[Feature]add MT2731_MP2_MR2_SVN388 baseline version

Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/kernel/linux/v4.14/fs/xfs/xfs_aops.c b/src/kernel/linux/v4.14/fs/xfs/xfs_aops.c
new file mode 100644
index 0000000..b0cccf8
--- /dev/null
+++ b/src/kernel/linux/v4.14/fs/xfs/xfs_aops.c
@@ -0,0 +1,1494 @@
+/*
+ * Copyright (c) 2000-2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it would be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write the Free Software Foundation,
+ * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+ */
+#include "xfs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_mount.h"
+#include "xfs_inode.h"
+#include "xfs_trans.h"
+#include "xfs_inode_item.h"
+#include "xfs_alloc.h"
+#include "xfs_error.h"
+#include "xfs_iomap.h"
+#include "xfs_trace.h"
+#include "xfs_bmap.h"
+#include "xfs_bmap_util.h"
+#include "xfs_bmap_btree.h"
+#include "xfs_reflink.h"
+#include <linux/gfp.h>
+#include <linux/mpage.h>
+#include <linux/pagevec.h>
+#include <linux/writeback.h>
+
+/*
+ * structure owned by writepages passed to individual writepage calls
+ */
+struct xfs_writepage_ctx {
+	struct xfs_bmbt_irec    imap;
+	bool			imap_valid;
+	unsigned int		io_type;
+	struct xfs_ioend	*ioend;
+	sector_t		last_block;
+};
+
+void
+xfs_count_page_state(
+	struct page		*page,
+	int			*delalloc,
+	int			*unwritten)
+{
+	struct buffer_head	*bh, *head;
+
+	*delalloc = *unwritten = 0;
+
+	bh = head = page_buffers(page);
+	do {
+		if (buffer_unwritten(bh))
+			(*unwritten) = 1;
+		else if (buffer_delay(bh))
+			(*delalloc) = 1;
+	} while ((bh = bh->b_this_page) != head);
+}
+
+struct block_device *
+xfs_find_bdev_for_inode(
+	struct inode		*inode)
+{
+	struct xfs_inode	*ip = XFS_I(inode);
+	struct xfs_mount	*mp = ip->i_mount;
+
+	if (XFS_IS_REALTIME_INODE(ip))
+		return mp->m_rtdev_targp->bt_bdev;
+	else
+		return mp->m_ddev_targp->bt_bdev;
+}
+
+struct dax_device *
+xfs_find_daxdev_for_inode(
+	struct inode		*inode)
+{
+	struct xfs_inode	*ip = XFS_I(inode);
+	struct xfs_mount	*mp = ip->i_mount;
+
+	if (XFS_IS_REALTIME_INODE(ip))
+		return mp->m_rtdev_targp->bt_daxdev;
+	else
+		return mp->m_ddev_targp->bt_daxdev;
+}
+
+/*
+ * We're now finished for good with this page.  Update the page state via the
+ * associated buffer_heads, paying attention to the start and end offsets that
+ * we need to process on the page.
+ *
+ * Note that we open code the action in end_buffer_async_write here so that we
+ * only have to iterate over the buffers attached to the page once.  This is not
+ * only more efficient, but also ensures that we only calls end_page_writeback
+ * at the end of the iteration, and thus avoids the pitfall of having the page
+ * and buffers potentially freed after every call to end_buffer_async_write.
+ */
+static void
+xfs_finish_page_writeback(
+	struct inode		*inode,
+	struct bio_vec		*bvec,
+	int			error)
+{
+	struct buffer_head	*head = page_buffers(bvec->bv_page), *bh = head;
+	bool			busy = false;
+	unsigned int		off = 0;
+	unsigned long		flags;
+
+	ASSERT(bvec->bv_offset < PAGE_SIZE);
+	ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
+	ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
+	ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
+
+	local_irq_save(flags);
+	bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
+	do {
+		if (off >= bvec->bv_offset &&
+		    off < bvec->bv_offset + bvec->bv_len) {
+			ASSERT(buffer_async_write(bh));
+			ASSERT(bh->b_end_io == NULL);
+
+			if (error) {
+				mark_buffer_write_io_error(bh);
+				clear_buffer_uptodate(bh);
+				SetPageError(bvec->bv_page);
+			} else {
+				set_buffer_uptodate(bh);
+			}
+			clear_buffer_async_write(bh);
+			unlock_buffer(bh);
+		} else if (buffer_async_write(bh)) {
+			ASSERT(buffer_locked(bh));
+			busy = true;
+		}
+		off += bh->b_size;
+	} while ((bh = bh->b_this_page) != head);
+	bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
+	local_irq_restore(flags);
+
+	if (!busy)
+		end_page_writeback(bvec->bv_page);
+}
+
+/*
+ * We're now finished for good with this ioend structure.  Update the page
+ * state, release holds on bios, and finally free up memory.  Do not use the
+ * ioend after this.
+ */
+STATIC void
+xfs_destroy_ioend(
+	struct xfs_ioend	*ioend,
+	int			error)
+{
+	struct inode		*inode = ioend->io_inode;
+	struct bio		*bio = &ioend->io_inline_bio;
+	struct bio		*last = ioend->io_bio, *next;
+	u64			start = bio->bi_iter.bi_sector;
+	bool			quiet = bio_flagged(bio, BIO_QUIET);
+
+	for (bio = &ioend->io_inline_bio; bio; bio = next) {
+		struct bio_vec	*bvec;
+		int		i;
+
+		/*
+		 * For the last bio, bi_private points to the ioend, so we
+		 * need to explicitly end the iteration here.
+		 */
+		if (bio == last)
+			next = NULL;
+		else
+			next = bio->bi_private;
+
+		/* walk each page on bio, ending page IO on them */
+		bio_for_each_segment_all(bvec, bio, i)
+			xfs_finish_page_writeback(inode, bvec, error);
+
+		bio_put(bio);
+	}
+
+	if (unlikely(error && !quiet)) {
+		xfs_err_ratelimited(XFS_I(inode)->i_mount,
+			"writeback error on sector %llu", start);
+	}
+}
+
+/*
+ * Fast and loose check if this write could update the on-disk inode size.
+ */
+static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
+{
+	return ioend->io_offset + ioend->io_size >
+		XFS_I(ioend->io_inode)->i_d.di_size;
+}
+
+STATIC int
+xfs_setfilesize_trans_alloc(
+	struct xfs_ioend	*ioend)
+{
+	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
+	struct xfs_trans	*tp;
+	int			error;
+
+	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
+	if (error)
+		return error;
+
+	ioend->io_append_trans = tp;
+
+	/*
+	 * We may pass freeze protection with a transaction.  So tell lockdep
+	 * we released it.
+	 */
+	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
+	/*
+	 * We hand off the transaction to the completion thread now, so
+	 * clear the flag here.
+	 */
+	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
+	return 0;
+}
+
+/*
+ * Update on-disk file size now that data has been written to disk.
+ */
+STATIC int
+__xfs_setfilesize(
+	struct xfs_inode	*ip,
+	struct xfs_trans	*tp,
+	xfs_off_t		offset,
+	size_t			size)
+{
+	xfs_fsize_t		isize;
+
+	xfs_ilock(ip, XFS_ILOCK_EXCL);
+	isize = xfs_new_eof(ip, offset + size);
+	if (!isize) {
+		xfs_iunlock(ip, XFS_ILOCK_EXCL);
+		xfs_trans_cancel(tp);
+		return 0;
+	}
+
+	trace_xfs_setfilesize(ip, offset, size);
+
+	ip->i_d.di_size = isize;
+	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
+	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
+
+	return xfs_trans_commit(tp);
+}
+
+int
+xfs_setfilesize(
+	struct xfs_inode	*ip,
+	xfs_off_t		offset,
+	size_t			size)
+{
+	struct xfs_mount	*mp = ip->i_mount;
+	struct xfs_trans	*tp;
+	int			error;
+
+	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
+	if (error)
+		return error;
+
+	return __xfs_setfilesize(ip, tp, offset, size);
+}
+
+STATIC int
+xfs_setfilesize_ioend(
+	struct xfs_ioend	*ioend,
+	int			error)
+{
+	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
+	struct xfs_trans	*tp = ioend->io_append_trans;
+
+	/*
+	 * The transaction may have been allocated in the I/O submission thread,
+	 * thus we need to mark ourselves as being in a transaction manually.
+	 * Similarly for freeze protection.
+	 */
+	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
+	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
+
+	/* we abort the update if there was an IO error */
+	if (error) {
+		xfs_trans_cancel(tp);
+		return error;
+	}
+
+	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
+}
+
+/*
+ * IO write completion.
+ */
+STATIC void
+xfs_end_io(
+	struct work_struct *work)
+{
+	struct xfs_ioend	*ioend =
+		container_of(work, struct xfs_ioend, io_work);
+	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
+	xfs_off_t		offset = ioend->io_offset;
+	size_t			size = ioend->io_size;
+	int			error;
+
+	/*
+	 * Just clean up the in-memory strutures if the fs has been shut down.
+	 */
+	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
+		error = -EIO;
+		goto done;
+	}
+
+	/*
+	 * Clean up any COW blocks on an I/O error.
+	 */
+	error = blk_status_to_errno(ioend->io_bio->bi_status);
+	if (unlikely(error)) {
+		switch (ioend->io_type) {
+		case XFS_IO_COW:
+			xfs_reflink_cancel_cow_range(ip, offset, size, true);
+			break;
+		}
+
+		goto done;
+	}
+
+	/*
+	 * Success:  commit the COW or unwritten blocks if needed.
+	 */
+	switch (ioend->io_type) {
+	case XFS_IO_COW:
+		error = xfs_reflink_end_cow(ip, offset, size);
+		break;
+	case XFS_IO_UNWRITTEN:
+		/* writeback should never update isize */
+		error = xfs_iomap_write_unwritten(ip, offset, size, false);
+		break;
+	default:
+		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
+		break;
+	}
+
+done:
+	if (ioend->io_append_trans)
+		error = xfs_setfilesize_ioend(ioend, error);
+	xfs_destroy_ioend(ioend, error);
+}
+
+STATIC void
+xfs_end_bio(
+	struct bio		*bio)
+{
+	struct xfs_ioend	*ioend = bio->bi_private;
+	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
+
+	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
+		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
+	else if (ioend->io_append_trans)
+		queue_work(mp->m_data_workqueue, &ioend->io_work);
+	else
+		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
+}
+
+STATIC int
+xfs_map_blocks(
+	struct inode		*inode,
+	loff_t			offset,
+	struct xfs_bmbt_irec	*imap,
+	int			type)
+{
+	struct xfs_inode	*ip = XFS_I(inode);
+	struct xfs_mount	*mp = ip->i_mount;
+	ssize_t			count = i_blocksize(inode);
+	xfs_fileoff_t		offset_fsb, end_fsb;
+	int			error = 0;
+	int			bmapi_flags = XFS_BMAPI_ENTIRE;
+	int			nimaps = 1;
+
+	if (XFS_FORCED_SHUTDOWN(mp))
+		return -EIO;
+
+	ASSERT(type != XFS_IO_COW);
+	if (type == XFS_IO_UNWRITTEN)
+		bmapi_flags |= XFS_BMAPI_IGSTATE;
+
+	xfs_ilock(ip, XFS_ILOCK_SHARED);
+	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
+	       (ip->i_df.if_flags & XFS_IFEXTENTS));
+	ASSERT(offset <= mp->m_super->s_maxbytes);
+
+	if ((xfs_ufsize_t)offset + count > mp->m_super->s_maxbytes)
+		count = mp->m_super->s_maxbytes - offset;
+	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
+	offset_fsb = XFS_B_TO_FSBT(mp, offset);
+	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
+				imap, &nimaps, bmapi_flags);
+	/*
+	 * Truncate an overwrite extent if there's a pending CoW
+	 * reservation before the end of this extent.  This forces us
+	 * to come back to writepage to take care of the CoW.
+	 */
+	if (nimaps && type == XFS_IO_OVERWRITE)
+		xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
+	xfs_iunlock(ip, XFS_ILOCK_SHARED);
+
+	if (error)
+		return error;
+
+	if (type == XFS_IO_DELALLOC &&
+	    (!nimaps || isnullstartblock(imap->br_startblock))) {
+		error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
+				imap);
+		if (!error)
+			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
+		return error;
+	}
+
+#ifdef DEBUG
+	if (type == XFS_IO_UNWRITTEN) {
+		ASSERT(nimaps);
+		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
+		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
+	}
+#endif
+	if (nimaps)
+		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
+	return 0;
+}
+
+STATIC bool
+xfs_imap_valid(
+	struct inode		*inode,
+	struct xfs_bmbt_irec	*imap,
+	xfs_off_t		offset)
+{
+	offset >>= inode->i_blkbits;
+
+	/*
+	 * We have to make sure the cached mapping is within EOF to protect
+	 * against eofblocks trimming on file release leaving us with a stale
+	 * mapping. Otherwise, a page for a subsequent file extending buffered
+	 * write could get picked up by this writeback cycle and written to the
+	 * wrong blocks.
+	 *
+	 * Note that what we really want here is a generic mapping invalidation
+	 * mechanism to protect us from arbitrary extent modifying contexts, not
+	 * just eofblocks.
+	 */
+	xfs_trim_extent_eof(imap, XFS_I(inode));
+
+	return offset >= imap->br_startoff &&
+		offset < imap->br_startoff + imap->br_blockcount;
+}
+
+STATIC void
+xfs_start_buffer_writeback(
+	struct buffer_head	*bh)
+{
+	ASSERT(buffer_mapped(bh));
+	ASSERT(buffer_locked(bh));
+	ASSERT(!buffer_delay(bh));
+	ASSERT(!buffer_unwritten(bh));
+
+	bh->b_end_io = NULL;
+	set_buffer_async_write(bh);
+	set_buffer_uptodate(bh);
+	clear_buffer_dirty(bh);
+}
+
+STATIC void
+xfs_start_page_writeback(
+	struct page		*page,
+	int			clear_dirty)
+{
+	ASSERT(PageLocked(page));
+	ASSERT(!PageWriteback(page));
+
+	/*
+	 * if the page was not fully cleaned, we need to ensure that the higher
+	 * layers come back to it correctly. That means we need to keep the page
+	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
+	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
+	 * write this page in this writeback sweep will be made.
+	 */
+	if (clear_dirty) {
+		clear_page_dirty_for_io(page);
+		set_page_writeback(page);
+	} else
+		set_page_writeback_keepwrite(page);
+
+	unlock_page(page);
+}
+
+static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
+{
+	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
+}
+
+/*
+ * Submit the bio for an ioend. We are passed an ioend with a bio attached to
+ * it, and we submit that bio. The ioend may be used for multiple bio
+ * submissions, so we only want to allocate an append transaction for the ioend
+ * once. In the case of multiple bio submission, each bio will take an IO
+ * reference to the ioend to ensure that the ioend completion is only done once
+ * all bios have been submitted and the ioend is really done.
+ *
+ * If @fail is non-zero, it means that we have a situation where some part of
+ * the submission process has failed after we have marked paged for writeback
+ * and unlocked them. In this situation, we need to fail the bio and ioend
+ * rather than submit it to IO. This typically only happens on a filesystem
+ * shutdown.
+ */
+STATIC int
+xfs_submit_ioend(
+	struct writeback_control *wbc,
+	struct xfs_ioend	*ioend,
+	int			status)
+{
+	/* Convert CoW extents to regular */
+	if (!status && ioend->io_type == XFS_IO_COW) {
+		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
+				ioend->io_offset, ioend->io_size);
+	}
+
+	/* Reserve log space if we might write beyond the on-disk inode size. */
+	if (!status &&
+	    ioend->io_type != XFS_IO_UNWRITTEN &&
+	    xfs_ioend_is_append(ioend) &&
+	    !ioend->io_append_trans)
+		status = xfs_setfilesize_trans_alloc(ioend);
+
+	ioend->io_bio->bi_private = ioend;
+	ioend->io_bio->bi_end_io = xfs_end_bio;
+	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
+
+	/*
+	 * If we are failing the IO now, just mark the ioend with an
+	 * error and finish it. This will run IO completion immediately
+	 * as there is only one reference to the ioend at this point in
+	 * time.
+	 */
+	if (status) {
+		ioend->io_bio->bi_status = errno_to_blk_status(status);
+		bio_endio(ioend->io_bio);
+		return status;
+	}
+
+	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
+	submit_bio(ioend->io_bio);
+	return 0;
+}
+
+static void
+xfs_init_bio_from_bh(
+	struct bio		*bio,
+	struct buffer_head	*bh)
+{
+	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
+	bio_set_dev(bio, bh->b_bdev);
+}
+
+static struct xfs_ioend *
+xfs_alloc_ioend(
+	struct inode		*inode,
+	unsigned int		type,
+	xfs_off_t		offset,
+	struct buffer_head	*bh)
+{
+	struct xfs_ioend	*ioend;
+	struct bio		*bio;
+
+	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
+	xfs_init_bio_from_bh(bio, bh);
+
+	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
+	INIT_LIST_HEAD(&ioend->io_list);
+	ioend->io_type = type;
+	ioend->io_inode = inode;
+	ioend->io_size = 0;
+	ioend->io_offset = offset;
+	INIT_WORK(&ioend->io_work, xfs_end_io);
+	ioend->io_append_trans = NULL;
+	ioend->io_bio = bio;
+	return ioend;
+}
+
+/*
+ * Allocate a new bio, and chain the old bio to the new one.
+ *
+ * Note that we have to do perform the chaining in this unintuitive order
+ * so that the bi_private linkage is set up in the right direction for the
+ * traversal in xfs_destroy_ioend().
+ */
+static void
+xfs_chain_bio(
+	struct xfs_ioend	*ioend,
+	struct writeback_control *wbc,
+	struct buffer_head	*bh)
+{
+	struct bio *new;
+
+	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
+	xfs_init_bio_from_bh(new, bh);
+
+	bio_chain(ioend->io_bio, new);
+	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
+	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
+	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
+	submit_bio(ioend->io_bio);
+	ioend->io_bio = new;
+}
+
+/*
+ * Test to see if we've been building up a completion structure for
+ * earlier buffers -- if so, we try to append to this ioend if we
+ * can, otherwise we finish off any current ioend and start another.
+ * Return the ioend we finished off so that the caller can submit it
+ * once it has finished processing the dirty page.
+ */
+STATIC void
+xfs_add_to_ioend(
+	struct inode		*inode,
+	struct buffer_head	*bh,
+	xfs_off_t		offset,
+	struct xfs_writepage_ctx *wpc,
+	struct writeback_control *wbc,
+	struct list_head	*iolist)
+{
+	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
+	    bh->b_blocknr != wpc->last_block + 1 ||
+	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
+		if (wpc->ioend)
+			list_add(&wpc->ioend->io_list, iolist);
+		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
+	}
+
+	/*
+	 * If the buffer doesn't fit into the bio we need to allocate a new
+	 * one.  This shouldn't happen more than once for a given buffer.
+	 */
+	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
+		xfs_chain_bio(wpc->ioend, wbc, bh);
+
+	wpc->ioend->io_size += bh->b_size;
+	wpc->last_block = bh->b_blocknr;
+	xfs_start_buffer_writeback(bh);
+}
+
+STATIC void
+xfs_map_buffer(
+	struct inode		*inode,
+	struct buffer_head	*bh,
+	struct xfs_bmbt_irec	*imap,
+	xfs_off_t		offset)
+{
+	sector_t		bn;
+	struct xfs_mount	*m = XFS_I(inode)->i_mount;
+	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
+	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
+
+	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
+	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
+
+	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
+	      ((offset - iomap_offset) >> inode->i_blkbits);
+
+	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
+
+	bh->b_blocknr = bn;
+	set_buffer_mapped(bh);
+}
+
+STATIC void
+xfs_map_at_offset(
+	struct inode		*inode,
+	struct buffer_head	*bh,
+	struct xfs_bmbt_irec	*imap,
+	xfs_off_t		offset)
+{
+	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
+	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
+
+	xfs_map_buffer(inode, bh, imap, offset);
+	set_buffer_mapped(bh);
+	clear_buffer_delay(bh);
+	clear_buffer_unwritten(bh);
+}
+
+/*
+ * Test if a given page contains at least one buffer of a given @type.
+ * If @check_all_buffers is true, then we walk all the buffers in the page to
+ * try to find one of the type passed in. If it is not set, then the caller only
+ * needs to check the first buffer on the page for a match.
+ */
+STATIC bool
+xfs_check_page_type(
+	struct page		*page,
+	unsigned int		type,
+	bool			check_all_buffers)
+{
+	struct buffer_head	*bh;
+	struct buffer_head	*head;
+
+	if (PageWriteback(page))
+		return false;
+	if (!page->mapping)
+		return false;
+	if (!page_has_buffers(page))
+		return false;
+
+	bh = head = page_buffers(page);
+	do {
+		if (buffer_unwritten(bh)) {
+			if (type == XFS_IO_UNWRITTEN)
+				return true;
+		} else if (buffer_delay(bh)) {
+			if (type == XFS_IO_DELALLOC)
+				return true;
+		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
+			if (type == XFS_IO_OVERWRITE)
+				return true;
+		}
+
+		/* If we are only checking the first buffer, we are done now. */
+		if (!check_all_buffers)
+			break;
+	} while ((bh = bh->b_this_page) != head);
+
+	return false;
+}
+
+STATIC void
+xfs_vm_invalidatepage(
+	struct page		*page,
+	unsigned int		offset,
+	unsigned int		length)
+{
+	trace_xfs_invalidatepage(page->mapping->host, page, offset,
+				 length);
+
+	/*
+	 * If we are invalidating the entire page, clear the dirty state from it
+	 * so that we can check for attempts to release dirty cached pages in
+	 * xfs_vm_releasepage().
+	 */
+	if (offset == 0 && length >= PAGE_SIZE)
+		cancel_dirty_page(page);
+	block_invalidatepage(page, offset, length);
+}
+
+/*
+ * If the page has delalloc buffers on it, we need to punch them out before we
+ * invalidate the page. If we don't, we leave a stale delalloc mapping on the
+ * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
+ * is done on that same region - the delalloc extent is returned when none is
+ * supposed to be there.
+ *
+ * We prevent this by truncating away the delalloc regions on the page before
+ * invalidating it. Because they are delalloc, we can do this without needing a
+ * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
+ * truncation without a transaction as there is no space left for block
+ * reservation (typically why we see a ENOSPC in writeback).
+ *
+ * This is not a performance critical path, so for now just do the punching a
+ * buffer head at a time.
+ */
+STATIC void
+xfs_aops_discard_page(
+	struct page		*page)
+{
+	struct inode		*inode = page->mapping->host;
+	struct xfs_inode	*ip = XFS_I(inode);
+	struct buffer_head	*bh, *head;
+	loff_t			offset = page_offset(page);
+
+	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
+		goto out_invalidate;
+
+	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
+		goto out_invalidate;
+
+	xfs_alert(ip->i_mount,
+		"page discard on page %p, inode 0x%llx, offset %llu.",
+			page, ip->i_ino, offset);
+
+	xfs_ilock(ip, XFS_ILOCK_EXCL);
+	bh = head = page_buffers(page);
+	do {
+		int		error;
+		xfs_fileoff_t	start_fsb;
+
+		if (!buffer_delay(bh))
+			goto next_buffer;
+
+		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
+		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
+		if (error) {
+			/* something screwed, just bail */
+			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
+				xfs_alert(ip->i_mount,
+			"page discard unable to remove delalloc mapping.");
+			}
+			break;
+		}
+next_buffer:
+		offset += i_blocksize(inode);
+
+	} while ((bh = bh->b_this_page) != head);
+
+	xfs_iunlock(ip, XFS_ILOCK_EXCL);
+out_invalidate:
+	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
+	return;
+}
+
+static int
+xfs_map_cow(
+	struct xfs_writepage_ctx *wpc,
+	struct inode		*inode,
+	loff_t			offset,
+	unsigned int		*new_type)
+{
+	struct xfs_inode	*ip = XFS_I(inode);
+	struct xfs_bmbt_irec	imap;
+	bool			is_cow = false;
+	int			error;
+
+	/*
+	 * If we already have a valid COW mapping keep using it.
+	 */
+	if (wpc->io_type == XFS_IO_COW) {
+		wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
+		if (wpc->imap_valid) {
+			*new_type = XFS_IO_COW;
+			return 0;
+		}
+	}
+
+	/*
+	 * Else we need to check if there is a COW mapping at this offset.
+	 */
+	xfs_ilock(ip, XFS_ILOCK_SHARED);
+	is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
+	xfs_iunlock(ip, XFS_ILOCK_SHARED);
+
+	if (!is_cow)
+		return 0;
+
+	/*
+	 * And if the COW mapping has a delayed extent here we need to
+	 * allocate real space for it now.
+	 */
+	if (isnullstartblock(imap.br_startblock)) {
+		error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
+				&imap);
+		if (error)
+			return error;
+	}
+
+	wpc->io_type = *new_type = XFS_IO_COW;
+	wpc->imap_valid = true;
+	wpc->imap = imap;
+	return 0;
+}
+
+/*
+ * We implement an immediate ioend submission policy here to avoid needing to
+ * chain multiple ioends and hence nest mempool allocations which can violate
+ * forward progress guarantees we need to provide. The current ioend we are
+ * adding buffers to is cached on the writepage context, and if the new buffer
+ * does not append to the cached ioend it will create a new ioend and cache that
+ * instead.
+ *
+ * If a new ioend is created and cached, the old ioend is returned and queued
+ * locally for submission once the entire page is processed or an error has been
+ * detected.  While ioends are submitted immediately after they are completed,
+ * batching optimisations are provided by higher level block plugging.
+ *
+ * At the end of a writeback pass, there will be a cached ioend remaining on the
+ * writepage context that the caller will need to submit.
+ */
+static int
+xfs_writepage_map(
+	struct xfs_writepage_ctx *wpc,
+	struct writeback_control *wbc,
+	struct inode		*inode,
+	struct page		*page,
+	loff_t			offset,
+	uint64_t              end_offset)
+{
+	LIST_HEAD(submit_list);
+	struct xfs_ioend	*ioend, *next;
+	struct buffer_head	*bh, *head;
+	ssize_t			len = i_blocksize(inode);
+	int			error = 0;
+	int			count = 0;
+	int			uptodate = 1;
+	unsigned int		new_type;
+
+	bh = head = page_buffers(page);
+	offset = page_offset(page);
+	do {
+		if (offset >= end_offset)
+			break;
+		if (!buffer_uptodate(bh))
+			uptodate = 0;
+
+		/*
+		 * set_page_dirty dirties all buffers in a page, independent
+		 * of their state.  The dirty state however is entirely
+		 * meaningless for holes (!mapped && uptodate), so skip
+		 * buffers covering holes here.
+		 */
+		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
+			wpc->imap_valid = false;
+			continue;
+		}
+
+		if (buffer_unwritten(bh))
+			new_type = XFS_IO_UNWRITTEN;
+		else if (buffer_delay(bh))
+			new_type = XFS_IO_DELALLOC;
+		else if (buffer_uptodate(bh))
+			new_type = XFS_IO_OVERWRITE;
+		else {
+			if (PageUptodate(page))
+				ASSERT(buffer_mapped(bh));
+			/*
+			 * This buffer is not uptodate and will not be
+			 * written to disk.  Ensure that we will put any
+			 * subsequent writeable buffers into a new
+			 * ioend.
+			 */
+			wpc->imap_valid = false;
+			continue;
+		}
+
+		if (xfs_is_reflink_inode(XFS_I(inode))) {
+			error = xfs_map_cow(wpc, inode, offset, &new_type);
+			if (error)
+				goto out;
+		}
+
+		if (wpc->io_type != new_type) {
+			wpc->io_type = new_type;
+			wpc->imap_valid = false;
+		}
+
+		if (wpc->imap_valid)
+			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
+							 offset);
+		if (!wpc->imap_valid) {
+			error = xfs_map_blocks(inode, offset, &wpc->imap,
+					     wpc->io_type);
+			if (error)
+				goto out;
+			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
+							 offset);
+		}
+		if (wpc->imap_valid) {
+			lock_buffer(bh);
+			if (wpc->io_type != XFS_IO_OVERWRITE)
+				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
+			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
+			count++;
+		}
+
+	} while (offset += len, ((bh = bh->b_this_page) != head));
+
+	if (uptodate && bh == head)
+		SetPageUptodate(page);
+
+	ASSERT(wpc->ioend || list_empty(&submit_list));
+
+out:
+	/*
+	 * On error, we have to fail the ioend here because we have locked
+	 * buffers in the ioend. If we don't do this, we'll deadlock
+	 * invalidating the page as that tries to lock the buffers on the page.
+	 * Also, because we may have set pages under writeback, we have to make
+	 * sure we run IO completion to mark the error state of the IO
+	 * appropriately, so we can't cancel the ioend directly here. That means
+	 * we have to mark this page as under writeback if we included any
+	 * buffers from it in the ioend chain so that completion treats it
+	 * correctly.
+	 *
+	 * If we didn't include the page in the ioend, the on error we can
+	 * simply discard and unlock it as there are no other users of the page
+	 * or it's buffers right now. The caller will still need to trigger
+	 * submission of outstanding ioends on the writepage context so they are
+	 * treated correctly on error.
+	 */
+	if (count) {
+		xfs_start_page_writeback(page, !error);
+
+		/*
+		 * Preserve the original error if there was one, otherwise catch
+		 * submission errors here and propagate into subsequent ioend
+		 * submissions.
+		 */
+		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
+			int error2;
+
+			list_del_init(&ioend->io_list);
+			error2 = xfs_submit_ioend(wbc, ioend, error);
+			if (error2 && !error)
+				error = error2;
+		}
+	} else if (error) {
+		xfs_aops_discard_page(page);
+		ClearPageUptodate(page);
+		unlock_page(page);
+	} else {
+		/*
+		 * We can end up here with no error and nothing to write if we
+		 * race with a partial page truncate on a sub-page block sized
+		 * filesystem. In that case we need to mark the page clean.
+		 */
+		xfs_start_page_writeback(page, 1);
+		end_page_writeback(page);
+	}
+
+	mapping_set_error(page->mapping, error);
+	return error;
+}
+
+/*
+ * Write out a dirty page.
+ *
+ * For delalloc space on the page we need to allocate space and flush it.
+ * For unwritten space on the page we need to start the conversion to
+ * regular allocated space.
+ * For any other dirty buffer heads on the page we should flush them.
+ */
+STATIC int
+xfs_do_writepage(
+	struct page		*page,
+	struct writeback_control *wbc,
+	void			*data)
+{
+	struct xfs_writepage_ctx *wpc = data;
+	struct inode		*inode = page->mapping->host;
+	loff_t			offset;
+	uint64_t              end_offset;
+	pgoff_t                 end_index;
+
+	trace_xfs_writepage(inode, page, 0, 0);
+
+	ASSERT(page_has_buffers(page));
+
+	/*
+	 * Refuse to write the page out if we are called from reclaim context.
+	 *
+	 * This avoids stack overflows when called from deeply used stacks in
+	 * random callers for direct reclaim or memcg reclaim.  We explicitly
+	 * allow reclaim from kswapd as the stack usage there is relatively low.
+	 *
+	 * This should never happen except in the case of a VM regression so
+	 * warn about it.
+	 */
+	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
+			PF_MEMALLOC))
+		goto redirty;
+
+	/*
+	 * Given that we do not allow direct reclaim to call us, we should
+	 * never be called while in a filesystem transaction.
+	 */
+	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
+		goto redirty;
+
+	/*
+	 * Is this page beyond the end of the file?
+	 *
+	 * The page index is less than the end_index, adjust the end_offset
+	 * to the highest offset that this page should represent.
+	 * -----------------------------------------------------
+	 * |			file mapping	       | <EOF> |
+	 * -----------------------------------------------------
+	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
+	 * ^--------------------------------^----------|--------
+	 * |     desired writeback range    |      see else    |
+	 * ---------------------------------^------------------|
+	 */
+	offset = i_size_read(inode);
+	end_index = offset >> PAGE_SHIFT;
+	if (page->index < end_index)
+		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
+	else {
+		/*
+		 * Check whether the page to write out is beyond or straddles
+		 * i_size or not.
+		 * -------------------------------------------------------
+		 * |		file mapping		        | <EOF>  |
+		 * -------------------------------------------------------
+		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
+		 * ^--------------------------------^-----------|---------
+		 * |				    |      Straddles     |
+		 * ---------------------------------^-----------|--------|
+		 */
+		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
+
+		/*
+		 * Skip the page if it is fully outside i_size, e.g. due to a
+		 * truncate operation that is in progress. We must redirty the
+		 * page so that reclaim stops reclaiming it. Otherwise
+		 * xfs_vm_releasepage() is called on it and gets confused.
+		 *
+		 * Note that the end_index is unsigned long, it would overflow
+		 * if the given offset is greater than 16TB on 32-bit system
+		 * and if we do check the page is fully outside i_size or not
+		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
+		 * will be evaluated to 0.  Hence this page will be redirtied
+		 * and be written out repeatedly which would result in an
+		 * infinite loop, the user program that perform this operation
+		 * will hang.  Instead, we can verify this situation by checking
+		 * if the page to write is totally beyond the i_size or if it's
+		 * offset is just equal to the EOF.
+		 */
+		if (page->index > end_index ||
+		    (page->index == end_index && offset_into_page == 0))
+			goto redirty;
+
+		/*
+		 * The page straddles i_size.  It must be zeroed out on each
+		 * and every writepage invocation because it may be mmapped.
+		 * "A file is mapped in multiples of the page size.  For a file
+		 * that is not a multiple of the page size, the remaining
+		 * memory is zeroed when mapped, and writes to that region are
+		 * not written out to the file."
+		 */
+		zero_user_segment(page, offset_into_page, PAGE_SIZE);
+
+		/* Adjust the end_offset to the end of file */
+		end_offset = offset;
+	}
+
+	return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
+
+redirty:
+	redirty_page_for_writepage(wbc, page);
+	unlock_page(page);
+	return 0;
+}
+
+STATIC int
+xfs_vm_writepage(
+	struct page		*page,
+	struct writeback_control *wbc)
+{
+	struct xfs_writepage_ctx wpc = {
+		.io_type = XFS_IO_INVALID,
+	};
+	int			ret;
+
+	ret = xfs_do_writepage(page, wbc, &wpc);
+	if (wpc.ioend)
+		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
+	return ret;
+}
+
+STATIC int
+xfs_vm_writepages(
+	struct address_space	*mapping,
+	struct writeback_control *wbc)
+{
+	struct xfs_writepage_ctx wpc = {
+		.io_type = XFS_IO_INVALID,
+	};
+	int			ret;
+
+	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
+	if (dax_mapping(mapping))
+		return dax_writeback_mapping_range(mapping,
+				xfs_find_bdev_for_inode(mapping->host), wbc);
+
+	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
+	if (wpc.ioend)
+		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
+	return ret;
+}
+
+/*
+ * Called to move a page into cleanable state - and from there
+ * to be released. The page should already be clean. We always
+ * have buffer heads in this call.
+ *
+ * Returns 1 if the page is ok to release, 0 otherwise.
+ */
+STATIC int
+xfs_vm_releasepage(
+	struct page		*page,
+	gfp_t			gfp_mask)
+{
+	int			delalloc, unwritten;
+
+	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
+
+	/*
+	 * mm accommodates an old ext3 case where clean pages might not have had
+	 * the dirty bit cleared. Thus, it can send actual dirty pages to
+	 * ->releasepage() via shrink_active_list(). Conversely,
+	 * block_invalidatepage() can send pages that are still marked dirty but
+	 * otherwise have invalidated buffers.
+	 *
+	 * We want to release the latter to avoid unnecessary buildup of the
+	 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
+	 * that are entirely invalidated and need to be released.  Hence the
+	 * only time we should get dirty pages here is through
+	 * shrink_active_list() and so we can simply skip those now.
+	 *
+	 * warn if we've left any lingering delalloc/unwritten buffers on clean
+	 * or invalidated pages we are about to release.
+	 */
+	if (PageDirty(page))
+		return 0;
+
+	xfs_count_page_state(page, &delalloc, &unwritten);
+
+	if (WARN_ON_ONCE(delalloc))
+		return 0;
+	if (WARN_ON_ONCE(unwritten))
+		return 0;
+
+	return try_to_free_buffers(page);
+}
+
+/*
+ * If this is O_DIRECT or the mpage code calling tell them how large the mapping
+ * is, so that we can avoid repeated get_blocks calls.
+ *
+ * If the mapping spans EOF, then we have to break the mapping up as the mapping
+ * for blocks beyond EOF must be marked new so that sub block regions can be
+ * correctly zeroed. We can't do this for mappings within EOF unless the mapping
+ * was just allocated or is unwritten, otherwise the callers would overwrite
+ * existing data with zeros. Hence we have to split the mapping into a range up
+ * to and including EOF, and a second mapping for beyond EOF.
+ */
+static void
+xfs_map_trim_size(
+	struct inode		*inode,
+	sector_t		iblock,
+	struct buffer_head	*bh_result,
+	struct xfs_bmbt_irec	*imap,
+	xfs_off_t		offset,
+	ssize_t			size)
+{
+	xfs_off_t		mapping_size;
+
+	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
+	mapping_size <<= inode->i_blkbits;
+
+	ASSERT(mapping_size > 0);
+	if (mapping_size > size)
+		mapping_size = size;
+	if (offset < i_size_read(inode) &&
+	    (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
+		/* limit mapping to block that spans EOF */
+		mapping_size = roundup_64(i_size_read(inode) - offset,
+					  i_blocksize(inode));
+	}
+	if (mapping_size > LONG_MAX)
+		mapping_size = LONG_MAX;
+
+	bh_result->b_size = mapping_size;
+}
+
+static int
+xfs_get_blocks(
+	struct inode		*inode,
+	sector_t		iblock,
+	struct buffer_head	*bh_result,
+	int			create)
+{
+	struct xfs_inode	*ip = XFS_I(inode);
+	struct xfs_mount	*mp = ip->i_mount;
+	xfs_fileoff_t		offset_fsb, end_fsb;
+	int			error = 0;
+	int			lockmode = 0;
+	struct xfs_bmbt_irec	imap;
+	int			nimaps = 1;
+	xfs_off_t		offset;
+	ssize_t			size;
+
+	BUG_ON(create);
+
+	if (XFS_FORCED_SHUTDOWN(mp))
+		return -EIO;
+
+	offset = (xfs_off_t)iblock << inode->i_blkbits;
+	ASSERT(bh_result->b_size >= i_blocksize(inode));
+	size = bh_result->b_size;
+
+	if (offset >= i_size_read(inode))
+		return 0;
+
+	/*
+	 * Direct I/O is usually done on preallocated files, so try getting
+	 * a block mapping without an exclusive lock first.
+	 */
+	lockmode = xfs_ilock_data_map_shared(ip);
+
+	ASSERT(offset <= mp->m_super->s_maxbytes);
+	if ((xfs_ufsize_t)offset + size > mp->m_super->s_maxbytes)
+		size = mp->m_super->s_maxbytes - offset;
+	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
+	offset_fsb = XFS_B_TO_FSBT(mp, offset);
+
+	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
+				&imap, &nimaps, XFS_BMAPI_ENTIRE);
+	if (error)
+		goto out_unlock;
+
+	if (nimaps) {
+		trace_xfs_get_blocks_found(ip, offset, size,
+			imap.br_state == XFS_EXT_UNWRITTEN ?
+				XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
+		xfs_iunlock(ip, lockmode);
+	} else {
+		trace_xfs_get_blocks_notfound(ip, offset, size);
+		goto out_unlock;
+	}
+
+	/* trim mapping down to size requested */
+	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
+
+	/*
+	 * For unwritten extents do not report a disk address in the buffered
+	 * read case (treat as if we're reading into a hole).
+	 */
+	if (xfs_bmap_is_real_extent(&imap))
+		xfs_map_buffer(inode, bh_result, &imap, offset);
+
+	/*
+	 * If this is a realtime file, data may be on a different device.
+	 * to that pointed to from the buffer_head b_bdev currently.
+	 */
+	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
+	return 0;
+
+out_unlock:
+	xfs_iunlock(ip, lockmode);
+	return error;
+}
+
+STATIC ssize_t
+xfs_vm_direct_IO(
+	struct kiocb		*iocb,
+	struct iov_iter		*iter)
+{
+	/*
+	 * We just need the method present so that open/fcntl allow direct I/O.
+	 */
+	return -EINVAL;
+}
+
+STATIC sector_t
+xfs_vm_bmap(
+	struct address_space	*mapping,
+	sector_t		block)
+{
+	struct inode		*inode = (struct inode *)mapping->host;
+	struct xfs_inode	*ip = XFS_I(inode);
+
+	trace_xfs_vm_bmap(XFS_I(inode));
+
+	/*
+	 * The swap code (ab-)uses ->bmap to get a block mapping and then
+	 * bypasseѕ the file system for actual I/O.  We really can't allow
+	 * that on reflinks inodes, so we have to skip out here.  And yes,
+	 * 0 is the magic code for a bmap error.
+	 *
+	 * Since we don't pass back blockdev info, we can't return bmap
+	 * information for rt files either.
+	 */
+	if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
+		return 0;
+
+	filemap_write_and_wait(mapping);
+	return generic_block_bmap(mapping, block, xfs_get_blocks);
+}
+
+STATIC int
+xfs_vm_readpage(
+	struct file		*unused,
+	struct page		*page)
+{
+	trace_xfs_vm_readpage(page->mapping->host, 1);
+	return mpage_readpage(page, xfs_get_blocks);
+}
+
+STATIC int
+xfs_vm_readpages(
+	struct file		*unused,
+	struct address_space	*mapping,
+	struct list_head	*pages,
+	unsigned		nr_pages)
+{
+	trace_xfs_vm_readpages(mapping->host, nr_pages);
+	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
+}
+
+/*
+ * This is basically a copy of __set_page_dirty_buffers() with one
+ * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
+ * dirty, we'll never be able to clean them because we don't write buffers
+ * beyond EOF, and that means we can't invalidate pages that span EOF
+ * that have been marked dirty. Further, the dirty state can leak into
+ * the file interior if the file is extended, resulting in all sorts of
+ * bad things happening as the state does not match the underlying data.
+ *
+ * XXX: this really indicates that bufferheads in XFS need to die. Warts like
+ * this only exist because of bufferheads and how the generic code manages them.
+ */
+STATIC int
+xfs_vm_set_page_dirty(
+	struct page		*page)
+{
+	struct address_space	*mapping = page->mapping;
+	struct inode		*inode = mapping->host;
+	loff_t			end_offset;
+	loff_t			offset;
+	int			newly_dirty;
+
+	if (unlikely(!mapping))
+		return !TestSetPageDirty(page);
+
+	end_offset = i_size_read(inode);
+	offset = page_offset(page);
+
+	spin_lock(&mapping->private_lock);
+	if (page_has_buffers(page)) {
+		struct buffer_head *head = page_buffers(page);
+		struct buffer_head *bh = head;
+
+		do {
+			if (offset < end_offset)
+				set_buffer_dirty(bh);
+			bh = bh->b_this_page;
+			offset += i_blocksize(inode);
+		} while (bh != head);
+	}
+	/*
+	 * Lock out page->mem_cgroup migration to keep PageDirty
+	 * synchronized with per-memcg dirty page counters.
+	 */
+	lock_page_memcg(page);
+	newly_dirty = !TestSetPageDirty(page);
+	spin_unlock(&mapping->private_lock);
+
+	if (newly_dirty) {
+		/* sigh - __set_page_dirty() is static, so copy it here, too */
+		unsigned long flags;
+
+		spin_lock_irqsave(&mapping->tree_lock, flags);
+		if (page->mapping) {	/* Race with truncate? */
+			WARN_ON_ONCE(!PageUptodate(page));
+			account_page_dirtied(page, mapping);
+			radix_tree_tag_set(&mapping->page_tree,
+					page_index(page), PAGECACHE_TAG_DIRTY);
+		}
+		spin_unlock_irqrestore(&mapping->tree_lock, flags);
+	}
+	unlock_page_memcg(page);
+	if (newly_dirty)
+		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
+	return newly_dirty;
+}
+
+const struct address_space_operations xfs_address_space_operations = {
+	.readpage		= xfs_vm_readpage,
+	.readpages		= xfs_vm_readpages,
+	.writepage		= xfs_vm_writepage,
+	.writepages		= xfs_vm_writepages,
+	.set_page_dirty		= xfs_vm_set_page_dirty,
+	.releasepage		= xfs_vm_releasepage,
+	.invalidatepage		= xfs_vm_invalidatepage,
+	.bmap			= xfs_vm_bmap,
+	.direct_IO		= xfs_vm_direct_IO,
+	.migratepage		= buffer_migrate_page,
+	.is_partially_uptodate  = block_is_partially_uptodate,
+	.error_remove_page	= generic_error_remove_page,
+};