
+	void __user *argp = (void __user *)arg;
+	int rc;
+
+	h = sdev_to_hba(dev);
+
+	switch (cmd) {
+	case CCISS_DEREGDISK:
+	case CCISS_REGNEWDISK:
+	case CCISS_REGNEWD:
+		hpsa_scan_start(h->scsi_host);
+		return 0;
+	case CCISS_GETPCIINFO:
+		return hpsa_getpciinfo_ioctl(h, argp);
+	case CCISS_GETDRIVVER:
+		return hpsa_getdrivver_ioctl(h, argp);
+	case CCISS_PASSTHRU:
+		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
+			return -EAGAIN;
+		rc = hpsa_passthru_ioctl(h, argp);
+		atomic_inc(&h->passthru_cmds_avail);
+		return rc;
+	case CCISS_BIG_PASSTHRU:
+		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
+			return -EAGAIN;
+		rc = hpsa_big_passthru_ioctl(h, argp);
+		atomic_inc(&h->passthru_cmds_avail);
+		return rc;
+	default:
+		return -ENOTTY;
+	}
+}
+
+static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
+				u8 reset_type)
+{
+	struct CommandList *c;
+
+	c = cmd_alloc(h);
+
+	/* fill_cmd can't fail here, no data buffer to map */
+	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
+		RAID_CTLR_LUNID, TYPE_MSG);
+	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
+	c->waiting = NULL;
+	enqueue_cmd_and_start_io(h, c);
+	/* Don't wait for completion, the reset won't complete.  Don't free
+	 * the command either.  This is the last command we will send before
+	 * re-initializing everything, so it doesn't matter and won't leak.
+	 */
+	return;
+}
+
+static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
+	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
+	int cmd_type)
+{
+	int pci_dir = XFER_NONE;
+
+	c->cmd_type = CMD_IOCTL_PEND;
+	c->scsi_cmd = SCSI_CMD_BUSY;
+	c->Header.ReplyQueue = 0;
+	if (buff != NULL && size > 0) {
+		c->Header.SGList = 1;
+		c->Header.SGTotal = cpu_to_le16(1);
+	} else {
+		c->Header.SGList = 0;
+		c->Header.SGTotal = cpu_to_le16(0);
+	}
+	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
+
+	if (cmd_type == TYPE_CMD) {
+		switch (cmd) {
+		case HPSA_INQUIRY:
+			/* are we trying to read a vital product page */
+			if (page_code & VPD_PAGE) {
+				c->Request.CDB[1] = 0x01;
+				c->Request.CDB[2] = (page_code & 0xff);
+			}
+			c->Request.CDBLen = 6;
+			c->Request.type_attr_dir =
+				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+			c->Request.Timeout = 0;
+			c->Request.CDB[0] = HPSA_INQUIRY;
+			c->Request.CDB[4] = size & 0xFF;
+			break;
+		case HPSA_REPORT_LOG:
+		case HPSA_REPORT_PHYS:
+			/* Talking to controller so It's a physical command
+			   mode = 00 target = 0.  Nothing to write.
+			 */
+			c->Request.CDBLen = 12;
+			c->Request.type_attr_dir =
+				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+			c->Request.Timeout = 0;
+			c->Request.CDB[0] = cmd;
+			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
+			c->Request.CDB[7] = (size >> 16) & 0xFF;
+			c->Request.CDB[8] = (size >> 8) & 0xFF;
+			c->Request.CDB[9] = size & 0xFF;
+			break;
+		case BMIC_SENSE_DIAG_OPTIONS:
+			c->Request.CDBLen = 16;
+			c->Request.type_attr_dir =
+				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+			c->Request.Timeout = 0;
+			/* Spec says this should be BMIC_WRITE */
+			c->Request.CDB[0] = BMIC_READ;
+			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
+			break;
+		case BMIC_SET_DIAG_OPTIONS:
+			c->Request.CDBLen = 16;
+			c->Request.type_attr_dir =
+					TYPE_ATTR_DIR(cmd_type,
+						ATTR_SIMPLE, XFER_WRITE);
+			c->Request.Timeout = 0;
+			c->Request.CDB[0] = BMIC_WRITE;
+			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
+			break;
+		case HPSA_CACHE_FLUSH:
+			c->Request.CDBLen = 12;
+			c->Request.type_attr_dir =
+					TYPE_ATTR_DIR(cmd_type,
+						ATTR_SIMPLE, XFER_WRITE);
+			c->Request.Timeout = 0;
+			c->Request.CDB[0] = BMIC_WRITE;
+			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
+			c->Request.CDB[7] = (size >> 8) & 0xFF;
+			c->Request.CDB[8] = size & 0xFF;
+			break;
+		case TEST_UNIT_READY:
+			c->Request.CDBLen = 6;
+			c->Request.type_attr_dir =
+				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
+			c->Request.Timeout = 0;
+			break;
+		case HPSA_GET_RAID_MAP:
+			c->Request.CDBLen = 12;
+			c->Request.type_attr_dir =
+				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+			c->Request.Timeout = 0;
+			c->Request.CDB[0] = HPSA_CISS_READ;
+			c->Request.CDB[1] = cmd;
+			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
+			c->Request.CDB[7] = (size >> 16) & 0xFF;
+			c->Request.CDB[8] = (size >> 8) & 0xFF;
+			c->Request.CDB[9] = size & 0xFF;
+			break;
+		case BMIC_SENSE_CONTROLLER_PARAMETERS:
+			c->Request.CDBLen = 10;
+			c->Request.type_attr_dir =
+				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+			c->Request.Timeout = 0;
+			c->Request.CDB[0] = BMIC_READ;
+			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
+			c->Request.CDB[7] = (size >> 16) & 0xFF;
+			c->Request.CDB[8] = (size >> 8) & 0xFF;
+			break;
+		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
+			c->Request.CDBLen = 10;
+			c->Request.type_attr_dir =
+				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+			c->Request.Timeout = 0;
+			c->Request.CDB[0] = BMIC_READ;
+			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
+			c->Request.CDB[7] = (size >> 16) & 0xFF;
+			c->Request.CDB[8] = (size >> 8) & 0XFF;
+			break;
+		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
+			c->Request.CDBLen = 10;
+			c->Request.type_attr_dir =
+				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+			c->Request.Timeout = 0;
+			c->Request.CDB[0] = BMIC_READ;
+			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
+			c->Request.CDB[7] = (size >> 16) & 0xFF;
+			c->Request.CDB[8] = (size >> 8) & 0XFF;
+			break;
+		case BMIC_SENSE_STORAGE_BOX_PARAMS:
+			c->Request.CDBLen = 10;
+			c->Request.type_attr_dir =
+				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+			c->Request.Timeout = 0;
+			c->Request.CDB[0] = BMIC_READ;
+			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
+			c->Request.CDB[7] = (size >> 16) & 0xFF;
+			c->Request.CDB[8] = (size >> 8) & 0XFF;
+			break;
+		case BMIC_IDENTIFY_CONTROLLER:
+			c->Request.CDBLen = 10;
+			c->Request.type_attr_dir =
+				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+			c->Request.Timeout = 0;
+			c->Request.CDB[0] = BMIC_READ;
+			c->Request.CDB[1] = 0;
+			c->Request.CDB[2] = 0;
+			c->Request.CDB[3] = 0;
+			c->Request.CDB[4] = 0;
+			c->Request.CDB[5] = 0;
+			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
+			c->Request.CDB[7] = (size >> 16) & 0xFF;
+			c->Request.CDB[8] = (size >> 8) & 0XFF;
+			c->Request.CDB[9] = 0;
+			break;
+		default:
+			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
+			BUG();
+		}
+	} else if (cmd_type == TYPE_MSG) {
+		switch (cmd) {
+
+		case  HPSA_PHYS_TARGET_RESET:
+			c->Request.CDBLen = 16;
+			c->Request.type_attr_dir =
+				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
+			c->Request.Timeout = 0; /* Don't time out */
+			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
+			c->Request.CDB[0] = HPSA_RESET;
+			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
+			/* Physical target reset needs no control bytes 4-7*/
+			c->Request.CDB[4] = 0x00;
+			c->Request.CDB[5] = 0x00;
+			c->Request.CDB[6] = 0x00;
+			c->Request.CDB[7] = 0x00;
+			break;
+		case  HPSA_DEVICE_RESET_MSG:
+			c->Request.CDBLen = 16;
+			c->Request.type_attr_dir =
+				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
+			c->Request.Timeout = 0; /* Don't time out */
+			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
+			c->Request.CDB[0] =  cmd;
+			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
+			/* If bytes 4-7 are zero, it means reset the */
+			/* LunID device */
+			c->Request.CDB[4] = 0x00;
+			c->Request.CDB[5] = 0x00;
+			c->Request.CDB[6] = 0x00;
+			c->Request.CDB[7] = 0x00;
+			break;
+		default:
+			dev_warn(&h->pdev->dev, "unknown message type %d\n",
+				cmd);
+			BUG();
+		}
+	} else {
+		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
+		BUG();
+	}
+
+	switch (GET_DIR(c->Request.type_attr_dir)) {
+	case XFER_READ:
+		pci_dir = PCI_DMA_FROMDEVICE;
+		break;
+	case XFER_WRITE:
+		pci_dir = PCI_DMA_TODEVICE;
+		break;
+	case XFER_NONE:
+		pci_dir = PCI_DMA_NONE;
+		break;
+	default:
+		pci_dir = PCI_DMA_BIDIRECTIONAL;
+	}
+	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
+		return -1;
+	return 0;
+}
+
+/*
+ * Map (physical) PCI mem into (virtual) kernel space
+ */
+static void __iomem *remap_pci_mem(ulong base, ulong size)
+{
+	ulong page_base = ((ulong) base) & PAGE_MASK;
+	ulong page_offs = ((ulong) base) - page_base;
+	void __iomem *page_remapped = ioremap_nocache(page_base,
+		page_offs + size);
+
+	return page_remapped ? (page_remapped + page_offs) : NULL;
+}
+
+static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
+{
+	return h->access.command_completed(h, q);
+}
+
+static inline bool interrupt_pending(struct ctlr_info *h)
+{
+	return h->access.intr_pending(h);
+}
+
+static inline long interrupt_not_for_us(struct ctlr_info *h)
+{
+	return (h->access.intr_pending(h) == 0) ||
+		(h->interrupts_enabled == 0);
+}
+
+static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
+	u32 raw_tag)
+{
+	if (unlikely(tag_index >= h->nr_cmds)) {
+		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
+		return 1;
+	}
+	return 0;
+}
+
+static inline void finish_cmd(struct CommandList *c)
+{
+	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
+	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
+			|| c->cmd_type == CMD_IOACCEL2))
+		complete_scsi_command(c);
+	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
+		complete(c->waiting);
+}
+
+/* process completion of an indexed ("direct lookup") command */
+static inline void process_indexed_cmd(struct ctlr_info *h,
+	u32 raw_tag)
+{
+	u32 tag_index;
+	struct CommandList *c;
+
+	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
+	if (!bad_tag(h, tag_index, raw_tag)) {
+		c = h->cmd_pool + tag_index;
+		finish_cmd(c);
+	}
+}
+
+/* Some controllers, like p400, will give us one interrupt
+ * after a soft reset, even if we turned interrupts off.
+ * Only need to check for this in the hpsa_xxx_discard_completions
+ * functions.
+ */
+static int ignore_bogus_interrupt(struct ctlr_info *h)
+{
+	if (likely(!reset_devices))
+		return 0;
+
+	if (likely(h->interrupts_enabled))
+		return 0;
+
+	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
+		"(known firmware bug.)  Ignoring.\n");
+
+	return 1;
+}
+
+/*
+ * Convert &h->q[x] (passed to interrupt handlers) back to h.
+ * Relies on (h-q[x] == x) being true for x such that
+ * 0 <= x < MAX_REPLY_QUEUES.
+ */
+static struct ctlr_info *queue_to_hba(u8 *queue)
+{
+	return container_of((queue - *queue), struct ctlr_info, q[0]);
+}
+
+static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
+{
+	struct ctlr_info *h = queue_to_hba(queue);
+	u8 q = *(u8 *) queue;
+	u32 raw_tag;
+
+	if (ignore_bogus_interrupt(h))
+		return IRQ_NONE;
+
+	if (interrupt_not_for_us(h))
+		return IRQ_NONE;
+	h->last_intr_timestamp = get_jiffies_64();
+	while (interrupt_pending(h)) {
+		raw_tag = get_next_completion(h, q);
+		while (raw_tag != FIFO_EMPTY)
+			raw_tag = next_command(h, q);
+	}
+	return IRQ_HANDLED;
+}
+
+static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
+{
+	struct ctlr_info *h = queue_to_hba(queue);
+	u32 raw_tag;
+	u8 q = *(u8 *) queue;
+
+	if (ignore_bogus_interrupt(h))
+		return IRQ_NONE;
+
+	h->last_intr_timestamp = get_jiffies_64();
+	raw_tag = get_next_completion(h, q);
+	while (raw_tag != FIFO_EMPTY)
+		raw_tag = next_command(h, q);
+	return IRQ_HANDLED;
+}
+
+static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
+{
+	struct ctlr_info *h = queue_to_hba((u8 *) queue);
+	u32 raw_tag;
+	u8 q = *(u8 *) queue;
+
+	if (interrupt_not_for_us(h))
+		return IRQ_NONE;
+	h->last_intr_timestamp = get_jiffies_64();
+	while (interrupt_pending(h)) {
+		raw_tag = get_next_completion(h, q);
+		while (raw_tag != FIFO_EMPTY) {
+			process_indexed_cmd(h, raw_tag);
+			raw_tag = next_command(h, q);
+		}
+	}
+	return IRQ_HANDLED;
+}
+
+static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
+{
+	struct ctlr_info *h = queue_to_hba(queue);
+	u32 raw_tag;
+	u8 q = *(u8 *) queue;
+
+	h->last_intr_timestamp = get_jiffies_64();
+	raw_tag = get_next_completion(h, q);
+	while (raw_tag != FIFO_EMPTY) {
+		process_indexed_cmd(h, raw_tag);
+		raw_tag = next_command(h, q);
+	}
+	return IRQ_HANDLED;
+}
+
+/* Send a message CDB to the firmware. Careful, this only works
+ * in simple mode, not performant mode due to the tag lookup.
+ * We only ever use this immediately after a controller reset.
+ */
+static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
+			unsigned char type)
+{
+	struct Command {
+		struct CommandListHeader CommandHeader;
+		struct RequestBlock Request;
+		struct ErrDescriptor ErrorDescriptor;
+	};
+	struct Command *cmd;
+	static const size_t cmd_sz = sizeof(*cmd) +
+					sizeof(cmd->ErrorDescriptor);
+	dma_addr_t paddr64;
+	__le32 paddr32;
+	u32 tag;
+	void __iomem *vaddr;
+	int i, err;
+
+	vaddr = pci_ioremap_bar(pdev, 0);
+	if (vaddr == NULL)
+		return -ENOMEM;
+
+	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
+	 * CCISS commands, so they must be allocated from the lower 4GiB of
+	 * memory.
+	 */
+	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
+	if (err) {
+		iounmap(vaddr);
+		return err;
+	}
+
+	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
+	if (cmd == NULL) {
+		iounmap(vaddr);
+		return -ENOMEM;
+	}
+
+	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
+	 * although there's no guarantee, we assume that the address is at
+	 * least 4-byte aligned (most likely, it's page-aligned).
+	 */
+	paddr32 = cpu_to_le32(paddr64);
+
+	cmd->CommandHeader.ReplyQueue = 0;
+	cmd->CommandHeader.SGList = 0;
+	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
+	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
+	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
+
+	cmd->Request.CDBLen = 16;
+	cmd->Request.type_attr_dir =
+			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
+	cmd->Request.Timeout = 0; /* Don't time out */
+	cmd->Request.CDB[0] = opcode;
+	cmd->Request.CDB[1] = type;
+	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
+	cmd->ErrorDescriptor.Addr =
+			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
+	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
+
+	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
+
+	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
+		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
+		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
+			break;
+		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
+	}
+
+	iounmap(vaddr);
+
+	/* we leak the DMA buffer here ... no choice since the controller could
+	 *  still complete the command.
+	 */
+	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
+		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
+			opcode, type);
+		return -ETIMEDOUT;
+	}
+
+	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
+
+	if (tag & HPSA_ERROR_BIT) {
+		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
+			opcode, type);
+		return -EIO;
+	}
+
+	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
+		opcode, type);
+	return 0;
+}
+
+#define hpsa_noop(p) hpsa_message(p, 3, 0)
+
+static int hpsa_controller_hard_reset(struct pci_dev *pdev,
+	void __iomem *vaddr, u32 use_doorbell)
+{
+
+	if (use_doorbell) {
+		/* For everything after the P600, the PCI power state method
+		 * of resetting the controller doesn't work, so we have this
+		 * other way using the doorbell register.
+		 */
+		dev_info(&pdev->dev, "using doorbell to reset controller\n");
+		writel(use_doorbell, vaddr + SA5_DOORBELL);
+
+		/* PMC hardware guys tell us we need a 10 second delay after
+		 * doorbell reset and before any attempt to talk to the board
+		 * at all to ensure that this actually works and doesn't fall
+		 * over in some weird corner cases.
+		 */
+		msleep(10000);
+	} else { /* Try to do it the PCI power state way */
+
+		/* Quoting from the Open CISS Specification: "The Power
+		 * Management Control/Status Register (CSR) controls the power
+		 * state of the device.  The normal operating state is D0,
+		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
+		 * the controller, place the interface device in D3 then to D0,
+		 * this causes a secondary PCI reset which will reset the
+		 * controller." */
+
+		int rc = 0;
+
+		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
+
+		/* enter the D3hot power management state */
+		rc = pci_set_power_state(pdev, PCI_D3hot);
+		if (rc)
+			return rc;
+
+		msleep(500);
+
+		/* enter the D0 power management state */
+		rc = pci_set_power_state(pdev, PCI_D0);
+		if (rc)
+			return rc;
+
+		/*
+		 * The P600 requires a small delay when changing states.
+		 * Otherwise we may think the board did not reset and we bail.
+		 * This for kdump only and is particular to the P600.
+		 */
+		msleep(500);
+	}
+	return 0;
+}
+
+static void init_driver_version(char *driver_version, int len)
+{
+	memset(driver_version, 0, len);
+	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
+}
+
+static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
+{
+	char *driver_version;
+	int i, size = sizeof(cfgtable->driver_version);
+
+	driver_version = kmalloc(size, GFP_KERNEL);
+	if (!driver_version)
+		return -ENOMEM;
+
+	init_driver_version(driver_version, size);
+	for (i = 0; i < size; i++)
+		writeb(driver_version[i], &cfgtable->driver_version[i]);
+	kfree(driver_version);
+	return 0;
+}
+
+static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
+					  unsigned char *driver_ver)
+{
+	int i;
+
+	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
+		driver_ver[i] = readb(&cfgtable->driver_version[i]);
+}
+
+static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
+{
+
+	char *driver_ver, *old_driver_ver;
+	int rc, size = sizeof(cfgtable->driver_version);
+
+	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
+	if (!old_driver_ver)
+		return -ENOMEM;
+	driver_ver = old_driver_ver + size;
+
+	/* After a reset, the 32 bytes of "driver version" in the cfgtable
+	 * should have been changed, otherwise we know the reset failed.
+	 */
+	init_driver_version(old_driver_ver, size);
+	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
+	rc = !memcmp(driver_ver, old_driver_ver, size);
+	kfree(old_driver_ver);
+	return rc;
+}
+/* This does a hard reset of the controller using PCI power management
+ * states or the using the doorbell register.
+ */
+static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
+{
+	u64 cfg_offset;
+	u32 cfg_base_addr;
+	u64 cfg_base_addr_index;
+	void __iomem *vaddr;
+	unsigned long paddr;
+	u32 misc_fw_support;
+	int rc;
+	struct CfgTable __iomem *cfgtable;
+	u32 use_doorbell;
+	u16 command_register;
+
+	/* For controllers as old as the P600, this is very nearly
+	 * the same thing as
+	 *
+	 * pci_save_state(pci_dev);
+	 * pci_set_power_state(pci_dev, PCI_D3hot);
+	 * pci_set_power_state(pci_dev, PCI_D0);
+	 * pci_restore_state(pci_dev);
+	 *
+	 * For controllers newer than the P600, the pci power state
+	 * method of resetting doesn't work so we have another way
+	 * using the doorbell register.
+	 */
+
+	if (!ctlr_is_resettable(board_id)) {
+		dev_warn(&pdev->dev, "Controller not resettable\n");
+		return -ENODEV;
+	}
+
+	/* if controller is soft- but not hard resettable... */
+	if (!ctlr_is_hard_resettable(board_id))
+		return -ENOTSUPP; /* try soft reset later. */
+
+	/* Save the PCI command register */
+	pci_read_config_word(pdev, 4, &command_register);
+	pci_save_state(pdev);
+
+	/* find the first memory BAR, so we can find the cfg table */
+	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
+	if (rc)
+		return rc;
+	vaddr = remap_pci_mem(paddr, 0x250);
+	if (!vaddr)
+		return -ENOMEM;
+
+	/* find cfgtable in order to check if reset via doorbell is supported */
+	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
+					&cfg_base_addr_index, &cfg_offset);
+	if (rc)
+		goto unmap_vaddr;
+	cfgtable = remap_pci_mem(pci_resource_start(pdev,
+		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
+	if (!cfgtable) {
+		rc = -ENOMEM;
+		goto unmap_vaddr;
+	}
+	rc = write_driver_ver_to_cfgtable(cfgtable);
+	if (rc)
+		goto unmap_cfgtable;
+
+	/* If reset via doorbell register is supported, use that.
+	 * There are two such methods.  Favor the newest method.
+	 */
+	misc_fw_support = readl(&cfgtable->misc_fw_support);
+	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
+	if (use_doorbell) {
+		use_doorbell = DOORBELL_CTLR_RESET2;
+	} else {
+		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
+		if (use_doorbell) {
+			dev_warn(&pdev->dev,
+				"Soft reset not supported. Firmware update is required.\n");
+			rc = -ENOTSUPP; /* try soft reset */
+			goto unmap_cfgtable;
+		}
+	}
+
+	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
+	if (rc)
+		goto unmap_cfgtable;
+
+	pci_restore_state(pdev);
+	pci_write_config_word(pdev, 4, command_register);
+
+	/* Some devices (notably the HP Smart Array 5i Controller)
+	   need a little pause here */
+	msleep(HPSA_POST_RESET_PAUSE_MSECS);
+
+	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
+	if (rc) {
+		dev_warn(&pdev->dev,
+			"Failed waiting for board to become ready after hard reset\n");
+		goto unmap_cfgtable;
+	}
+
+	rc = controller_reset_failed(vaddr);
+	if (rc < 0)
+		goto unmap_cfgtable;
+	if (rc) {
+		dev_warn(&pdev->dev, "Unable to successfully reset "
+			"controller. Will try soft reset.\n");
+		rc = -ENOTSUPP;
+	} else {
+		dev_info(&pdev->dev, "board ready after hard reset.\n");
+	}
+
+unmap_cfgtable:
+	iounmap(cfgtable);
+
+unmap_vaddr:
+	iounmap(vaddr);
+	return rc;
+}
+
+/*
+ *  We cannot read the structure directly, for portability we must use
+ *   the io functions.
+ *   This is for debug only.
+ */
+static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
+{
+#ifdef HPSA_DEBUG
+	int i;
+	char temp_name[17];
+
+	dev_info(dev, "Controller Configuration information\n");
+	dev_info(dev, "------------------------------------\n");
+	for (i = 0; i < 4; i++)
+		temp_name[i] = readb(&(tb->Signature[i]));
+	temp_name[4] = '\0';
+	dev_info(dev, "   Signature = %s\n", temp_name);
+	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
+	dev_info(dev, "   Transport methods supported = 0x%x\n",
+	       readl(&(tb->TransportSupport)));
+	dev_info(dev, "   Transport methods active = 0x%x\n",
+	       readl(&(tb->TransportActive)));
+	dev_info(dev, "   Requested transport Method = 0x%x\n",
+	       readl(&(tb->HostWrite.TransportRequest)));
+	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
+	       readl(&(tb->HostWrite.CoalIntDelay)));
+	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
+	       readl(&(tb->HostWrite.CoalIntCount)));
+	dev_info(dev, "   Max outstanding commands = %d\n",
+	       readl(&(tb->CmdsOutMax)));
+	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
+	for (i = 0; i < 16; i++)
+		temp_name[i] = readb(&(tb->ServerName[i]));
+	temp_name[16] = '\0';
+	dev_info(dev, "   Server Name = %s\n", temp_name);
+	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
+		readl(&(tb->HeartBeat)));
+#endif				/* HPSA_DEBUG */
+}
+
+static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
+{
+	int i, offset, mem_type, bar_type;
+
+	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
+		return 0;
+	offset = 0;
+	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
+		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
+		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
+			offset += 4;
+		else {
+			mem_type = pci_resource_flags(pdev, i) &
+			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
+			switch (mem_type) {
+			case PCI_BASE_ADDRESS_MEM_TYPE_32:
+			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
+				offset += 4;	/* 32 bit */
+				break;
+			case PCI_BASE_ADDRESS_MEM_TYPE_64:
+				offset += 8;
+				break;
+			default:	/* reserved in PCI 2.2 */
+				dev_warn(&pdev->dev,
+				       "base address is invalid\n");
+				return -1;
+				break;
+			}
+		}
+		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
+			return i + 1;
+	}
+	return -1;
+}
+
+static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
+{
+	pci_free_irq_vectors(h->pdev);
+	h->msix_vectors = 0;
+}
+
+static void hpsa_setup_reply_map(struct ctlr_info *h)
+{
+	const struct cpumask *mask;
+	unsigned int queue, cpu;
+
+	for (queue = 0; queue < h->msix_vectors; queue++) {
+		mask = pci_irq_get_affinity(h->pdev, queue);
+		if (!mask)
+			goto fallback;
+
+		for_each_cpu(cpu, mask)
+			h->reply_map[cpu] = queue;
+	}
+	return;
+
+fallback:
+	for_each_possible_cpu(cpu)
+		h->reply_map[cpu] = 0;
+}
+
+/* If MSI/MSI-X is supported by the kernel we will try to enable it on
+ * controllers that are capable. If not, we use legacy INTx mode.
+ */
+static int hpsa_interrupt_mode(struct ctlr_info *h)
+{
+	unsigned int flags = PCI_IRQ_LEGACY;
+	int ret;
+
+	/* Some boards advertise MSI but don't really support it */
+	switch (h->board_id) {
+	case 0x40700E11:
+	case 0x40800E11:
+	case 0x40820E11:
+	case 0x40830E11:
+		break;
+	default:
+		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
+				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
+		if (ret > 0) {
+			h->msix_vectors = ret;
+			return 0;
+		}
+
+		flags |= PCI_IRQ_MSI;
+		break;
+	}
+
+	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
+	if (ret < 0)
+		return ret;
+	return 0;
+}
+
+static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
+				bool *legacy_board)
+{
+	int i;
+	u32 subsystem_vendor_id, subsystem_device_id;
+
+	subsystem_vendor_id = pdev->subsystem_vendor;
+	subsystem_device_id = pdev->subsystem_device;
+	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
+		    subsystem_vendor_id;
+
+	if (legacy_board)
+		*legacy_board = false;
+	for (i = 0; i < ARRAY_SIZE(products); i++)
+		if (*board_id == products[i].board_id) {
+			if (products[i].access != &SA5A_access &&
+			    products[i].access != &SA5B_access)
+				return i;
+			dev_warn(&pdev->dev,
+				 "legacy board ID: 0x%08x\n",
+				 *board_id);
+			if (legacy_board)
+			    *legacy_board = true;
+			return i;
+		}
+
+	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
+	if (legacy_board)
+		*legacy_board = true;
+	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
+}
+
+static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
+				    unsigned long *memory_bar)
+{
+	int i;
+
+	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
+		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
+			/* addressing mode bits already removed */
+			*memory_bar = pci_resource_start(pdev, i);
+			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
+				*memory_bar);
+			return 0;
+		}
+	dev_warn(&pdev->dev, "no memory BAR found\n");
+	return -ENODEV;
+}
+
+static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
+				     int wait_for_ready)
+{
+	int i, iterations;
+	u32 scratchpad;
+	if (wait_for_ready)
+		iterations = HPSA_BOARD_READY_ITERATIONS;
+	else
+		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
+
+	for (i = 0; i < iterations; i++) {
+		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
+		if (wait_for_ready) {
+			if (scratchpad == HPSA_FIRMWARE_READY)
+				return 0;
+		} else {
+			if (scratchpad != HPSA_FIRMWARE_READY)
+				return 0;
+		}
+		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
+	}
+	dev_warn(&pdev->dev, "board not ready, timed out.\n");
+	return -ENODEV;
+}
+
+static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
+			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
+			       u64 *cfg_offset)
+{
+	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
+	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
+	*cfg_base_addr &= (u32) 0x0000ffff;
+	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
+	if (*cfg_base_addr_index == -1) {
+		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
+		return -ENODEV;
+	}
+	return 0;
+}
+
+static void hpsa_free_cfgtables(struct ctlr_info *h)
+{
+	if (h->transtable) {
+		iounmap(h->transtable);
+		h->transtable = NULL;
+	}
+	if (h->cfgtable) {
+		iounmap(h->cfgtable);
+		h->cfgtable = NULL;
+	}
+}
+
+/* Find and map CISS config table and transfer table
++ * several items must be unmapped (freed) later
++ * */
+static int hpsa_find_cfgtables(struct ctlr_info *h)
+{
+	u64 cfg_offset;
+	u32 cfg_base_addr;
+	u64 cfg_base_addr_index;
+	u32 trans_offset;
+	int rc;
+
+	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
+		&cfg_base_addr_index, &cfg_offset);
+	if (rc)
+		return rc;
+	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
+		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
+	if (!h->cfgtable) {
+		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
+		return -ENOMEM;
+	}
+	rc = write_driver_ver_to_cfgtable(h->cfgtable);
+	if (rc)
+		return rc;
+	/* Find performant mode table. */
+	trans_offset = readl(&h->cfgtable->TransMethodOffset);
+	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
+				cfg_base_addr_index)+cfg_offset+trans_offset,
+				sizeof(*h->transtable));
+	if (!h->transtable) {
+		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
+		hpsa_free_cfgtables(h);
+		return -ENOMEM;
+	}
+	return 0;
+}
+
+static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
+{
+#define MIN_MAX_COMMANDS 16
+	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
+
+	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
+
+	/* Limit commands in memory limited kdump scenario. */
+	if (reset_devices && h->max_commands > 32)
+		h->max_commands = 32;
+
+	if (h->max_commands < MIN_MAX_COMMANDS) {
+		dev_warn(&h->pdev->dev,
+			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
+			h->max_commands,
+			MIN_MAX_COMMANDS);
+		h->max_commands = MIN_MAX_COMMANDS;
+	}
+}
+
+/* If the controller reports that the total max sg entries is greater than 512,
+ * then we know that chained SG blocks work.  (Original smart arrays did not
+ * support chained SG blocks and would return zero for max sg entries.)
+ */
+static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
+{
+	return h->maxsgentries > 512;
+}
+
+/* Interrogate the hardware for some limits:
+ * max commands, max SG elements without chaining, and with chaining,
+ * SG chain block size, etc.
+ */
+static void hpsa_find_board_params(struct ctlr_info *h)
+{
+	hpsa_get_max_perf_mode_cmds(h);
+	h->nr_cmds = h->max_commands;
+	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
+	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
+	if (hpsa_supports_chained_sg_blocks(h)) {
+		/* Limit in-command s/g elements to 32 save dma'able memory. */
+		h->max_cmd_sg_entries = 32;
+		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
+		h->maxsgentries--; /* save one for chain pointer */
+	} else {
+		/*
+		 * Original smart arrays supported at most 31 s/g entries
+		 * embedded inline in the command (trying to use more
+		 * would lock up the controller)
+		 */
+		h->max_cmd_sg_entries = 31;
+		h->maxsgentries = 31; /* default to traditional values */
+		h->chainsize = 0;
+	}
+
+	/* Find out what task management functions are supported and cache */
+	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
+	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
+		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
+	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
+		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
+	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
+		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
+}
+
+static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
+{
+	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
+		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
+		return false;
+	}
+	return true;
+}
+
+static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
+{
+	u32 driver_support;
+
+	driver_support = readl(&(h->cfgtable->driver_support));
+	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
+#ifdef CONFIG_X86
+	driver_support |= ENABLE_SCSI_PREFETCH;
+#endif
+	driver_support |= ENABLE_UNIT_ATTN;
+	writel(driver_support, &(h->cfgtable->driver_support));
+}
+
+/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
+ * in a prefetch beyond physical memory.
+ */
+static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
+{
+	u32 dma_prefetch;
+
+	if (h->board_id != 0x3225103C)
+		return;
+	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
+	dma_prefetch |= 0x8000;
+	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
+}
+
+static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
+{
+	int i;
+	u32 doorbell_value;
+	unsigned long flags;
+	/* wait until the clear_event_notify bit 6 is cleared by controller. */
+	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
+		spin_lock_irqsave(&h->lock, flags);
+		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
+		spin_unlock_irqrestore(&h->lock, flags);
+		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
+			goto done;
+		/* delay and try again */
+		msleep(CLEAR_EVENT_WAIT_INTERVAL);
+	}
+	return -ENODEV;
+done:
+	return 0;
+}
+
+static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
+{
+	int i;
+	u32 doorbell_value;
+	unsigned long flags;
+
+	/* under certain very rare conditions, this can take awhile.
+	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
+	 * as we enter this code.)
+	 */
+	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
+		if (h->remove_in_progress)
+			goto done;
+		spin_lock_irqsave(&h->lock, flags);
+		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
+		spin_unlock_irqrestore(&h->lock, flags);
+		if (!(doorbell_value & CFGTBL_ChangeReq))
+			goto done;
+		/* delay and try again */
+		msleep(MODE_CHANGE_WAIT_INTERVAL);
+	}
+	return -ENODEV;
+done:
+	return 0;
+}
+
+/* return -ENODEV or other reason on error, 0 on success */
+static int hpsa_enter_simple_mode(struct ctlr_info *h)
+{
+	u32 trans_support;
+
+	trans_support = readl(&(h->cfgtable->TransportSupport));
+	if (!(trans_support & SIMPLE_MODE))
+		return -ENOTSUPP;
+
+	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
+
+	/* Update the field, and then ring the doorbell */
+	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
+	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
+	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
+	if (hpsa_wait_for_mode_change_ack(h))
+		goto error;
+	print_cfg_table(&h->pdev->dev, h->cfgtable);
+	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
+		goto error;
+	h->transMethod = CFGTBL_Trans_Simple;
+	return 0;
+error:
+	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
+	return -ENODEV;
+}
+
+/* free items allocated or mapped by hpsa_pci_init */
+static void hpsa_free_pci_init(struct ctlr_info *h)
+{
+	hpsa_free_cfgtables(h);			/* pci_init 4 */
+	iounmap(h->vaddr);			/* pci_init 3 */
+	h->vaddr = NULL;
+	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
+	/*
+	 * call pci_disable_device before pci_release_regions per
+	 * Documentation/PCI/pci.txt
+	 */
+	pci_disable_device(h->pdev);		/* pci_init 1 */
+	pci_release_regions(h->pdev);		/* pci_init 2 */
+}
+
+/* several items must be freed later */
+static int hpsa_pci_init(struct ctlr_info *h)
+{
+	int prod_index, err;
+	bool legacy_board;
+
+	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
+	if (prod_index < 0)
+		return prod_index;
+	h->product_name = products[prod_index].product_name;
+	h->access = *(products[prod_index].access);
+	h->legacy_board = legacy_board;
+	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
+			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
+
+	err = pci_enable_device(h->pdev);
+	if (err) {
+		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
+		pci_disable_device(h->pdev);
+		return err;
+	}
+
+	err = pci_request_regions(h->pdev, HPSA);
+	if (err) {
+		dev_err(&h->pdev->dev,
+			"failed to obtain PCI resources\n");
+		pci_disable_device(h->pdev);
+		return err;
+	}
+
+	pci_set_master(h->pdev);
+
+	err = hpsa_interrupt_mode(h);
+	if (err)
+		goto clean1;
+
+	/* setup mapping between CPU and reply queue */
+	hpsa_setup_reply_map(h);
+
+	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
+	if (err)
+		goto clean2;	/* intmode+region, pci */
+	h->vaddr = remap_pci_mem(h->paddr, 0x250);
+	if (!h->vaddr) {
+		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
+		err = -ENOMEM;
+		goto clean2;	/* intmode+region, pci */
+	}
+	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
+	if (err)
+		goto clean3;	/* vaddr, intmode+region, pci */
+	err = hpsa_find_cfgtables(h);
+	if (err)
+		goto clean3;	/* vaddr, intmode+region, pci */
+	hpsa_find_board_params(h);
+
+	if (!hpsa_CISS_signature_present(h)) {
+		err = -ENODEV;
+		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
+	}
+	hpsa_set_driver_support_bits(h);
+	hpsa_p600_dma_prefetch_quirk(h);
+	err = hpsa_enter_simple_mode(h);
+	if (err)
+		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
+	return 0;
+
+clean4:	/* cfgtables, vaddr, intmode+region, pci */
+	hpsa_free_cfgtables(h);
+clean3:	/* vaddr, intmode+region, pci */
+	iounmap(h->vaddr);
+	h->vaddr = NULL;
+clean2:	/* intmode+region, pci */
+	hpsa_disable_interrupt_mode(h);
+clean1:
+	/*
+	 * call pci_disable_device before pci_release_regions per
+	 * Documentation/PCI/pci.txt
+	 */
+	pci_disable_device(h->pdev);
+	pci_release_regions(h->pdev);
+	return err;
+}
+
+static void hpsa_hba_inquiry(struct ctlr_info *h)
+{
+	int rc;
+
+#define HBA_INQUIRY_BYTE_COUNT 64
+	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
+	if (!h->hba_inquiry_data)
+		return;
+	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
+		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
+	if (rc != 0) {
+		kfree(h->hba_inquiry_data);
+		h->hba_inquiry_data = NULL;
+	}
+}
+
+static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
+{
+	int rc, i;
+	void __iomem *vaddr;
+
+	if (!reset_devices)
+		return 0;
+
+	/* kdump kernel is loading, we don't know in which state is
+	 * the pci interface. The dev->enable_cnt is equal zero
+	 * so we call enable+disable, wait a while and switch it on.
+	 */
+	rc = pci_enable_device(pdev);
+	if (rc) {
+		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
+		return -ENODEV;
+	}
+	pci_disable_device(pdev);
+	msleep(260);			/* a randomly chosen number */
+	rc = pci_enable_device(pdev);
+	if (rc) {
+		dev_warn(&pdev->dev, "failed to enable device.\n");
+		return -ENODEV;
+	}
+
+	pci_set_master(pdev);
+
+	vaddr = pci_ioremap_bar(pdev, 0);
+	if (vaddr == NULL) {
+		rc = -ENOMEM;
+		goto out_disable;
+	}
+	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
+	iounmap(vaddr);
+
+	/* Reset the controller with a PCI power-cycle or via doorbell */
+	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
+
+	/* -ENOTSUPP here means we cannot reset the controller
+	 * but it's already (and still) up and running in
+	 * "performant mode".  Or, it might be 640x, which can't reset
+	 * due to concerns about shared bbwc between 6402/6404 pair.
+	 */
+	if (rc)
+		goto out_disable;
+
+	/* Now try to get the controller to respond to a no-op */
+	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
+	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
+		if (hpsa_noop(pdev) == 0)
+			break;
+		else
+			dev_warn(&pdev->dev, "no-op failed%s\n",
+					(i < 11 ? "; re-trying" : ""));
+	}
+
+out_disable:
+
+	pci_disable_device(pdev);
+	return rc;
+}
+
+static void hpsa_free_cmd_pool(struct ctlr_info *h)
+{
+	kfree(h->cmd_pool_bits);
+	h->cmd_pool_bits = NULL;
+	if (h->cmd_pool) {
+		pci_free_consistent(h->pdev,
+				h->nr_cmds * sizeof(struct CommandList),
+				h->cmd_pool,
+				h->cmd_pool_dhandle);
+		h->cmd_pool = NULL;
+		h->cmd_pool_dhandle = 0;
+	}
+	if (h->errinfo_pool) {
+		pci_free_consistent(h->pdev,
+				h->nr_cmds * sizeof(struct ErrorInfo),
+				h->errinfo_pool,
+				h->errinfo_pool_dhandle);
+		h->errinfo_pool = NULL;
+		h->errinfo_pool_dhandle = 0;
+	}
+}
+
+static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
+{
+	h->cmd_pool_bits = kzalloc(
+		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
+		sizeof(unsigned long), GFP_KERNEL);
+	h->cmd_pool = pci_alloc_consistent(h->pdev,
+		    h->nr_cmds * sizeof(*h->cmd_pool),
+		    &(h->cmd_pool_dhandle));
+	h->errinfo_pool = pci_alloc_consistent(h->pdev,
+		    h->nr_cmds * sizeof(*h->errinfo_pool),
+		    &(h->errinfo_pool_dhandle));
+	if ((h->cmd_pool_bits == NULL)
+	    || (h->cmd_pool == NULL)
+	    || (h->errinfo_pool == NULL)) {
+		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
+		goto clean_up;
+	}
+	hpsa_preinitialize_commands(h);
+	return 0;
+clean_up:
+	hpsa_free_cmd_pool(h);
+	return -ENOMEM;
+}
+
+/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
+static void hpsa_free_irqs(struct ctlr_info *h)
+{
+	int i;
+
+	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
+		/* Single reply queue, only one irq to free */
+		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
+		h->q[h->intr_mode] = 0;
+		return;
+	}
+
+	for (i = 0; i < h->msix_vectors; i++) {
+		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
+		h->q[i] = 0;
+	}
+	for (; i < MAX_REPLY_QUEUES; i++)
+		h->q[i] = 0;
+}
+
+/* returns 0 on success; cleans up and returns -Enn on error */
+static int hpsa_request_irqs(struct ctlr_info *h,
+	irqreturn_t (*msixhandler)(int, void *),
+	irqreturn_t (*intxhandler)(int, void *))
+{
+	int rc, i;
+
+	/*
+	 * initialize h->q[x] = x so that interrupt handlers know which
+	 * queue to process.
+	 */
+	for (i = 0; i < MAX_REPLY_QUEUES; i++)
+		h->q[i] = (u8) i;
+
+	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
+		/* If performant mode and MSI-X, use multiple reply queues */
+		for (i = 0; i < h->msix_vectors; i++) {
+			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
+			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
+					0, h->intrname[i],
+					&h->q[i]);
+			if (rc) {
+				int j;
+
+				dev_err(&h->pdev->dev,
+					"failed to get irq %d for %s\n",
+				       pci_irq_vector(h->pdev, i), h->devname);
+				for (j = 0; j < i; j++) {
+					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
+					h->q[j] = 0;
+				}
+				for (; j < MAX_REPLY_QUEUES; j++)
+					h->q[j] = 0;
+				return rc;
+			}
+		}
+	} else {
+		/* Use single reply pool */
+		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
+			sprintf(h->intrname[0], "%s-msi%s", h->devname,
+				h->msix_vectors ? "x" : "");
+			rc = request_irq(pci_irq_vector(h->pdev, 0),
+				msixhandler, 0,
+				h->intrname[0],
+				&h->q[h->intr_mode]);
+		} else {
+			sprintf(h->intrname[h->intr_mode],
+				"%s-intx", h->devname);
+			rc = request_irq(pci_irq_vector(h->pdev, 0),
+				intxhandler, IRQF_SHARED,
+				h->intrname[0],
+				&h->q[h->intr_mode]);
+		}
+	}
+	if (rc) {
+		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
+		       pci_irq_vector(h->pdev, 0), h->devname);
+		hpsa_free_irqs(h);
+		return -ENODEV;
+	}
+	return 0;
+}
+
+static int hpsa_kdump_soft_reset(struct ctlr_info *h)
+{
+	int rc;
+	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
+
+	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
+	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
+	if (rc) {
+		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
+		return rc;
+	}
+
+	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
+	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
+	if (rc) {
+		dev_warn(&h->pdev->dev, "Board failed to become ready "
+			"after soft reset.\n");
+		return rc;
+	}
+
+	return 0;
+}
+
+static void hpsa_free_reply_queues(struct ctlr_info *h)
+{
+	int i;
+
+	for (i = 0; i < h->nreply_queues; i++) {
+		if (!h->reply_queue[i].head)
+			continue;
+		pci_free_consistent(h->pdev,
+					h->reply_queue_size,
+					h->reply_queue[i].head,
+					h->reply_queue[i].busaddr);
+		h->reply_queue[i].head = NULL;
+		h->reply_queue[i].busaddr = 0;
+	}
+	h->reply_queue_size = 0;
+}
+
+static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
+{
+	hpsa_free_performant_mode(h);		/* init_one 7 */
+	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
+	hpsa_free_cmd_pool(h);			/* init_one 5 */
+	hpsa_free_irqs(h);			/* init_one 4 */
+	scsi_host_put(h->scsi_host);		/* init_one 3 */
+	h->scsi_host = NULL;			/* init_one 3 */
+	hpsa_free_pci_init(h);			/* init_one 2_5 */
+	free_percpu(h->lockup_detected);	/* init_one 2 */
+	h->lockup_detected = NULL;		/* init_one 2 */
+	if (h->resubmit_wq) {
+		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
+		h->resubmit_wq = NULL;
+	}
+	if (h->rescan_ctlr_wq) {
+		destroy_workqueue(h->rescan_ctlr_wq);
+		h->rescan_ctlr_wq = NULL;
+	}
+	kfree(h);				/* init_one 1 */
+}
+
+/* Called when controller lockup detected. */
+static void fail_all_outstanding_cmds(struct ctlr_info *h)
+{
+	int i, refcount;
+	struct CommandList *c;
+	int failcount = 0;
+
+	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
+	for (i = 0; i < h->nr_cmds; i++) {
+		c = h->cmd_pool + i;
+		refcount = atomic_inc_return(&c->refcount);
+		if (refcount > 1) {
+			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
+			finish_cmd(c);
+			atomic_dec(&h->commands_outstanding);
+			failcount++;
+		}
+		cmd_free(h, c);
+	}
+	dev_warn(&h->pdev->dev,
+		"failed %d commands in fail_all\n", failcount);
+}
+
+static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
+{
+	int cpu;
+
+	for_each_online_cpu(cpu) {
+		u32 *lockup_detected;
+		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
+		*lockup_detected = value;
+	}
+	wmb(); /* be sure the per-cpu variables are out to memory */
+}
+
+static void controller_lockup_detected(struct ctlr_info *h)
+{
+	unsigned long flags;
+	u32 lockup_detected;
+
+	h->access.set_intr_mask(h, HPSA_INTR_OFF);
+	spin_lock_irqsave(&h->lock, flags);
+	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
+	if (!lockup_detected) {
+		/* no heartbeat, but controller gave us a zero. */
+		dev_warn(&h->pdev->dev,
+			"lockup detected after %d but scratchpad register is zero\n",
+			h->heartbeat_sample_interval / HZ);
+		lockup_detected = 0xffffffff;
+	}
+	set_lockup_detected_for_all_cpus(h, lockup_detected);
+	spin_unlock_irqrestore(&h->lock, flags);
+	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
+			lockup_detected, h->heartbeat_sample_interval / HZ);
+	pci_disable_device(h->pdev);
+	fail_all_outstanding_cmds(h);
+}
+
+static int detect_controller_lockup(struct ctlr_info *h)
+{
+	u64 now;
+	u32 heartbeat;
+	unsigned long flags;
+
+	now = get_jiffies_64();
+	/* If we've received an interrupt recently, we're ok. */
+	if (time_after64(h->last_intr_timestamp +
+				(h->heartbeat_sample_interval), now))
+		return false;
+
+	/*
+	 * If we've already checked the heartbeat recently, we're ok.
+	 * This could happen if someone sends us a signal. We
+	 * otherwise don't care about signals in this thread.
+	 */
+	if (time_after64(h->last_heartbeat_timestamp +
+				(h->heartbeat_sample_interval), now))
+		return false;
+
+	/* If heartbeat has not changed since we last looked, we're not ok. */
+	spin_lock_irqsave(&h->lock, flags);
+	heartbeat = readl(&h->cfgtable->HeartBeat);
+	spin_unlock_irqrestore(&h->lock, flags);
+	if (h->last_heartbeat == heartbeat) {
+		controller_lockup_detected(h);
+		return true;
+	}
+
+	/* We're ok. */
+	h->last_heartbeat = heartbeat;
+	h->last_heartbeat_timestamp = now;
+	return false;
+}
+
+static void hpsa_ack_ctlr_events(struct ctlr_info *h)
+{
+	int i;
+	char *event_type;
+
+	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
+		return;
+
+	/* Ask the controller to clear the events we're handling. */
+	if ((h->transMethod & (CFGTBL_Trans_io_accel1
+			| CFGTBL_Trans_io_accel2)) &&
+		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
+		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
+
+		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
+			event_type = "state change";
+		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
+			event_type = "configuration change";
+		/* Stop sending new RAID offload reqs via the IO accelerator */
+		scsi_block_requests(h->scsi_host);
+		for (i = 0; i < h->ndevices; i++) {
+			h->dev[i]->offload_enabled = 0;
+			h->dev[i]->offload_to_be_enabled = 0;
+		}
+		hpsa_drain_accel_commands(h);
+		/* Set 'accelerator path config change' bit */
+		dev_warn(&h->pdev->dev,
+			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
+			h->events, event_type);
+		writel(h->events, &(h->cfgtable->clear_event_notify));
+		/* Set the "clear event notify field update" bit 6 */
+		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
+		/* Wait until ctlr clears 'clear event notify field', bit 6 */
+		hpsa_wait_for_clear_event_notify_ack(h);
+		scsi_unblock_requests(h->scsi_host);
+	} else {
+		/* Acknowledge controller notification events. */
+		writel(h->events, &(h->cfgtable->clear_event_notify));
+		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
+		hpsa_wait_for_clear_event_notify_ack(h);
+#if 0
+		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
+		hpsa_wait_for_mode_change_ack(h);
+#endif
+	}
+	return;
+}
+
+/* Check a register on the controller to see if there are configuration
+ * changes (added/changed/removed logical drives, etc.) which mean that
+ * we should rescan the controller for devices.
+ * Also check flag for driver-initiated rescan.
+ */
+static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
+{
+	if (h->drv_req_rescan) {
+		h->drv_req_rescan = 0;
+		return 1;
+	}
+
+	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
+		return 0;
+
+	h->events = readl(&(h->cfgtable->event_notify));
+	return h->events & RESCAN_REQUIRED_EVENT_BITS;
+}
+
+/*
+ * Check if any of the offline devices have become ready
+ */
+static int hpsa_offline_devices_ready(struct ctlr_info *h)
+{
+	unsigned long flags;
+	struct offline_device_entry *d;
+	struct list_head *this, *tmp;
+
+	spin_lock_irqsave(&h->offline_device_lock, flags);
+	list_for_each_safe(this, tmp, &h->offline_device_list) {
+		d = list_entry(this, struct offline_device_entry,
+				offline_list);
+		spin_unlock_irqrestore(&h->offline_device_lock, flags);
+		if (!hpsa_volume_offline(h, d->scsi3addr)) {
+			spin_lock_irqsave(&h->offline_device_lock, flags);
+			list_del(&d->offline_list);
+			spin_unlock_irqrestore(&h->offline_device_lock, flags);
+			return 1;
+		}
+		spin_lock_irqsave(&h->offline_device_lock, flags);
+	}
+	spin_unlock_irqrestore(&h->offline_device_lock, flags);
+	return 0;
+}
+
+static int hpsa_luns_changed(struct ctlr_info *h)
+{
+	int rc = 1; /* assume there are changes */
+	struct ReportLUNdata *logdev = NULL;
+
+	/* if we can't find out if lun data has changed,
+	 * assume that it has.
+	 */
+
+	if (!h->lastlogicals)
+		return rc;
+
+	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
+	if (!logdev)
+		return rc;
+
+	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
+		dev_warn(&h->pdev->dev,
+			"report luns failed, can't track lun changes.\n");
+		goto out;
+	}
+	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
+		dev_info(&h->pdev->dev,
+			"Lun changes detected.\n");
+		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
+		goto out;
+	} else
+		rc = 0; /* no changes detected. */
+out:
+	kfree(logdev);
+	return rc;
+}
+
+static void hpsa_perform_rescan(struct ctlr_info *h)
+{
+	struct Scsi_Host *sh = NULL;
+	unsigned long flags;
+
+	/*
+	 * Do the scan after the reset
+	 */
+	spin_lock_irqsave(&h->reset_lock, flags);
+	if (h->reset_in_progress) {
+		h->drv_req_rescan = 1;
+		spin_unlock_irqrestore(&h->reset_lock, flags);
+		return;
+	}
+	spin_unlock_irqrestore(&h->reset_lock, flags);
+
+	sh = scsi_host_get(h->scsi_host);
+	if (sh != NULL) {
+		hpsa_scan_start(sh);
+		scsi_host_put(sh);
+		h->drv_req_rescan = 0;
+	}
+}
+
+/*
+ * watch for controller events
+ */
+static void hpsa_event_monitor_worker(struct work_struct *work)
+{
+	struct ctlr_info *h = container_of(to_delayed_work(work),
+					struct ctlr_info, event_monitor_work);
+	unsigned long flags;
+
+	spin_lock_irqsave(&h->lock, flags);
+	if (h->remove_in_progress) {
+		spin_unlock_irqrestore(&h->lock, flags);
+		return;
+	}
+	spin_unlock_irqrestore(&h->lock, flags);
+
+	if (hpsa_ctlr_needs_rescan(h)) {
+		hpsa_ack_ctlr_events(h);
+		hpsa_perform_rescan(h);
+	}
+
+	spin_lock_irqsave(&h->lock, flags);
+	if (!h->remove_in_progress)
+		schedule_delayed_work(&h->event_monitor_work,
+					HPSA_EVENT_MONITOR_INTERVAL);
+	spin_unlock_irqrestore(&h->lock, flags);
+}
+
+static void hpsa_rescan_ctlr_worker(struct work_struct *work)
+{
+	unsigned long flags;
+	struct ctlr_info *h = container_of(to_delayed_work(work),
+					struct ctlr_info, rescan_ctlr_work);
+
+	spin_lock_irqsave(&h->lock, flags);
+	if (h->remove_in_progress) {
+		spin_unlock_irqrestore(&h->lock, flags);
+		return;
+	}
+	spin_unlock_irqrestore(&h->lock, flags);
+
+	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
+		hpsa_perform_rescan(h);
+	} else if (h->discovery_polling) {
+		hpsa_disable_rld_caching(h);
+		if (hpsa_luns_changed(h)) {
+			dev_info(&h->pdev->dev,
+				"driver discovery polling rescan.\n");
+			hpsa_perform_rescan(h);
+		}
+	}
+	spin_lock_irqsave(&h->lock, flags);
+	if (!h->remove_in_progress)
+		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
+				h->heartbeat_sample_interval);
+	spin_unlock_irqrestore(&h->lock, flags);
+}
+
+static void hpsa_monitor_ctlr_worker(struct work_struct *work)
+{
+	unsigned long flags;
+	struct ctlr_info *h = container_of(to_delayed_work(work),
+					struct ctlr_info, monitor_ctlr_work);
+
+	detect_controller_lockup(h);
+	if (lockup_detected(h))
+		return;
+
+	spin_lock_irqsave(&h->lock, flags);
+	if (!h->remove_in_progress)
+		schedule_delayed_work(&h->monitor_ctlr_work,
+				h->heartbeat_sample_interval);
+	spin_unlock_irqrestore(&h->lock, flags);
+}
+
+static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
+						char *name)
+{
+	struct workqueue_struct *wq = NULL;
+
+	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
+	if (!wq)
+		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
+
+	return wq;
+}
+
+static void hpda_free_ctlr_info(struct ctlr_info *h)
+{
+	kfree(h->reply_map);
+	kfree(h);
+}
+
+static struct ctlr_info *hpda_alloc_ctlr_info(void)
+{
+	struct ctlr_info *h;
+
+	h = kzalloc(sizeof(*h), GFP_KERNEL);
+	if (!h)
+		return NULL;
+
+	h->reply_map = kzalloc(sizeof(*h->reply_map) * nr_cpu_ids, GFP_KERNEL);
+	if (!h->reply_map) {
+		kfree(h);
+		return NULL;
+	}
+	return h;
+}
+
+static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
+{
+	int dac, rc;
+	struct ctlr_info *h;
+	int try_soft_reset = 0;
+	unsigned long flags;
+	u32 board_id;
+
+	if (number_of_controllers == 0)
+		printk(KERN_INFO DRIVER_NAME "\n");
+
+	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
+	if (rc < 0) {
+		dev_warn(&pdev->dev, "Board ID not found\n");
+		return rc;
+	}
+
+	rc = hpsa_init_reset_devices(pdev, board_id);
+	if (rc) {
+		if (rc != -ENOTSUPP)
+			return rc;
+		/* If the reset fails in a particular way (it has no way to do
+		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
+		 * a soft reset once we get the controller configured up to the
+		 * point that it can accept a command.
+		 */
+		try_soft_reset = 1;
+		rc = 0;
+	}
+
+reinit_after_soft_reset:
+
+	/* Command structures must be aligned on a 32-byte boundary because
+	 * the 5 lower bits of the address are used by the hardware. and by
+	 * the driver.  See comments in hpsa.h for more info.
+	 */
+	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
+	h = hpda_alloc_ctlr_info();
+	if (!h) {
+		dev_err(&pdev->dev, "Failed to allocate controller head\n");
+		return -ENOMEM;
+	}
+
+	h->pdev = pdev;
+
+	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
+	INIT_LIST_HEAD(&h->offline_device_list);
+	spin_lock_init(&h->lock);
+	spin_lock_init(&h->offline_device_lock);
+	spin_lock_init(&h->scan_lock);
+	spin_lock_init(&h->reset_lock);
+	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
+
+	/* Allocate and clear per-cpu variable lockup_detected */
+	h->lockup_detected = alloc_percpu(u32);
+	if (!h->lockup_detected) {
+		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
+		rc = -ENOMEM;
+		goto clean1;	/* aer/h */
+	}
+	set_lockup_detected_for_all_cpus(h, 0);
+
+	rc = hpsa_pci_init(h);
+	if (rc)
+		goto clean2;	/* lu, aer/h */
+
+	/* relies on h-> settings made by hpsa_pci_init, including
+	 * interrupt_mode h->intr */
+	rc = hpsa_scsi_host_alloc(h);
+	if (rc)
+		goto clean2_5;	/* pci, lu, aer/h */
+
+	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
+	h->ctlr = number_of_controllers;
+	number_of_controllers++;
+
+	/* configure PCI DMA stuff */
+	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
+	if (rc == 0) {
+		dac = 1;
+	} else {
+		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
+		if (rc == 0) {
+			dac = 0;
+		} else {
+			dev_err(&pdev->dev, "no suitable DMA available\n");
+			goto clean3;	/* shost, pci, lu, aer/h */
+		}
+	}
+
+	/* make sure the board interrupts are off */
+	h->access.set_intr_mask(h, HPSA_INTR_OFF);
+
+	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
+	if (rc)
+		goto clean3;	/* shost, pci, lu, aer/h */
+	rc = hpsa_alloc_cmd_pool(h);
+	if (rc)
+		goto clean4;	/* irq, shost, pci, lu, aer/h */
+	rc = hpsa_alloc_sg_chain_blocks(h);
+	if (rc)
+		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
+	init_waitqueue_head(&h->scan_wait_queue);
+	init_waitqueue_head(&h->event_sync_wait_queue);
+	mutex_init(&h->reset_mutex);
+	h->scan_finished = 1; /* no scan currently in progress */
+	h->scan_waiting = 0;
+
+	pci_set_drvdata(pdev, h);
+	h->ndevices = 0;
+
+	spin_lock_init(&h->devlock);
+	rc = hpsa_put_ctlr_into_performant_mode(h);
+	if (rc)
+		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
+
+	/* create the resubmit workqueue */
+	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
+	if (!h->rescan_ctlr_wq) {
+		rc = -ENOMEM;
+		goto clean7;
+	}
+
+	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
+	if (!h->resubmit_wq) {
+		rc = -ENOMEM;
+		goto clean7;	/* aer/h */
+	}
+
+	/*
+	 * At this point, the controller is ready to take commands.
+	 * Now, if reset_devices and the hard reset didn't work, try
+	 * the soft reset and see if that works.
+	 */
+	if (try_soft_reset) {
+
+		/* This is kind of gross.  We may or may not get a completion
+		 * from the soft reset command, and if we do, then the value
+		 * from the fifo may or may not be valid.  So, we wait 10 secs
+		 * after the reset throwing away any completions we get during
+		 * that time.  Unregister the interrupt handler and register
+		 * fake ones to scoop up any residual completions.
+		 */
+		spin_lock_irqsave(&h->lock, flags);
+		h->access.set_intr_mask(h, HPSA_INTR_OFF);
+		spin_unlock_irqrestore(&h->lock, flags);
+		hpsa_free_irqs(h);
+		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
+					hpsa_intx_discard_completions);
+		if (rc) {
+			dev_warn(&h->pdev->dev,
+				"Failed to request_irq after soft reset.\n");
+			/*
+			 * cannot goto clean7 or free_irqs will be called
+			 * again. Instead, do its work
+			 */
+			hpsa_free_performant_mode(h);	/* clean7 */
+			hpsa_free_sg_chain_blocks(h);	/* clean6 */
+			hpsa_free_cmd_pool(h);		/* clean5 */
+			/*
+			 * skip hpsa_free_irqs(h) clean4 since that
+			 * was just called before request_irqs failed
+			 */
+			goto clean3;
+		}
+
+		rc = hpsa_kdump_soft_reset(h);
+		if (rc)
+			/* Neither hard nor soft reset worked, we're hosed. */
+			goto clean7;
+
+		dev_info(&h->pdev->dev, "Board READY.\n");
+		dev_info(&h->pdev->dev,
+			"Waiting for stale completions to drain.\n");
+		h->access.set_intr_mask(h, HPSA_INTR_ON);
+		msleep(10000);
+		h->access.set_intr_mask(h, HPSA_INTR_OFF);
+
+		rc = controller_reset_failed(h->cfgtable);
+		if (rc)
+			dev_info(&h->pdev->dev,
+				"Soft reset appears to have failed.\n");
+
+		/* since the controller's reset, we have to go back and re-init
+		 * everything.  Easiest to just forget what we've done and do it
+		 * all over again.
+		 */
+		hpsa_undo_allocations_after_kdump_soft_reset(h);
+		try_soft_reset = 0;
+		if (rc)
+			/* don't goto clean, we already unallocated */
+			return -ENODEV;
+
+		goto reinit_after_soft_reset;
+	}
+
+	/* Enable Accelerated IO path at driver layer */
+	h->acciopath_status = 1;
+	/* Disable discovery polling.*/
+	h->discovery_polling = 0;
+
+
+	/* Turn the interrupts on so we can service requests */
+	h->access.set_intr_mask(h, HPSA_INTR_ON);
+
+	hpsa_hba_inquiry(h);
+
+	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
+	if (!h->lastlogicals)
+		dev_info(&h->pdev->dev,
+			"Can't track change to report lun data\n");
+
+	/* hook into SCSI subsystem */
+	rc = hpsa_scsi_add_host(h);
+	if (rc)
+		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
+
+	/* Monitor the controller for firmware lockups */
+	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
+	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
+	schedule_delayed_work(&h->monitor_ctlr_work,
+				h->heartbeat_sample_interval);
+	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
+	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
+				h->heartbeat_sample_interval);
+	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
+	schedule_delayed_work(&h->event_monitor_work,
+				HPSA_EVENT_MONITOR_INTERVAL);
+	return 0;
+
+clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
+	hpsa_free_performant_mode(h);
+	h->access.set_intr_mask(h, HPSA_INTR_OFF);
+clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
+	hpsa_free_sg_chain_blocks(h);
+clean5: /* cmd, irq, shost, pci, lu, aer/h */
+	hpsa_free_cmd_pool(h);
+clean4: /* irq, shost, pci, lu, aer/h */
+	hpsa_free_irqs(h);
+clean3: /* shost, pci, lu, aer/h */
+	scsi_host_put(h->scsi_host);
+	h->scsi_host = NULL;
+clean2_5: /* pci, lu, aer/h */
+	hpsa_free_pci_init(h);
+clean2: /* lu, aer/h */
+	if (h->lockup_detected) {
+		free_percpu(h->lockup_detected);
+		h->lockup_detected = NULL;
+	}
+clean1:	/* wq/aer/h */
+	if (h->resubmit_wq) {
+		destroy_workqueue(h->resubmit_wq);
+		h->resubmit_wq = NULL;
+	}
+	if (h->rescan_ctlr_wq) {
+		destroy_workqueue(h->rescan_ctlr_wq);
+		h->rescan_ctlr_wq = NULL;
+	}
+	kfree(h);
+	return rc;
+}
+
+static void hpsa_flush_cache(struct ctlr_info *h)
+{
+	char *flush_buf;
+	struct CommandList *c;
+	int rc;
+
+	if (unlikely(lockup_detected(h)))
+		return;
+	flush_buf = kzalloc(4, GFP_KERNEL);
+	if (!flush_buf)
+		return;
+
+	c = cmd_alloc(h);
+
+	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
+		RAID_CTLR_LUNID, TYPE_CMD)) {
+		goto out;
+	}
+	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
+					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
+	if (rc)
+		goto out;
+	if (c->err_info->CommandStatus != 0)
+out:
+		dev_warn(&h->pdev->dev,
+			"error flushing cache on controller\n");
+	cmd_free(h, c);
+	kfree(flush_buf);
+}
+
+/* Make controller gather fresh report lun data each time we
+ * send down a report luns request
+ */
+static void hpsa_disable_rld_caching(struct ctlr_info *h)
+{
+	u32 *options;
+	struct CommandList *c;
+	int rc;
+
+	/* Don't bother trying to set diag options if locked up */
+	if (unlikely(h->lockup_detected))
+		return;
+
+	options = kzalloc(sizeof(*options), GFP_KERNEL);
+	if (!options)
+		return;
+
+	c = cmd_alloc(h);
+
+	/* first, get the current diag options settings */
+	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
+		RAID_CTLR_LUNID, TYPE_CMD))
+		goto errout;
+
+	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
+		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
+	if ((rc != 0) || (c->err_info->CommandStatus != 0))
+		goto errout;
+
+	/* Now, set the bit for disabling the RLD caching */
+	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
+
+	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
+		RAID_CTLR_LUNID, TYPE_CMD))
+		goto errout;
+
+	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
+		PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
+	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
+		goto errout;
+
+	/* Now verify that it got set: */
+	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
+		RAID_CTLR_LUNID, TYPE_CMD))
+		goto errout;
+
+	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
+		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
+	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
+		goto errout;
+
+	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
+		goto out;
+
+errout:
+	dev_err(&h->pdev->dev,
+			"Error: failed to disable report lun data caching.\n");
+out:
+	cmd_free(h, c);
+	kfree(options);
+}
+
+static void __hpsa_shutdown(struct pci_dev *pdev)
+{
+	struct ctlr_info *h;
+
+	h = pci_get_drvdata(pdev);
+	/* Turn board interrupts off  and send the flush cache command
+	 * sendcmd will turn off interrupt, and send the flush...
+	 * To write all data in the battery backed cache to disks
+	 */
+	hpsa_flush_cache(h);
+	h->access.set_intr_mask(h, HPSA_INTR_OFF);
+	hpsa_free_irqs(h);			/* init_one 4 */
+	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
+}
+
+static void hpsa_shutdown(struct pci_dev *pdev)
+{
+	__hpsa_shutdown(pdev);
+	pci_disable_device(pdev);
+}
+
+static void hpsa_free_device_info(struct ctlr_info *h)
+{
+	int i;
+
+	for (i = 0; i < h->ndevices; i++) {
+		kfree(h->dev[i]);
+		h->dev[i] = NULL;
+	}
+}
+
+static void hpsa_remove_one(struct pci_dev *pdev)
+{
+	struct ctlr_info *h;
+	unsigned long flags;
+
+	if (pci_get_drvdata(pdev) == NULL) {
+		dev_err(&pdev->dev, "unable to remove device\n");
+		return;
+	}
+	h = pci_get_drvdata(pdev);
+
+	/* Get rid of any controller monitoring work items */
+	spin_lock_irqsave(&h->lock, flags);
+	h->remove_in_progress = 1;
+	spin_unlock_irqrestore(&h->lock, flags);
+	cancel_delayed_work_sync(&h->monitor_ctlr_work);
+	cancel_delayed_work_sync(&h->rescan_ctlr_work);
+	cancel_delayed_work_sync(&h->event_monitor_work);
+	destroy_workqueue(h->rescan_ctlr_wq);
+	destroy_workqueue(h->resubmit_wq);
+
+	hpsa_delete_sas_host(h);
+
+	/*
+	 * Call before disabling interrupts.
+	 * scsi_remove_host can trigger I/O operations especially
+	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
+	 * operations which cannot complete and will hang the system.
+	 */
+	if (h->scsi_host)
+		scsi_remove_host(h->scsi_host);		/* init_one 8 */
+	/* includes hpsa_free_irqs - init_one 4 */
+	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
+	__hpsa_shutdown(pdev);
+
+	hpsa_free_device_info(h);		/* scan */
+
+	kfree(h->hba_inquiry_data);			/* init_one 10 */
+	h->hba_inquiry_data = NULL;			/* init_one 10 */
+	hpsa_free_ioaccel2_sg_chain_blocks(h);
+	hpsa_free_performant_mode(h);			/* init_one 7 */
+	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
+	hpsa_free_cmd_pool(h);				/* init_one 5 */
+	kfree(h->lastlogicals);
+
+	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
+
+	scsi_host_put(h->scsi_host);			/* init_one 3 */
+	h->scsi_host = NULL;				/* init_one 3 */
+
+	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
+	hpsa_free_pci_init(h);				/* init_one 2.5 */
+
+	free_percpu(h->lockup_detected);		/* init_one 2 */
+	h->lockup_detected = NULL;			/* init_one 2 */
+	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
+
+	hpda_free_ctlr_info(h);				/* init_one 1 */
+}
+
+static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
+	__attribute__((unused)) pm_message_t state)
+{
+	return -ENOSYS;
+}
+
+static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
+{
+	return -ENOSYS;
+}
+
+static struct pci_driver hpsa_pci_driver = {
+	.name = HPSA,
+	.probe = hpsa_init_one,
+	.remove = hpsa_remove_one,
+	.id_table = hpsa_pci_device_id,	/* id_table */
+	.shutdown = hpsa_shutdown,
+	.suspend = hpsa_suspend,
+	.resume = hpsa_resume,
+};
+
+/* Fill in bucket_map[], given nsgs (the max number of
+ * scatter gather elements supported) and bucket[],
+ * which is an array of 8 integers.  The bucket[] array
+ * contains 8 different DMA transfer sizes (in 16
+ * byte increments) which the controller uses to fetch
+ * commands.  This function fills in bucket_map[], which
+ * maps a given number of scatter gather elements to one of
+ * the 8 DMA transfer sizes.  The point of it is to allow the
+ * controller to only do as much DMA as needed to fetch the
+ * command, with the DMA transfer size encoded in the lower
+ * bits of the command address.
+ */
+static void  calc_bucket_map(int bucket[], int num_buckets,
+	int nsgs, int min_blocks, u32 *bucket_map)
+{
+	int i, j, b, size;
+
+	/* Note, bucket_map must have nsgs+1 entries. */
+	for (i = 0; i <= nsgs; i++) {
+		/* Compute size of a command with i SG entries */
+		size = i + min_blocks;
+		b = num_buckets; /* Assume the biggest bucket */
+		/* Find the bucket that is just big enough */
+		for (j = 0; j < num_buckets; j++) {
+			if (bucket[j] >= size) {
+				b = j;
+				break;
+			}
+		}
+		/* for a command with i SG entries, use bucket b. */
+		bucket_map[i] = b;
+	}
+}
+
+/*
+ * return -ENODEV on err, 0 on success (or no action)
+ * allocates numerous items that must be freed later
+ */
+static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
+{
+	int i;
+	unsigned long register_value;
+	unsigned long transMethod = CFGTBL_Trans_Performant |
+			(trans_support & CFGTBL_Trans_use_short_tags) |
+				CFGTBL_Trans_enable_directed_msix |
+			(trans_support & (CFGTBL_Trans_io_accel1 |
+				CFGTBL_Trans_io_accel2));
+	struct access_method access = SA5_performant_access;
+
+	/* This is a bit complicated.  There are 8 registers on
+	 * the controller which we write to to tell it 8 different
+	 * sizes of commands which there may be.  It's a way of
+	 * reducing the DMA done to fetch each command.  Encoded into
+	 * each command's tag are 3 bits which communicate to the controller
+	 * which of the eight sizes that command fits within.  The size of
+	 * each command depends on how many scatter gather entries there are.
+	 * Each SG entry requires 16 bytes.  The eight registers are programmed
+	 * with the number of 16-byte blocks a command of that size requires.
+	 * The smallest command possible requires 5 such 16 byte blocks.
+	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
+	 * blocks.  Note, this only extends to the SG entries contained
+	 * within the command block, and does not extend to chained blocks
+	 * of SG elements.   bft[] contains the eight values we write to
+	 * the registers.  They are not evenly distributed, but have more
+	 * sizes for small commands, and fewer sizes for larger commands.
+	 */
+	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
+#define MIN_IOACCEL2_BFT_ENTRY 5
+#define HPSA_IOACCEL2_HEADER_SZ 4
+	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
+			13, 14, 15, 16, 17, 18, 19,
+			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
+	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
+	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
+	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
+				 16 * MIN_IOACCEL2_BFT_ENTRY);
+	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
+	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
+	/*  5 = 1 s/g entry or 4k
+	 *  6 = 2 s/g entry or 8k
+	 *  8 = 4 s/g entry or 16k
+	 * 10 = 6 s/g entry or 24k
+	 */
+
+	/* If the controller supports either ioaccel method then
+	 * we can also use the RAID stack submit path that does not
+	 * perform the superfluous readl() after each command submission.
+	 */
+	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
+		access = SA5_performant_access_no_read;
+
+	/* Controller spec: zero out this buffer. */
+	for (i = 0; i < h->nreply_queues; i++)
+		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
+
+	bft[7] = SG_ENTRIES_IN_CMD + 4;
+	calc_bucket_map(bft, ARRAY_SIZE(bft),
+				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
+	for (i = 0; i < 8; i++)
+		writel(bft[i], &h->transtable->BlockFetch[i]);
+
+	/* size of controller ring buffer */
+	writel(h->max_commands, &h->transtable->RepQSize);
+	writel(h->nreply_queues, &h->transtable->RepQCount);
+	writel(0, &h->transtable->RepQCtrAddrLow32);
+	writel(0, &h->transtable->RepQCtrAddrHigh32);
+
+	for (i = 0; i < h->nreply_queues; i++) {
+		writel(0, &h->transtable->RepQAddr[i].upper);
+		writel(h->reply_queue[i].busaddr,
+			&h->transtable->RepQAddr[i].lower);
+	}
+
+	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
+	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
+	/*
+	 * enable outbound interrupt coalescing in accelerator mode;
+	 */
+	if (trans_support & CFGTBL_Trans_io_accel1) {
+		access = SA5_ioaccel_mode1_access;
+		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
+		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
+	} else
+		if (trans_support & CFGTBL_Trans_io_accel2)
+			access = SA5_ioaccel_mode2_access;
+	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
+	if (hpsa_wait_for_mode_change_ack(h)) {
+		dev_err(&h->pdev->dev,
+			"performant mode problem - doorbell timeout\n");
+		return -ENODEV;
+	}
+	register_value = readl(&(h->cfgtable->TransportActive));
+	if (!(register_value & CFGTBL_Trans_Performant)) {
+		dev_err(&h->pdev->dev,
+			"performant mode problem - transport not active\n");
+		return -ENODEV;
+	}
+	/* Change the access methods to the performant access methods */
+	h->access = access;
+	h->transMethod = transMethod;
+
+	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
+		(trans_support & CFGTBL_Trans_io_accel2)))
+		return 0;
+
+	if (trans_support & CFGTBL_Trans_io_accel1) {
+		/* Set up I/O accelerator mode */
+		for (i = 0; i < h->nreply_queues; i++) {
+			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
+			h->reply_queue[i].current_entry =
+				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
+		}
+		bft[7] = h->ioaccel_maxsg + 8;
+		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
+				h->ioaccel1_blockFetchTable);
+
+		/* initialize all reply queue entries to unused */
+		for (i = 0; i < h->nreply_queues; i++)
+			memset(h->reply_queue[i].head,
+				(u8) IOACCEL_MODE1_REPLY_UNUSED,
+				h->reply_queue_size);
+
+		/* set all the constant fields in the accelerator command
+		 * frames once at init time to save CPU cycles later.
+		 */
+		for (i = 0; i < h->nr_cmds; i++) {
+			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
+
+			cp->function = IOACCEL1_FUNCTION_SCSIIO;
+			cp->err_info = (u32) (h->errinfo_pool_dhandle +
+					(i * sizeof(struct ErrorInfo)));
+			cp->err_info_len = sizeof(struct ErrorInfo);
+			cp->sgl_offset = IOACCEL1_SGLOFFSET;
+			cp->host_context_flags =
+				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
+			cp->timeout_sec = 0;
+			cp->ReplyQueue = 0;
+			cp->tag =
+				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
+			cp->host_addr =
+				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
+					(i * sizeof(struct io_accel1_cmd)));
+		}
+	} else if (trans_support & CFGTBL_Trans_io_accel2) {
+		u64 cfg_offset, cfg_base_addr_index;
+		u32 bft2_offset, cfg_base_addr;
+		int rc;
+
+		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
+			&cfg_base_addr_index, &cfg_offset);
+		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
+		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
+		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
+				4, h->ioaccel2_blockFetchTable);
+		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
+		BUILD_BUG_ON(offsetof(struct CfgTable,
+				io_accel_request_size_offset) != 0xb8);
+		h->ioaccel2_bft2_regs =
+			remap_pci_mem(pci_resource_start(h->pdev,
+					cfg_base_addr_index) +
+					cfg_offset + bft2_offset,
+					ARRAY_SIZE(bft2) *
+					sizeof(*h->ioaccel2_bft2_regs));
+		for (i = 0; i < ARRAY_SIZE(bft2); i++)
+			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
+	}
+	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
+	if (hpsa_wait_for_mode_change_ack(h)) {
+		dev_err(&h->pdev->dev,
+			"performant mode problem - enabling ioaccel mode\n");
+		return -ENODEV;
+	}
+	return 0;
+}
+
+/* Free ioaccel1 mode command blocks and block fetch table */
+static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
+{
+	if (h->ioaccel_cmd_pool) {
+		pci_free_consistent(h->pdev,
+			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
+			h->ioaccel_cmd_pool,
+			h->ioaccel_cmd_pool_dhandle);
+		h->ioaccel_cmd_pool = NULL;
+		h->ioaccel_cmd_pool_dhandle = 0;
+	}
+	kfree(h->ioaccel1_blockFetchTable);
+	h->ioaccel1_blockFetchTable = NULL;
+}
+
+/* Allocate ioaccel1 mode command blocks and block fetch table */
+static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
+{
+	h->ioaccel_maxsg =
+		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
+	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
+		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
+
+	/* Command structures must be aligned on a 128-byte boundary
+	 * because the 7 lower bits of the address are used by the
+	 * hardware.
+	 */
+	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
+			IOACCEL1_COMMANDLIST_ALIGNMENT);
+	h->ioaccel_cmd_pool =
+		pci_alloc_consistent(h->pdev,
+			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
+			&(h->ioaccel_cmd_pool_dhandle));
+
+	h->ioaccel1_blockFetchTable =
+		kmalloc(((h->ioaccel_maxsg + 1) *
+				sizeof(u32)), GFP_KERNEL);
+
+	if ((h->ioaccel_cmd_pool == NULL) ||
+		(h->ioaccel1_blockFetchTable == NULL))
+		goto clean_up;
+
+	memset(h->ioaccel_cmd_pool, 0,
+		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
+	return 0;
+
+clean_up:
+	hpsa_free_ioaccel1_cmd_and_bft(h);
+	return -ENOMEM;
+}
+
+/* Free ioaccel2 mode command blocks and block fetch table */
+static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
+{
+	hpsa_free_ioaccel2_sg_chain_blocks(h);
+
+	if (h->ioaccel2_cmd_pool) {
+		pci_free_consistent(h->pdev,
+			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
+			h->ioaccel2_cmd_pool,
+			h->ioaccel2_cmd_pool_dhandle);
+		h->ioaccel2_cmd_pool = NULL;
+		h->ioaccel2_cmd_pool_dhandle = 0;
+	}
+	kfree(h->ioaccel2_blockFetchTable);
+	h->ioaccel2_blockFetchTable = NULL;
+}
+
+/* Allocate ioaccel2 mode command blocks and block fetch table */
+static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
+{
+	int rc;
+
+	/* Allocate ioaccel2 mode command blocks and block fetch table */
+
+	h->ioaccel_maxsg =
+		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
+	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
+		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
+
+	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
+			IOACCEL2_COMMANDLIST_ALIGNMENT);
+	h->ioaccel2_cmd_pool =
+		pci_alloc_consistent(h->pdev,
+			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
+			&(h->ioaccel2_cmd_pool_dhandle));
+
+	h->ioaccel2_blockFetchTable =
+		kmalloc(((h->ioaccel_maxsg + 1) *
+				sizeof(u32)), GFP_KERNEL);
+
+	if ((h->ioaccel2_cmd_pool == NULL) ||
+		(h->ioaccel2_blockFetchTable == NULL)) {
+		rc = -ENOMEM;
+		goto clean_up;
+	}
+
+	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
+	if (rc)
+		goto clean_up;
+
+	memset(h->ioaccel2_cmd_pool, 0,
+		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
+	return 0;
+
+clean_up:
+	hpsa_free_ioaccel2_cmd_and_bft(h);
+	return rc;
+}
+
+/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
+static void hpsa_free_performant_mode(struct ctlr_info *h)
+{
+	kfree(h->blockFetchTable);
+	h->blockFetchTable = NULL;
+	hpsa_free_reply_queues(h);
+	hpsa_free_ioaccel1_cmd_and_bft(h);
+	hpsa_free_ioaccel2_cmd_and_bft(h);
+}
+
+/* return -ENODEV on error, 0 on success (or no action)
+ * allocates numerous items that must be freed later
+ */
+static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
+{
+	u32 trans_support;
+	unsigned long transMethod = CFGTBL_Trans_Performant |
+					CFGTBL_Trans_use_short_tags;
+	int i, rc;
+
+	if (hpsa_simple_mode)
+		return 0;
+
+	trans_support = readl(&(h->cfgtable->TransportSupport));
+	if (!(trans_support & PERFORMANT_MODE))
+		return 0;
+
+	/* Check for I/O accelerator mode support */
+	if (trans_support & CFGTBL_Trans_io_accel1) {
+		transMethod |= CFGTBL_Trans_io_accel1 |
+				CFGTBL_Trans_enable_directed_msix;
+		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
+		if (rc)
+			return rc;
+	} else if (trans_support & CFGTBL_Trans_io_accel2) {
+		transMethod |= CFGTBL_Trans_io_accel2 |
+				CFGTBL_Trans_enable_directed_msix;
+		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
+		if (rc)
+			return rc;
+	}
+
+	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
+	hpsa_get_max_perf_mode_cmds(h);
+	/* Performant mode ring buffer and supporting data structures */
+	h->reply_queue_size = h->max_commands * sizeof(u64);
+
+	for (i = 0; i < h->nreply_queues; i++) {
+		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
+						h->reply_queue_size,
+						&(h->reply_queue[i].busaddr));
+		if (!h->reply_queue[i].head) {
+			rc = -ENOMEM;
+			goto clean1;	/* rq, ioaccel */
+		}
+		h->reply_queue[i].size = h->max_commands;
+		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
+		h->reply_queue[i].current_entry = 0;
+	}
+
+	/* Need a block fetch table for performant mode */
+	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
+				sizeof(u32)), GFP_KERNEL);
+	if (!h->blockFetchTable) {
+		rc = -ENOMEM;
+		goto clean1;	/* rq, ioaccel */
+	}
+
+	rc = hpsa_enter_performant_mode(h, trans_support);
+	if (rc)
+		goto clean2;	/* bft, rq, ioaccel */
+	return 0;
+
+clean2:	/* bft, rq, ioaccel */
+	kfree(h->blockFetchTable);
+	h->blockFetchTable = NULL;
+clean1:	/* rq, ioaccel */
+	hpsa_free_reply_queues(h);
+	hpsa_free_ioaccel1_cmd_and_bft(h);
+	hpsa_free_ioaccel2_cmd_and_bft(h);
+	return rc;
+}
+
+static int is_accelerated_cmd(struct CommandList *c)
+{
+	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
+}
+
+static void hpsa_drain_accel_commands(struct ctlr_info *h)
+{
+	struct CommandList *c = NULL;
+	int i, accel_cmds_out;
+	int refcount;
+
+	do { /* wait for all outstanding ioaccel commands to drain out */
+		accel_cmds_out = 0;
+		for (i = 0; i < h->nr_cmds; i++) {
+			c = h->cmd_pool + i;
+			refcount = atomic_inc_return(&c->refcount);
+			if (refcount > 1) /* Command is allocated */
+				accel_cmds_out += is_accelerated_cmd(c);
+			cmd_free(h, c);
+		}
+		if (accel_cmds_out <= 0)
+			break;
+		msleep(100);
+	} while (1);
+}
+
+static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
+				struct hpsa_sas_port *hpsa_sas_port)
+{
+	struct hpsa_sas_phy *hpsa_sas_phy;
+	struct sas_phy *phy;
+
+	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
+	if (!hpsa_sas_phy)
+		return NULL;
+
+	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
+		hpsa_sas_port->next_phy_index);
+	if (!phy) {
+		kfree(hpsa_sas_phy);
+		return NULL;
+	}
+
+	hpsa_sas_port->next_phy_index++;
+	hpsa_sas_phy->phy = phy;
+	hpsa_sas_phy->parent_port = hpsa_sas_port;
+
+	return hpsa_sas_phy;
+}
+
+static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
+{
+	struct sas_phy *phy = hpsa_sas_phy->phy;
+
+	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
+	if (hpsa_sas_phy->added_to_port)
+		list_del(&hpsa_sas_phy->phy_list_entry);
+	sas_phy_delete(phy);
+	kfree(hpsa_sas_phy);
+}
+
+static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
+{
+	int rc;
+	struct hpsa_sas_port *hpsa_sas_port;
+	struct sas_phy *phy;
+	struct sas_identify *identify;
+
+	hpsa_sas_port = hpsa_sas_phy->parent_port;
+	phy = hpsa_sas_phy->phy;
+
+	identify = &phy->identify;
+	memset(identify, 0, sizeof(*identify));
+	identify->sas_address = hpsa_sas_port->sas_address;
+	identify->device_type = SAS_END_DEVICE;
+	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
+	identify->target_port_protocols = SAS_PROTOCOL_STP;
+	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
+	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
+	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
+	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
+	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
+
+	rc = sas_phy_add(hpsa_sas_phy->phy);
+	if (rc)
+		return rc;
+
+	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
+	list_add_tail(&hpsa_sas_phy->phy_list_entry,
+			&hpsa_sas_port->phy_list_head);
+	hpsa_sas_phy->added_to_port = true;
+
+	return 0;
+}
+
+static int
+	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
+				struct sas_rphy *rphy)
+{
+	struct sas_identify *identify;
+
+	identify = &rphy->identify;
+	identify->sas_address = hpsa_sas_port->sas_address;
+	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
+	identify->target_port_protocols = SAS_PROTOCOL_STP;
+
+	return sas_rphy_add(rphy);
+}
+
+static struct hpsa_sas_port
+	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
+				u64 sas_address)
+{
+	int rc;
+	struct hpsa_sas_port *hpsa_sas_port;
+	struct sas_port *port;
+
+	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
+	if (!hpsa_sas_port)
+		return NULL;
+
+	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
+	hpsa_sas_port->parent_node = hpsa_sas_node;
+
+	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
+	if (!port)
+		goto free_hpsa_port;
+
+	rc = sas_port_add(port);
+	if (rc)
+		goto free_sas_port;
+
+	hpsa_sas_port->port = port;
+	hpsa_sas_port->sas_address = sas_address;
+	list_add_tail(&hpsa_sas_port->port_list_entry,
+			&hpsa_sas_node->port_list_head);
+
+	return hpsa_sas_port;
+
+free_sas_port:
+	sas_port_free(port);
+free_hpsa_port:
+	kfree(hpsa_sas_port);
+
+	return NULL;
+}
+
+static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
+{
+	struct hpsa_sas_phy *hpsa_sas_phy;
+	struct hpsa_sas_phy *next;
+
+	list_for_each_entry_safe(hpsa_sas_phy, next,
+			&hpsa_sas_port->phy_list_head, phy_list_entry)
+		hpsa_free_sas_phy(hpsa_sas_phy);
+
+	sas_port_delete(hpsa_sas_port->port);
+	list_del(&hpsa_sas_port->port_list_entry);
+	kfree(hpsa_sas_port);
+}
+
+static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
+{
+	struct hpsa_sas_node *hpsa_sas_node;
+
+	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
+	if (hpsa_sas_node) {
+		hpsa_sas_node->parent_dev = parent_dev;
+		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
+	}
+
+	return hpsa_sas_node;
+}
+
+static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
+{
+	struct hpsa_sas_port *hpsa_sas_port;
+	struct hpsa_sas_port *next;
+
+	if (!hpsa_sas_node)
+		return;
+
+	list_for_each_entry_safe(hpsa_sas_port, next,
+			&hpsa_sas_node->port_list_head, port_list_entry)
+		hpsa_free_sas_port(hpsa_sas_port);
+
+	kfree(hpsa_sas_node);
+}
+
+static struct hpsa_scsi_dev_t
+	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
+					struct sas_rphy *rphy)
+{
+	int i;
+	struct hpsa_scsi_dev_t *device;
+
+	for (i = 0; i < h->ndevices; i++) {
+		device = h->dev[i];
+		if (!device->sas_port)
+			continue;
+		if (device->sas_port->rphy == rphy)
+			return device;
+	}
+
+	return NULL;
+}
+
+static int hpsa_add_sas_host(struct ctlr_info *h)
+{
+	int rc;
+	struct device *parent_dev;
+	struct hpsa_sas_node *hpsa_sas_node;
+	struct hpsa_sas_port *hpsa_sas_port;
+	struct hpsa_sas_phy *hpsa_sas_phy;
+
+	parent_dev = &h->scsi_host->shost_gendev;
+
+	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
+	if (!hpsa_sas_node)
+		return -ENOMEM;
+
+	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
+	if (!hpsa_sas_port) {
+		rc = -ENODEV;
+		goto free_sas_node;
+	}
+
+	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
+	if (!hpsa_sas_phy) {
+		rc = -ENODEV;
+		goto free_sas_port;
+	}
+
+	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
+	if (rc)
+		goto free_sas_phy;
+
+	h->sas_host = hpsa_sas_node;
+
+	return 0;
+
+free_sas_phy:
+	hpsa_free_sas_phy(hpsa_sas_phy);
+free_sas_port:
+	hpsa_free_sas_port(hpsa_sas_port);
+free_sas_node:
+	hpsa_free_sas_node(hpsa_sas_node);
+
+	return rc;
+}
+
+static void hpsa_delete_sas_host(struct ctlr_info *h)
+{
+	hpsa_free_sas_node(h->sas_host);
+}
+
+static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
+				struct hpsa_scsi_dev_t *device)
+{
+	int rc;
+	struct hpsa_sas_port *hpsa_sas_port;
+	struct sas_rphy *rphy;
+
+	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
+	if (!hpsa_sas_port)
+		return -ENOMEM;
+
+	rphy = sas_end_device_alloc(hpsa_sas_port->port);
+	if (!rphy) {
+		rc = -ENODEV;
+		goto free_sas_port;
+	}
+
+	hpsa_sas_port->rphy = rphy;
+	device->sas_port = hpsa_sas_port;
+
+	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
+	if (rc)
+		goto free_sas_port;
+
+	return 0;
+
+free_sas_port:
+	hpsa_free_sas_port(hpsa_sas_port);
+	device->sas_port = NULL;
+
+	return rc;
+}
+
+static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
+{
+	if (device->sas_port) {
+		hpsa_free_sas_port(device->sas_port);
+		device->sas_port = NULL;
+	}
+}
+
+static int
+hpsa_sas_get_linkerrors(struct sas_phy *phy)
+{
+	return 0;
+}
+
+static int
+hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
+{
+	*identifier = 0;
+	return 0;
+}
+
+static int
+hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
+{
+	return -ENXIO;
+}
+
+static int
+hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
+{
+	return 0;
+}
+
+static int
+hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
+{
+	return 0;
+}
+
+static int
+hpsa_sas_phy_setup(struct sas_phy *phy)
+{
+	return 0;
+}
+
+static void
+hpsa_sas_phy_release(struct sas_phy *phy)
+{
+}
+
+static int
+hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
+{
+	return -EINVAL;
+}
+
+static struct sas_function_template hpsa_sas_transport_functions = {
+	.get_linkerrors = hpsa_sas_get_linkerrors,
+	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
+	.get_bay_identifier = hpsa_sas_get_bay_identifier,
+	.phy_reset = hpsa_sas_phy_reset,
+	.phy_enable = hpsa_sas_phy_enable,
+	.phy_setup = hpsa_sas_phy_setup,
+	.phy_release = hpsa_sas_phy_release,
+	.set_phy_speed = hpsa_sas_phy_speed,
+};
+
+/*
+ *  This is it.  Register the PCI driver information for the cards we control
+ *  the OS will call our registered routines when it finds one of our cards.
+ */
+static int __init hpsa_init(void)
+{
+	int rc;
+
+	hpsa_sas_transport_template =
+		sas_attach_transport(&hpsa_sas_transport_functions);
+	if (!hpsa_sas_transport_template)
+		return -ENODEV;
+
+	rc = pci_register_driver(&hpsa_pci_driver);
+
+	if (rc)
+		sas_release_transport(hpsa_sas_transport_template);
+
+	return rc;
+}
+
+static void __exit hpsa_cleanup(void)
+{
+	pci_unregister_driver(&hpsa_pci_driver);
+	sas_release_transport(hpsa_sas_transport_template);
+}
+
+static void __attribute__((unused)) verify_offsets(void)
+{
+#define VERIFY_OFFSET(member, offset) \
+	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
+
+	VERIFY_OFFSET(structure_size, 0);
+	VERIFY_OFFSET(volume_blk_size, 4);
+	VERIFY_OFFSET(volume_blk_cnt, 8);
+	VERIFY_OFFSET(phys_blk_shift, 16);
+	VERIFY_OFFSET(parity_rotation_shift, 17);
+	VERIFY_OFFSET(strip_size, 18);
+	VERIFY_OFFSET(disk_starting_blk, 20);
+	VERIFY_OFFSET(disk_blk_cnt, 28);
+	VERIFY_OFFSET(data_disks_per_row, 36);
+	VERIFY_OFFSET(metadata_disks_per_row, 38);
+	VERIFY_OFFSET(row_cnt, 40);
+	VERIFY_OFFSET(layout_map_count, 42);
+	VERIFY_OFFSET(flags, 44);
+	VERIFY_OFFSET(dekindex, 46);
+	/* VERIFY_OFFSET(reserved, 48 */
+	VERIFY_OFFSET(data, 64);
+
+#undef VERIFY_OFFSET
+
+#define VERIFY_OFFSET(member, offset) \
+	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
+
+	VERIFY_OFFSET(IU_type, 0);
+	VERIFY_OFFSET(direction, 1);
+	VERIFY_OFFSET(reply_queue, 2);
+	/* VERIFY_OFFSET(reserved1, 3);  */
+	VERIFY_OFFSET(scsi_nexus, 4);
+	VERIFY_OFFSET(Tag, 8);
+	VERIFY_OFFSET(cdb, 16);
+	VERIFY_OFFSET(cciss_lun, 32);
+	VERIFY_OFFSET(data_len, 40);
+	VERIFY_OFFSET(cmd_priority_task_attr, 44);
+	VERIFY_OFFSET(sg_count, 45);
+	/* VERIFY_OFFSET(reserved3 */
+	VERIFY_OFFSET(err_ptr, 48);
+	VERIFY_OFFSET(err_len, 56);
+	/* VERIFY_OFFSET(reserved4  */
+	VERIFY_OFFSET(sg, 64);
+
+#undef VERIFY_OFFSET
+
+#define VERIFY_OFFSET(member, offset) \
+	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
+
+	VERIFY_OFFSET(dev_handle, 0x00);
+	VERIFY_OFFSET(reserved1, 0x02);
+	VERIFY_OFFSET(function, 0x03);
+	VERIFY_OFFSET(reserved2, 0x04);
+	VERIFY_OFFSET(err_info, 0x0C);
+	VERIFY_OFFSET(reserved3, 0x10);
+	VERIFY_OFFSET(err_info_len, 0x12);
+	VERIFY_OFFSET(reserved4, 0x13);
+	VERIFY_OFFSET(sgl_offset, 0x14);
+	VERIFY_OFFSET(reserved5, 0x15);
+	VERIFY_OFFSET(transfer_len, 0x1C);
+	VERIFY_OFFSET(reserved6, 0x20);
+	VERIFY_OFFSET(io_flags, 0x24);
+	VERIFY_OFFSET(reserved7, 0x26);
+	VERIFY_OFFSET(LUN, 0x34);
+	VERIFY_OFFSET(control, 0x3C);
+	VERIFY_OFFSET(CDB, 0x40);
+	VERIFY_OFFSET(reserved8, 0x50);
+	VERIFY_OFFSET(host_context_flags, 0x60);
+	VERIFY_OFFSET(timeout_sec, 0x62);
+	VERIFY_OFFSET(ReplyQueue, 0x64);
+	VERIFY_OFFSET(reserved9, 0x65);
+	VERIFY_OFFSET(tag, 0x68);
+	VERIFY_OFFSET(host_addr, 0x70);
+	VERIFY_OFFSET(CISS_LUN, 0x78);
+	VERIFY_OFFSET(SG, 0x78 + 8);
+#undef VERIFY_OFFSET
+}
+
+module_init(hpsa_init);
+module_exit(hpsa_cleanup);