| /*----------------------------------------------------------------------------* |
| * Copyright Statement: * |
| * * |
| * This software/firmware and related documentation ("MediaTek Software") * |
| * are protected under international and related jurisdictions'copyright laws * |
| * as unpublished works. The information contained herein is confidential and * |
| * proprietary to MediaTek Inc. Without the prior written permission of * |
| * MediaTek Inc., any reproduction, modification, use or disclosure of * |
| * MediaTek Software, and information contained herein, in whole or in part, * |
| * shall be strictly prohibited. * |
| * MediaTek Inc. Copyright (C) 2010. All rights reserved. * |
| * * |
| * BY OPENING THIS FILE, RECEIVER HEREBY UNEQUIVOCALLY ACKNOWLEDGES AND * |
| * AGREES TO THE FOLLOWING: * |
| * * |
| * 1)Any and all intellectual property rights (including without * |
| * limitation, patent, copyright, and trade secrets) in and to this * |
| * Software/firmware and related documentation ("MediaTek Software") shall * |
| * remain the exclusive property of MediaTek Inc. Any and all intellectual * |
| * property rights (including without limitation, patent, copyright, and * |
| * trade secrets) in and to any modifications and derivatives to MediaTek * |
| * Software, whoever made, shall also remain the exclusive property of * |
| * MediaTek Inc. Nothing herein shall be construed as any transfer of any * |
| * title to any intellectual property right in MediaTek Software to Receiver. * |
| * * |
| * 2)This MediaTek Software Receiver received from MediaTek Inc. and/or its * |
| * representatives is provided to Receiver on an "AS IS" basis only. * |
| * MediaTek Inc. expressly disclaims all warranties, expressed or implied, * |
| * including but not limited to any implied warranties of merchantability, * |
| * non-infringement and fitness for a particular purpose and any warranties * |
| * arising out of course of performance, course of dealing or usage of trade. * |
| * MediaTek Inc. does not provide any warranty whatsoever with respect to the * |
| * software of any third party which may be used by, incorporated in, or * |
| * supplied with the MediaTek Software, and Receiver agrees to look only to * |
| * such third parties for any warranty claim relating thereto. Receiver * |
| * expressly acknowledges that it is Receiver's sole responsibility to obtain * |
| * from any third party all proper licenses contained in or delivered with * |
| * MediaTek Software. MediaTek is not responsible for any MediaTek Software * |
| * releases made to Receiver's specifications or to conform to a particular * |
| * standard or open forum. * |
| * * |
| * 3)Receiver further acknowledge that Receiver may, either presently * |
| * and/or in the future, instruct MediaTek Inc. to assist it in the * |
| * development and the implementation, in accordance with Receiver's designs, * |
| * of certain softwares relating to Receiver's product(s) (the "Services"). * |
| * Except as may be otherwise agreed to in writing, no warranties of any * |
| * kind, whether express or implied, are given by MediaTek Inc. with respect * |
| * to the Services provided, and the Services are provided on an "AS IS" * |
| * basis. Receiver further acknowledges that the Services may contain errors * |
| * that testing is important and it is solely responsible for fully testing * |
| * the Services and/or derivatives thereof before they are used, sublicensed * |
| * or distributed. Should there be any third party action brought against * |
| * MediaTek Inc. arising out of or relating to the Services, Receiver agree * |
| * to fully indemnify and hold MediaTek Inc. harmless. If the parties * |
| * mutually agree to enter into or continue a business relationship or other * |
| * arrangement, the terms and conditions set forth herein shall remain * |
| * effective and, unless explicitly stated otherwise, shall prevail in the * |
| * event of a conflict in the terms in any agreements entered into between * |
| * the parties. * |
| * * |
| * 4)Receiver's sole and exclusive remedy and MediaTek Inc.'s entire and * |
| * cumulative liability with respect to MediaTek Software released hereunder * |
| * will be, at MediaTek Inc.'s sole discretion, to replace or revise the * |
| * MediaTek Software at issue. * |
| * * |
| * 5)The transaction contemplated hereunder shall be construed in * |
| * accordance with the laws of Singapore, excluding its conflict of laws * |
| * principles. Any disputes, controversies or claims arising thereof and * |
| * related thereto shall be settled via arbitration in Singapore, under the * |
| * then current rules of the International Chamber of Commerce (ICC). The * |
| * arbitration shall be conducted in English. The awards of the arbitration * |
| * shall be final and binding upon both parties and shall be entered and * |
| * enforceable in any court of competent jurisdiction. * |
| *---------------------------------------------------------------------------*/ |
| |
| //============================================================================= |
| // Include Files |
| //============================================================================= |
| #if (FOR_DV_SIMULATION_USED==0 && SW_CHANGE_FOR_SIMULATION==0) |
| #if __ETT__ |
| #include <common.h> |
| #include <ett_common.h> |
| #include <api.h> |
| #endif |
| #endif |
| |
| //#if (FOR_DV_SIMULATION_USED==0) |
| #include "emi.h" |
| //#endif |
| #include "dramc_common.h" |
| #include "dramc_pi_api.h" |
| #include "x_hal_io.h" |
| |
| //============================================================================= |
| // Definition |
| //============================================================================= |
| |
| //============================================================================= |
| // Global Variables |
| //============================================================================= |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| SAVE_TIME_FOR_CALIBRATION_T SavetimeData; |
| #endif |
| |
| DRAM_DFS_FREQUENCY_TABLE_T gFreqTbl[DRAM_DFS_SHUFFLE_MAX] = { |
| {LP4_HIGHEST_FREQSEL, LP4_HIGHEST_FREQ, DRAM_DFS_SHUFFLE_1}, |
| }; |
| |
| DRAM_DFS_FREQUENCY_TABLE_T gFreqTbl_LP3[DRAM_DFS_SHUFFLE_MAX] = { |
| {LP3_DDR1066, 533, DRAM_DFS_SHUFFLE_1}, |
| }; |
| |
| DRAMC_CTX_T *psCurrDramCtx; |
| |
| #if defined(DDR_INIT_TIME_PROFILING) || (__ETT__ && SUPPORT_SAVE_TIME_FOR_CALIBRATION) |
| DRAMC_CTX_T gTimeProfilingDramCtx; |
| U8 gtime_profiling_flag = 0; |
| #endif |
| |
| #if (!__ETT__ && ENABLE_LP3_SW==0) |
| // Preloader which does not support LP3 |
| // scy: reduce code size by removing unused LPDDR3 structure |
| #else |
| DRAMC_CTX_T DramCtx_LPDDR3 = |
| { |
| CHANNEL_SINGLE, // Channel number |
| CHANNEL_A, // DRAM_CHANNEL |
| RANK_DUAL, //DRAM_RANK_NUMBER_T |
| RANK_0, //DRAM_RANK_T |
| #if DUAL_FREQ_K |
| LP3_DDR1066, |
| #else |
| #if __FLASH_TOOL_DA__ |
| LP3_DDR1066, |
| #else |
| //LP3_DDR1333, //LP3_DDR1866, |
| LP3_DDR1066, |
| #endif |
| #endif |
| DRAM_DFS_SHUFFLE_1, |
| TYPE_LPDDR3, // DRAM_DRAM_TYPE_T |
| FSP_0 , //// DRAM Fast switch point type, only for LP4, useless in LP3 |
| ODT_OFF, |
| {CBT_NORMAL_MODE, CBT_NORMAL_MODE}, //only for LP4, useless in LP3 |
| {DBI_OFF,DBI_OFF}, |
| {DBI_OFF,DBI_OFF}, |
| DATA_WIDTH_32BIT, // DRAM_DATA_WIDTH_T |
| DEFAULT_TEST2_1_CAL, // test2_1; |
| DEFAULT_TEST2_2_CAL, // test2_2; |
| TEST_XTALK_PATTERN, // test_pattern; |
| 533, // frequency |
| 533, // freqGroup |
| 0x88, //vendor_id initial value |
| REVISION_ID_MAGIC, //revision id |
| 0xff, //density |
| {0,0}, |
| 0, // ucnum_dlycell_perT; |
| 0, // u2DelayCellTimex100; |
| |
| DISABLE_VREF_SCAN, // enable_cbt_scan_vref; |
| DISABLE_VREF_SCAN, // enable_rx_scan_vref; |
| DISABLE_VREF_SCAN, // enable_tx_scan_vref; |
| #if PRINT_CALIBRATION_SUMMARY |
| //aru4CalResultFlag[CHANNEL_NUM][RANK_MAX] |
| {{0,0}, {0,0}}, |
| //aru4CalExecuteFlag[CHANNEL_NUM][RANK_MAX] |
| {{0,0}, {0,0}}, |
| #endif |
| #if WRITE_LEVELING_MOVE_DQS_INSTEAD_OF_CLK |
| {{0,0}, {0,0}}, //BOOL arfgWriteLevelingInitShif; |
| #endif |
| #if TX_PERBIT_INIT_FLOW_CONTROL |
| {{FALSE, FALSE}, {FALSE, FALSE}},//BOOL fgTXPerbifInit; |
| #endif |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| FALSE, //femmc_Ready |
| 0, |
| 0, |
| 0, |
| &SavetimeData, |
| #endif |
| #if (fcFOR_CHIP_ID == fcLaurel) |
| 0, //bDLP3 |
| #endif |
| #if defined(SLT) || (FT_DSIM_USED) |
| 0, //shuffle_index |
| #endif |
| TRUE, //u1PHYPLLEn |
| }; |
| #endif |
| |
| DRAMC_CTX_T DramCtx_LPDDR4 = |
| { |
| CHANNEL_DUAL, // Channel number |
| CHANNEL_A, // DRAM_CHANNEL |
| RANK_DUAL, //DRAM_RANK_NUMBER_T |
| RANK_0, //DRAM_RANK_T |
| |
| #ifdef MTK_FIXDDR1600_SUPPORT |
| LP4_DDR1600, |
| #else |
| #if DUAL_FREQ_K |
| LP4_LOWEST_FREQSEL, // Darren: it will be overwritten by gFreqTbl[DRAM_DFS_SHUFFLE_3].freq_sel (Init_DRAM) |
| #else |
| #if __FLASH_TOOL_DA__ |
| LP4_DDR1600, |
| #else |
| |
| #if EMI_LPBK_USE_THROUGH_IO |
| LP4_DDR1600, |
| #else |
| LP4_DDR3200, |
| #endif |
| |
| |
| #endif |
| #endif |
| #endif |
| DRAM_DFS_SHUFFLE_1, |
| TYPE_LPDDR4X, // DRAM_DRAM_TYPE_T |
| FSP_0 , //// DRAM Fast switch point type, only for LP4, useless in LP3 |
| ODT_OFF, |
| {CBT_NORMAL_MODE, CBT_NORMAL_MODE}, // bring up LP4X rank0 & rank1 use normal mode |
| #if ENABLE_READ_DBI |
| {DBI_OFF,DBI_ON}, //read DBI |
| #else |
| {DBI_OFF,DBI_OFF}, //read DBI |
| #endif |
| #if ENABLE_WRITE_DBI |
| {DBI_OFF,DBI_ON}, // write DBI |
| #else |
| {DBI_OFF,DBI_OFF}, // write DBI |
| #endif |
| DATA_WIDTH_16BIT, // DRAM_DATA_WIDTH_T |
| DEFAULT_TEST2_1_CAL, // test2_1; |
| DEFAULT_TEST2_2_CAL, // test2_2; |
| TEST_XTALK_PATTERN, // test_pattern; |
| 1600, // frequency |
| 1600, // freqGroup |
| 0x88, //vendor_id initial value |
| REVISION_ID_MAGIC, //revision id |
| 0xff, //density |
| {0,0}, |
| 0, // ucnum_dlycell_perT; |
| 0, // u2DelayCellTimex100; |
| |
| ENABLE, // enable_cbt_scan_vref; |
| ENABLE, // enable_rx_scan_vref; |
| ENABLE, // enable_tx_scan_vref; |
| |
| #if PRINT_CALIBRATION_SUMMARY |
| //aru4CalResultFlag[CHANNEL_NUM][RANK_MAX] |
| {{0,0,}, {0,0}}, |
| //aru4CalExecuteFlag[CHANNEL_NUM][RANK_MAX] |
| {{0,0,}, {0,0}}, |
| #endif |
| #if WRITE_LEVELING_MOVE_DQS_INSTEAD_OF_CLK |
| {{0,0}, {0,0}}, //BOOL arfgWriteLevelingInitShif; |
| #endif |
| #if TX_PERBIT_INIT_FLOW_CONTROL |
| {{FALSE, FALSE}, {FALSE, FALSE}},//BOOL fgTXPerbifInit; |
| #endif |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| FALSE, //femmc_Ready |
| 0, |
| 0, |
| 0, |
| &SavetimeData, |
| #endif |
| #if (fcFOR_CHIP_ID == fcLaurel) |
| 0, //bDLP3 |
| #endif |
| #if defined(SLT) || (FT_DSIM_USED) |
| 0, //shuffle_index |
| #endif |
| TRUE, //u1PHYPLLEn |
| }; |
| |
| U8 gfirst_init_flag = 0; |
| //============================================================================= |
| // External references |
| //============================================================================= |
| #if __ETT__ |
| extern int global_which_test; |
| #endif |
| |
| #if !__ETT__ && defined(DDR_RESERVE_MODE) |
| extern u32 g_ddr_reserve_ta_err; |
| #endif |
| |
| extern U8 gu1MR23Done; |
| extern U8 ucg_num_dlycell_perT_all[DRAM_DFS_SHUFFLE_MAX][CHANNEL_NUM]; |
| extern U16 u2gdelay_cell_ps_all[DRAM_DFS_SHUFFLE_MAX][CHANNEL_NUM]; |
| |
| extern int complex_mem_test(unsigned long start, unsigned int len); |
| extern void EMI_Init(DRAMC_CTX_T *p); |
| extern void EMI_Init2(void); |
| |
| extern U16 gu2MR0_Value[RANK_MAX]; /*read only mode register*/ |
| |
| /* |
| * LP4 table |
| * [0] 3200 |
| * [1] 3200 |
| * [2] 2400 |
| * [3] 1600 |
| * LP3 table |
| * [0] 1866 |
| * [1] 1600 |
| * [2] 1600 |
| * [3] 1200 |
| */ |
| #define STD_LP4_VCORE_KOPP0 800000 |
| #define STD_LP4_VCORE_KOPP1 750000 |
| #define STD_LP4_VCORE_KOPP2 700000 |
| #define STD_LP4_VCORE_KOPP3 700000 |
| #define STD_LP3_VCORE_KOPP0 800000 |
| #define STD_LP3_VCORE_KOPP1 750000 |
| #define STD_LP3_VCORE_KOPP2 750000 |
| #define STD_LP3_VCORE_KOPP3 700000 |
| #ifdef DRAM_HQA |
| #if __ETT__ |
| extern unsigned int hqa_LP4_vcore_kopp0; |
| extern unsigned int hqa_LP4_vcore_kopp1; |
| extern unsigned int hqa_LP4_vcore_kopp2; |
| extern unsigned int hqa_LP4_vcore_kopp3; |
| extern unsigned int hqa_LP3_vcore_kopp0; |
| extern unsigned int hqa_LP3_vcore_kopp1; |
| extern unsigned int hqa_LP3_vcore_kopp2; |
| extern unsigned int hqa_LP3_vcore_kopp3; |
| #define VCORE_KOPP_BY_FREQ(F, D) hqa_##D##_vcore_kopp##F |
| #else |
| #define VCORE_KOPP_BY_FREQ(F, D) HQA_VCORE_KOPP(F, D) |
| #endif |
| #else |
| #define VCORE_KOPP_BY_FREQ(F, D) STD_##D##_VCORE_KOPP##F |
| #endif |
| |
| void vSetVcoreByFreq(DRAMC_CTX_T *p) |
| { |
| #ifndef MT2731_FPGA |
| #if (FOR_DV_SIMULATION_USED==0 && SW_CHANGE_FOR_SIMULATION==0) |
| #if __FLASH_TOOL_DA__ |
| dramc_set_vcore_voltage(800000); |
| #else |
| unsigned int vcore, vdram, vddq; |
| #ifdef DRAM_HQA |
| unsigned int vio18; |
| vio18 = HQA_VIO18; |
| #endif |
| |
| vcore = vdram = vddq = 0; |
| |
| #if defined(DRAM_HQA) && defined(__ETT__) |
| hqa_set_voltage_by_freq(p, &vio18, &vcore, &vdram, &vddq); |
| #else |
| #ifdef VCORE_BIN |
| vcore = (get_vcore_uv_table(0) + get_vcore_uv_table(1)) >> 1; |
| #else |
| if(u1IsLP4Family(p->dram_type)) |
| // LP4X |
| vcore = (SEL_PREFIX_VCORE(LP4, KOPP0) + SEL_PREFIX_VCORE(LP4, KOPP1)) >> 1; |
| else |
| // LP2 |
| vcore = (SEL_PREFIX_VCORE(LP2, KOPP0) + SEL_PREFIX_VCORE(LP2, KOPP1)) >> 1; |
| #endif |
| #endif |
| |
| #ifdef LAST_DRAMC |
| update_last_dramc_k_voltage(p, vcore); |
| #endif |
| |
| #if defined(DRAM_HQA) |
| if (vio18) |
| dramc_set_vdd1_voltage(p->dram_type, vio18); |
| #endif |
| |
| if (vcore) |
| dramc_set_vcore_voltage(vcore); |
| |
| #if defined(DRAM_HQA) |
| if (vdram) |
| dramc_set_vdd2_voltage(p->dram_type, vdram); |
| |
| if (u1IsLP4Family(p->dram_type)) { |
| if (vddq) |
| dramc_set_vddq_voltage(p->dram_type, vddq); |
| } |
| #endif |
| |
| #ifndef DDR_INIT_TIME_PROFILING |
| printf("Read voltage for %d\n", p->frequency); |
| printf("Vio18 = %d\n", dramc_get_vdd1_voltage()); |
| printf("Vcore = %d\n", dramc_get_vcore_voltage()); |
| printf("Vdram = %d\n", dramc_get_vdd2_voltage(p->dram_type)); |
| |
| if (u1IsLP4Family(p->dram_type)) |
| printf("Vddq = %d\n", dramc_get_vddq_voltage(p->dram_type)); |
| #endif |
| #endif |
| #endif |
| #endif |
| } |
| |
| U32 vGetVoltage(DRAMC_CTX_T *p, U32 get_voltage_type) |
| { |
| #if (defined(DRAM_HQA) || defined(__ETT__)) && (FOR_DV_SIMULATION_USED == 0) |
| if (get_voltage_type==0) |
| return dramc_get_vcore_voltage(); |
| |
| if (get_voltage_type==1) |
| return dramc_get_vdd2_voltage(p->dram_type); |
| |
| if (get_voltage_type==2) |
| return dramc_get_vddq_voltage(p->dram_type); |
| |
| if (get_voltage_type==3) |
| return dramc_get_vdd1_voltage(); |
| #endif |
| |
| return 0; |
| } |
| |
| #ifdef FOR_HQA_TEST_USED |
| VCORE_DELAYCELL_T gVcoreDelayCellTable[42]={ {606250, 1071}, |
| {612500, 1032}, |
| {618750, 1019}, |
| {625000, 1007}, |
| {631250, 995}, |
| {637500, 983}, |
| {643750, 972}, |
| {650000, 960}, |
| {656250, 946}, |
| {662500, 932}, |
| {668750, 919}, |
| {675000, 905}, |
| {681250, 892}, |
| {687500, 886}, |
| {693750, 880}, |
| {700000, 868}, |
| {706250, 856}, |
| {712500, 850}, |
| {718750, 844}, |
| {725000, 833}, |
| {731250, 822}, |
| {737500, 817}, |
| {743750, 811}, |
| {750000, 801}, |
| {756250, 791}, |
| {762500, 781}, |
| {768750, 776}, |
| {775000, 771}, |
| {781250, 767}, |
| {787500, 762}, |
| {793750, 753}, |
| {800000, 749}, |
| {806250, 744}, |
| {812500, 735}, |
| {818750, 731}, |
| {825000, 726}, |
| {831250, 722}, |
| {837500, 718}, |
| {843750, 714}, |
| {850000, 710}, |
| {856250, 702}, |
| {862500, 694} }; |
| |
| void GetVcoreDelayCellTimeFromTable(DRAMC_CTX_T *p) |
| { |
| U32 channel_i, i; |
| U32 get_vcore = 0; |
| U16 u2gdelay_cell_ps = 0; |
| U8 u1delay_cell_cnt = 0; |
| VCORE_DELAYCELL_T *pVcoreDelayCellTable; |
| |
| #if (defined(DRAM_HQA) || defined(__ETT__)) && (FOR_DV_SIMULATION_USED == 0) |
| get_vcore = dramc_get_vcore_voltage(); |
| #endif |
| |
| pVcoreDelayCellTable = (VCORE_DELAYCELL_T *)gVcoreDelayCellTable; |
| u1delay_cell_cnt = sizeof(gVcoreDelayCellTable)/sizeof(gVcoreDelayCellTable[0]); |
| |
| for(i=0; i<u1delay_cell_cnt; i++) |
| { |
| if (get_vcore >= pVcoreDelayCellTable[i].u2Vcore) u2gdelay_cell_ps = pVcoreDelayCellTable[i].u2DelayCell; |
| } |
| |
| mcSHOW_DBG_MSG(("[GetVcoreDelayCellTimeFromTable(%d)] VCore=%d(x100), DelayCell=%d(x100)\n", u1delay_cell_cnt, get_vcore, u2gdelay_cell_ps)); |
| |
| for(channel_i=CHANNEL_A; channel_i < p->support_channel_num; channel_i++) |
| { |
| u2gdelay_cell_ps_all[get_shuffleIndex_by_Freq(p)][u1ChannelSet[channel_i]] = u2gdelay_cell_ps; |
| } |
| } |
| |
| #endif |
| |
| void mem_test_address_calculation(DRAMC_CTX_T * p, unsigned long uiSrcAddr, unsigned long *pu4Dest) |
| { |
| #if __ETT__ |
| *pu4Dest = uiSrcAddr - RANK0_START_VA + RANK1_START_VA; |
| #else |
| *pu4Dest = uiSrcAddr + p->ranksize[RANK_0]; |
| #endif |
| } |
| |
| |
| #if CPU_RW_TEST_AFTER_K || ENABLE_SLT |
| void vDramCPUReadWriteTestAfterCalibration(DRAMC_CTX_T *p) |
| { |
| U8 u1DumpInfo=0, u1RankIdx; |
| unsigned long uiLen, count, uiFixedAddr, uiRankdAddr[RANK_MAX]; |
| U32 pass_count, err_count; |
| #if EMI_LPBK_DRAM_USED==1 |
| uiLen = 0xffff; |
| #else |
| uiLen = 0x44000; //saint 0xffff; |
| #endif |
| |
| #if GATING_ONLY_FOR_DEBUG |
| DramcGatingDebugInit(p); |
| #endif |
| |
| uiRankdAddr[0] = DDR_BASE; |
| mem_test_address_calculation(p, DDR_BASE, &uiRankdAddr[1]); |
| |
| for(u1RankIdx =0; u1RankIdx< p->support_rank_num; u1RankIdx++) |
| { |
| u1DumpInfo=0; |
| err_count=0; |
| pass_count=0; |
| |
| #if !__ETT__ |
| // scy: not to test rank1 (wrong addr 0x0000_0000) |
| if (u1RankIdx >= 1) |
| continue; |
| #endif |
| |
| #if GATING_ONLY_FOR_DEBUG |
| DramcGatingDebugRankSel(p, u1RankIdx); |
| #endif |
| |
| uiFixedAddr = uiRankdAddr[u1RankIdx]; |
| |
| for (count= 0; count<uiLen; count+=4) |
| { |
| *(volatile unsigned int *)(count +uiFixedAddr) = count + (0x5a5a <<16); |
| } |
| |
| for (count=0; count<uiLen; count+=4) |
| { |
| if (*(volatile unsigned int *)(count +uiFixedAddr) != count + (0x5a5a <<16)) |
| { |
| //mcSHOW_DBG_MSG(("[Fail] Addr %xh = %xh\n",count, *(volatile unsigned int *)(count))); |
| err_count++; |
| } |
| else |
| pass_count ++; |
| } |
| |
| #if RUNTIME_SHMOO_RELEATED_FUNCTION && SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| if (err_count==0) |
| { |
| #if __ETT__ |
| mcSHOW_ERR_MSG(("CH %c,RANK %d,BYTE %d,VRANGE %d,VREF %d,PI %d,MEM_RESULT PASS\n", |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Channel == 0 ? 'A' : 'B', |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Rank, |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Byte, |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Range, |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Value, |
| p->pSavetimeData->Runtime_Shmoo_para.TX_PI_delay-p->pSavetimeData->Runtime_Shmoo_para.TX_Original_PI_delay)); |
| #else |
| mcSHOW_ERR_MSG(("CH %c,RANK %d,BYTE %d,VRANGE %d,VREF %d,PI %d,MEM_RESULT PASS\n", |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Channel == 0 ? 'A' : 'B', |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Rank, |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Byte, |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Range, |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Value, |
| p->pSavetimeData->Runtime_Shmoo_para.TX_PI_delay-p->pSavetimeData->Runtime_Shmoo_para.TX_Original_PI_delay)); |
| #endif |
| } |
| #else |
| if(err_count) |
| { |
| mcSHOW_DBG_MSG(("[MEM_TEST] Rank %d Fail.", u1RankIdx)); |
| u1DumpInfo =1; |
| #if defined(SLT) || (ENABLE_SLT == 1) |
| while(1); |
| #endif |
| } |
| else |
| { |
| mcSHOW_DBG_MSG(("[MEM_TEST] Rank %d OK.", u1RankIdx)); |
| } |
| mcSHOW_DBG_MSG(("(uiFixedAddr 0x%x, Pass count =%d, Fail count =%d)\n", |
| (unsigned int)(uiFixedAddr & 0xFFFFFFFF), pass_count, err_count)); |
| #endif |
| } |
| |
| if(u1DumpInfo) |
| { |
| // Read gating error flag |
| #if (FOR_DV_SIMULATION_USED==0 && SW_CHANGE_FOR_SIMULATION==0) |
| DramcDumpDebugInfo(p); |
| #endif |
| } |
| |
| #if GATING_ONLY_FOR_DEBUG |
| DramcGatingDebugExit(p); |
| #endif |
| } |
| #endif |
| |
| |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| #if !EMMC_READY |
| u32 g_dram_save_time_init_done[DRAM_DFS_SHUFFLE_MAX]={0}; |
| SAVE_TIME_FOR_CALIBRATION_T SaveTimeDataByShuffle[DRAM_DFS_SHUFFLE_MAX]; |
| #endif |
| |
| DRAM_STATUS_T DramcSave_Time_For_Cal_End(DRAMC_CTX_T *p) |
| { |
| if(!u1IsLP4Family(p->dram_type)) |
| return DRAM_FAIL; |
| |
| if(u1IsLP4Family(p->dram_type) && (p->femmc_Ready==0)) |
| { |
| #if EMMC_READY |
| write_offline_dram_calibration_data(p->shu_type, p->pSavetimeData); |
| mcSHOW_DBG_MSG(("[FAST_K] Save calibration result to emmc\n")); |
| #else |
| g_dram_save_time_init_done[p->shu_type] =1; |
| memcpy(&(SaveTimeDataByShuffle[p->shu_type]), p->pSavetimeData, sizeof(SAVE_TIME_FOR_CALIBRATION_T)); |
| mcSHOW_DBG_MSG(("[FAST_K] Save calibration result to SW memory\n")); |
| #endif |
| } |
| else |
| { |
| mcSHOW_DBG_MSG(("[FAST_K] Bypass saving calibration result to emmc\n")); |
| } |
| |
| return DRAM_OK; |
| } |
| |
| DRAM_STATUS_T DramcSave_Time_For_Cal_Init(DRAMC_CTX_T *p) |
| { |
| if(!u1IsLP4Family(p->dram_type)) |
| return DRAM_FAIL; |
| |
| // Parepare fask k data |
| #if EMMC_READY |
| // scy: only need to read emmc one time for each boot-up |
| //if (g_dram_save_time_init_done == 1) |
| // return DRAM_OK; |
| //else |
| // g_dram_save_time_init_done = 1; |
| if(read_offline_dram_calibration_data(p->shu_type, p->pSavetimeData)<0) |
| { |
| p->femmc_Ready=0; |
| memset(p->pSavetimeData, 0, sizeof(SAVE_TIME_FOR_CALIBRATION_T)); |
| } |
| else |
| { |
| p->femmc_Ready=1; |
| } |
| |
| #else //EMMC is not avaliable, load off-line data |
| |
| if(g_dram_save_time_init_done[p->shu_type] ==0) |
| { |
| p->femmc_Ready=0; |
| memset(p->pSavetimeData, 0, sizeof(SAVE_TIME_FOR_CALIBRATION_T)); |
| } |
| else |
| { |
| memcpy(p->pSavetimeData, &(SaveTimeDataByShuffle[p->shu_type]), sizeof(SAVE_TIME_FOR_CALIBRATION_T)); |
| p->femmc_Ready=1; |
| } |
| #endif |
| |
| if(p->femmc_Ready==1) |
| { |
| if(p->frequency < 1600) |
| { // freq < 1600, TX and RX tracking are disable. Therefore, bypass calibration. |
| p->Bypass_RDDQC=1; |
| p->Bypass_RXWINDOW=1; |
| p->Bypass_TXWINDOW=1; |
| } |
| else |
| { |
| p->Bypass_RDDQC=0; |
| p->Bypass_RXWINDOW=0; |
| p->Bypass_TXWINDOW=0; |
| } |
| |
| #if RUNTIME_SHMOO_RELEATED_FUNCTION |
| p->Bypass_RDDQC=1; |
| p->Bypass_RXWINDOW=1; |
| p->Bypass_TXWINDOW=1; |
| #endif |
| } |
| |
| #if EMMC_READY |
| mcSHOW_DBG_MSG(("[FAST_K] DramcSave_Time_For_Cal_Init SHU%d, femmc_Ready=%d\n", p->shu_type, p->femmc_Ready)); |
| #else |
| mcSHOW_DBG_MSG(("[FAST_K] DramcSave_Time_For_Cal_Init SHU%d, Init_done=%d, femmc_Ready=%d\n", p->shu_type, g_dram_save_time_init_done[p->shu_type], p->femmc_Ready)); |
| #endif |
| mcSHOW_DBG_MSG(("[FAST_K] Bypass_RDDQC %d, Bypass_RXWINDOW=%d, Bypass_TXWINDOW=%d\n", p->Bypass_RDDQC, p->Bypass_RXWINDOW, p->Bypass_TXWINDOW)); |
| |
| return DRAM_OK; |
| } |
| |
| |
| #endif |
| |
| U8 gGet_MDL_Used_Flag=0; |
| void Set_MDL_Used_Flag(U8 value) |
| { |
| gGet_MDL_Used_Flag = value; |
| } |
| |
| U8 Get_MDL_Used_Flag(void) |
| { |
| return gGet_MDL_Used_Flag; |
| } |
| |
| #if TX_K_DQM_WITH_WDBI |
| void vSwitchWriteDBISettings(DRAMC_CTX_T *p, U8 u1OnOff) |
| { |
| S8 u1TXShiftUI; |
| |
| u1TXShiftUI = (u1OnOff) ? -8 : 8; |
| DramcWriteMinus1MCKForWriteDBI(p, u1TXShiftUI); //Tx DQ/DQM -1 MCK for write DBI ON |
| |
| SetDramModeRegForWriteDBIOnOff(p, u1OnOff); |
| DramcWriteDBIOnOff(p, u1OnOff); |
| } |
| #endif |
| |
| static void vCalibration_Flow_LP4(DRAMC_CTX_T *p) |
| { |
| U8 u1RankMax; |
| S8 s1RankIdx; |
| //DRAM_STATUS_T VrefStatus; |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| U32 CPU_Cycle; |
| TimeProfileBegin(); |
| #endif |
| |
| #if ENABLE_PHY_RX_INPUT_OFFSET // skip when bring up |
| ///TODO: no shuffle, only need to do once under highest freq. |
| if(p->frequency == u2DFSGetHighestFreq(p)) |
| DramcRXInputBufferOffsetCal(p); |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tRX input cal takes %d us\n", CPU_Cycle)); |
| TimeProfileBegin(); |
| #endif |
| #endif |
| |
| |
| #if GATING_ADJUST_TXDLY_FOR_TRACKING |
| DramcRxdqsGatingPreProcess(p); |
| #endif |
| |
| if (p->support_rank_num==RANK_DUAL) |
| u1RankMax = RANK_MAX; |
| else |
| u1RankMax = RANK_1; |
| |
| //vAutoRefreshSwitch(p, DISABLE); //auto refresh is set as disable in LP4_DramcSetting, so don't need to disable again |
| |
| #if ENABLE_CA_TRAINING |
| for(s1RankIdx=RANK_0; s1RankIdx<u1RankMax; s1RankIdx++) |
| { |
| vSetRank(p, s1RankIdx); |
| #if PINMUX_AUTO_TEST_PER_BIT_CA |
| CheckCAPinMux(p); |
| #endif |
| CmdBusTrainingLP4(p); |
| |
| #if EYESCAN_LOG |
| print_EYESCAN_LOG_message(p, 0); //draw CBT eyescan |
| #endif |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tRank %d CBT takes %d us\n", s1RankIdx, CPU_Cycle)); |
| TimeProfileBegin(); |
| #endif |
| } |
| |
| vSetRank(p, RANK_0); |
| |
| #if DUAL_FREQ_K |
| No_Parking_On_CLRPLL(p); |
| #endif |
| #endif //ENABLE_CA_TRAINING |
| |
| for(s1RankIdx=RANK_0; s1RankIdx<u1RankMax; s1RankIdx++) |
| { |
| vSetRank(p, s1RankIdx); |
| |
| #ifdef DEVIATION |
| { |
| U16 u2RXVrefDefault; |
| u2RXVrefDefault = vGetRXVrefDefault(p); |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DDRPHY_SHU1_B0_DQ5), u2RXVrefDefault, SHU1_B0_DQ5_RG_RX_ARDQ_VREF_SEL_B0); // LP4 and LP4x with term: 0xe |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DDRPHY_SHU1_B1_DQ5), u2RXVrefDefault, SHU1_B1_DQ5_RG_RX_ARDQ_VREF_SEL_B1); // LP4 and LP4x with term: 0xe |
| } |
| #endif |
| |
| //#if ENABLE_LP4_ZQ_CAL |
| //DramcZQCalibration(p); //ZQ calibration should be done before CBT and operated at low frequency, so it is moved to mode register init |
| //#endif |
| |
| #if ENABLE_WRITE_LEVELING |
| DramcWriteLeveling((DRAMC_CTX_T *) p);//Dram will be reset when finish write leveling |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tRank %d Write leveling takes %d us\n", s1RankIdx, CPU_Cycle)); |
| TimeProfileBegin(); |
| #endif |
| #endif |
| |
| #if LJPLL_FREQ_DEBUG_LOG |
| DDRPhyFreqMeter(); |
| #endif |
| |
| vAutoRefreshSwitch(p, ENABLE); //when doing gating, RX and TX calibration, auto refresh should be enable |
| |
| DramcRxdqsGatingCal(p); |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tRank %d Gating takes %d us\n", s1RankIdx, CPU_Cycle)); |
| TimeProfileBegin(); |
| #endif |
| |
| #if LJPLL_FREQ_DEBUG_LOG |
| DDRPhyFreqMeter(); |
| #endif |
| |
| #if PINMUX_AUTO_TEST_PER_BIT_RX |
| CheckRxPinMux(p); |
| #endif |
| DramcRxWindowPerbitCal((DRAMC_CTX_T *) p, 0); |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tRank %d RX RDDQC takes %d us\n", s1RankIdx, CPU_Cycle)); |
| TimeProfileBegin(); |
| #endif |
| |
| #if LJPLL_FREQ_DEBUG_LOG |
| DDRPhyFreqMeter(); |
| #endif |
| |
| #if MRW_CHECK_ONLY |
| mcSHOW_MRW_MSG(("\n==[MR Dump] %s==\n", __func__)); |
| #endif |
| #if TX_K_DQM_WITH_WDBI |
| //DramcWriteDBIOnOff() control both rank, need to recover for rank1 tx calibration |
| DramcWriteDBIOnOff(p, 0); |
| #endif |
| DramcTxWindowPerbitCal((DRAMC_CTX_T *) p, TX_DQ_DQS_MOVE_DQ_DQM, DISABLE_VREF_SCAN); //Vref scan disable |
| { |
| DramcTxWindowPerbitCal((DRAMC_CTX_T *) p, TX_DQ_DQS_MOVE_DQ_ONLY, p->enable_tx_scan_vref); |
| } |
| #if PINMUX_AUTO_TEST_PER_BIT_TX |
| CheckTxPinMux(p); |
| #endif |
| DramcTxWindowPerbitCal((DRAMC_CTX_T *) p, TX_DQ_DQS_MOVE_DQ_ONLY, DISABLE_VREF_SCAN); |
| |
| #if TX_K_DQM_WITH_WDBI |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| if(p->Bypass_TXWINDOW==0) //if bypass TX K, DQM will be calculate form DQ. (no need to K DQM) |
| #endif |
| { |
| if ((p->DBI_W_onoff[p->dram_fsp]==DBI_ON)) |
| { |
| // K DQM with DBI_ON, and check DQM window spec. |
| //mcSHOW_DBG_MSG(("[TX_K_DQM_WITH_WDBI] Step1: K DQM with DBI_ON, and check DQM window spec.\n\n")); |
| vSwitchWriteDBISettings(p, DBI_ON); |
| DramcTxWindowPerbitCal((DRAMC_CTX_T *) p, TX_DQ_DQS_MOVE_DQM_ONLY, DISABLE_VREF_SCAN); |
| vSwitchWriteDBISettings(p, DBI_OFF); |
| } |
| } |
| #endif |
| |
| #if EYESCAN_LOG |
| Dramc_K_TX_EyeScan_Log(p); |
| print_EYESCAN_LOG_message(p, 2); //draw TX eyescan |
| #endif |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tRank %d TX calibration takes %d us\n", s1RankIdx, CPU_Cycle)); |
| TimeProfileBegin(); |
| #endif |
| |
| #if LJPLL_FREQ_DEBUG_LOG |
| DDRPhyFreqMeter(); |
| #endif |
| |
| DramcRxdatlatCal((DRAMC_CTX_T *) p); |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tRank %d Datlat takes %d us\n", s1RankIdx, CPU_Cycle)); |
| TimeProfileBegin(); |
| #endif |
| |
| #if LJPLL_FREQ_DEBUG_LOG |
| DDRPhyFreqMeter(); |
| #endif |
| |
| DramcRxWindowPerbitCal((DRAMC_CTX_T *) p, 1); |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tRank %d RX calibration takes %d us\n", s1RankIdx, CPU_Cycle)); |
| TimeProfileBegin(); |
| #endif |
| // DramcRxdqsGatingCal(p); |
| |
| #if EYESCAN_LOG |
| print_EYESCAN_LOG_message(p, 1); //draw RX eyescan |
| #endif |
| |
| #if TX_OE_CALIBATION |
| DramcTxOECalibration(p); |
| #endif |
| |
| vAutoRefreshSwitch(p, DISABLE); //After gating, Rx and Tx calibration, auto refresh should be disable |
| |
| #if ENABLE_TX_TRACKING |
| #if 0 /* Starting from Vinson, no need to pre-calculate MR23 for different freqs */ |
| if(gu1MR23Done==FALSE) |
| { |
| DramcDQSOSCAuto(p); |
| } |
| #endif |
| DramcDQSOSCAuto(p); |
| DramcDQSOSCMR23(p); |
| DramcDQSOSCSetMR18MR19(p); |
| #endif |
| } |
| vSetRank(p, RANK_0); // Set p's rank back to 0 (Avoids unexpected auto-rank offset calculation in u4RegBaseAddrTraslate()) |
| |
| #if ENABLE_TX_TRACKING |
| DramcDQSOSCShuSettings(p); |
| #endif |
| |
| #if GATING_ADJUST_TXDLY_FOR_TRACKING |
| DramcRxdqsGatingPostProcess(p); |
| #endif |
| |
| if (p->support_rank_num==RANK_DUAL) |
| { |
| DramcDualRankRxdatlatCal(p); |
| } |
| |
| #if LJPLL_FREQ_DEBUG_LOG |
| DDRPhyFreqMeter(); |
| #endif |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tMisc takes %d us\n\n", s1RankIdx, CPU_Cycle)); |
| #endif |
| } |
| |
| #if ENABLE_LP3_SW |
| DRAM_STATUS_T CATrainingLP3(DRAMC_CTX_T *p); |
| static void vCalibration_Flow_LP3(DRAMC_CTX_T *p) |
| { |
| U8 u1RankMax; |
| S8 s1RankIdx; |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| U32 CPU_Cycle; |
| TimeProfileBegin(); |
| #endif |
| |
| //vAutoRefreshSwitch(p, DISABLE); //auto refresh is set as disable in LP3_DramcSetting, so don't need to disable again |
| #if (fcFOR_CHIP_ID == fcLaurel) |
| #if 0 |
| #if ENABLE_CA_TRAINING // skip when bring up |
| vSetRank(p, RANK_0); |
| #if PINMUX_AUTO_TEST_PER_BIT_CA |
| CheckCAPinMux_LP3(p); |
| #endif |
| CATrainingLP3(p); |
| #if CA_TRAINING_K_RANK1_ENABLE //if dual rank K is enable, rank 0 and 1 both should do CA training |
| if (p->support_rank_num==RANK_DUAL) |
| { |
| vSetRank(p, RANK_1); |
| #if PINMUX_AUTO_TEST_PER_BIT_CA |
| CheckCAPinMux_LP3(p); |
| #endif |
| CATrainingLP3(p); |
| vSetRank(p, RANK_0); |
| //CATrainingLP3PostProcess(p); //set final CLK and CA delay as the result of averge delay of rank0 and rank1 |
| } |
| #endif |
| #endif // end of ENABLE_CA_TRAINING |
| |
| #if LP3_MR_INIT_AFTER_CA_TRAIN |
| u1PrintModeRegWrite =1; |
| DramcModeRegInit_LP3(p, FALSE); // set mode register without reset dram. |
| u1PrintModeRegWrite =0; |
| #endif |
| #endif |
| #endif |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tDRAMC CA train takes %d us\n", CPU_Cycle)); |
| TimeProfileBegin(); |
| #endif |
| |
| #if GATING_ADJUST_TXDLY_FOR_TRACKING |
| DramcRxdqsGatingPreProcess(p); |
| #endif |
| |
| if (p->support_rank_num==RANK_DUAL) |
| u1RankMax = RANK_MAX; |
| else |
| u1RankMax = RANK_1; |
| |
| for(s1RankIdx=RANK_0; s1RankIdx<u1RankMax; s1RankIdx++) |
| { |
| vSetRank(p, s1RankIdx); |
| |
| vAutoRefreshSwitch(p, DISABLE); //If auto refresh don't disable at begin, auto refresh will be enable when K rank1 CAtraining and write leveling |
| |
| #if (fcFOR_CHIP_ID == fcLaurel) |
| #if 0 |
| if((p->support_rank_num==RANK_SINGLE) || ((p->support_rank_num==RANK_DUAL) && (s1RankIdx == RANK_0))) |
| { |
| #if ENABLE_WRITE_LEVELING |
| DramcWriteLeveling((DRAMC_CTX_T *) p);//Dram will be reset when finish write leveling |
| #endif |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tRank %d Write leveling takes %d us\n", s1RankIdx, CPU_Cycle)); |
| TimeProfileBegin(); |
| #endif |
| } |
| #endif |
| #endif |
| |
| vAutoRefreshSwitch(p, ENABLE); //when doing gating, RX and TX calibration, auto refresh should be enable |
| |
| #if LJPLL_FREQ_DEBUG_LOG |
| DDRPhyFreqMeter(); |
| #endif |
| |
| DramcRxdqsGatingCal(p); |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tRank %d Gating takes %d us\n", s1RankIdx, CPU_Cycle)); |
| TimeProfileBegin(); |
| #endif |
| |
| #if LJPLL_FREQ_DEBUG_LOG |
| DDRPhyFreqMeter(); |
| #endif |
| |
| DramcRxdatlatCal((DRAMC_CTX_T *) p); |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tRank %d Datlat takes %d us\n\r", s1RankIdx, CPU_Cycle)); |
| TimeProfileBegin(); |
| #endif |
| |
| #if LJPLL_FREQ_DEBUG_LOG |
| DDRPhyFreqMeter(); |
| #endif |
| |
| #ifndef LP3_DUAL_RANK_RX_K |
| if(s1RankIdx == RANK_0) |
| #endif |
| { |
| #if PINMUX_AUTO_TEST_PER_BIT_RX_LP3 |
| CheckRxPinMux(p); |
| #endif |
| DramcRxWindowPerbitCal((DRAMC_CTX_T *) p, 1); |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tRank %d RX takes %d us\n", s1RankIdx, CPU_Cycle)); |
| TimeProfileBegin(); |
| #endif |
| } |
| |
| #ifndef LP3_DUAL_RANK_TX_K |
| if(s1RankIdx==RANK_0) |
| #endif |
| { |
| DramcTxWindowPerbitCal((DRAMC_CTX_T *) p, TX_DQ_DQS_MOVE_DQ_DQM, DISABLE_VREF_SCAN); |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tRank %d TX takes %d us\n", s1RankIdx, CPU_Cycle)); |
| TimeProfileBegin(); |
| #endif |
| } |
| } |
| |
| vSetRank(p, RANK_0); |
| |
| #if GATING_ADJUST_TXDLY_FOR_TRACKING |
| DramcRxdqsGatingPostProcess(p); |
| #endif |
| |
| if (p->support_rank_num==RANK_DUAL) |
| { |
| DramcDualRankRxdatlatCal(p); |
| } |
| |
| #if LJPLL_FREQ_DEBUG_LOG |
| DDRPhyFreqMeter(); |
| #endif |
| |
| vAutoRefreshSwitch(p, DISABLE); //After gating, Rx and Tx calibration, auto refresh should be disable |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("\tMisc takes %d us\n\n", s1RankIdx, CPU_Cycle)); |
| #endif |
| } |
| #endif |
| |
| |
| static void vDramCalibrationSingleChannel(DRAMC_CTX_T *p) |
| { |
| #if 0 //!__ETT__ |
| /* |
| * Since DRAM calibration will cost much time, |
| * kick wdt here to prevent watchdog timeout. |
| * Sagy: Mask for the fcLaurel at the beginning |
| */ |
| #if (FOR_DV_SIMULATION_USED==0 && SW_CHANGE_FOR_SIMULATION==0) |
| mtk_wdt_restart(); |
| #endif |
| #endif |
| |
| if(u1IsLP4Family(p->dram_type)) |
| vCalibration_Flow_LP4(p); |
| #if ENABLE_LP3_SW |
| else |
| vCalibration_Flow_LP3(p); |
| #endif |
| } |
| |
| static void vDramCalibrationAllChannel(DRAMC_CTX_T *p) |
| { |
| U8 channel_idx, rank_idx; |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| U32 u4low_tick0, u4high_tick0, u4low_tick1, u4high_tick1; |
| #if __ETT__ |
| u4low_tick0 = GPT_GetTickCount(&u4high_tick0); |
| #else |
| u4low_tick0 = get_timer(0); |
| #endif |
| #endif |
| |
| for(channel_idx=CHANNEL_A; channel_idx<p->support_channel_num; channel_idx++) |
| { |
| vSetPHY2ChannelMapping(p, u1ChannelSet[channel_idx]);// when switching channel, must update PHY to Channel Mapping |
| vDramCalibrationSingleChannel(p); |
| } |
| |
| vSetPHY2ChannelMapping(p, u1ChannelSet[0]); |
| |
| #if PRINT_CALIBRATION_SUMMARY |
| vPrintCalibrationResult(p); |
| #endif |
| |
| #ifdef FOR_HQA_TEST_USED |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| if(p->femmc_Ready==1) |
| { |
| mcSHOW_DBG_MSG(("\nCalibration fast K is enable, cannot show HQA measurement information\n")); |
| } |
| else |
| #endif |
| print_HQA_measure_message(p); |
| #endif |
| |
| #ifdef DEVIATION |
| if(p->frequency == u2DFSGetHighestFreq(p)) |
| { |
| vSetDeviationVariable(); |
| } |
| #endif |
| |
| /* Enable/Disable calibrated rank's DBI function accordingly */ |
| #if ENABLE_READ_DBI |
| //Read DBI ON |
| vSetRank(p, RANK_0); |
| vSetPHY2ChannelMapping(p, u1ChannelSet[0]); |
| |
| DramcReadDBIOnOff(p, p->DBI_R_onoff[p->dram_fsp]); |
| #endif |
| |
| #if ENABLE_WRITE_DBI |
| //Write DBI ON |
| for(channel_idx=CHANNEL_A; channel_idx<p->support_channel_num; channel_idx++) |
| { |
| vSetPHY2ChannelMapping(p, u1ChannelSet[channel_idx]); |
| |
| for(rank_idx=RANK_0; rank_idx<RANK_MAX; rank_idx++) |
| { |
| vSetRank(p, rank_idx); |
| DramcWriteMinus1MCKForWriteDBI(p, -8); //Tx DQ/DQM -1 MCK for write DBI ON |
| } |
| vSetRank(p, RANK_0); |
| } |
| vSetPHY2ChannelMapping(p, u1ChannelSet[0]); |
| |
| DramcWriteDBIOnOff(p, p->DBI_W_onoff[p->dram_fsp]); |
| |
| // Improve Write DBI Power |
| ApplyWriteDBIPowerImprove(p, ENABLE); |
| |
| #if ENABLE_WRITE_DBI_Protect |
| ApplyWriteDBIProtect(p, ENABLE); |
| #endif |
| #endif |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| #if __ETT__ |
| u4low_tick1 = GPT_GetTickCount(&u4high_tick1); |
| mcSHOW_TIME_MSG((" (4) vDramCalibrationAllChannel() take %d ms\n\r",((u4low_tick1-u4low_tick0)*76)/1000000)); |
| #else |
| u4low_tick1 = get_timer(u4low_tick0); |
| mcSHOW_TIME_MSG((" (4) vDramCalibrationAllChannel() take %d ms\n\r",u4low_tick1)); |
| #endif |
| #endif |
| } |
| |
| |
| static void vCalibration_Flow_For_MDL(DRAMC_CTX_T *p) |
| { |
| U8 u1RankMax; |
| S8 s1RankIdx; |
| |
| if(u1IsLP4Family(p->dram_type)) |
| { |
| #if GATING_ADJUST_TXDLY_FOR_TRACKING |
| DramcRxdqsGatingPreProcess(p); |
| #endif |
| |
| if (p->support_rank_num==RANK_DUAL) |
| u1RankMax = RANK_MAX; |
| else |
| u1RankMax = RANK_1; |
| |
| for(s1RankIdx=RANK_0; s1RankIdx<u1RankMax; s1RankIdx++) |
| { |
| vSetRank(p, s1RankIdx); |
| |
| vAutoRefreshSwitch(p, ENABLE); //when doing gating, RX and TX calibration, auto refresh should be enable |
| DramcRxdqsGatingCal(p); |
| DramcRxWindowPerbitCal((DRAMC_CTX_T *) p, 0); |
| |
| #if MRW_CHECK_ONLY |
| mcSHOW_MRW_MSG(("\n==[MR Dump] %s==\n", __func__)); |
| #endif |
| vAutoRefreshSwitch(p, DISABLE); //After gating, Rx and Tx calibration, auto refresh should be disable |
| } |
| |
| vSetRank(p, RANK_0); // Set p's rank back to 0 (Avoids unexpected auto-rank offset calculation in u4RegBaseAddrTraslate()) |
| |
| #if GATING_ADJUST_TXDLY_FOR_TRACKING |
| DramcRxdqsGatingPostProcess(p); |
| #endif |
| } |
| else // LP3 |
| { |
| vDramCalibrationSingleChannel(p); ///TODO: vCalibration_Flow_For_MDL for LP3 |
| } |
| } |
| |
| |
| int GetDramInforAfterCalByMRR(DRAMC_CTX_T *p, DRAM_INFO_BY_MRR_T *DramInfo) |
| { |
| U8 u1ChannelIdx, u1RankIdx, u1DieNumber=0; |
| U16 u2Density; |
| U64 u8Size = 0, u8Size_backup = 0; |
| U64 u8ChannelSize; |
| U32 u4ChannelNumber=1, u4RankNumber=1; |
| |
| if (p->revision_id != REVISION_ID_MAGIC) |
| return 0; |
| |
| vSetPHY2ChannelMapping(p, u1ChannelSet[0]); |
| |
| // Read MR5 for Vendor ID |
| DramcModeRegReadByRank(p, RANK_0, 5, &(p->vendor_id));// for byte mode, don't show value of another die. |
| p->vendor_id &= 0xFF; |
| mcSHOW_DBG_MSG(("[GetDramInforAfterCalByMRR] Vendor %x.\n", p->vendor_id)); |
| // Read MR6 for Revision ID |
| DramcModeRegReadByRank(p, RANK_0, 6, &(p->revision_id));// for byte mode, don't show value of another die. |
| mcSHOW_DBG_MSG(("[GetDramInforAfterCalByMRR] Revision %x.\n", p->revision_id)); |
| |
| if(DramInfo != NULL) |
| { |
| DramInfo->u2MR5VendorID = p->vendor_id; |
| DramInfo->u2MR6RevisionID = p->revision_id; |
| #ifdef DRAM_ADAPTIVE |
| DramInfo->u4RankNum = p->support_rank_num; |
| #endif |
| for(u1ChannelIdx=0; u1ChannelIdx<(p->support_channel_num); u1ChannelIdx++) |
| for(u1RankIdx =0; u1RankIdx<RANK_MAX; u1RankIdx++) |
| DramInfo->u8MR8Density[u1ChannelSet[u1ChannelIdx]][u1RankIdx] =0; |
| } |
| |
| // Read MR8 for dram density |
| for(u1ChannelIdx=0; u1ChannelIdx<(p->support_channel_num); u1ChannelIdx++) |
| for(u1RankIdx =0; u1RankIdx<(p->support_rank_num); u1RankIdx++) |
| { |
| #if 0//PRINT_CALIBRATION_SUMMARY |
| if((p->aru4CalExecuteFlag[u1ChannelIdx][u1RankIdx] !=0) && \ |
| (p->aru4CalResultFlag[u1ChannelIdx][u1RankIdx]==0)) |
| #endif |
| { |
| vSetPHY2ChannelMapping(p, u1ChannelSet[u1ChannelIdx]); |
| DramcModeRegReadByRank(p, u1RankIdx, 0, &(gu2MR0_Value[u1RankIdx])); |
| mcSHOW_DBG_MSG(("MR0 0x%x\n", gu2MR0_Value[u1RankIdx])); |
| DramcModeRegReadByRank(p, u1RankIdx, 8, &u2Density); |
| mcSHOW_DBG_MSG(("MR8 %x\n", u2Density)); |
| #ifdef DRAM_ADAPTIVE |
| if ((u2Density & 0x1) && !u1IsLP4Family(p->dram_type)) |
| DramInfo->u4BankMode = BANK_TYPE_S2; |
| else |
| DramInfo->u4BankMode = BANK_TYPE_S4; |
| #endif |
| u1DieNumber =1; |
| if(p->dram_type == TYPE_LPDDR3) |
| { |
| if(((u2Density >> 6) & 0x3)==1) //OP[7:6] =0, x16 (2 die) |
| u1DieNumber =2; |
| } else if (u1IsLP4Family(p->dram_type)) { |
| if(((u2Density >> 6) & 0x3) == 1) //OP[7:6] =0, x16 (normal mode) |
| u1DieNumber =2; |
| } |
| #ifdef DRAM_ADAPTIVE |
| if (DramInfo != NULL) |
| DramInfo->u1DieNum[u1RankIdx] = u1DieNumber; |
| #endif |
| u2Density = (u2Density>>2)&0xf; |
| |
| if (u1IsLP4Family(p->dram_type)) |
| { |
| switch(u2Density) |
| { |
| ///TODO: Darren, please check the value of u8Size. |
| case 0x0: |
| u8Size = 0x20000000; //4Gb |
| //DBG_MSG("[EMI]DRAM density = 4Gb\n"); |
| break; |
| case 0x1: |
| u8Size = 0x30000000; //6Gb |
| //DBG_MSG("[EMI]DRAM density = 6Gb\n"); |
| break; |
| case 0x2: |
| u8Size = 0x40000000; //8Gb |
| //DBG_MSG("[EMI]DRAM density = 8Gb\n"); |
| break; |
| case 0x3: |
| u8Size = 0x60000000; //12Gb |
| //DBG_MSG("[EMI]DRAM density = 12Gb\n"); |
| break; |
| case 0x4: |
| u8Size = 0x80000000; //16Gb |
| //DBG_MSG("[EMI]DRAM density = 16Gb\n"); |
| break; |
| case 0x5: |
| u8Size = 0xc0000000; //24Gb |
| //DBG_MSG("[EMI]DRAM density = 24Gb\n"); |
| break; |
| case 0x6: |
| u8Size = 0x100000000L; //32Gb |
| //DBG_MSG("[EMI]DRAM density = 32Gb\n"); |
| break; |
| default: |
| u8Size = 0; //reserved |
| } |
| } |
| #if ENABLE_LP3_SW |
| else |
| { |
| switch(u2Density) |
| { |
| case 0x0: |
| u8Size = 0x800000; //64Mb |
| //DBG_MSG("[EMI]DRAM density = 64Mb\n"); |
| break; |
| case 0x1: |
| u8Size = 0x1000000; //128Mb |
| //DBG_MSG("[EMI]DRAM density = 128Mb\n"); |
| break; |
| case 0x2: |
| u8Size = 0x2000000; //256Mb |
| //DBG_MSG("[EMI]DRAM density = 256Mb\n"); |
| break; |
| case 0x3: |
| u8Size = 0x4000000; //512Mb |
| //DBG_MSG("[EMI]DRAM density = 512Mb\n"); |
| break; |
| case 0x4: |
| u8Size = 0x8000000; //1Gb |
| //DBG_MSG("[EMI]DRAM density = 1Gb\n"); |
| break; |
| case 0x5: |
| u8Size = 0x10000000; //2Gb |
| //DBG_MSG("[EMI]DRAM density = 2Gb\n"); |
| break; |
| case 0x6: |
| u8Size = 0x20000000; //4Gb |
| //DBG_MSG("[EMI]DRAM density = 4Gb\n"); |
| break; |
| case 0xE: |
| u8Size = 0x30000000; //6Gb |
| //DBG_MSG("[EMI]DRAM density = 6Gb\n"); |
| break; |
| case 0x7: |
| u8Size = 0x40000000; //8Gb |
| //DBG_MSG("[EMI]DRAM density = 8Gb\n"); |
| break; |
| case 0xD: |
| u8Size = 0x60000000; //12Gb |
| //DBG_MSG("[EMI]DRAM density = 12Gb\n"); |
| break; |
| case 0x8: |
| u8Size = 0x80000000; //16Gb |
| //DBG_MSG("[EMI]DRAM density = 16Gb\n"); |
| break; |
| //case 0x9: |
| //u8Size = 0x100000000L; //32Gb |
| //DBG_MSG("[EMI]DRAM density = 32Gb\n"); |
| //break; |
| default: |
| u8Size = 0; //reserved |
| } |
| } |
| #endif /* ENABLE_LP3_SW */ |
| if (u8Size_backup < u8Size) // find max dram size for vDramcACTimingOptimize |
| { |
| u8Size_backup = u8Size; |
| p->density = u2Density; |
| } |
| |
| u8Size *= u1DieNumber; |
| u8ChannelSize = u8Size; |
| u4ChannelNumber = p->support_channel_num; |
| |
| if (p->support_rank_num==RANK_DUAL) |
| { |
| u4RankNumber = 2; |
| } |
| |
| p->ranksize[u1RankIdx] = (u8ChannelSize/u4RankNumber)*u4ChannelNumber; |
| |
| if(DramInfo != NULL) |
| DramInfo->u8MR8Density[u1ChannelSet[u1ChannelIdx]][u1RankIdx] = u8Size; |
| } |
| mcSHOW_DBG_MSG(("BankMode = %s\n", DramInfo->u4BankMode == BANK_TYPE_S2 ? "S2" : "S4" )); |
| mcSHOW_DBG_MSG(("CH%d, RK%d, DieNum %d, Density %llx, RKsize %llx.\n", u1ChannelSet[u1ChannelIdx], u1RankIdx, u1DieNumber, u8Size, p->ranksize[u1RankIdx])); |
| } |
| |
| vSetPHY2ChannelMapping(p, u1ChannelSet[0]); |
| |
| return 0; |
| } |
| |
| #if ENABLE_RANK_NUMBER_AUTO_DETECTION |
| void DramRankNumberDetection(DRAMC_CTX_T *p) |
| { |
| U8 u1RankBak; |
| |
| u1RankBak = u1GetRank(p); // backup current rank setting |
| |
| vSetPHY2ChannelMapping(p, u1ChannelSet[0]); // when switching channel, must update PHY to Channel Mapping |
| vSetRank(p, RANK_1); |
| |
| if(DramcWriteLeveling((DRAMC_CTX_T *) p) == DRAM_OK)//Dram will be reset when finish write leveling |
| { |
| p->support_rank_num = RANK_DUAL; |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DRAMC_REG_RSTMASK), 0, RSTMASK_RSV_DRAM_SUPPORT_RANK_NUM); //keep support_rank_num to reserved rg |
| } |
| else |
| { |
| p->support_rank_num = RANK_SINGLE; |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DRAMC_REG_RSTMASK), 1, RSTMASK_RSV_DRAM_SUPPORT_RANK_NUM); //keep support_rank_num to reserved rg |
| } |
| mcSHOW_DBG_MSG(("[RankNumberDetection] %d\n", p->support_rank_num)); |
| |
| vSetRank(p, u1RankBak); // restore rank setting |
| } |
| #endif |
| |
| U8 gPRE_MIOCK_JMETER_HQA_USED_flag=0; |
| void Set_PRE_MIOCK_JMETER_HQA_USED_flag(U8 value) |
| { |
| gPRE_MIOCK_JMETER_HQA_USED_flag = value; |
| } |
| U8 Get_PRE_MIOCK_JMETER_HQA_USED_flag(void) |
| { |
| return gPRE_MIOCK_JMETER_HQA_USED_flag; |
| } |
| |
| #ifdef ENABLE_MIOCK_JMETER |
| void PRE_MIOCK_JMETER_HQA_USED(DRAMC_CTX_T *p) |
| { |
| U32 backup_freq_sel, backup_channel; |
| |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| U32 channel_idx; |
| |
| if(p->femmc_Ready==1) |
| { |
| for(channel_idx=CHANNEL_A; channel_idx<p->support_channel_num; channel_idx++) |
| { |
| //for (shuffleIdx = DRAM_DFS_SHUFFLE_1; shuffleIdx < DRAM_DFS_SHUFFLE_MAX; shuffleIdx++) |
| { |
| ucg_num_dlycell_perT_all[p->shu_type][u1ChannelSet[channel_idx]] = p->pSavetimeData->ucnum_dlycell_perT; |
| u2gdelay_cell_ps_all[p->shu_type][u1ChannelSet[channel_idx]] = p->pSavetimeData->u2DelayCellTimex100; |
| } |
| } |
| |
| p->ucnum_dlycell_perT = p->pSavetimeData->ucnum_dlycell_perT; |
| p->u2DelayCellTimex100 = p->pSavetimeData->u2DelayCellTimex100; |
| return; |
| } |
| #endif |
| |
| |
| backup_freq_sel = p->freq_sel; |
| backup_channel = p->channel; |
| |
| mcSHOW_DBG_MSG3(("[JMETER_HQA]\n")); |
| Set_PRE_MIOCK_JMETER_HQA_USED_flag(1); |
| |
| vSetPHY2ChannelMapping(p, u1ChannelSet[0]); |
| DramcMiockJmeterHQA(p); |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| if(p->femmc_Ready==0) |
| { |
| #if 0 |
| for(channel_idx=CHANNEL_A; channel_idx<p->support_channel_num; channel_idx++) |
| { |
| for (shuffleIdx = DRAM_DFS_SHUFFLE_1; shuffleIdx < DRAM_DFS_SHUFFLE_MAX; shuffleIdx++) |
| { |
| p->pSavetimeData->ucg_num_dlycell_perT_all[channel_idx] = ucg_num_dlycell_perT_all[p->shu_type][channel_idx]; |
| p->pSavetimeData->u2gdelay_cell_ps_all[channel_idx] = u2gdelay_cell_ps_all[p->shu_type][channel_idx]; |
| } |
| } |
| #endif |
| p->pSavetimeData->ucnum_dlycell_perT = p->ucnum_dlycell_perT; |
| p->pSavetimeData->u2DelayCellTimex100 = p->u2DelayCellTimex100; |
| } |
| #endif |
| vSetPHY2ChannelMapping(p, backup_channel); |
| |
| #if 0 |
| p->freq_sel = LP4_DDR2667; |
| DDRPhyFreqSel(p, p->freq_sel); |
| vSetVcoreByFreq(p); |
| DramcInit((DRAMC_CTX_T *) p); |
| for(channel_idx=CHANNEL_A; channel_idx<p->support_channel_num; channel_idx++) |
| { |
| vSetPHY2ChannelMapping(p, channel_idx); |
| DramcMiockJmeterHQA(p); |
| } |
| vSetPHY2ChannelMapping(p, backup_channel); |
| #endif |
| |
| Set_PRE_MIOCK_JMETER_HQA_USED_flag(0); |
| |
| p->freq_sel = backup_freq_sel; |
| } |
| #endif |
| |
| #if RUNTIME_SHMOO_RELEATED_FUNCTION && SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| void RunTime_Shmoo_update_parameters(DRAMC_CTX_T *p) |
| { |
| |
| U8 backup_channel, backup_rank; |
| U16 tx_pi_delay, tx_dqm_pi_delay; |
| U8 ui_large_value, ui_small_value, pi_value; |
| U8 ui_dqm_large_value, ui_dqm_small_value, pi_dqm_value; |
| #if 0 |
| U8 ui_oen_large_value, ui_oen_small_value, pi_oen_value; |
| U8 ui_dqm_oen_large_value, ui_dqm_oen_small_value, pi_dqm_oen_value; |
| #endif |
| |
| backup_channel = p->channel; |
| backup_rank = p->rank; |
| |
| p->channel = RUNTIME_SHMOO_TEST_CHANNEL; |
| p->rank = RUNTIME_SHMOO_TEST_RANK; |
| |
| if (RUNTIME_SHMOO_TEST_BYTE == 0) |
| { |
| tx_pi_delay = u4IO32ReadFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ0), SHURK0_SELPH_DQ0_TXDLY_DQ0) * 256 + |
| u4IO32ReadFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ2), SHURK0_SELPH_DQ2_DLY_DQ0) * 32 + |
| u4IO32ReadFldAlign(DRAMC_REG_ADDR(DDRPHY_SHU1_R0_B0_DQ7), SHU1_R0_B0_DQ7_RK0_ARPI_DQ_B0); |
| |
| tx_dqm_pi_delay = u4IO32ReadFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ1), SHURK0_SELPH_DQ1_TXDLY_DQM0) * 256 + |
| u4IO32ReadFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ3), SHURK0_SELPH_DQ3_DLY_DQM0) * 32 + |
| u4IO32ReadFldAlign(DRAMC_REG_ADDR(DDRPHY_SHU1_R0_B0_DQ7), SHU1_R0_B0_DQ7_RK0_ARPI_DQM_B0); |
| } |
| else |
| { |
| tx_pi_delay = u4IO32ReadFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ0), SHURK0_SELPH_DQ0_TXDLY_DQ1) * 256 + |
| u4IO32ReadFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ2), SHURK0_SELPH_DQ2_DLY_DQ1) * 32 + |
| u4IO32ReadFldAlign(DRAMC_REG_ADDR(DDRPHY_SHU1_R0_B1_DQ7), SHU1_R0_B1_DQ7_RK0_ARPI_DQ_B1); |
| |
| tx_dqm_pi_delay = u4IO32ReadFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ1), SHURK0_SELPH_DQ1_TXDLY_DQM1) * 256 + |
| u4IO32ReadFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ3), SHURK0_SELPH_DQ3_DLY_DQM1) * 32 + |
| u4IO32ReadFldAlign(DRAMC_REG_ADDR(DDRPHY_SHU1_R0_B1_DQ7), SHU1_R0_B1_DQ7_RK0_ARPI_DQM_B1); |
| } |
| |
| mcSHOW_ERR_MSG(("fra femmc_Ready = %d ==\n",p->femmc_Ready)); |
| |
| if (p->femmc_Ready==0 || |
| ((p->pSavetimeData->Runtime_Shmoo_para.TX_Channel!=RUNTIME_SHMOO_TEST_CHANNEL) || (p->pSavetimeData->Runtime_Shmoo_para.TX_Rank!=RUNTIME_SHMOO_TEST_RANK) || (p->pSavetimeData->Runtime_Shmoo_para.TX_Byte!=RUNTIME_SHMOO_TEST_BYTE))) //first K |
| { |
| p->pSavetimeData->Runtime_Shmoo_para.flag= 0; //on going |
| p->pSavetimeData->Runtime_Shmoo_para.TX_PI_delay = tx_pi_delay-32+RUNTIME_SHMOO_TEST_PI_DELAY_START; |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Original_PI_delay = p->pSavetimeData->Runtime_Shmoo_para.TX_PI_delay; |
| p->pSavetimeData->Runtime_Shmoo_para.TX_DQM_PI_delay = tx_dqm_pi_delay-32+RUNTIME_SHMOO_TEST_PI_DELAY_START; |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Original_DQM_PI_delay = p->pSavetimeData->Runtime_Shmoo_para.TX_DQM_PI_delay; |
| if (RUNTIME_SHMOO_TEST_VREF_START<51) |
| { |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Range = 0; |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Value = RUNTIME_SHMOO_TEST_VREF_START; |
| } |
| else |
| { |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Range = 1; |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Value = RUNTIME_SHMOO_TEST_VREF_START-51+21; |
| } |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Channel = RUNTIME_SHMOO_TEST_CHANNEL; |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Rank = RUNTIME_SHMOO_TEST_RANK; |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Byte = RUNTIME_SHMOO_TEST_BYTE; |
| } |
| else if (dramc_get_rshmoo_step()) |
| { |
| p->pSavetimeData->Runtime_Shmoo_para.TX_PI_delay += RUNTIME_SHMOO_TEST_PI_DELAY_STEP; |
| if (p->pSavetimeData->Runtime_Shmoo_para.TX_PI_delay > p->pSavetimeData->Runtime_Shmoo_para.TX_Original_PI_delay+RUNTIME_SHMOO_TEST_PI_DELAY_END) |
| { |
| p->pSavetimeData->Runtime_Shmoo_para.TX_PI_delay = p->pSavetimeData->Runtime_Shmoo_para.TX_Original_PI_delay; |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Value += RUNTIME_SHMOO_TEST_VREF_STEP; |
| |
| if ((p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Value+p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Range*30) > RUNTIME_SHMOO_TEST_VREF_END) |
| { |
| p->pSavetimeData->Runtime_Shmoo_para.flag= 0xff; //test finish |
| } |
| else |
| { |
| if (p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Range==0) |
| { |
| if (p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Value > 50) |
| { |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Range = 1; |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Value -= 30; |
| } |
| } |
| } |
| } |
| |
| p->pSavetimeData->Runtime_Shmoo_para.TX_DQM_PI_delay += RUNTIME_SHMOO_TEST_PI_DELAY_STEP; |
| if (p->pSavetimeData->Runtime_Shmoo_para.TX_DQM_PI_delay > p->pSavetimeData->Runtime_Shmoo_para.TX_Original_DQM_PI_delay+RUNTIME_SHMOO_TEST_PI_DELAY_END) |
| { |
| p->pSavetimeData->Runtime_Shmoo_para.TX_DQM_PI_delay = p->pSavetimeData->Runtime_Shmoo_para.TX_Original_DQM_PI_delay; |
| } |
| } |
| |
| mcSHOW_ERR_MSG(("Fra RunTime Shmoo CH%d, Rank%d, Byte%d\n",RUNTIME_SHMOO_TEST_CHANNEL, RUNTIME_SHMOO_TEST_RANK, RUNTIME_SHMOO_TEST_BYTE )); |
| |
| if (p->pSavetimeData->Runtime_Shmoo_para.flag != 0xff) |
| { |
| #if __ETT__ |
| mcSHOW_ERR_MSG(("Fra RunTime Shmoo original K TX Vref = (%d, %d)\n", (u1MR14Value[RUNTIME_SHMOO_TEST_CHANNEL][RUNTIME_SHMOO_TEST_RANK][p->dram_fsp]>>6) & 1, u1MR14Value[RUNTIME_SHMOO_TEST_CHANNEL][RUNTIME_SHMOO_TEST_RANK][p->dram_fsp] & 0x3f)); |
| mcSHOW_ERR_MSG(("Fra RunTime Shmoo original K TX Byte%d PI Delay = %d\n", RUNTIME_SHMOO_TEST_BYTE, p->pSavetimeData->Runtime_Shmoo_para.TX_Original_PI_delay+32-RUNTIME_SHMOO_TEST_PI_DELAY_START)); |
| |
| mcSHOW_ERR_MSG(("Fra RunTime Shmoo TX Vref = (%d, %d)\n", p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Range, p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Value)); |
| mcSHOW_ERR_MSG(("Fra RunTime Shmoo TX Byte%d PI Delay = %d\n", RUNTIME_SHMOO_TEST_BYTE, p->pSavetimeData->Runtime_Shmoo_para.TX_PI_delay-p->pSavetimeData->Runtime_Shmoo_para.TX_Original_PI_delay)); |
| #else |
| mcSHOW_ERR_MSG(("Fra RunTime Shmoo original K TX Vref = (%d, %d)\n", (u1MR14Value[RUNTIME_SHMOO_TEST_CHANNEL][RUNTIME_SHMOO_TEST_RANK][p->dram_fsp]>>6) & 1, u1MR14Value[RUNTIME_SHMOO_TEST_CHANNEL][RUNTIME_SHMOO_TEST_RANK][p->dram_fsp] & 0x3f)); |
| mcSHOW_ERR_MSG(("Fra RunTime Shmoo original K TX Byte%d PI Delay = %d\n", RUNTIME_SHMOO_TEST_BYTE, p->pSavetimeData->Runtime_Shmoo_para.TX_Original_PI_delay+32-RUNTIME_SHMOO_TEST_PI_DELAY_START)); |
| |
| mcSHOW_ERR_MSG(("Fra RunTime Shmoo TX Vref = (%d, %d)\n", p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Range, p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Value)); |
| mcSHOW_ERR_MSG(("Fra RunTime Shmoo TX Byte%d PI Delay = %d\n", RUNTIME_SHMOO_TEST_BYTE, p->pSavetimeData->Runtime_Shmoo_para.TX_PI_delay-p->pSavetimeData->Runtime_Shmoo_para.TX_Original_PI_delay)); |
| #endif |
| |
| TxWinTransferDelayToUIPI(p, TX_DQ_DQS_MOVE_DQ_DQM, p->pSavetimeData->Runtime_Shmoo_para.TX_PI_delay, 1, &ui_large_value, &ui_small_value, &pi_value); |
| TxWinTransferDelayToUIPI(p, TX_DQ_DQS_MOVE_DQ_DQM, p->pSavetimeData->Runtime_Shmoo_para.TX_DQM_PI_delay, 1, &ui_dqm_large_value, &ui_dqm_small_value, &pi_dqm_value); |
| #if 0 |
| TxWinTransferDelayToUIPI(p, p->pSavetimeData->Runtime_Shmoo_para.TX_PI_delay-TX_DQ_OE_SHIFT*32, 0, 0, &ui_oen_large_value, &ui_oen_small_value, &pi_oen_value); |
| TxWinTransferDelayToUIPI(p, p->pSavetimeData->Runtime_Shmoo_para.TX_DQM_PI_delay-TX_DQ_OE_SHIFT*32, 0, 0, &ui_dqm_oen_large_value, &ui_dqm_oen_small_value, &pi_dqm_oen_value); |
| |
| if (RUNTIME_SHMOO_TEST_BYTE == 0) |
| { |
| vIO32WriteFldMulti(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ0), P_Fld(ui_large_value, SHURK0_SELPH_DQ0_TXDLY_DQ0) | \ |
| P_Fld(ui_oen_large_value, SHURK0_SELPH_DQ0_TXDLY_OEN_DQ0)); |
| vIO32WriteFldMulti(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ2), P_Fld(ui_small_value, SHURK0_SELPH_DQ2_DLY_DQ0) | \ |
| P_Fld(ui_oen_small_value, SHURK0_SELPH_DQ2_DLY_OEN_DQ0)); |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DDRPHY_SHU1_R0_B0_DQ7), pi_value, SHU1_R0_B0_DQ7_RK0_ARPI_DQ_B0); |
| |
| #if 1 //DQM move together |
| vIO32WriteFldMulti(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ1), P_Fld(ui_dqm_large_value, SHURK0_SELPH_DQ1_TXDLY_DQM0) | \ |
| P_Fld(ui_dqm_oen_large_value, SHURK0_SELPH_DQ1_TXDLY_OEN_DQM0)); |
| vIO32WriteFldMulti(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ3), P_Fld(ui_dqm_small_value, SHURK0_SELPH_DQ3_DLY_DQM0) | \ |
| P_Fld(ui_dqm_oen_small_value, SHURK0_SELPH_DQ3_DLY_OEN_DQM0)); |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DDRPHY_SHU1_R0_B0_DQ7), pi_dqm_value, SHU1_R0_B0_DQ7_RK0_ARPI_DQM_B0); |
| #endif |
| } |
| else |
| { |
| vIO32WriteFldMulti(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ0), P_Fld(ui_large_value, SHURK0_SELPH_DQ0_TXDLY_DQ1) | \ |
| P_Fld(ui_oen_large_value, SHURK0_SELPH_DQ0_TXDLY_OEN_DQ1)); |
| vIO32WriteFldMulti(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ2), P_Fld(ui_small_value, SHURK0_SELPH_DQ2_DLY_DQ1) | \ |
| P_Fld(ui_oen_small_value, SHURK0_SELPH_DQ2_DLY_OEN_DQ1)); |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DDRPHY_SHU1_R0_B1_DQ7), pi_value, SHU1_R0_B1_DQ7_RK0_ARPI_DQ_B1); |
| |
| #if 1 //DQM move together |
| vIO32WriteFldMulti(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ1), P_Fld(ui_dqm_large_value, SHURK0_SELPH_DQ1_TXDLY_DQM1) | \ |
| P_Fld(ui_dqm_oen_large_value, SHURK0_SELPH_DQ1_TXDLY_OEN_DQM1)); |
| vIO32WriteFldMulti(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ3), P_Fld(ui_dqm_small_value, SHURK0_SELPH_DQ3_DLY_DQM1) | \ |
| P_Fld(ui_dqm_oen_small_value, SHURK0_SELPH_DQ3_DLY_OEN_DQM1)); |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DDRPHY_SHU1_R0_B1_DQ7), pi_dqm_value, SHU1_R0_B1_DQ7_RK0_ARPI_DQM_B1); |
| #endif |
| } |
| #else |
| if (RUNTIME_SHMOO_TEST_BYTE == 0) |
| { |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ0), ui_large_value, SHURK0_SELPH_DQ0_TXDLY_DQ0); |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ2), ui_small_value, SHURK0_SELPH_DQ2_DLY_DQ0); |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DDRPHY_SHU1_R0_B0_DQ7), pi_value, SHU1_R0_B0_DQ7_RK0_ARPI_DQ_B0); |
| |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ1), ui_dqm_large_value, SHURK0_SELPH_DQ1_TXDLY_DQM0); |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ3), ui_dqm_small_value, SHURK0_SELPH_DQ3_DLY_DQM0); |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DDRPHY_SHU1_R0_B0_DQ7), pi_dqm_value, SHU1_R0_B0_DQ7_RK0_ARPI_DQM_B0); |
| } |
| else |
| { |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ0), ui_large_value, SHURK0_SELPH_DQ0_TXDLY_DQ1); |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ2), ui_small_value, SHURK0_SELPH_DQ2_DLY_DQ1); |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DDRPHY_SHU1_R0_B1_DQ7), pi_value, SHU1_R0_B1_DQ7_RK0_ARPI_DQ_B1); |
| |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ1), ui_dqm_large_value, SHURK0_SELPH_DQ1_TXDLY_DQM1); |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DRAMC_REG_SHURK0_SELPH_DQ3), ui_dqm_small_value, SHURK0_SELPH_DQ3_DLY_DQM1); |
| vIO32WriteFldAlign(DRAMC_REG_ADDR(DDRPHY_SHU1_R0_B1_DQ7), pi_dqm_value, SHU1_R0_B1_DQ7_RK0_ARPI_DQM_B1); |
| } |
| #endif |
| DramcTXSetVref(p, p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Range, p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Value); |
| } |
| |
| //save parameters to eMMC |
| #if EMMC_READY |
| write_offline_dram_calibration_data(p->shu_type, p->pSavetimeData); |
| #endif |
| mcSHOW_ERR_MSG(("Fra Save calibration result to emmc\n")); |
| |
| //copy parameters to memory for kernel test script used |
| //wait for YiRong's SRAM copy function |
| dramc_set_rshmoo_info(p->pSavetimeData->Runtime_Shmoo_para.TX_Rank, p->pSavetimeData->Runtime_Shmoo_para.TX_Channel, |
| p->pSavetimeData->Runtime_Shmoo_para.TX_Byte, p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Range, p->pSavetimeData->Runtime_Shmoo_para.TX_Vref_Value, |
| p->pSavetimeData->Runtime_Shmoo_para.TX_PI_delay-p->pSavetimeData->Runtime_Shmoo_para.TX_Original_PI_delay, 1, (p->pSavetimeData->Runtime_Shmoo_para.flag == 0xff) ? 1 : 0); |
| |
| |
| //DLL all off from Justin |
| vIO32WriteFldAlign_All(DRAMC_REG_ADDR(DDRPHY_CA_DLL_ARPI2), 0x0, CA_DLL_ARPI2_RG_ARDLL_PHDET_EN_CA); |
| vIO32WriteFldAlign_All(DRAMC_REG_ADDR(DDRPHY_B0_DLL_ARPI2), 0x0, B0_DLL_ARPI2_RG_ARDLL_PHDET_EN_B0); |
| vIO32WriteFldAlign_All(DRAMC_REG_ADDR(DDRPHY_B1_DLL_ARPI2), 0x0, B1_DLL_ARPI2_RG_ARDLL_PHDET_EN_B1); |
| |
| p->channel = backup_channel; |
| p->rank = backup_rank; |
| } |
| #endif |
| |
| #ifdef FIRST_BRING_UP |
| void Test_Broadcast_Feature(DRAMC_CTX_T *p) |
| { |
| U32 u4RegBackupAddress[] = |
| { |
| (DRAMC_REG_SHURK0_DQSIEN), |
| (DRAMC_REG_SHURK0_DQSIEN+SHIFT_TO_CHB_ADDR), |
| |
| (DDRPHY_B0_DQ0), |
| (DDRPHY_B0_DQ0+SHIFT_TO_CHB_ADDR), |
| }; |
| U32 read_value; |
| U8 backup_broadcast; |
| |
| backup_broadcast = GetDramcBroadcast(); |
| |
| DramcBroadcastOnOff(DRAMC_BROADCAST_OFF); |
| |
| DramcBackupRegisters(p, u4RegBackupAddress, sizeof(u4RegBackupAddress)/sizeof(U32)); |
| |
| DramcBroadcastOnOff(DRAMC_BROADCAST_ON); |
| |
| vIO32Write4B(DRAMC_REG_SHURK0_DQSIEN, 0xA55A00FF); |
| vIO32Write4B(DDRPHY_B0_DQ0, 0xA55A00FF); |
| |
| read_value = u4IO32Read4B(DRAMC_REG_SHURK0_DQSIEN+SHIFT_TO_CHB_ADDR); |
| if (read_value != 0xA55A00FF) |
| { |
| mcSHOW_ERR_MSG(("Check Erro! Broad Cast CHA RG to CHB Fail!!\n")); |
| while(1); |
| } |
| |
| read_value = u4IO32Read4B(DDRPHY_B0_DQ0+SHIFT_TO_CHB_ADDR); |
| if (read_value != 0xA55A00FF) |
| { |
| mcSHOW_ERR_MSG(("Check Erro! Broad Cast CHA RG to CHB Fail!!\n")); |
| while(1); |
| } |
| |
| DramcBroadcastOnOff(DRAMC_BROADCAST_OFF); |
| |
| DramcRestoreRegisters(p, u4RegBackupAddress, sizeof(u4RegBackupAddress)/sizeof(U32)); |
| |
| DramcBroadcastOnOff(backup_broadcast); |
| } |
| #endif |
| |
| U8 u1TestLLL=0; |
| |
| #if ENABLE_SLT |
| #define SLT_MEM_TEST_LOOP 10 |
| |
| static void do_dram_test_after_k(DRAMC_CTX_T *p) |
| { |
| U8 loop = 0; |
| |
| while (loop < SLT_MEM_TEST_LOOP) { |
| mcSHOW_DBG_MSG(("\n[SLT][TA2_TEST] #%d\n", loop + 1)); |
| TA2_Test_Run_Time_HW(p); |
| |
| mcSHOW_DBG_MSG(("\n[SLT][MEM_TEST] #%d\n", loop + 1)); |
| vDramCPUReadWriteTestAfterCalibration(p); |
| |
| loop++; |
| } |
| } |
| #endif |
| |
| int Init_DRAM(DRAM_DRAM_TYPE_T dram_type, DRAM_CBT_MODE_EXTERN_T dram_cbt_mode_extern, DRAM_INFO_BY_MRR_T *DramInfo, U8 get_mdl_used) |
| { |
| #if !SW_CHANGE_FOR_SIMULATION |
| |
| DRAMC_CTX_T * p; |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| U32 CPU_Cycle; |
| TimeProfileBegin(); |
| #endif |
| |
| if(u1IsLP4Family(dram_type)) |
| { |
| psCurrDramCtx = &DramCtx_LPDDR4; |
| } |
| else |
| { |
| #if (!__ETT__ && ENABLE_LP3_SW==0) |
| #if (FOR_DV_SIMULATION_USED==0 && SW_CHANGE_FOR_SIMULATION==0) |
| // Preloader which does not support LP3 |
| // scy: reduce code size by removing unused LPDDR3 structure |
| mcSHOW_DBG_MSG(("[Init_DRAM] LPDDR3 not supported\n")); |
| ASSERT(0); |
| #endif |
| #else |
| psCurrDramCtx = &DramCtx_LPDDR3; |
| #endif |
| } |
| |
| #if defined(DDR_INIT_TIME_PROFILING) || (__ETT__ && SUPPORT_SAVE_TIME_FOR_CALIBRATION) |
| if (gtime_profiling_flag == 0) |
| { |
| memcpy(&gTimeProfilingDramCtx, psCurrDramCtx, sizeof(DRAMC_CTX_T)); |
| gtime_profiling_flag = 1; |
| } |
| |
| p = &gTimeProfilingDramCtx; |
| gfirst_init_flag = 0; |
| |
| if(u1IsLP4Family(p->dram_type)) |
| DramcConfInfraReset(p); |
| #else |
| p = psCurrDramCtx; |
| #endif |
| |
| Set_MDL_Used_Flag(get_mdl_used); |
| |
| #if 0//__ETT__ |
| if(u1IsLP4Family(p->dram_type)) //ETT, LPDDR4 and 4x |
| { |
| p->dram_type = LP4_DRAM_TYPE_SELECT; |
| p->dram_cbt_mode[RANK_0] = LP4_CBT_MODE; |
| p->dram_cbt_mode[RANK_1] = LP4_CBT_MODE; |
| } |
| else //Preloader & ETTLPDDR3 |
| #endif |
| { |
| p->dram_type = dram_type; |
| |
| /* Convert DRAM_CBT_MODE_EXTERN_T to DRAM_CBT_MODE_T */ |
| switch ((int)dram_cbt_mode_extern) |
| { |
| case CBT_R0_R1_NORMAL: |
| p->dram_cbt_mode[RANK_0] = CBT_NORMAL_MODE; |
| p->dram_cbt_mode[RANK_1] = CBT_NORMAL_MODE; |
| break; |
| case CBT_R0_R1_BYTE: |
| p->dram_cbt_mode[RANK_0] = CBT_BYTE_MODE1; |
| p->dram_cbt_mode[RANK_1] = CBT_BYTE_MODE1; |
| break; |
| case CBT_R0_NORMAL_R1_BYTE: |
| p->dram_cbt_mode[RANK_0] = CBT_NORMAL_MODE; |
| p->dram_cbt_mode[RANK_1] = CBT_BYTE_MODE1; |
| break; |
| case CBT_R0_BYTE_R1_NORMAL: |
| p->dram_cbt_mode[RANK_0] = CBT_BYTE_MODE1; |
| p->dram_cbt_mode[RANK_1] = CBT_NORMAL_MODE; |
| break; |
| default: |
| mcSHOW_ERR_MSG(("Error!")); |
| break; |
| } |
| |
| mcSHOW_DBG_MSG2(("dram_cbt_mode_extern: %d\n" |
| "dram_cbt_mode [RK0]: %d, [RK1]: %d\n", |
| (int)dram_cbt_mode_extern, p->dram_cbt_mode[RANK_0], p->dram_cbt_mode[RANK_1])); |
| } |
| |
| if(u1IsLP4Family(p->dram_type)) |
| { |
| DramcBroadcastOnOff(DRAMC_BROADCAST_ON); //LP4 broadcast on |
| } |
| else |
| { |
| DramcBroadcastOnOff(DRAMC_BROADCAST_OFF); //LP3 broadcast off |
| } |
| |
| if (gfirst_init_flag == 0) |
| { |
| MPLLInit(); |
| Global_Option_Init(p); |
| gfirst_init_flag = 1; |
| } |
| Global_Option_Init2(p); // setting according to emi_settings |
| |
| #ifdef FIRST_BRING_UP |
| Test_Broadcast_Feature(p); |
| #endif |
| |
| #if (FOR_DV_SIMULATION_USED==0 && SW_CHANGE_FOR_SIMULATION==0) |
| { |
| U8 backup_broadcast; |
| backup_broadcast = GetDramcBroadcast(); |
| EMI_Init(p); |
| DramcBroadcastOnOff(backup_broadcast); |
| } |
| #endif |
| |
| |
| mcSHOW_DBG_MSG(("\n\n[Bianco] ETT version 0.0.0.1\n dram_type %d, R0 cbt_mode %d, R1 cbt_mode %d VENDOR=%d\n\n", p->dram_type, p->dram_cbt_mode[RANK_0], p->dram_cbt_mode[RANK_1], p->vendor_id)); |
| |
| vDramcInit_PreSettings(p); |
| |
| // DramC & PHY init for all channels |
| #if DUAL_FREQ_K |
| SPM_Pinmux_Setting(p); |
| if(u1IsLP4Family(p->dram_type)) |
| p->freq_sel = gFreqTbl[DRAM_DFS_SHUFFLE_1].freq_sel; |
| #endif |
| |
| //=== First frequency ====== |
| DDRPhyFreqSel(p, p->freq_sel); |
| vSetVcoreByFreq(p); |
| |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| DramcSave_Time_For_Cal_Init(p); |
| #endif |
| #ifndef LOOPBACK_TEST |
| #if EMI_LPBK_DRAM_USED //saint remove sw imp cal |
| if (p->dram_type == TYPE_LPDDR4) |
| { |
| DramcSwImpedanceCal(p,1, 1); //within term |
| } |
| else if (p->dram_type == TYPE_LPDDR4X) |
| { |
| DramcSwImpedanceCal(p,1, 0); //without term |
| DramcSwImpedanceCal(p,1, 1); //within term |
| } |
| else |
| { |
| //TYPE_LPDDR4P, TYPE_LPDDR3 |
| DramcSwImpedanceCal(p,1, 0); //without term |
| } |
| |
| //update ODTP/ODTN of term to unterm |
| DramcUpdateImpedanceTerm2UnTerm(p); |
| #endif |
| #endif |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("(0)Pre_Init + SwImdepance takes %d ms\n\r", CPU_Cycle/1000)); |
| #endif |
| |
| #ifdef DUMP_INIT_RG_LOG_TO_DE |
| gDUMP_INIT_RG_LOG_TO_DE_RG_log_flag = 1; |
| #endif |
| |
| DFSInitForCalibration(p); |
| |
| #if defined(SLT) |
| O1Path_Test(p); |
| #endif |
| |
| #ifdef TEST_MODE_MRS |
| if(global_which_test == 0) |
| TestModeTestMenu(); |
| #endif |
| |
| #ifdef ENABLE_POST_PACKAGE_REPAIR |
| #ifdef SKH_POST_PACKAGE_REPAIR_LP3 //LP3 |
| PostPackageRepair(); |
| #endif |
| #endif |
| |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| if (p->femmc_Ready==1) |
| { |
| p->support_rank_num = p->pSavetimeData->support_rank_num; |
| } |
| else |
| #endif |
| { |
| #if ENABLE_RANK_NUMBER_AUTO_DETECTION // only need to do this when DUAL_RANK_ENABLE is 1 |
| if (Get_MDL_Used_Flag()==GET_MDL_USED) |
| { |
| DramRankNumberDetection(p); |
| DFSInitForCalibration(p); // Restore setting after rank dection (especially DQ= DQS+16) |
| } |
| #endif |
| |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| p->pSavetimeData->support_rank_num = p->support_rank_num; |
| #endif |
| } |
| |
| #if (FOR_DV_SIMULATION_USED==0 && SW_CHANGE_FOR_SIMULATION==0) |
| U8 backup_broadcast; |
| backup_broadcast = GetDramcBroadcast(); |
| EMI_Init2(); |
| DramcBroadcastOnOff(backup_broadcast); |
| #endif |
| |
| #if defined(SLT) && (EMI_LPBK_DRAM_USED == 0) |
| EMI_LPBK_memory_test(p); |
| #endif |
| |
| if (Get_MDL_Used_Flag()==GET_MDL_USED) |
| { |
| // only K CHA to save time |
| vSetPHY2ChannelMapping(p, u1ChannelSet[0]); |
| vCalibration_Flow_For_MDL(p); // currently for LP4 |
| GetDramInforAfterCalByMRR(p, DramInfo); |
| return 0; |
| } |
| else //NORMAL_USED |
| { |
| vDramCalibrationAllChannel(p); |
| GetDramInforAfterCalByMRR(p, DramInfo); |
| vDramcACTimingOptimize(p); |
| } |
| |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| DramcSave_Time_For_Cal_End(p); |
| #endif |
| |
| #if (ENABLE_SLT == 1) |
| vApplyConfigAfterCalibration(p); |
| do_dram_test_after_k(p); |
| |
| /* cal 2400 */ |
| DDRPhyFreqSel(p, LP4_MIDDLE_FREQSEL); |
| vSetVcoreByFreq(p); |
| DFSInitForCalibration(p); |
| vDramCalibrationAllChannel(p); |
| vDramcACTimingOptimize(p); |
| #endif |
| |
| #if DUAL_FREQ_K |
| if(u1IsLP4Family(p->dram_type)) |
| { |
| #ifdef MTK_FIXDDR1600_SUPPORT |
| DramcSaveToShuffleReg(p, DRAM_DFS_SHUFFLE_1, DRAM_DFS_SHUFFLE_2); |
| DramcSaveToShuffleReg(p, DRAM_DFS_SHUFFLE_1, DRAM_DFS_SHUFFLE_3); |
| #else |
| DramcSaveToShuffleReg(p, DRAM_DFS_SHUFFLE_1, DRAM_DFS_SHUFFLE_3); //Darren NOTE: Please take care of gFreqTbl table when you update SHUFFLE_X |
| |
| //=== Second frequency ====== |
| DDRPhyFreqSel(p, gFreqTbl[DRAM_DFS_SHUFFLE_2].freq_sel); |
| vSetVcoreByFreq(p); |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| DramcSave_Time_For_Cal_Init(p); |
| #endif |
| DFSInitForCalibration(p); |
| vDramCalibrationAllChannel(p); |
| vDramcACTimingOptimize(p); |
| DramcSaveToShuffleReg(p, DRAM_DFS_SHUFFLE_1, DRAM_DFS_SHUFFLE_2); //Darren NOTE: Please take care of gFreqTbl table when you update SHUFFLE_X |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| DramcSave_Time_For_Cal_End(p); |
| #endif |
| |
| //=== Third frequency ====== |
| DDRPhyFreqSel(p, gFreqTbl[DRAM_DFS_SHUFFLE_1].freq_sel); |
| vSetVcoreByFreq(p); |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| DramcSave_Time_For_Cal_Init(p); |
| #endif |
| DFSInitForCalibration(p); |
| vDramCalibrationAllChannel(p); |
| vDramcACTimingOptimize(p); |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| DramcSave_Time_For_Cal_End(p); |
| #endif |
| #endif |
| } |
| else |
| { |
| #if 0 |
| DramcSaveToShuffleReg(p, DRAM_DFS_SHUFFLE_1, DRAM_DFS_SHUFFLE_3); |
| DramcSaveToShuffleReg(p, DRAM_DFS_SHUFFLE_1, DRAM_DFS_SHUFFLE_2); |
| #else |
| DramcSaveToShuffleReg(p, DRAM_DFS_SHUFFLE_1, DRAM_DFS_SHUFFLE_3); //save 1333 0.74V shuffle_2 |
| |
| DDRPhyFreqSel(p, LP3_DDR1600); |
| vSetVcoreByFreq(p); |
| DFSInitForCalibration(p); |
| vDramCalibrationAllChannel(p); |
| DramcSaveToShuffleReg(p, DRAM_DFS_SHUFFLE_1, DRAM_DFS_SHUFFLE_2); //save 1333 0.74V shuffle_3 |
| |
| DDRPhyFreqSel(p, LP3_DDR1866); |
| vSetVcoreByFreq(p); |
| DFSInitForCalibration(p); |
| vDramCalibrationAllChannel(p); |
| #endif |
| } |
| #endif |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| TimeProfileBegin(); |
| #endif |
| |
| vApplyConfigAfterCalibration(p); |
| |
| #ifdef DUMP_INIT_AND_K_RG_LOG_TO_DE |
| while (1) ; |
| #endif |
| |
| #ifdef ENABLE_POST_PACKAGE_REPAIR //LP4 |
| #ifdef POST_PACKAGE_REPAIR_LP4 |
| PostPackageRepair(); |
| #endif |
| #endif |
| |
| #if 0//TX_OE_CALIBATION, for DMA test |
| U8 u1ChannelIdx, u1RankIdx; |
| for(u1ChannelIdx=0; u1ChannelIdx<(p->support_channel_num); u1ChannelIdx++) |
| for(u1RankIdx =0; u1RankIdx<(p->support_rank_num); u1RankIdx++) |
| { |
| vSetPHY2ChannelMapping(p, u1ChannelIdx); |
| vSetRank(p, u1RankIdx); |
| DramcTxOECalibration(p); |
| } |
| |
| vSetPHY2ChannelMapping(p, CHANNEL_A); |
| vSetRank(p,RANK_0); |
| |
| U32 u4err_value; |
| DramcDmaEngine((DRAMC_CTX_T *)p, 0x50000000, 0x60000000, 0xff00, 8, DMA_PREPARE_DATA_ONLY, p->support_channel_num); |
| u4err_value= DramcDmaEngine((DRAMC_CTX_T *)p, 0x50000000, 0x60000000, 0xff00, 8, DMA_CHECK_DATA_ACCESS_AND_COMPARE, p->support_channel_num); |
| mcSHOW_DBG_MSG(("DramC_TX_OE_Calibration 0x%X\n", u4err_value)); |
| #endif |
| |
| #if RUNTIME_SHMOO_RELEATED_FUNCTION && SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| DramcRunTimeShmooRG_BackupRestore(p); |
| #endif |
| |
| #if RUNTIME_SHMOO_RELEATED_FUNCTION && SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| RunTime_Shmoo_update_parameters(p); |
| #endif |
| |
| #if !LCPLL_IC_SCAN |
| #if (FOR_DV_SIMULATION_USED==0 && SW_CHANGE_FOR_SIMULATION==0) |
| print_DBG_info(p); |
| Dump_EMIRegisters(p); |
| #endif |
| #endif |
| |
| #if 0 |
| DramcRegDump(p); |
| #endif |
| |
| // ETT_NO_DRAM #endif |
| |
| #if ETT_NO_DRAM |
| //NoDramDramcRegDump(p); |
| NoDramRegFill(); |
| #endif |
| |
| #if (DVT_TEST_DUMMY_RD_SIDEBAND_FROM_SPM && defined(DUMMY_READ_FOR_TRACKING)) |
| DramcDummyReadForTrackingEnable(p); |
| mcSHOW_DBG_MSG(("DUMMY_READ_FOR_TRACKING: ON\n")); |
| |
| //Disable auto refresh: set R_DMREFDIS=1 |
| vAutoRefreshSwitch(p, DISABLE); |
| |
| while(1) |
| { |
| mcSHOW_DBG_MSG(("\ndummy read is 1us ===\n")); |
| DVS_DMY_RD_ENTR(p); |
| mcDELAY_MS(5000); |
| mcSHOW_DBG_MSG(("\ndummy read is 4us ===\n")); |
| DVS_DMY_RD_EXIT(p); |
| mcDELAY_MS(5000); |
| } |
| #endif |
| |
| #if DRAMC_MODEREG_CHECK |
| DramcModeReg_Check(p); |
| #endif |
| |
| #if TA2_RW_TEST_AFTER_K |
| mcSHOW_DBG_MSG(("\n[TA2_TEST]\n")); |
| TA2_Test_Run_Time_HW(p); |
| #endif |
| |
| #if CPU_RW_TEST_AFTER_K |
| mcSHOW_DBG_MSG(("\n[MEM_TEST] 02: After DFS, before run time config\n")); |
| vDramCPUReadWriteTestAfterCalibration(p); |
| #endif |
| |
| |
| // when time profiling multi times, SW impedance tracking will fail when trakcing enable. |
| // ignor SW impedance tracking when doing time profling |
| #if __ETT__ |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| if(!(u1IsLP4Family(p->dram_type) && (p->femmc_Ready==0))) |
| #elif defined(DDR_INIT_TIME_PROFILING) |
| if(u2TimeProfileCnt == (DDR_INIT_TIME_PROFILING_TEST_CNT-1)) //last time of loop |
| #endif |
| #endif |
| { |
| mcSHOW_DBG_MSG(("\n\nSettings after calibration\n\n")); |
| DramcRunTimeConfig(p); |
| } |
| |
| #if TA2_RW_TEST_AFTER_K |
| mcSHOW_DBG_MSG(("\n[TA2_TEST]\n")); |
| TA2_Test_Run_Time_HW(p); |
| #endif |
| |
| #if CPU_RW_TEST_AFTER_K |
| mcSHOW_DBG_MSG(("\n[MEM_TEST] 03: After run time config\n")); |
| vDramCPUReadWriteTestAfterCalibration(p); |
| #endif |
| |
| #if (ENABLE_SLT == 1) |
| do_dram_test_after_k(p); |
| #endif |
| |
| #if (__ETT__ && CPU_RW_TEST_AFTER_K) |
| /* 0x46000000 is LK base addr */ |
| //while(1) |
| { |
| int s4value; |
| //if ((s4value = complex_mem_test (0x46000000, 0x2000)) == 0) |
| if ((s4value = complex_mem_test (0x40024000, 0x20000)) == 0) |
| { |
| mcSHOW_DBG_MSG(("1st complex R/W mem test pass\n")); |
| } |
| else |
| { |
| mcSHOW_DBG_MSG(("1st complex R/W mem test fail :-%d\n", -s4value)); |
| #if defined(SLT) |
| while(1); |
| #endif |
| } |
| } |
| #endif |
| |
| #if MRW_CHECK_ONLY |
| vPrintFinalModeRegisterSetting(p); |
| #endif |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| CPU_Cycle=TimeProfileEnd(); |
| mcSHOW_TIME_MSG(("(5) After calibration takes %d ms\n\r", CPU_Cycle/1000)); |
| #endif // end of DDR_INIT_TIME_PROFILING |
| |
| #if defined(SLT) |
| SLT_Test_DFS_Freq_Meter_Memory_Test(p); |
| #endif |
| |
| /* cc add. For FASTK, psCurrDramCtx and p are different Sync data back in case mismatch */ |
| #if defined(DDR_INIT_TIME_PROFILING) || (__ETT__ && SUPPORT_SAVE_TIME_FOR_CALIBRATION) |
| if (gtime_profiling_flag == 1) |
| { |
| memcpy(psCurrDramCtx, p, sizeof(DRAMC_CTX_T)); |
| } |
| #endif |
| |
| #endif//SW_CHANGE_FOR_SIMULATION |
| return 0; |
| } |
| |
| |
| #if (FOR_DV_SIMULATION_USED!=0) |
| void DPI_main(void) |
| { |
| DRAMC_CTX_T DramConfig; |
| |
| DramConfig.channel = CHANNEL_A; |
| DramConfig.support_rank_num = RANK_DUAL; |
| // DramRank |
| DramConfig.rank = RANK_0; |
| // DRAM type |
| DramConfig.dram_type = TYPE_LPDDR3; |
| // DRAM Fast switch point type, only for LP4, useless in LP3 |
| DramConfig.dram_fsp = FSP_0; |
| // IC and DRAM read DBI |
| DramConfig.DBI_R_onoff[FSP_0] = DBI_OFF; // only for LP4, uesless in LP3 |
| DramConfig.DBI_R_onoff[FSP_1] = DBI_ON; // only for LP4, uesless in LP3 |
| // IC and DRAM write DBI |
| DramConfig.DBI_W_onoff[FSP_0] = DBI_OFF; // only for LP4, uesless in LP3 |
| DramConfig.DBI_W_onoff[FSP_1] = DBI_ON; // only for LP4, uesless in LP3 |
| // bus width |
| DramConfig.data_width = DATA_WIDTH_32BIT; |
| // DRAMC internal test engine-2 parameters in calibration |
| DramConfig.test2_1 = DEFAULT_TEST2_1_CAL; |
| DramConfig.test2_2 = DEFAULT_TEST2_2_CAL; |
| // DRAMC test pattern in calibration |
| DramConfig.test_pattern = TEST_XTALK_PATTERN; |
| // DRAMC operation clock frequency in MHz |
| DramConfig.frequency = 800; |
| // Switch to ENABLE or DISABLE low frequency write and high frequency read |
| DramConfig.u2DelayCellTimex100 = 0; |
| |
| DramConfig.enable_rx_scan_vref =DISABLE_VREF_SCAN; |
| DramConfig.enable_tx_scan_vref =DISABLE_VREF_SCAN; |
| //DramConfig.dynamicODT = DISABLE; |
| |
| printf("main functino start!\n"); |
| |
| Init_DRAM(DramConfig.dram_type, CBT_R0_R1_NORMAL, NULL, NORMAL_USED); |
| } |
| |
| #define DV_SIMULATION_INIT_C 1 |
| #define DV_SIMULATION_BEFORE_K 1 |
| #define DV_SIMULATION_MIOCKJMETER 0 |
| #define DV_SIMULATION_SW_IMPED 0 |
| #define DV_SIMULATION_LP4_ZQ 0 |
| #define DV_SIMULATION_CA_TRAINING 0 |
| #define DV_SIMULATION_WRITE_LEVELING 0 |
| #define DV_SIMULATION_GATING 0 |
| #define DV_SIMULATION_DATLAT 0 |
| #define DV_SIMULATION_RX_PERBIT 0 |
| #define DV_SIMULATION_TX_PERBIT 0 // Please enable with write leveling |
| #define DV_SIMULATION_AFTER_K 1 |
| #define DV_SIMULATION_DBI_ON 0 |
| #define DV_SIMULATION_RUNTIME_CONFIG 0 |
| #define DV_SIMULATION_RUN_TIME_MRW 0 |
| U8 gu1BroadcastIsLP4 = TRUE; |
| |
| #if ENABLE_LP3_SW |
| void DPI_SW_main_LP3(DRAMC_CTX_T *DramConfig) |
| { |
| int ii; |
| |
| U8 gu1BroadcastIsLP4 = FALSE; |
| DramConfig->channel = CHANNEL_A; |
| DramConfig->support_rank_num = RANK_DUAL; |
| // DramRank |
| DramConfig->rank = RANK_0; |
| DramConfig->freq_sel = LP3_DDR1066; |
| // DRAM type |
| DramConfig->dram_type = TYPE_LPDDR3; |
| // DRAM Fast switch point type, only for LP4, useless in LP3 |
| DramConfig->dram_fsp = FSP_0; |
| // DRAM CBT mode, only for LP4, useless in LP3 |
| DramConfig->dram_cbt_mode[RANK_0] = CBT_NORMAL_MODE; |
| DramConfig->dram_cbt_mode[RANK_1] = CBT_NORMAL_MODE; |
| // IC and DRAM read DBI |
| DramConfig->DBI_R_onoff[FSP_0] = DBI_OFF; // only for LP4, uesless in LP3 |
| DramConfig->DBI_R_onoff[FSP_1] = DBI_OFF; // only for LP4, uesless in LP3 |
| // IC and DRAM write DBI |
| DramConfig->DBI_W_onoff[FSP_0] = DBI_OFF; // only for LP4, uesless in LP3 |
| DramConfig->DBI_W_onoff[FSP_1] = DBI_OFF; // only for LP4, uesless in LP3 |
| // bus width |
| DramConfig->data_width = DATA_WIDTH_32BIT; |
| // DRAMC internal test engine-2 parameters in calibration |
| DramConfig->test2_1 = DEFAULT_TEST2_1_CAL; |
| DramConfig->test2_2 = DEFAULT_TEST2_2_CAL; |
| // DRAMC test pattern in calibration |
| DramConfig->test_pattern = TEST_XTALK_PATTERN; |
| // DRAMC operation clock frequency in MHz |
| DramConfig->frequency = 533; |
| // Switch to ENABLE or DISABLE low frequency write and high frequency read |
| DramConfig->u2DelayCellTimex100 = 0; |
| |
| DramConfig->enable_rx_scan_vref =DISABLE_VREF_SCAN; |
| DramConfig->enable_tx_scan_vref =DISABLE_VREF_SCAN; |
| //Cervino and Merlot have DLP3, need to give it initial value |
| DramConfig->bDLP3 = 0; |
| |
| DramcBroadcastOnOff(DRAMC_BROADCAST_OFF); //LP3 broadcast off |
| |
| Global_Option_Init(DramConfig); |
| Global_Option_Init2(DramConfig); |
| |
| vDramcInit_PreSettings(DramConfig); |
| |
| DDRPhyFreqSel(DramConfig, DramConfig->freq_sel); |
| |
| vSetPHY2ChannelMapping(DramConfig, DramConfig->channel); |
| |
| #if DV_SIMULATION_SW_IMPED |
| //TYPE_LPDDR4P, TYPE_LPDDR3 |
| DramcSwImpedanceCal(DramConfig, 1, 0); //without term |
| //update ODTP/ODTN of term to unterm |
| DramcUpdateImpedanceTerm2UnTerm(DramConfig); |
| #endif |
| |
| |
| #if DV_SIMULATION_INIT_C |
| DramcInit(DramConfig); |
| #if DV_SIMULATION_MIOCKJMETER |
| #ifdef ENABLE_MIOCK_JMETER |
| DramcMiockJmeter(DramConfig); |
| #endif |
| #endif |
| #endif |
| |
| #if WRITE_LEVELING_MOVE_DQS_INSTEAD_OF_CLK |
| memset(DramConfig->arfgWriteLevelingInitShif, FALSE, sizeof(DramConfig->arfgWriteLevelingInitShif)); |
| //>fgWriteLevelingInitShif= FALSE; |
| #endif |
| #if TX_PERBIT_INIT_FLOW_CONTROL |
| memset(DramConfig->fgTXPerbifInit, FALSE, sizeof(DramConfig->fgTXPerbifInit)); |
| #endif |
| |
| #if DV_SIMULATION_BEFORE_K |
| vApplyConfigBeforeCalibration(DramConfig); |
| //vMR2InitForSimulationTest(DramConfig); |
| #endif |
| |
| vAutoRefreshSwitch(DramConfig, DISABLE); |
| |
| #if DV_SIMULATION_CA_TRAINING |
| vSetRank(DramConfig, RANK_0); |
| CATrainingLP3(DramConfig); |
| #endif |
| |
| #if DV_SIMULATION_GATING |
| DramcRxdqsGatingPreProcess(DramConfig); |
| #endif |
| |
| for(ii=RANK_0; ii<RANK_MAX; ii++) |
| { |
| vSetRank(DramConfig, ii); |
| |
| vAutoRefreshSwitch(DramConfig, DISABLE); |
| |
| #if DV_SIMULATION_WRITE_LEVELING |
| if(ii==RANK_0) |
| DramcWriteLeveling(DramConfig); |
| #endif |
| |
| vAutoRefreshSwitch(DramConfig, ENABLE); |
| |
| |
| #if DV_SIMULATION_GATING |
| DramcRxdqsGatingCal(DramConfig); |
| #endif |
| |
| #if DV_SIMULATION_DATLAT |
| // RX Datlat calibration of single rank |
| DramcRxdatlatCal(DramConfig); |
| #endif |
| |
| #if DV_SIMULATION_RX_PERBIT |
| DramcRxWindowPerbitCal(DramConfig, 1); |
| #endif |
| |
| #if DV_SIMULATION_TX_PERBIT |
| DramcTxWindowPerbitCal(DramConfig, TX_DQ_DQS_MOVE_DQ_DQM, DISABLE_VREF_SCAN); |
| #endif |
| } |
| |
| vSetRank(DramConfig, RANK_0); |
| #if DV_SIMULATION_GATING |
| DramcRxdqsGatingPostProcess(DramConfig); |
| #endif |
| |
| #if DV_SIMULATION_DATLAT |
| DramcDualRankRxdatlatCal(DramConfig); |
| #endif |
| |
| #if DV_SIMULATION_AFTER_K |
| vApplyConfigAfterCalibration(DramConfig); |
| #endif |
| |
| } |
| #endif |
| |
| void DPI_SW_main_LP4(DRAMC_CTX_T *DramConfig) |
| { |
| int ii; |
| DRAM_STATUS_T VrefStatus; |
| |
| U8 gu1BroadcastIsLP4 = TRUE; |
| DramConfig->support_channel_num = CHANNEL_SINGLE; |
| DramConfig->channel = CHANNEL_A; |
| DramConfig->support_rank_num = RANK_DUAL; |
| // DramRank |
| DramConfig->rank = RANK_0; |
| DramConfig->freq_sel = LP4_DDR2400; |
| DramConfig->shu_type = DRAM_DFS_SHUFFLE_1; |
| // DRAM type |
| DramConfig->dram_type = TYPE_LPDDR4X; |
| // DRAM Fast switch point type, only for LP4, useless in LP3 |
| DramConfig->dram_fsp = FSP_0; |
| // DRAM CBT mode, only for LP4, useless in LP3 |
| DramConfig->dram_cbt_mode[RANK_0] = CBT_NORMAL_MODE; |
| //DramConfig->dram_cbt_mode[RANK_1] = CBT_BYTE_MODE1; |
| DramConfig->dram_cbt_mode[RANK_1] = CBT_NORMAL_MODE; |
| // IC and DRAM read DBI |
| DramConfig->DBI_R_onoff[FSP_0] = DBI_OFF; // only for LP4, uesless in LP3 |
| DramConfig->DBI_R_onoff[FSP_1] = DBI_OFF; // only for LP4, uesless in LP3 |
| #if ENABLE_READ_DBI |
| DramConfig->DBI_R_onoff[FSP_1] = DBI_ON; // only for LP4, uesless in LP3 |
| #else |
| DramConfig->DBI_R_onoff[FSP_1] = DBI_OFF; // only for LP4, uesless in LP3 |
| #endif |
| // IC and DRAM write DBI |
| DramConfig->DBI_W_onoff[FSP_0] = DBI_OFF; // only for LP4, uesless in LP3 |
| DramConfig->DBI_W_onoff[FSP_1] = DBI_OFF; // only for LP4, uesless in LP3 |
| #if ENABLE_WRITE_DBI |
| DramConfig->DBI_W_onoff[FSP_1] = DBI_ON; // only for LP4, uesless in LP3 |
| #else |
| DramConfig->DBI_W_onoff[FSP_1] = DBI_OFF; // only for LP4, uesless in LP3 |
| #endif |
| // bus width |
| DramConfig->data_width = DATA_WIDTH_16BIT; |
| // DRAMC internal test engine-2 parameters in calibration |
| DramConfig->test2_1 = DEFAULT_TEST2_1_CAL; |
| DramConfig->test2_2 = DEFAULT_TEST2_2_CAL; |
| // DRAMC test pattern in calibration |
| DramConfig->test_pattern = TEST_XTALK_PATTERN; |
| // DRAMC operation clock frequency in MHz |
| DramConfig->frequency = 1200; |
| // u2DelayCellTimex100 |
| DramConfig->u2DelayCellTimex100 = 0; |
| DramConfig->vendor_id = 0x1; |
| DramConfig->density = 0; |
| //DramConfig->ranksize = {0,0}; |
| |
| DramConfig->enable_cbt_scan_vref = DISABLE_VREF_SCAN; |
| DramConfig->enable_rx_scan_vref = DISABLE_VREF_SCAN; |
| DramConfig->enable_tx_scan_vref = DISABLE_VREF_SCAN; |
| |
| DramcBroadcastOnOff(DRAMC_BROADCAST_ON); //LP4 broadcast on |
| |
| Global_Option_Init(DramConfig); |
| Global_Option_Init2(DramConfig); |
| |
| vDramcInit_PreSettings(DramConfig); |
| |
| DDRPhyFreqSel(DramConfig, DramConfig->freq_sel); |
| |
| vSetPHY2ChannelMapping(DramConfig, DramConfig->channel); |
| |
| #if DV_SIMULATION_SW_IMPED |
| if (DramConfig->dram_type == TYPE_LPDDR4X) |
| { |
| DramcSwImpedanceCal(DramConfig,1, 0); //without term |
| } |
| DramcSwImpedanceCal(DramConfig,1, 1); //within term |
| //update ODTP/ODTN of term to unterm |
| DramcUpdateImpedanceTerm2UnTerm(DramConfig); |
| #endif |
| |
| |
| #if DV_SIMULATION_INIT_C |
| DramcInit(DramConfig); |
| vSetPHY2ChannelMapping(DramConfig, u1ChannelSet[0]); |
| #if DV_SIMULATION_MIOCKJMETER |
| #ifdef ENABLE_MIOCK_JMETER |
| DramcMiockJmeter(DramConfig); |
| #endif |
| #endif |
| #if ENABLE_RX_TRACKING_LP4 |
| DramcRxInputDelayTrackingInit_byFreq(DramConfig); |
| DramcRxInputDelayTrackingInit_Common(DramConfig); |
| DramcRxInputDelayTrackingHW(DramConfig); |
| #endif |
| #endif |
| |
| |
| #if WRITE_LEVELING_MOVE_DQS_INSTEAD_OF_CLK |
| memset(DramConfig->arfgWriteLevelingInitShif, FALSE, sizeof(DramConfig->arfgWriteLevelingInitShif)); |
| //>fgWriteLevelingInitShif= FALSE; |
| #endif |
| #if TX_PERBIT_INIT_FLOW_CONTROL |
| memset(DramConfig->fgTXPerbifInit, FALSE, sizeof(DramConfig->fgTXPerbifInit)); |
| #endif |
| |
| #if DV_SIMULATION_BEFORE_K |
| vApplyConfigBeforeCalibration(DramConfig); |
| //vMR2InitForSimulationTest(DramConfig); |
| #endif |
| |
| #if DV_SIMULATION_GATING |
| DramcRxdqsGatingPreProcess(DramConfig); |
| #endif |
| |
| #if 0//DV_SIMULATION_LP4_ZQ |
| DramcZQCalibration(DramConfig); |
| #endif |
| |
| #if 0//DV_SIMULATION_CA_TRAINING |
| vSetRank(DramConfig, RANK_0); |
| CmdBusTrainingLP4(DramConfig); |
| #endif |
| |
| vAutoRefreshSwitch(DramConfig, DISABLE); |
| |
| #if DV_SIMULATION_CA_TRAINING |
| for(ii=RANK_0; ii<RANK_MAX; ii++) |
| { |
| vSetRank(DramConfig, ii); |
| CmdBusTrainingLP4(DramConfig); |
| |
| |
| } |
| vSetRank(DramConfig, RANK_0); |
| |
| #if DUAL_FREQ_K |
| No_Parking_On_CLRPLL(DramConfig); |
| #endif |
| #endif |
| |
| for(ii=RANK_0; ii<RANK_MAX; ii++) |
| { |
| vSetRank(DramConfig, ii); |
| |
| #if DV_SIMULATION_WRITE_LEVELING |
| //if (ii==RANK_1) |
| DramcWriteLeveling(DramConfig); |
| #endif |
| |
| vAutoRefreshSwitch(DramConfig, ENABLE); |
| |
| #if DV_SIMULATION_GATING |
| // Gating calibration of single rank |
| DramcRxdqsGatingCal(DramConfig); |
| #endif |
| |
| #if DV_SIMULATION_RX_PERBIT |
| DramcRxWindowPerbitCal(DramConfig, 0); |
| #endif |
| |
| #if DV_SIMULATION_TX_PERBIT |
| DramcTxWindowPerbitCal(DramConfig, TX_DQ_DQS_MOVE_DQ_DQM, DISABLE_VREF_SCAN); |
| VrefStatus = DramcTxWindowPerbitCal((DRAMC_CTX_T *) DramConfig, TX_DQ_DQS_MOVE_DQ_ONLY,DramConfig->enable_tx_scan_vref); |
| #endif |
| |
| #if DV_SIMULATION_DATLAT |
| // RX Datlat calibration of single rank |
| DramcRxdatlatCal(DramConfig); |
| #endif |
| |
| #if DV_SIMULATION_RX_PERBIT |
| DramcRxWindowPerbitCal(DramConfig, 1); |
| #endif |
| |
| #if 0//DV_SIMULATION_TX_PERBIT |
| DramcTxOECalibration(DramConfig); |
| #endif |
| |
| #if DV_SIMULATION_DBI_ON |
| #if ENABLE_READ_DBI |
| //Read DBI ON |
| SetDramModeRegForReadDBIOnOff(DramConfig, DramConfig->DBI_R_onoff[DramConfig->dram_fsp]); |
| #endif |
| |
| #if ENABLE_WRITE_DBI |
| //Write DBI ON |
| DramcWriteMinus1MCKForWriteDBI(DramConfig, -8); //Tx DQ/DQM -1 MCK for write DBI ON |
| SetDramModeRegForWriteDBIOnOff(DramConfig, DramConfig->DBI_W_onoff[DramConfig->dram_fsp]); |
| #endif |
| #endif |
| } |
| |
| vSetRank(DramConfig, RANK_0); |
| #if DV_SIMULATION_GATING |
| DramcRxdqsGatingPostProcess(DramConfig); |
| #endif |
| |
| #if DV_SIMULATION_DATLAT |
| DramcDualRankRxdatlatCal(DramConfig); |
| #endif |
| |
| #if DV_SIMULATION_AFTER_K |
| vApplyConfigAfterCalibration(DramConfig); |
| #endif |
| |
| #if DV_SIMULATION_DBI_ON |
| #if ENABLE_READ_DBI |
| DramcReadDBIOnOff(DramConfig, DramConfig->DBI_R_onoff[DramConfig->dram_fsp]); |
| #endif |
| |
| #if ENABLE_WRITE_DBI |
| DramcWriteDBIOnOff(DramConfig, DramConfig->DBI_W_onoff[DramConfig->dram_fsp]); |
| #endif |
| #endif |
| |
| #if DV_SIMULATION_RUN_TIME_MRW |
| enter_pasr_dpd_config(0, 0xFF); |
| #endif |
| |
| #if DV_SIMULATION_RUNTIME_CONFIG |
| DramcRunTimeConfig(DramConfig); |
| #endif |
| |
| } |
| |
| #endif |
| |
| |