[Feature]add MT2731_MP2_MR2_SVN388 baseline version

Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/lynq/lib/liblynq-fota/rock_ua/sha.c b/src/lynq/lib/liblynq-fota/rock_ua/sha.c
new file mode 100644
index 0000000..1989113
--- /dev/null
+++ b/src/lynq/lib/liblynq-fota/rock_ua/sha.c
@@ -0,0 +1,382 @@
+/* sha.c
+**
+** Copyright 2008, The Android Open Source Project
+**
+** Redistribution and use in source and binary forms, with or without
+** modification, are permitted provided that the following conditions are met:
+**     * Redistributions of source code must retain the above copyright
+**       notice, this list of conditions and the following disclaimer.
+**     * Redistributions in binary form must reproduce the above copyright
+**       notice, this list of conditions and the following disclaimer in the
+**       documentation and/or other materials provided with the distribution.
+**     * Neither the name of Google Inc. nor the names of its contributors may
+**       be used to endorse or promote products derived from this software
+**       without specific prior written permission.
+**
+** THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
+** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
+** EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+** PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
+** OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+** WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+** OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+** ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#include "sha.h"
+
+
+#include <errno.h>
+#include <fcntl.h>
+#include <unistd.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "mtk_device_wrap.h"
+
+// Some machines lack byteswap.h and endian.h.  These have to use the
+// slower code, even if they're little-endian.
+
+#if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN)
+
+#include <byteswap.h>
+#include <memory.h>
+
+
+
+// This version is about 28% faster than the generic version below,
+// but assumes little-endianness.
+
+static inline uint32_t ror27(uint32_t val) {
+    return (val >> 27) | (val << 5);
+}
+static inline uint32_t ror2(uint32_t val) {
+    return (val >> 2) | (val << 30);
+}
+static inline uint32_t ror31(uint32_t val) {
+    return (val >> 31) | (val << 1);
+}
+
+static void SHA1_Transform(SHA_CTX* ctx) {
+    uint32_t W[80];
+    register uint32_t A, B, C, D, E;
+    int t;
+
+    A = ctx->state[0];
+    B = ctx->state[1];
+    C = ctx->state[2];
+    D = ctx->state[3];
+    E = ctx->state[4];
+
+#define SHA_F1(A,B,C,D,E,t)                     \
+    E += ror27(A) +                             \
+        (W[t] = bswap_32(ctx->buf.w[t])) +      \
+        (D^(B&(C^D))) + 0x5A827999;             \
+    B = ror2(B);
+
+    for (t = 0; t < 15; t += 5) {
+        SHA_F1(A,B,C,D,E,t + 0);
+        SHA_F1(E,A,B,C,D,t + 1);
+        SHA_F1(D,E,A,B,C,t + 2);
+        SHA_F1(C,D,E,A,B,t + 3);
+        SHA_F1(B,C,D,E,A,t + 4);
+    }
+    SHA_F1(A,B,C,D,E,t + 0);  // 16th one, t == 15
+
+#undef SHA_F1
+
+#define SHA_F1(A,B,C,D,E,t)                                     \
+    E += ror27(A) +                                             \
+        (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) +   \
+        (D^(B&(C^D))) + 0x5A827999;                             \
+    B = ror2(B);
+
+    SHA_F1(E,A,B,C,D,t + 1);
+    SHA_F1(D,E,A,B,C,t + 2);
+    SHA_F1(C,D,E,A,B,t + 3);
+    SHA_F1(B,C,D,E,A,t + 4);
+
+#undef SHA_F1
+
+#define SHA_F2(A,B,C,D,E,t)                                     \
+    E += ror27(A) +                                             \
+        (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) +   \
+        (B^C^D) + 0x6ED9EBA1;                                   \
+    B = ror2(B);
+
+    for (t = 20; t < 40; t += 5) {
+        SHA_F2(A,B,C,D,E,t + 0);
+        SHA_F2(E,A,B,C,D,t + 1);
+        SHA_F2(D,E,A,B,C,t + 2);
+        SHA_F2(C,D,E,A,B,t + 3);
+        SHA_F2(B,C,D,E,A,t + 4);
+    }
+
+#undef SHA_F2
+
+#define SHA_F3(A,B,C,D,E,t)                                     \
+    E += ror27(A) +                                             \
+        (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) +   \
+        ((B&C)|(D&(B|C))) + 0x8F1BBCDC;                         \
+    B = ror2(B);
+
+    for (; t < 60; t += 5) {
+        SHA_F3(A,B,C,D,E,t + 0);
+        SHA_F3(E,A,B,C,D,t + 1);
+        SHA_F3(D,E,A,B,C,t + 2);
+        SHA_F3(C,D,E,A,B,t + 3);
+        SHA_F3(B,C,D,E,A,t + 4);
+    }
+
+#undef SHA_F3
+
+#define SHA_F4(A,B,C,D,E,t)                                     \
+    E += ror27(A) +                                             \
+        (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) +   \
+        (B^C^D) + 0xCA62C1D6;                                   \
+    B = ror2(B);
+
+    for (; t < 80; t += 5) {
+        SHA_F4(A,B,C,D,E,t + 0);
+        SHA_F4(E,A,B,C,D,t + 1);
+        SHA_F4(D,E,A,B,C,t + 2);
+        SHA_F4(C,D,E,A,B,t + 3);
+        SHA_F4(B,C,D,E,A,t + 4);
+    }
+
+#undef SHA_F4
+
+    ctx->state[0] += A;
+    ctx->state[1] += B;
+    ctx->state[2] += C;
+    ctx->state[3] += D;
+    ctx->state[4] += E;
+}
+
+void SHA_update(SHA_CTX* ctx, const void* data, int len) {
+    int i = ctx->count % sizeof(ctx->buf);
+    const uint8_t* p = (const uint8_t*)data;
+
+    ctx->count += len;
+
+    while (len > sizeof(ctx->buf) - i) {
+        memcpy(&ctx->buf.b[i], p, sizeof(ctx->buf) - i);
+        len -= sizeof(ctx->buf) - i;
+        p += sizeof(ctx->buf) - i;
+        SHA1_Transform(ctx);
+        i = 0;
+    }
+
+    while (len--) {
+        ctx->buf.b[i++] = *p++;
+        if (i == sizeof(ctx->buf)) {
+            SHA1_Transform(ctx);
+            i = 0;
+        }
+    }
+}
+
+
+const uint8_t* SHA_final(SHA_CTX* ctx) {
+    uint64_t cnt = ctx->count * 8;
+    int i;
+
+    SHA_update(ctx, (uint8_t*)"\x80", 1);
+    while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) {
+        SHA_update(ctx, (uint8_t*)"\0", 1);
+    }
+    for (i = 0; i < 8; ++i) {
+        uint8_t tmp = cnt >> ((7 - i) * 8);
+        SHA_update(ctx, &tmp, 1);
+    }
+
+    for (i = 0; i < 5; i++) {
+        ctx->buf.w[i] = bswap_32(ctx->state[i]);
+    }
+
+    return ctx->buf.b;
+}
+
+#else   // #if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN)
+
+#define rol(bits, value) (((value) << (bits)) | ((value) >> (32 - (bits))))
+
+static void SHA1_transform(SHA_CTX *ctx) {
+    uint32_t W[80];
+    uint32_t A, B, C, D, E;
+    uint8_t *p = ctx->buf;
+    int t;
+
+    for(t = 0; t < 16; ++t) {
+        uint32_t tmp =  *p++ << 24;
+        tmp |= *p++ << 16;
+        tmp |= *p++ << 8;
+        tmp |= *p++;
+        W[t] = tmp;
+    }
+
+    for(; t < 80; t++) {
+        W[t] = rol(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
+    }
+
+    A = ctx->state[0];
+    B = ctx->state[1];
+    C = ctx->state[2];
+    D = ctx->state[3];
+    E = ctx->state[4];
+
+    for(t = 0; t < 80; t++) {
+        uint32_t tmp = rol(5,A) + E + W[t];
+
+        if (t < 20)
+            tmp += (D^(B&(C^D))) + 0x5A827999;
+        else if ( t < 40)
+            tmp += (B^C^D) + 0x6ED9EBA1;
+        else if ( t < 60)
+            tmp += ((B&C)|(D&(B|C))) + 0x8F1BBCDC;
+        else
+            tmp += (B^C^D) + 0xCA62C1D6;
+
+        E = D;
+        D = C;
+        C = rol(30,B);
+        B = A;
+        A = tmp;
+    }
+
+    ctx->state[0] += A;
+    ctx->state[1] += B;
+    ctx->state[2] += C;
+    ctx->state[3] += D;
+    ctx->state[4] += E;
+}
+
+void SHA_update(SHA_CTX *ctx, const void *data, int len) {
+    int i = ctx->count % sizeof(ctx->buf);
+    const uint8_t* p = (const uint8_t*)data;
+
+    ctx->count += len;
+
+    while (len--) {
+        ctx->buf[i++] = *p++;
+        if (i == sizeof(ctx->buf)) {
+            SHA1_transform(ctx);
+            i = 0;
+        }
+    }
+}
+const uint8_t *SHA_final(SHA_CTX *ctx) {
+    uint8_t *p = ctx->buf;
+    uint64_t cnt = ctx->count * 8;
+    int i;
+
+    SHA_update(ctx, (uint8_t*)"\x80", 1);
+    while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) {
+        SHA_update(ctx, (uint8_t*)"\0", 1);
+    }
+    for (i = 0; i < 8; ++i) {
+        uint8_t tmp = cnt >> ((7 - i) * 8);
+        SHA_update(ctx, &tmp, 1);
+    }
+
+    for (i = 0; i < 5; i++) {
+        uint32_t tmp = ctx->state[i];
+        *p++ = tmp >> 24;
+        *p++ = tmp >> 16;
+        *p++ = tmp >> 8;
+        *p++ = tmp >> 0;
+    }
+
+    return ctx->buf;
+}
+
+#endif // endianness
+
+void SHA_init(SHA_CTX* ctx) {
+    ctx->state[0] = 0x67452301;
+    ctx->state[1] = 0xEFCDAB89;
+    ctx->state[2] = 0x98BADCFE;
+    ctx->state[3] = 0x10325476;
+    ctx->state[4] = 0xC3D2E1F0;
+    ctx->count = 0;
+}
+
+/* Convenience function */
+const uint8_t* SHA(const void *data, int len, uint8_t *digest) {
+    const uint8_t *p;
+    int i;
+	
+    SHA_CTX ctx;
+    SHA_init(&ctx);
+    SHA_update(&ctx, data, len);
+    p = SHA_final(&ctx);
+    for (i = 0; i < SHA_DIGEST_SIZE; ++i) {
+        digest[i] = *p++;
+    }
+    return digest;
+}
+
+#define NAND_PAGE_SIZE  2048
+
+const uint8_t* ROCK_SHA_FILE(int fd_sha, int offset,int totle_size, uint8_t *digest) {
+    const uint8_t *p;
+    int i = 0;
+	//int fd_sha;
+	int size = 0;
+	char data[NAND_PAGE_SIZE];
+	
+
+	mtk_device_wrap_seek(fd_sha, offset, SEEK_SET);
+    SHA_CTX ctx;
+    SHA_init(&ctx);
+
+	do {    
+        size = mtk_device_wrap_read(fd_sha,data,NAND_PAGE_SIZE);   
+		SHA_update(&ctx, data, size);
+		totle_size -= NAND_PAGE_SIZE;
+
+	}while(totle_size>0);
+    p = SHA_final(&ctx);
+    for (i = 0; i < SHA_DIGEST_SIZE; ++i) {
+        digest[i] = *p++;
+    }
+
+
+    return digest;
+}
+
+
+
+
+// Take a string 'str' of 40 hex digits and parse it into the 20
+// byte array 'digest'.  'str' may contain only the digest or be of
+// the form "<digest>:<anything>".  Return 0 on success, -1 on any
+// error.
+int ParseSha1(const char* str, uint8_t* digest) {
+    int i;
+    const char* ps = str;
+    uint8_t* pd = digest;
+    for (i = 0; i < SHA_DIGEST_SIZE * 2; ++i, ++ps) {
+        int digit;
+        if (*ps >= '0' && *ps <= '9') {
+            digit = *ps - '0';
+        } else if (*ps >= 'a' && *ps <= 'f') {
+            digit = *ps - 'a' + 10;
+        } else if (*ps >= 'A' && *ps <= 'F') {
+            digit = *ps - 'A' + 10;
+        } else {
+            return -1;
+        }
+        if (i % 2 == 0) {
+            *pd = digit << 4;
+        } else {
+            *pd |= digit;
+            ++pd;
+        }
+    }
+    if (*ps != '\0') return -1;
+    return 0;
+}