[Feature]add MT2731_MP2_MR2_SVN388 baseline version

Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/kernel/linux/v4.14/fs/btrfs/compression.c b/src/kernel/linux/v4.14/fs/btrfs/compression.c
new file mode 100644
index 0000000..ccd9c70
--- /dev/null
+++ b/src/kernel/linux/v4.14/fs/btrfs/compression.c
@@ -0,0 +1,1130 @@
+/*
+ * Copyright (C) 2008 Oracle.  All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/kernel.h>
+#include <linux/bio.h>
+#include <linux/buffer_head.h>
+#include <linux/file.h>
+#include <linux/fs.h>
+#include <linux/pagemap.h>
+#include <linux/highmem.h>
+#include <linux/time.h>
+#include <linux/init.h>
+#include <linux/string.h>
+#include <linux/backing-dev.h>
+#include <linux/mpage.h>
+#include <linux/swap.h>
+#include <linux/writeback.h>
+#include <linux/bit_spinlock.h>
+#include <linux/slab.h>
+#include <linux/sched/mm.h>
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "btrfs_inode.h"
+#include "volumes.h"
+#include "ordered-data.h"
+#include "compression.h"
+#include "extent_io.h"
+#include "extent_map.h"
+
+static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
+
+const char* btrfs_compress_type2str(enum btrfs_compression_type type)
+{
+	switch (type) {
+	case BTRFS_COMPRESS_ZLIB:
+	case BTRFS_COMPRESS_LZO:
+	case BTRFS_COMPRESS_ZSTD:
+	case BTRFS_COMPRESS_NONE:
+		return btrfs_compress_types[type];
+	}
+
+	return NULL;
+}
+
+bool btrfs_compress_is_valid_type(const char *str, size_t len)
+{
+	int i;
+
+	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
+		size_t comp_len = strlen(btrfs_compress_types[i]);
+
+		if (len < comp_len)
+			continue;
+
+		if (!strncmp(btrfs_compress_types[i], str, comp_len))
+			return true;
+	}
+	return false;
+}
+
+static int btrfs_decompress_bio(struct compressed_bio *cb);
+
+static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
+				      unsigned long disk_size)
+{
+	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
+
+	return sizeof(struct compressed_bio) +
+		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
+}
+
+static int check_compressed_csum(struct btrfs_inode *inode,
+				 struct compressed_bio *cb,
+				 u64 disk_start)
+{
+	int ret;
+	struct page *page;
+	unsigned long i;
+	char *kaddr;
+	u32 csum;
+	u32 *cb_sum = &cb->sums;
+
+	if (inode->flags & BTRFS_INODE_NODATASUM)
+		return 0;
+
+	for (i = 0; i < cb->nr_pages; i++) {
+		page = cb->compressed_pages[i];
+		csum = ~(u32)0;
+
+		kaddr = kmap_atomic(page);
+		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
+		btrfs_csum_final(csum, (u8 *)&csum);
+		kunmap_atomic(kaddr);
+
+		if (csum != *cb_sum) {
+			btrfs_print_data_csum_error(inode, disk_start, csum,
+					*cb_sum, cb->mirror_num);
+			ret = -EIO;
+			goto fail;
+		}
+		cb_sum++;
+
+	}
+	ret = 0;
+fail:
+	return ret;
+}
+
+/* when we finish reading compressed pages from the disk, we
+ * decompress them and then run the bio end_io routines on the
+ * decompressed pages (in the inode address space).
+ *
+ * This allows the checksumming and other IO error handling routines
+ * to work normally
+ *
+ * The compressed pages are freed here, and it must be run
+ * in process context
+ */
+static void end_compressed_bio_read(struct bio *bio)
+{
+	struct compressed_bio *cb = bio->bi_private;
+	struct inode *inode;
+	struct page *page;
+	unsigned long index;
+	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
+	int ret = 0;
+
+	if (bio->bi_status)
+		cb->errors = 1;
+
+	/* if there are more bios still pending for this compressed
+	 * extent, just exit
+	 */
+	if (!refcount_dec_and_test(&cb->pending_bios))
+		goto out;
+
+	/*
+	 * Record the correct mirror_num in cb->orig_bio so that
+	 * read-repair can work properly.
+	 */
+	ASSERT(btrfs_io_bio(cb->orig_bio));
+	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
+	cb->mirror_num = mirror;
+
+	/*
+	 * Some IO in this cb have failed, just skip checksum as there
+	 * is no way it could be correct.
+	 */
+	if (cb->errors == 1)
+		goto csum_failed;
+
+	inode = cb->inode;
+	ret = check_compressed_csum(BTRFS_I(inode), cb,
+				    (u64)bio->bi_iter.bi_sector << 9);
+	if (ret)
+		goto csum_failed;
+
+	/* ok, we're the last bio for this extent, lets start
+	 * the decompression.
+	 */
+	ret = btrfs_decompress_bio(cb);
+
+csum_failed:
+	if (ret)
+		cb->errors = 1;
+
+	/* release the compressed pages */
+	index = 0;
+	for (index = 0; index < cb->nr_pages; index++) {
+		page = cb->compressed_pages[index];
+		page->mapping = NULL;
+		put_page(page);
+	}
+
+	/* do io completion on the original bio */
+	if (cb->errors) {
+		bio_io_error(cb->orig_bio);
+	} else {
+		int i;
+		struct bio_vec *bvec;
+
+		/*
+		 * we have verified the checksum already, set page
+		 * checked so the end_io handlers know about it
+		 */
+		ASSERT(!bio_flagged(bio, BIO_CLONED));
+		bio_for_each_segment_all(bvec, cb->orig_bio, i)
+			SetPageChecked(bvec->bv_page);
+
+		bio_endio(cb->orig_bio);
+	}
+
+	/* finally free the cb struct */
+	kfree(cb->compressed_pages);
+	kfree(cb);
+out:
+	bio_put(bio);
+}
+
+/*
+ * Clear the writeback bits on all of the file
+ * pages for a compressed write
+ */
+static noinline void end_compressed_writeback(struct inode *inode,
+					      const struct compressed_bio *cb)
+{
+	unsigned long index = cb->start >> PAGE_SHIFT;
+	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
+	struct page *pages[16];
+	unsigned long nr_pages = end_index - index + 1;
+	int i;
+	int ret;
+
+	if (cb->errors)
+		mapping_set_error(inode->i_mapping, -EIO);
+
+	while (nr_pages > 0) {
+		ret = find_get_pages_contig(inode->i_mapping, index,
+				     min_t(unsigned long,
+				     nr_pages, ARRAY_SIZE(pages)), pages);
+		if (ret == 0) {
+			nr_pages -= 1;
+			index += 1;
+			continue;
+		}
+		for (i = 0; i < ret; i++) {
+			if (cb->errors)
+				SetPageError(pages[i]);
+			end_page_writeback(pages[i]);
+			put_page(pages[i]);
+		}
+		nr_pages -= ret;
+		index += ret;
+	}
+	/* the inode may be gone now */
+}
+
+/*
+ * do the cleanup once all the compressed pages hit the disk.
+ * This will clear writeback on the file pages and free the compressed
+ * pages.
+ *
+ * This also calls the writeback end hooks for the file pages so that
+ * metadata and checksums can be updated in the file.
+ */
+static void end_compressed_bio_write(struct bio *bio)
+{
+	struct extent_io_tree *tree;
+	struct compressed_bio *cb = bio->bi_private;
+	struct inode *inode;
+	struct page *page;
+	unsigned long index;
+
+	if (bio->bi_status)
+		cb->errors = 1;
+
+	/* if there are more bios still pending for this compressed
+	 * extent, just exit
+	 */
+	if (!refcount_dec_and_test(&cb->pending_bios))
+		goto out;
+
+	/* ok, we're the last bio for this extent, step one is to
+	 * call back into the FS and do all the end_io operations
+	 */
+	inode = cb->inode;
+	tree = &BTRFS_I(inode)->io_tree;
+	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
+	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
+					 cb->start,
+					 cb->start + cb->len - 1,
+					 NULL,
+					 bio->bi_status ? 0 : 1);
+	cb->compressed_pages[0]->mapping = NULL;
+
+	end_compressed_writeback(inode, cb);
+	/* note, our inode could be gone now */
+
+	/*
+	 * release the compressed pages, these came from alloc_page and
+	 * are not attached to the inode at all
+	 */
+	index = 0;
+	for (index = 0; index < cb->nr_pages; index++) {
+		page = cb->compressed_pages[index];
+		page->mapping = NULL;
+		put_page(page);
+	}
+
+	/* finally free the cb struct */
+	kfree(cb->compressed_pages);
+	kfree(cb);
+out:
+	bio_put(bio);
+}
+
+/*
+ * worker function to build and submit bios for previously compressed pages.
+ * The corresponding pages in the inode should be marked for writeback
+ * and the compressed pages should have a reference on them for dropping
+ * when the IO is complete.
+ *
+ * This also checksums the file bytes and gets things ready for
+ * the end io hooks.
+ */
+blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
+				 unsigned long len, u64 disk_start,
+				 unsigned long compressed_len,
+				 struct page **compressed_pages,
+				 unsigned long nr_pages)
+{
+	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
+	struct bio *bio = NULL;
+	struct compressed_bio *cb;
+	unsigned long bytes_left;
+	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+	int pg_index = 0;
+	struct page *page;
+	u64 first_byte = disk_start;
+	struct block_device *bdev;
+	blk_status_t ret;
+	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
+
+	WARN_ON(start & ((u64)PAGE_SIZE - 1));
+	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
+	if (!cb)
+		return BLK_STS_RESOURCE;
+	refcount_set(&cb->pending_bios, 0);
+	cb->errors = 0;
+	cb->inode = inode;
+	cb->start = start;
+	cb->len = len;
+	cb->mirror_num = 0;
+	cb->compressed_pages = compressed_pages;
+	cb->compressed_len = compressed_len;
+	cb->orig_bio = NULL;
+	cb->nr_pages = nr_pages;
+
+	bdev = fs_info->fs_devices->latest_bdev;
+
+	bio = btrfs_bio_alloc(bdev, first_byte);
+	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
+	bio->bi_private = cb;
+	bio->bi_end_io = end_compressed_bio_write;
+	refcount_set(&cb->pending_bios, 1);
+
+	/* create and submit bios for the compressed pages */
+	bytes_left = compressed_len;
+	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
+		int submit = 0;
+
+		page = compressed_pages[pg_index];
+		page->mapping = inode->i_mapping;
+		if (bio->bi_iter.bi_size)
+			submit = io_tree->ops->merge_bio_hook(page, 0,
+							   PAGE_SIZE,
+							   bio, 0);
+
+		page->mapping = NULL;
+		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
+		    PAGE_SIZE) {
+			bio_get(bio);
+
+			/*
+			 * inc the count before we submit the bio so
+			 * we know the end IO handler won't happen before
+			 * we inc the count.  Otherwise, the cb might get
+			 * freed before we're done setting it up
+			 */
+			refcount_inc(&cb->pending_bios);
+			ret = btrfs_bio_wq_end_io(fs_info, bio,
+						  BTRFS_WQ_ENDIO_DATA);
+			BUG_ON(ret); /* -ENOMEM */
+
+			if (!skip_sum) {
+				ret = btrfs_csum_one_bio(inode, bio, start, 1);
+				BUG_ON(ret); /* -ENOMEM */
+			}
+
+			ret = btrfs_map_bio(fs_info, bio, 0, 1);
+			if (ret) {
+				bio->bi_status = ret;
+				bio_endio(bio);
+			}
+
+			bio_put(bio);
+
+			bio = btrfs_bio_alloc(bdev, first_byte);
+			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
+			bio->bi_private = cb;
+			bio->bi_end_io = end_compressed_bio_write;
+			bio_add_page(bio, page, PAGE_SIZE, 0);
+		}
+		if (bytes_left < PAGE_SIZE) {
+			btrfs_info(fs_info,
+					"bytes left %lu compress len %lu nr %lu",
+			       bytes_left, cb->compressed_len, cb->nr_pages);
+		}
+		bytes_left -= PAGE_SIZE;
+		first_byte += PAGE_SIZE;
+		cond_resched();
+	}
+	bio_get(bio);
+
+	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
+	BUG_ON(ret); /* -ENOMEM */
+
+	if (!skip_sum) {
+		ret = btrfs_csum_one_bio(inode, bio, start, 1);
+		BUG_ON(ret); /* -ENOMEM */
+	}
+
+	ret = btrfs_map_bio(fs_info, bio, 0, 1);
+	if (ret) {
+		bio->bi_status = ret;
+		bio_endio(bio);
+	}
+
+	bio_put(bio);
+	return 0;
+}
+
+static u64 bio_end_offset(struct bio *bio)
+{
+	struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
+
+	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
+}
+
+static noinline int add_ra_bio_pages(struct inode *inode,
+				     u64 compressed_end,
+				     struct compressed_bio *cb)
+{
+	unsigned long end_index;
+	unsigned long pg_index;
+	u64 last_offset;
+	u64 isize = i_size_read(inode);
+	int ret;
+	struct page *page;
+	unsigned long nr_pages = 0;
+	struct extent_map *em;
+	struct address_space *mapping = inode->i_mapping;
+	struct extent_map_tree *em_tree;
+	struct extent_io_tree *tree;
+	u64 end;
+	int misses = 0;
+
+	last_offset = bio_end_offset(cb->orig_bio);
+	em_tree = &BTRFS_I(inode)->extent_tree;
+	tree = &BTRFS_I(inode)->io_tree;
+
+	if (isize == 0)
+		return 0;
+
+	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
+
+	while (last_offset < compressed_end) {
+		pg_index = last_offset >> PAGE_SHIFT;
+
+		if (pg_index > end_index)
+			break;
+
+		rcu_read_lock();
+		page = radix_tree_lookup(&mapping->page_tree, pg_index);
+		rcu_read_unlock();
+		if (page && !radix_tree_exceptional_entry(page)) {
+			misses++;
+			if (misses > 4)
+				break;
+			goto next;
+		}
+
+		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
+								 ~__GFP_FS));
+		if (!page)
+			break;
+
+		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
+			put_page(page);
+			goto next;
+		}
+
+		end = last_offset + PAGE_SIZE - 1;
+		/*
+		 * at this point, we have a locked page in the page cache
+		 * for these bytes in the file.  But, we have to make
+		 * sure they map to this compressed extent on disk.
+		 */
+		set_page_extent_mapped(page);
+		lock_extent(tree, last_offset, end);
+		read_lock(&em_tree->lock);
+		em = lookup_extent_mapping(em_tree, last_offset,
+					   PAGE_SIZE);
+		read_unlock(&em_tree->lock);
+
+		if (!em || last_offset < em->start ||
+		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
+		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
+			free_extent_map(em);
+			unlock_extent(tree, last_offset, end);
+			unlock_page(page);
+			put_page(page);
+			break;
+		}
+		free_extent_map(em);
+
+		if (page->index == end_index) {
+			char *userpage;
+			size_t zero_offset = isize & (PAGE_SIZE - 1);
+
+			if (zero_offset) {
+				int zeros;
+				zeros = PAGE_SIZE - zero_offset;
+				userpage = kmap_atomic(page);
+				memset(userpage + zero_offset, 0, zeros);
+				flush_dcache_page(page);
+				kunmap_atomic(userpage);
+			}
+		}
+
+		ret = bio_add_page(cb->orig_bio, page,
+				   PAGE_SIZE, 0);
+
+		if (ret == PAGE_SIZE) {
+			nr_pages++;
+			put_page(page);
+		} else {
+			unlock_extent(tree, last_offset, end);
+			unlock_page(page);
+			put_page(page);
+			break;
+		}
+next:
+		last_offset += PAGE_SIZE;
+	}
+	return 0;
+}
+
+/*
+ * for a compressed read, the bio we get passed has all the inode pages
+ * in it.  We don't actually do IO on those pages but allocate new ones
+ * to hold the compressed pages on disk.
+ *
+ * bio->bi_iter.bi_sector points to the compressed extent on disk
+ * bio->bi_io_vec points to all of the inode pages
+ *
+ * After the compressed pages are read, we copy the bytes into the
+ * bio we were passed and then call the bio end_io calls
+ */
+blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
+				 int mirror_num, unsigned long bio_flags)
+{
+	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
+	struct extent_io_tree *tree;
+	struct extent_map_tree *em_tree;
+	struct compressed_bio *cb;
+	unsigned long compressed_len;
+	unsigned long nr_pages;
+	unsigned long pg_index;
+	struct page *page;
+	struct block_device *bdev;
+	struct bio *comp_bio;
+	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
+	u64 em_len;
+	u64 em_start;
+	struct extent_map *em;
+	blk_status_t ret = BLK_STS_RESOURCE;
+	int faili = 0;
+	u32 *sums;
+
+	tree = &BTRFS_I(inode)->io_tree;
+	em_tree = &BTRFS_I(inode)->extent_tree;
+
+	/* we need the actual starting offset of this extent in the file */
+	read_lock(&em_tree->lock);
+	em = lookup_extent_mapping(em_tree,
+				   page_offset(bio->bi_io_vec->bv_page),
+				   PAGE_SIZE);
+	read_unlock(&em_tree->lock);
+	if (!em)
+		return BLK_STS_IOERR;
+
+	compressed_len = em->block_len;
+	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
+	if (!cb)
+		goto out;
+
+	refcount_set(&cb->pending_bios, 0);
+	cb->errors = 0;
+	cb->inode = inode;
+	cb->mirror_num = mirror_num;
+	sums = &cb->sums;
+
+	cb->start = em->orig_start;
+	em_len = em->len;
+	em_start = em->start;
+
+	free_extent_map(em);
+	em = NULL;
+
+	cb->len = bio->bi_iter.bi_size;
+	cb->compressed_len = compressed_len;
+	cb->compress_type = extent_compress_type(bio_flags);
+	cb->orig_bio = bio;
+
+	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
+	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
+				       GFP_NOFS);
+	if (!cb->compressed_pages)
+		goto fail1;
+
+	bdev = fs_info->fs_devices->latest_bdev;
+
+	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
+		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
+							      __GFP_HIGHMEM);
+		if (!cb->compressed_pages[pg_index]) {
+			faili = pg_index - 1;
+			ret = BLK_STS_RESOURCE;
+			goto fail2;
+		}
+	}
+	faili = nr_pages - 1;
+	cb->nr_pages = nr_pages;
+
+	add_ra_bio_pages(inode, em_start + em_len, cb);
+
+	/* include any pages we added in add_ra-bio_pages */
+	cb->len = bio->bi_iter.bi_size;
+
+	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
+	bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
+	comp_bio->bi_private = cb;
+	comp_bio->bi_end_io = end_compressed_bio_read;
+	refcount_set(&cb->pending_bios, 1);
+
+	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
+		int submit = 0;
+
+		page = cb->compressed_pages[pg_index];
+		page->mapping = inode->i_mapping;
+		page->index = em_start >> PAGE_SHIFT;
+
+		if (comp_bio->bi_iter.bi_size)
+			submit = tree->ops->merge_bio_hook(page, 0,
+							PAGE_SIZE,
+							comp_bio, 0);
+
+		page->mapping = NULL;
+		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
+		    PAGE_SIZE) {
+			bio_get(comp_bio);
+
+			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
+						  BTRFS_WQ_ENDIO_DATA);
+			BUG_ON(ret); /* -ENOMEM */
+
+			/*
+			 * inc the count before we submit the bio so
+			 * we know the end IO handler won't happen before
+			 * we inc the count.  Otherwise, the cb might get
+			 * freed before we're done setting it up
+			 */
+			refcount_inc(&cb->pending_bios);
+
+			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
+				ret = btrfs_lookup_bio_sums(inode, comp_bio,
+							    sums);
+				BUG_ON(ret); /* -ENOMEM */
+			}
+			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
+					     fs_info->sectorsize);
+
+			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
+			if (ret) {
+				comp_bio->bi_status = ret;
+				bio_endio(comp_bio);
+			}
+
+			bio_put(comp_bio);
+
+			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
+			bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
+			comp_bio->bi_private = cb;
+			comp_bio->bi_end_io = end_compressed_bio_read;
+
+			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
+		}
+		cur_disk_byte += PAGE_SIZE;
+	}
+	bio_get(comp_bio);
+
+	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
+	BUG_ON(ret); /* -ENOMEM */
+
+	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
+		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
+		BUG_ON(ret); /* -ENOMEM */
+	}
+
+	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
+	if (ret) {
+		comp_bio->bi_status = ret;
+		bio_endio(comp_bio);
+	}
+
+	bio_put(comp_bio);
+	return 0;
+
+fail2:
+	while (faili >= 0) {
+		__free_page(cb->compressed_pages[faili]);
+		faili--;
+	}
+
+	kfree(cb->compressed_pages);
+fail1:
+	kfree(cb);
+out:
+	free_extent_map(em);
+	return ret;
+}
+
+static struct {
+	struct list_head idle_ws;
+	spinlock_t ws_lock;
+	/* Number of free workspaces */
+	int free_ws;
+	/* Total number of allocated workspaces */
+	atomic_t total_ws;
+	/* Waiters for a free workspace */
+	wait_queue_head_t ws_wait;
+} btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
+
+static const struct btrfs_compress_op * const btrfs_compress_op[] = {
+	&btrfs_zlib_compress,
+	&btrfs_lzo_compress,
+	&btrfs_zstd_compress,
+};
+
+void __init btrfs_init_compress(void)
+{
+	int i;
+
+	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
+		struct list_head *workspace;
+
+		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
+		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
+		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
+		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
+
+		/*
+		 * Preallocate one workspace for each compression type so
+		 * we can guarantee forward progress in the worst case
+		 */
+		workspace = btrfs_compress_op[i]->alloc_workspace();
+		if (IS_ERR(workspace)) {
+			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
+		} else {
+			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
+			btrfs_comp_ws[i].free_ws = 1;
+			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
+		}
+	}
+}
+
+/*
+ * This finds an available workspace or allocates a new one.
+ * If it's not possible to allocate a new one, waits until there's one.
+ * Preallocation makes a forward progress guarantees and we do not return
+ * errors.
+ */
+static struct list_head *find_workspace(int type)
+{
+	struct list_head *workspace;
+	int cpus = num_online_cpus();
+	int idx = type - 1;
+	unsigned nofs_flag;
+
+	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
+	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
+	atomic_t *total_ws		= &btrfs_comp_ws[idx].total_ws;
+	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
+	int *free_ws			= &btrfs_comp_ws[idx].free_ws;
+again:
+	spin_lock(ws_lock);
+	if (!list_empty(idle_ws)) {
+		workspace = idle_ws->next;
+		list_del(workspace);
+		(*free_ws)--;
+		spin_unlock(ws_lock);
+		return workspace;
+
+	}
+	if (atomic_read(total_ws) > cpus) {
+		DEFINE_WAIT(wait);
+
+		spin_unlock(ws_lock);
+		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
+		if (atomic_read(total_ws) > cpus && !*free_ws)
+			schedule();
+		finish_wait(ws_wait, &wait);
+		goto again;
+	}
+	atomic_inc(total_ws);
+	spin_unlock(ws_lock);
+
+	/*
+	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
+	 * to turn it off here because we might get called from the restricted
+	 * context of btrfs_compress_bio/btrfs_compress_pages
+	 */
+	nofs_flag = memalloc_nofs_save();
+	workspace = btrfs_compress_op[idx]->alloc_workspace();
+	memalloc_nofs_restore(nofs_flag);
+
+	if (IS_ERR(workspace)) {
+		atomic_dec(total_ws);
+		wake_up(ws_wait);
+
+		/*
+		 * Do not return the error but go back to waiting. There's a
+		 * workspace preallocated for each type and the compression
+		 * time is bounded so we get to a workspace eventually. This
+		 * makes our caller's life easier.
+		 *
+		 * To prevent silent and low-probability deadlocks (when the
+		 * initial preallocation fails), check if there are any
+		 * workspaces at all.
+		 */
+		if (atomic_read(total_ws) == 0) {
+			static DEFINE_RATELIMIT_STATE(_rs,
+					/* once per minute */ 60 * HZ,
+					/* no burst */ 1);
+
+			if (__ratelimit(&_rs)) {
+				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
+			}
+		}
+		goto again;
+	}
+	return workspace;
+}
+
+/*
+ * put a workspace struct back on the list or free it if we have enough
+ * idle ones sitting around
+ */
+static void free_workspace(int type, struct list_head *workspace)
+{
+	int idx = type - 1;
+	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
+	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
+	atomic_t *total_ws		= &btrfs_comp_ws[idx].total_ws;
+	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
+	int *free_ws			= &btrfs_comp_ws[idx].free_ws;
+
+	spin_lock(ws_lock);
+	if (*free_ws <= num_online_cpus()) {
+		list_add(workspace, idle_ws);
+		(*free_ws)++;
+		spin_unlock(ws_lock);
+		goto wake;
+	}
+	spin_unlock(ws_lock);
+
+	btrfs_compress_op[idx]->free_workspace(workspace);
+	atomic_dec(total_ws);
+wake:
+	/*
+	 * Make sure counter is updated before we wake up waiters.
+	 */
+	smp_mb();
+	if (waitqueue_active(ws_wait))
+		wake_up(ws_wait);
+}
+
+/*
+ * cleanup function for module exit
+ */
+static void free_workspaces(void)
+{
+	struct list_head *workspace;
+	int i;
+
+	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
+		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
+			workspace = btrfs_comp_ws[i].idle_ws.next;
+			list_del(workspace);
+			btrfs_compress_op[i]->free_workspace(workspace);
+			atomic_dec(&btrfs_comp_ws[i].total_ws);
+		}
+	}
+}
+
+/*
+ * Given an address space and start and length, compress the bytes into @pages
+ * that are allocated on demand.
+ *
+ * @out_pages is an in/out parameter, holds maximum number of pages to allocate
+ * and returns number of actually allocated pages
+ *
+ * @total_in is used to return the number of bytes actually read.  It
+ * may be smaller than the input length if we had to exit early because we
+ * ran out of room in the pages array or because we cross the
+ * max_out threshold.
+ *
+ * @total_out is an in/out parameter, must be set to the input length and will
+ * be also used to return the total number of compressed bytes
+ *
+ * @max_out tells us the max number of bytes that we're allowed to
+ * stuff into pages
+ */
+int btrfs_compress_pages(int type, struct address_space *mapping,
+			 u64 start, struct page **pages,
+			 unsigned long *out_pages,
+			 unsigned long *total_in,
+			 unsigned long *total_out)
+{
+	struct list_head *workspace;
+	int ret;
+
+	workspace = find_workspace(type);
+
+	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
+						      start, pages,
+						      out_pages,
+						      total_in, total_out);
+	free_workspace(type, workspace);
+	return ret;
+}
+
+/*
+ * pages_in is an array of pages with compressed data.
+ *
+ * disk_start is the starting logical offset of this array in the file
+ *
+ * orig_bio contains the pages from the file that we want to decompress into
+ *
+ * srclen is the number of bytes in pages_in
+ *
+ * The basic idea is that we have a bio that was created by readpages.
+ * The pages in the bio are for the uncompressed data, and they may not
+ * be contiguous.  They all correspond to the range of bytes covered by
+ * the compressed extent.
+ */
+static int btrfs_decompress_bio(struct compressed_bio *cb)
+{
+	struct list_head *workspace;
+	int ret;
+	int type = cb->compress_type;
+
+	workspace = find_workspace(type);
+	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
+	free_workspace(type, workspace);
+
+	return ret;
+}
+
+/*
+ * a less complex decompression routine.  Our compressed data fits in a
+ * single page, and we want to read a single page out of it.
+ * start_byte tells us the offset into the compressed data we're interested in
+ */
+int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
+		     unsigned long start_byte, size_t srclen, size_t destlen)
+{
+	struct list_head *workspace;
+	int ret;
+
+	workspace = find_workspace(type);
+
+	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
+						  dest_page, start_byte,
+						  srclen, destlen);
+
+	free_workspace(type, workspace);
+	return ret;
+}
+
+void btrfs_exit_compress(void)
+{
+	free_workspaces();
+}
+
+/*
+ * Copy uncompressed data from working buffer to pages.
+ *
+ * buf_start is the byte offset we're of the start of our workspace buffer.
+ *
+ * total_out is the last byte of the buffer
+ */
+int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
+			      unsigned long total_out, u64 disk_start,
+			      struct bio *bio)
+{
+	unsigned long buf_offset;
+	unsigned long current_buf_start;
+	unsigned long start_byte;
+	unsigned long prev_start_byte;
+	unsigned long working_bytes = total_out - buf_start;
+	unsigned long bytes;
+	char *kaddr;
+	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
+
+	/*
+	 * start byte is the first byte of the page we're currently
+	 * copying into relative to the start of the compressed data.
+	 */
+	start_byte = page_offset(bvec.bv_page) - disk_start;
+
+	/* we haven't yet hit data corresponding to this page */
+	if (total_out <= start_byte)
+		return 1;
+
+	/*
+	 * the start of the data we care about is offset into
+	 * the middle of our working buffer
+	 */
+	if (total_out > start_byte && buf_start < start_byte) {
+		buf_offset = start_byte - buf_start;
+		working_bytes -= buf_offset;
+	} else {
+		buf_offset = 0;
+	}
+	current_buf_start = buf_start;
+
+	/* copy bytes from the working buffer into the pages */
+	while (working_bytes > 0) {
+		bytes = min_t(unsigned long, bvec.bv_len,
+				PAGE_SIZE - buf_offset);
+		bytes = min(bytes, working_bytes);
+
+		kaddr = kmap_atomic(bvec.bv_page);
+		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
+		kunmap_atomic(kaddr);
+		flush_dcache_page(bvec.bv_page);
+
+		buf_offset += bytes;
+		working_bytes -= bytes;
+		current_buf_start += bytes;
+
+		/* check if we need to pick another page */
+		bio_advance(bio, bytes);
+		if (!bio->bi_iter.bi_size)
+			return 0;
+		bvec = bio_iter_iovec(bio, bio->bi_iter);
+		prev_start_byte = start_byte;
+		start_byte = page_offset(bvec.bv_page) - disk_start;
+
+		/*
+		 * We need to make sure we're only adjusting
+		 * our offset into compression working buffer when
+		 * we're switching pages.  Otherwise we can incorrectly
+		 * keep copying when we were actually done.
+		 */
+		if (start_byte != prev_start_byte) {
+			/*
+			 * make sure our new page is covered by this
+			 * working buffer
+			 */
+			if (total_out <= start_byte)
+				return 1;
+
+			/*
+			 * the next page in the biovec might not be adjacent
+			 * to the last page, but it might still be found
+			 * inside this working buffer. bump our offset pointer
+			 */
+			if (total_out > start_byte &&
+			    current_buf_start < start_byte) {
+				buf_offset = start_byte - buf_start;
+				working_bytes = total_out - start_byte;
+				current_buf_start = buf_start + buf_offset;
+			}
+		}
+	}
+
+	return 1;
+}
+
+/*
+ * Compression heuristic.
+ *
+ * For now is's a naive and optimistic 'return true', we'll extend the logic to
+ * quickly (compared to direct compression) detect data characteristics
+ * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
+ * data.
+ *
+ * The following types of analysis can be performed:
+ * - detect mostly zero data
+ * - detect data with low "byte set" size (text, etc)
+ * - detect data with low/high "core byte" set
+ *
+ * Return non-zero if the compression should be done, 0 otherwise.
+ */
+int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
+{
+	u64 index = start >> PAGE_SHIFT;
+	u64 end_index = end >> PAGE_SHIFT;
+	struct page *page;
+	int ret = 1;
+
+	while (index <= end_index) {
+		page = find_get_page(inode->i_mapping, index);
+		kmap(page);
+		kunmap(page);
+		put_page(page);
+		index++;
+	}
+
+	return ret;
+}