| //============================================================================= |
| // Include Files |
| //============================================================================= |
| #include <dramc_common.h> |
| |
| #if !__FLASH_TOOL_DA__ && (FOR_DV_SIMULATION_USED==0) |
| #include <emi_hw.h> |
| #endif |
| |
| #if defined(DEF_LAST_DRAMC) |
| #include <platform/plat_dbg_info.h> |
| #endif |
| |
| #include <emi.h> |
| |
| #if !__FLASH_TOOL_DA__ && !__ETT__ |
| #include <custom_emi.h> |
| #endif |
| |
| #if __ETT__ |
| #include "ett_common.h" |
| #include "emi.h" |
| #endif |
| |
| #if CFG_BOOT_ARGUMENT |
| #define bootarg g_dram_buf->bootarg |
| #endif |
| |
| #if (FOR_DV_SIMULATION_USED==0) |
| #if __ETT__ |
| #include <pmic.h> |
| #else |
| #include <platform/pmic.h> |
| #include <platform/mtk_drm.h> |
| #endif |
| //#include <rt5738.h> |
| /* now we can use definition MTK_PMIC_CHIP_MT6356 */ |
| #if __ETT__ |
| //#undef MTK_PMIC_CHIP_MT6356 |
| #undef MTK_PMIC_CHIP_RT5738 //sagy |
| #else |
| |
| #ifdef PMIC_CHIP_MT6356 |
| #define MTK_PMIC_CHIP_MT6356 |
| #define MTK_PMIC_CHIP_RT5738 |
| #endif |
| |
| #ifdef PMIC_CHIP_MT6389 |
| #define MTK_PMIC_CHIP_MT6389 |
| #endif |
| |
| #endif |
| #endif |
| |
| #if defined(MTK_PMIC_CHIP_MT6356) || defined(MTK_PMIC_CHIP_MT6389) |
| #if __ETT__ |
| #include <regulator/mtk_regulator.h> |
| #else |
| #include <platform/regulator/mtk_regulator.h> |
| #endif |
| #endif |
| |
| #ifdef MTK_PMIC_CHIP_RT5738 |
| #if !__ETT__ |
| #include <platform/rt5738.h> |
| #endif |
| #endif |
| |
| #if !__ETT__ |
| #define CQ_DMA_BASE (IO_PHYS+0x212000) |
| #endif |
| |
| //============================================================================= |
| // Definition |
| //============================================================================= |
| static unsigned int get_dramc_addr(dram_addr_t *dram_addr, unsigned int offset); |
| |
| //============================================================================= |
| // Global Variables |
| //============================================================================= |
| #ifdef DRAM_ADAPTIVE |
| static unsigned char auto_detect_done; |
| #endif |
| int emi_setting_index = -1; |
| static unsigned int mr5; |
| static unsigned int rank_swap; |
| extern DRAMC_CTX_T *psCurrDramCtx; |
| #ifdef DRAM_ADAPTIVE |
| extern EMI_SETTINGS g_default_emi_setting; |
| #else |
| extern EMI_SETTINGS default_emi_setting; |
| #endif |
| #if defined(MTK_PMIC_CHIP_MT6356) || defined(MTK_PMIC_CHIP_MT6389) |
| static struct mtk_regulator reg_vdram, reg_vcore, reg_vddq; |
| #endif |
| |
| #ifdef LAST_DRAMC |
| static LAST_DRAMC_INFO_T* last_dramc_info_ptr; |
| #endif |
| |
| #ifdef LAST_EMI |
| static LAST_EMI_INFO_T* last_emi_info_ptr; |
| #endif |
| |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| extern u64 get_part_addr(const char *name); |
| static int read_offline_dram_mdl_data(DRAM_INFO_BY_MRR_T *DramInfo); |
| static int write_offline_dram_mdl_data(DRAM_INFO_BY_MRR_T *DramInfo); |
| #if !__ETT__ && (FOR_DV_SIMULATION_USED == 0) |
| static u64 part_dram_data_addr = 0; |
| static unsigned int dram_offline_data_flags = 0; |
| #endif |
| #endif |
| //============================================================================= |
| // External references |
| //============================================================================= |
| extern DRAMC_CTX_T *psCurrDramCtx; |
| extern char* opt_dle_value; |
| |
| void print_DBG_info(DRAMC_CTX_T *p); |
| void Dump_EMIRegisters(DRAMC_CTX_T *p); |
| |
| #define EMI_APB_BASE ((volatile void *)EMI_BASE) |
| #define EMI_CHANNEL_APB_BASE ((volatile void *)CHN0_EMI_BASE) |
| #define INFRA_DRAMC_REG_CONFIG ((volatile void *)0x100010b4) |
| |
| #define CHN_EMI_CONA(base) ((volatile unsigned int *)(base + 0x000)) |
| #define CHN_EMI_CONC(base) ((volatile unsigned int *)(base + 0x010)) |
| |
| unsigned int mt_get_dram_type_from_hw_trap(void); |
| |
| static void emi_cen_config_lp4(unsigned long cfg_base_addr) |
| { |
| #ifdef RANK_512MB // => 1channel , one rank , total= 512MB |
| mt_reg_sync_write(EMI_APB_BASE+0x00000000,0x30103016); |
| #else //RANK_1G => 1channel , one rank , total= 1GB |
| mt_reg_sync_write(EMI_APB_BASE+0x00000000,0x30103014); |
| #endif |
| mt_reg_sync_write(EMI_APB_BASE+0x00000004,0x0e290e28); //800 (1:4) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000008,0x091e1322); //800 (1:4) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000000c,0x0f29112a); //800 (1:4) r16 - r13 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000010,0x0c240a1f); //800 (1:4) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000008b0,0x071b1222); //1200 (1:4) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000008b4,0x0a21091e); //1200 (1:4) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000001c,0x0e250c23); //1200 (1:4) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000024,0x11291127); //1200 (1:4) r16 - r13 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000034,0x081c1423); //1600 (1:4) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000006c,0x0a21091d); //1600 (1:4) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000013c,0x0e260d24); //1600 (1:4) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000640,0x12291128); //1600 (1:4) r16 - r13 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000044,0x0c201a28); //1600 (1:8) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000074,0x0d230a20); //1600 (1:8) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000001e0,0x0e260d24); //1600 (1:8) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000644,0x132d1229); //1600 (1:8) r16 - r13 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000004c,0x1024202c); //2400 (1:8) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000084,0x0b210c21); //2400 (1:8) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000001e4,0x0f250d23); //2400 (1:8) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000648,0x152b1228); //2400 (1:8) r16 - r13 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000054,0x182e2d33); //3200 (1:8) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000008c,0x0f251025); //3200 (1:8) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000001e8,0x122a1027); //3200 (1:8) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000064c,0x1a31162d); //3200 (1:8) r16 - r13 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000005c,0x182e2d33); //3733 (1:8) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000094,0x0f251025); //3733 (1:8) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000001c8,0x122a1027); //3733 (1:8) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000660,0x1a31162d); //3733 (1:8) r16 - r13 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000064,0x182e2d33); //4266 (1:8) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000009c,0x0f251025); //4266 (1:8) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000001f4,0x122a1027); //4266 (1:8) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000664,0x1a31162d); //4266 (1:8) r16 - r13 overhead |
| |
| mt_reg_sync_write(EMI_APB_BASE+0x00000030,0x37333034); //800 (1:4) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000014,0x39393a39); //800 (1:4) r16 - r10 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000008b8,0x33313035); //1200 (1:4) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000002c,0x38383735); //1200 (1:4) r16 - r10 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000000c4,0x34322e33); //1600 (1:4) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000668,0x38383735); //1600 (1:4) r16 - r10 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000000c8,0x34343542); //1600 (1:8) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000066c,0x3b3b3835); //1600 (1:8) r16 - r10 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000000cc,0x33313241); //2400 (1:8) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000694,0x3a3a3835); //2400 (1:8) r16 - r10 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000000e4,0x3836374e); //3200 (1:8) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000708,0x41413d3a); //3200 (1:8) r16 - r10 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000000f4,0x37373a57); //3733 (1:8) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000070c,0x3f3f3c39); //3733 (1:8) r16 - r10 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000012c,0x37373a57); //4266 (1:8) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000748,0x3f3f3c39); //4266 (1:8) r16 - r10 non-align overhead |
| |
| mt_reg_sync_write(EMI_APB_BASE+0x00000018,0x3657587a); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000020,0x0000c042); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000028,0x08421000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000038,0x88220003); |
| mt_reg_sync_write(EMI_APB_BASE+0x0000003c,0x00073210); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000040,0x00008802); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000048,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000060,0x007812ff); // reserved buffer to normal read/write :8/7 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000068,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000078,0x11120c1f); //22:20=ultra_w=1 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000710,0x11120c1f); //22:20=ultra_w=1 |
| mt_reg_sync_write(EMI_APB_BASE+0x0000007c,0x00001123); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000718,0x00001123); |
| mt_reg_sync_write(EMI_APB_BASE+0x000000d0,0xa8a8a8a8); |
| mt_reg_sync_write(EMI_APB_BASE+0x000000d4,0x25252525); |
| mt_reg_sync_write(EMI_APB_BASE+0x000000d8,0xa8a8a8a8); |
| mt_reg_sync_write(EMI_APB_BASE+0x000000dc,0x25252525); |
| mt_reg_sync_write(EMI_APB_BASE+0x000000e8,0x00060037); // initial starvation counter div2, [4]=1 |
| mt_reg_sync_write(EMI_APB_BASE+0x000000f0,0x384a0034); |
| mt_reg_sync_write(EMI_APB_BASE+0x000000f8,0xa0000000); |
| #ifdef SCN_ICFP |
| mt_reg_sync_write(EMI_APB_BASE+0x00000100,0x20107244); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000108,0x10107044); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000110,0x343450df); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000118,0x0000f0d0); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000120,0x10106048); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000128,0x343450df); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000130,0x83837044); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000138,0x83837044); |
| #else //SCN_UI |
| mt_reg_sync_write(EMI_APB_BASE+0x00000100,0x20107250); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000108,0x10107050); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000110,0x343450df); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000118,0x0000f0d0); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000120,0x30306050); // [31:24]: MDHW {w,r} age |
| mt_reg_sync_write(EMI_APB_BASE+0x00000124,0x00000034); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000128,0x343450df); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000130,0x83837048); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000138,0x83837048); |
| #endif |
| mt_reg_sync_write(EMI_APB_BASE+0x00000140,0x00007108); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000144,0x00007108); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000150,0x090a0000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000158,0xff0bff00); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000400,0x00ff0000); //[27:20] enable monitor |
| mt_reg_sync_write(EMI_APB_BASE+0x0000071c,0x10000008); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000800,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000808,0x0a0a0a0a); |
| mt_reg_sync_write(EMI_APB_BASE+0x0000080c,0x0a0a0a0a); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000820,0x24240000); //wostd throttle |
| mt_reg_sync_write(EMI_APB_BASE+0x00000824,0x00002424); //wostd throttle |
| mt_reg_sync_write(EMI_APB_BASE+0x00000828,0x50500000); //rostd throttle |
| mt_reg_sync_write(EMI_APB_BASE+0x0000082c,0x00005050); //rostd throttle |
| mt_reg_sync_write(EMI_APB_BASE+0x00000830,0x0fc39a70); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000834,0x05050003); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000838,0x254dffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x0000083c,0x3c785a3c); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000840,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000844,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000848,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x0000084c,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000850,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000854,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000858,0x02533c15); |
| mt_reg_sync_write(EMI_APB_BASE+0x0000085c,0x00002785); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000874,0x00002328); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000878,0x005a0000); |
| mt_reg_sync_write(EMI_APB_BASE+0x0000087c,0x0250250f); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000890,0xffff3c59); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000894,0xffff00ff); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008a0,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008a4,0x0000ffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008c0,0x00002ee0); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008c4,0x00780000); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008c8,0x000036b0); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008cc,0x008c0000); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008d0,0x00003e80); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008d4,0x00a00000); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008e0,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008e4,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008e8,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000920,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000924,0x0000ffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000930,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000934,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000938,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x000009f0,0x32644b32); |
| mt_reg_sync_write(EMI_APB_BASE+0x000009f4,0x8574644b); |
| mt_reg_sync_write(EMI_APB_BASE+0x000009f8,0x00001770); |
| mt_reg_sync_write(EMI_APB_BASE+0x000009fc,0x00002328); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b00,0x00002ee0); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b04,0x00001770); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b08,0x00002328); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b0c,0x00002ee0); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b10,0x000036b0); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b14,0x00003e80); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b28,0x1e3c2d1e); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b2c,0x4b463c2d); |
| |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b60,0x14281e14); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b64,0x352e281e); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b98,0x64c89664); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b9c,0xffe9c896); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000bd0,0x01010101); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000bd4,0x01010101); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c08,0x64c89664); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c0c,0xffe9c896); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c40,0x01010101); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c44,0x01010101); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c4c,0x00000025); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c80,0x00003e80); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c84,0x00005dc0); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c88,0x00007d00); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c8c,0x00003e80); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c90,0x00005dc0); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c94,0x00007d00); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c98,0x000091d5); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c9c,0x0000a6aa); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000cb0,0x50a07850); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000cb4,0xd5baa078); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000cf8,0x01010101); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000cfc,0x01010101); |
| |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d04,0x00000009); //MDR shf0 event selet |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d0c,0x00000000); //MDR shf1 event selet |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d14,0x00730000); //MDR shf0 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d18,0x00000808); //MDR shf1 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d1c,0x00000028); //MDW shf0 event selet |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d24,0x00000000); //MDW shf1 event selet |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d2c,0x00730000); //MDW shf0 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d30,0x00000808); //MDW shf1 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d34,0x00000080); //APR shf0 event selet |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d3c,0x00000100); //APR shf1 event selet |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d44,0x30201008); //APR shf0/shf1 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d48,0x00000800); //APW shf0 event selet |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d50,0x00001000); //APW shf1 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d58,0x00008000); //MMR shf0 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d60,0x00020000); //MMR shf1 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d64,0x00001000); //MMR shf1 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d68,0x00010000); //MMR shf2 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d6c,0x00000800); //MMR shf2 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d70,0x08080000); //MMR shf0 |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d74,0x00073030); //MMR shf1 |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d78,0x00040000); //MMW shf0 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d80,0x00100000); //MMW shf1 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d84,0x00004000); //MMW shf1 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d88,0x00080000); //MMW shf2 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d8c,0x00002000); //MMW shf2 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d90,0x08080000); //MMW shf0 |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d94,0x00074040); //MMW shf1 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d98,0x00400000); //MDHWR sh0 event select |
| mt_reg_sync_write(EMI_APB_BASE+0x00000da0,0x00200000); //MDHWR sh1 event select |
| mt_reg_sync_write(EMI_APB_BASE+0x00000da8,0x10100404); //MDHWWR sh |
| mt_reg_sync_write(EMI_APB_BASE+0x00000dac,0x01000000); //MDHWW sh0 event select |
| mt_reg_sync_write(EMI_APB_BASE+0x00000db4,0x00800000); //MDHWW sh1 event select |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000dbc,0x04000000); //GPUR sh0 event select |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000dc4,0x02000000); //GPUR sh1 event select |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000dcc,0x60602010); //GPUR |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000dd0,0x10000000); //GPUW sh0 event select |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000dd8,0x08000000); //GPUW sh1 event select |
| mt_reg_sync_write(EMI_APB_BASE+0x00000de0,0x00000009); //ARBR sh0 event select |
| mt_reg_sync_write(EMI_APB_BASE+0x00000de8,0x04400080); //ARBR sh1 event select |
| mt_reg_sync_write(EMI_APB_BASE+0x00000df0,0x0f170f11); //ARB |
| mt_reg_sync_write(EMI_APB_BASE+0x00000df4,0x0303f7f7); //QOS control |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e04,0x00000166); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e08,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e0c,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e14,0x00400166); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e18,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e1c,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e24,0x00000266); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e28,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e2c,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e34,0x00400266); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e38,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e3c,0xffffffff); |
| } |
| |
| static void emi_cen_config_lp2(unsigned long cfg_base_addr) |
| { |
| #ifndef ONE_CH |
| #ifdef RANK_512MB // => 1channel , one rank , total= 512MB |
| mt_reg_sync_write(EMI_APB_BASE+0x00000000,0x30103016); |
| #else //RANK_1G => 2channel , dual rank , total=4G |
| mt_reg_sync_write(EMI_APB_BASE+0x00000000,0xf053f154); |
| #endif |
| #else |
| #ifdef RANK_512MB |
| mt_reg_sync_write(EMI_APB_BASE+0x00000000,0xa053a054); |
| #else |
| mt_reg_sync_write(EMI_APB_BASE+0x00000000,0xf053f054); |
| #endif |
| #endif |
| mt_reg_sync_write(EMI_APB_BASE+0x00000004,0x0e290e28); //800 (1:4) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000008,0x091e1322); //800 (1:4) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000000c,0x0f29112a); //800 (1:4) r16 - r13 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000010,0x0c240a1f); //800 (1:4) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000008b0,0x071b1222); //1200 (1:4) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000008b4,0x0a21091e); //1200 (1:4) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000001c,0x0e250c23); //1200 (1:4) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000024,0x11291127); //1200 (1:4) r16 - r13 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000034,0x081c1423); //1600 (1:4) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000006c,0x0a21091d); //1600 (1:4) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000013c,0x0e260d24); //1600 (1:4) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000640,0x12291128); //1600 (1:4) r16 - r13 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000044,0x0c201a28); //1600 (1:8) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000074,0x0d230a20); //1600 (1:8) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000001e0,0x0e260d24); //1600 (1:8) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000644,0x132d1229); //1600 (1:8) r16 - r13 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000004c,0x1024202c); //2400 (1:8) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000084,0x0b210c21); //2400 (1:8) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000001e4,0x0f250d23); //2400 (1:8) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000648,0x152b1228); //2400 (1:8) r16 - r13 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000054,0x182e2d33); //3200 (1:8) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000008c,0x0f251025); //3200 (1:8) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000001e8,0x122a1027); //3200 (1:8) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000064c,0x1a31162d); //3200 (1:8) r16 - r13 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000005c,0x182e2d33); //3733 (1:8) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000094,0x0f251025); //3733 (1:8) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000001c8,0x122a1027); //3733 (1:8) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000660,0x1a31162d); //3733 (1:8) r16 - r13 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000064,0x182e2d33); //4266 (1:8) r4 - r1 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000009c,0x0f251025); //4266 (1:8) r8 - r5 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000001f4,0x122a1027); //4266 (1:8) r12 - r9 overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000664,0x1a31162d); //4266 (1:8) r16 - r13 overhead |
| |
| mt_reg_sync_write(EMI_APB_BASE+0x00000030,0x37333034); //800 (1:4) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000014,0x39393a39); //800 (1:4) r16 - r10 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000008b8,0x33313035); //1200 (1:4) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000002c,0x38383735); //1200 (1:4) r16 - r10 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000000c4,0x34322e33); //1600 (1:4) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000668,0x38383735); //1600 (1:4) r16 - r10 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000000c8,0x34343542); //1600 (1:8) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000066c,0x3b3b3835); //1600 (1:8) r16 - r10 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000000cc,0x33313241); //2400 (1:8) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000694,0x3a3a3835); //2400 (1:8) r16 - r10 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000000e4,0x3836374e); //3200 (1:8) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000708,0x41413d3a); //3200 (1:8) r16 - r10 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x000000f4,0x37373a57); //3733 (1:8) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000070c,0x3f3f3c39); //3733 (1:8) r16 - r10 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x0000012c,0x37373a57); //4266 (1:8) r8 - r2 non-align overhead |
| mt_reg_sync_write(EMI_APB_BASE+0x00000748,0x3f3f3c39); //4266 (1:8) r16 - r10 non-align overhead |
| |
| mt_reg_sync_write(EMI_APB_BASE+0x00000018,0x3657587a); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000020,0x0000c042); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000028,0x08421000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000038,0x88220003); |
| mt_reg_sync_write(EMI_APB_BASE+0x0000003c,0x00073210); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000040,0x00008802); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000048,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000060,0x007812ff); // reserved buffer to normal read/write :8/7 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000068,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000078,0x11120c1f); //22:20=ultra_w=1 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000710,0x11120c1f); //22:20=ultra_w=1 |
| mt_reg_sync_write(EMI_APB_BASE+0x0000007c,0x00001123); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000718,0x00001123); |
| mt_reg_sync_write(EMI_APB_BASE+0x000000d0,0xa8a8a8a8); |
| mt_reg_sync_write(EMI_APB_BASE+0x000000d4,0x25252525); |
| mt_reg_sync_write(EMI_APB_BASE+0x000000d8,0xa8a8a8a8); |
| mt_reg_sync_write(EMI_APB_BASE+0x000000dc,0x25252525); |
| mt_reg_sync_write(EMI_APB_BASE+0x000000e8,0x00060037); // initial starvation counter div2, [4]=1 |
| mt_reg_sync_write(EMI_APB_BASE+0x000000f0,0x384a0034); |
| mt_reg_sync_write(EMI_APB_BASE+0x000000f8,0xa0000000); |
| #ifdef SCN_ICFP |
| mt_reg_sync_write(EMI_APB_BASE+0x00000100,0x20107244); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000108,0x10107044); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000110,0x343450df); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000118,0x0000f0d0); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000120,0x10106048); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000128,0x343450df); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000130,0x83837044); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000138,0x83837044); |
| #else //SCN_UI |
| mt_reg_sync_write(EMI_APB_BASE+0x00000100,0x20107250); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000108,0x10107050); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000110,0x343450df); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000118,0x0000f0d0); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000120,0x10106050); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000124,0x00000034); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000128,0x343450df); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000130,0x83837048); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000138,0x83837048); |
| #endif |
| mt_reg_sync_write(EMI_APB_BASE+0x00000140,0x00007108); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000144,0x00007108); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000150,0x090a0000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000158,0xff0bff00); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000400,0x00ff0000); //[27:20] enable monitor |
| mt_reg_sync_write(EMI_APB_BASE+0x0000071c,0x10000008); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000800,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000808,0x0a0a0a0a); |
| mt_reg_sync_write(EMI_APB_BASE+0x0000080c,0x0a0a0a0a); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000820,0x24240101); //wostd throttle |
| mt_reg_sync_write(EMI_APB_BASE+0x00000824,0x01012424); //wostd throttle |
| mt_reg_sync_write(EMI_APB_BASE+0x00000828,0x50500101); //rostd throttle |
| mt_reg_sync_write(EMI_APB_BASE+0x0000082c,0x01015050); //rostd throttle |
| mt_reg_sync_write(EMI_APB_BASE+0x00000830,0x0fc39a70); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000834,0x05050003); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000838,0x254dffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x0000083c,0x3c785a3c); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000840,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000844,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000848,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x0000084c,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000850,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000854,0x00000000); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000858,0x02533c15); |
| mt_reg_sync_write(EMI_APB_BASE+0x0000085c,0x00002785); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000874,0x00002328); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000878,0x005a0000); |
| mt_reg_sync_write(EMI_APB_BASE+0x0000087c,0x0250250f); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000890,0xffff3c59); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000894,0xffff00ff); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008a0,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008a4,0x0000ffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008c0,0x00002ee0); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008c4,0x00780000); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008c8,0x000036b0); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008cc,0x008c0000); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008d0,0x00003e80); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008d4,0x00a00000); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008e0,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008e4,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x000008e8,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000920,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000924,0x0000ffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000930,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000934,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000938,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x000009f0,0x32644b32); |
| mt_reg_sync_write(EMI_APB_BASE+0x000009f4,0x8574644b); |
| mt_reg_sync_write(EMI_APB_BASE+0x000009f8,0x00001770); |
| mt_reg_sync_write(EMI_APB_BASE+0x000009fc,0x00002328); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b00,0x00002ee0); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b04,0x00001770); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b08,0x00002328); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b0c,0x00002ee0); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b10,0x000036b0); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b14,0x00003e80); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b28,0x1e3c2d1e); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b2c,0x4b463c2d); |
| |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b60,0x14281e14); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b64,0x352e281e); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b98,0x64c89664); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000b9c,0xffe9c896); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000bd0,0x01010101); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000bd4,0x01010101); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c08,0x64c89664); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c0c,0xffe9c896); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c40,0x01010101); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c44,0x01010101); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c4c,0x00000025); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c80,0x00003e80); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c84,0x00005dc0); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c88,0x00007d00); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c8c,0x00003e80); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c90,0x00005dc0); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c94,0x00007d00); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c98,0x000091d5); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000c9c,0x0000a6aa); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000cb0,0x50a07850); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000cb4,0xd5baa078); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000cf8,0x01010101); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000cfc,0x01010101); |
| |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d04,0x00000009); //MDR shf0 event selet |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d0c,0x00000000); //MDR shf1 event selet |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d14,0x00730000); //MDR shf0 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d18,0x00000808); //MDR shf1 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d1c,0x00000028); //MDW shf0 event selet |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d24,0x00000000); //MDW shf1 event selet |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d2c,0x00730000); //MDW shf0 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d30,0x00000808); //MDW shf1 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d34,0x00000080); //APR shf0 event selet |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d3c,0x00000100); //APR shf1 event selet |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d44,0x30201008); //APR shf0/shf1 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d48,0x00000800); //APW shf0 event selet |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d50,0x00001000); //APW shf1 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d58,0x00008000); //MMR shf0 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d60,0x00020000); //MMR shf1 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d64,0x00001000); //MMR shf1 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d68,0x00010000); //MMR shf2 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d6c,0x00000800); //MMR shf2 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d70,0x08080000); //MMR shf0 |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d74,0x00073030); //MMR shf1 |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d78,0x00040000); //MMW shf0 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d80,0x00100000); //MMW shf1 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d84,0x00004000); //MMW shf1 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d88,0x00080000); //MMW shf2 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d8c,0x00002000); //MMW shf2 event selet |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d90,0x08080000); //MMW shf0 |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000d94,0x00074040); //MMW shf1 |
| mt_reg_sync_write(EMI_APB_BASE+0x00000d98,0x00400000); //MDHWR sh0 event select |
| mt_reg_sync_write(EMI_APB_BASE+0x00000da0,0x00200000); //MDHWR sh1 event select |
| mt_reg_sync_write(EMI_APB_BASE+0x00000da8,0x10100404); //MDHWWR sh |
| mt_reg_sync_write(EMI_APB_BASE+0x00000dac,0x01000000); //MDHWW sh0 event select |
| mt_reg_sync_write(EMI_APB_BASE+0x00000db4,0x00800000); //MDHWW sh1 event select |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000dbc,0x04000000); //GPUR sh0 event select |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000dc4,0x02000000); //GPUR sh1 event select |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000dcc,0x60602010); //GPUR |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000dd0,0x10000000); //GPUW sh0 event select |
| // mt_reg_sync_write(EMI_APB_BASE+0x00000dd8,0x08000000); //GPUW sh1 event select |
| mt_reg_sync_write(EMI_APB_BASE+0x00000de0,0x00000009); //ARBR sh0 event select |
| mt_reg_sync_write(EMI_APB_BASE+0x00000de8,0x04400080); //ARBR sh1 event select |
| mt_reg_sync_write(EMI_APB_BASE+0x00000df0,0x0f170f11); //ARB |
| mt_reg_sync_write(EMI_APB_BASE+0x00000df4,0x0303f7f7); //QOS control |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e04,0x00000166); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e08,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e0c,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e14,0x00400166); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e18,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e1c,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e24,0x00000266); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e28,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e2c,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e34,0x00400266); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e38,0xffffffff); |
| mt_reg_sync_write(EMI_APB_BASE+0x00000e3c,0xffffffff); |
| } |
| |
| void emi_cen_config(unsigned long cfg_base_addr) { |
| unsigned int type = mt_get_dram_type_from_hw_trap(); |
| |
| if (type == TYPE_LPDDR4X) { |
| emi_cen_config_lp4(cfg_base_addr); |
| } else if (type == TYPE_LPDDR2) { |
| emi_cen_config_lp2(cfg_base_addr); |
| } else { |
| dramc_debug("no dram type for init %u\n", type); |
| ASSERT(0); |
| } |
| }//void emi_cen_config() |
| |
| static void emi_chn_config_lp4(unsigned long cfg_base_addr) |
| { |
| #ifdef RANK_512MB // => 1channel , one rank , total= 512MB |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000000,0x00223012); |
| #else //RANK_1G => 1channel , one rank , total= 1GB |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000000,0x04242010); |
| #endif |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000008,0x00ff6048); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000010,0x00000004); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000018,0x99f08c03); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000710,0x9a508c17); // [24:20] = 0x2 : bank throttling (default=0x01f00000) |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000048,0x00038137); //RD_INORDER_THR[20:16]=2 |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000050,0x38460002); // [1] : MD_RD_AFT_WR_EN |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000058,0x00000000); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000090,0x000002ff); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000098,0x00003101); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000140,0x22607188); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000144,0x22607188); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000148,0x91fff928); // continous read/write service count and post_wr settings |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x0000014c,0x91fff928); // continous read/write service count and post_wr settings |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000150,0x64f3fc79); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000154,0x64f3fc79); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000158,0x011b0868); |
| #ifdef SCN_ICFP |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x0000015c,0x884102a2); // Stop urgent read first when write command buffer remain < 8 |
| #else //SCN_UI |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x0000015c,0x024102a2); // disable all exception read events |
| #endif |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x0000016c,0x0000f801); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000170,0x40000000); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x000001b0,0x000c822f); // Rank-Aware arbitration |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x000001b4,0xbd3f3f7e); // Rank-Aware arbitration |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x000001b8,0x7e003d7e); // Rank-Aware arbitration |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000080,0xaa0148ff); // MD BANK_MASK : disable exception read events |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000088,0xaa616cff); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000404,0xaa4178ff); // MD BANK_MASK shuffle 0 (MDR urgent): disable exception read events |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x0000040c,0x9f658633); |
| } |
| |
| static void emi_chn_config_lp2(unsigned long cfg_base_addr) |
| { |
| #ifdef RANK_512MB // => 1channel , one rank , total= 512MB |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000000,0x00223012); |
| #else //RANK_1G => 2channel , dual rank , total=4G |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000000,0x0400f051); |
| #endif |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000008,0x00ff6048); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000010,0x00000004); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000018,0x99f08c03); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000710,0x9a508c17); // [24:20] = 0x2 : bank throttling (default=0x01f00000) |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000048,0x00038137); //RD_INORDER_THR[20:16]=2 |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000050,0x38460002); // [1] : MD_RD_AFT_WR_EN |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000058,0x00000000); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000090,0x000002ff); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000098,0x00003101); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000140,0x22607188); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000144,0x22607188); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000148,0x0719595e); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x0000014c,0x0719595e); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000150,0x64f3fc79); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000154,0x64f3fc79); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000158,0x011b0868); |
| #ifdef SCN_ICFP |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x0000015c,0x884102a2); // Stop urgent read first when write command buffer remain < 8 |
| #else //SCN_UI |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x0000015c,0x824102a2); // Stop urgent read first when write command buffer remain < 2 |
| #endif |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x0000016c,0x0000f801); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000170,0x40000000); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x000001b0,0x000c822f); // Rank-Aware arbitration |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x000001b4,0xbd3f3f7e); // Rank-Aware arbitration |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x000001b8,0x7e003d7e); // Rank-Aware arbitration |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000080,0xaa0148ff); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000088,0xaa616cff); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x00000404,0xaa417eff); |
| mt_reg_sync_write(EMI_CHANNEL_APB_BASE+0x0000040c,0x9f658633); |
| } |
| |
| void emi_chn_config(unsigned long cfg_base_addr) { |
| unsigned int type = mt_get_dram_type_from_hw_trap(); |
| |
| if (type == TYPE_LPDDR4X) { |
| emi_chn_config_lp4(cfg_base_addr); |
| } else if (type == TYPE_LPDDR2) { |
| emi_chn_config_lp2(cfg_base_addr); |
| } else { |
| dramc_debug("no dram type for init %u\n", type); |
| ASSERT(0); |
| } |
| }//void emi_chn_config() |
| |
| //This is for Chip, Please don't remove it. |
| //This is for Chip, Please don't remove it. |
| //#define EMI_APB_BASE 0x10219000 |
| //#define EMI_CHANNEL_APB_BASE 0x10235000 |
| |
| void emi_init(void) |
| { |
| //Broadcast on |
| //mt_reg_sync_write(INFRA_DRAMC_REG_CONFIG,0x0000007f); |
| |
| emi_cen_config(EMI_BASE); |
| emi_chn_config(CHN0_EMI_BASE); |
| |
| //Broadcast off |
| //mt_reg_sync_write(INFRA_DRAMC_REG_CONFIG,0x00000000); |
| } |
| |
| void emi_init2(void) |
| { |
| //Broadcast on |
| //mt_reg_sync_write(INFRA_DRAMC_REG_CONFIG, 0x0000007f); |
| |
| mt_reg_sync_write(CHN0_EMI_BASE+0x00000010, 0x00000005); |
| mt_reg_sync_write(EMI_BASE+0x00000060, 0x007815ff); |
| |
| //Broadcast off |
| //mt_reg_sync_write(INFRA_DRAMC_REG_CONFIG, 0x00000000); |
| } |
| |
| |
| void EMI_ESL_Setting1(void) |
| { |
| emi_init(); |
| } |
| |
| void EMI_ESL_Setting2(void) |
| { |
| emi_init2(); |
| } |
| |
| |
| void EMI_Patch(void) |
| { |
| //The following is EMI patch |
| |
| #if !__ETT__ |
| // Enable MPU violation interrupt to MD for D1 and D7 |
| *((volatile unsigned int *)EMI_MPU_CTRL_D(1)) |= 0x10; |
| *((volatile unsigned int *)EMI_MPU_CTRL_D(7)) |= 0x10; |
| |
| // DVFS threshold |
| if (u1IsLP4Family(mt_get_dram_type_from_hw_trap())){ |
| /*LP4*/ |
| *((volatile unsigned int *)EMI_BWCT0) = 0x0a000705; |
| *((volatile unsigned int *)EMI_BWCT0_3RD) = 0x0; |
| } else { |
| *((volatile unsigned int *)EMI_BWCT0) = 0x07000505; //total BW setting for VcoreDVFS |
| *((volatile unsigned int *)EMI_BWCT0_3RD) = 0x0; |
| } |
| |
| // EMI QoS0.5 |
| *((volatile unsigned int *) EMI_BWCT0_2ND) = 0x00030023; // monitor AP |
| *((volatile unsigned int *) EMI_BWCT0_4TH) = 0x00C00023; // monitor GPU |
| *((volatile unsigned int *) EMI_BWCT0_5TH) = 0x00240023; // monitor MM |
| |
| #ifdef LAST_EMI |
| last_emi_info_ptr = (LAST_EMI_INFO_T *) get_dbg_info_base(KEY_LAST_EMI); |
| last_emi_info_ptr->decs_magic = LAST_EMI_MAGIC_PATTERN; |
| #if CFG_LAST_EMI_BW_DUMP |
| last_emi_info_ptr->decs_ctrl = 0xDECDDECD; |
| #else |
| last_emi_info_ptr->decs_ctrl = 0xDEC8DEC8; |
| #endif |
| last_emi_info_ptr->decs_dram_type = 0; |
| last_emi_info_ptr->decs_diff_us = 0; |
| #endif |
| #endif |
| } |
| |
| #if !__ETT__ |
| void reserve_emi_mbw_buf(void) |
| { |
| #if 0//def LAST_EMI |
| unsigned long long rsv_start; |
| dram_addr_t dram_addr; |
| |
| dram_addr.ch = 0; |
| dram_addr.rk = 0; |
| get_dramc_addr(&dram_addr, 0x0); |
| |
| if (dram_addr.full_sys_addr > 0xFFFFFFFF) |
| rsv_start = mblock_reserve_ext(&bootarg.mblock_info, 0x800000, 0x800000, 0x100000000, 0, "emi_mbw_buf"); |
| else |
| rsv_start = mblock_reserve_ext(&bootarg.mblock_info, 0x800000, 0x800000, dram_addr.full_sys_addr, 0, "emi_mbw_buf"); |
| |
| last_emi_info_ptr->mbw_buf_l = (unsigned int) (rsv_start & 0xFFFFFFFF); |
| last_emi_info_ptr->mbw_buf_h = (unsigned int) (rsv_start >> 32); |
| #endif |
| } |
| #endif |
| |
| static void EMI_rank_swap_emi_setting(EMI_SETTINGS *emi_set) |
| { |
| static unsigned int temp; |
| |
| if (emi_set->EMI_CONA_VAL & 0x20000) { |
| temp = emi_set->EMI_CONA_VAL; |
| emi_set->EMI_CONA_VAL &= ~(0xF3F0F0F0); |
| emi_set->EMI_CONA_VAL |= (temp & 0xC0C0C0C0) >> 2; |
| emi_set->EMI_CONA_VAL |= (temp & 0x30303030) << 2; |
| emi_set->EMI_CONA_VAL |= (temp & 0x02000000) >> 1; |
| emi_set->EMI_CONA_VAL |= (temp & 0x01000000) << 1; |
| |
| temp = emi_set->EMI_CONH_VAL; |
| emi_set->EMI_CONH_VAL &= ~(0xFFFF0030); |
| emi_set->EMI_CONH_VAL |= (temp & 0xF0F00000) >> 4; |
| emi_set->EMI_CONH_VAL |= (temp & 0x0F0F0000) << 4; |
| emi_set->EMI_CONH_VAL |= (temp & 0x00000020) >> 1; |
| emi_set->EMI_CONH_VAL |= (temp & 0x00000010) << 1; |
| |
| temp = emi_set->CHN0_EMI_CONA_VAL; |
| emi_set->CHN0_EMI_CONA_VAL &= ~(0x00FFF0FC); |
| emi_set->CHN0_EMI_CONA_VAL |= (temp & 0x00F00000) >> 4; |
| emi_set->CHN0_EMI_CONA_VAL |= (temp & 0x000F0000) << 4; |
| emi_set->CHN0_EMI_CONA_VAL |= (temp & 0x0000C0C0) >> 2; |
| emi_set->CHN0_EMI_CONA_VAL |= (temp & 0x00003030) << 2; |
| emi_set->CHN0_EMI_CONA_VAL |= (temp & 0x00000008) >> 1; |
| emi_set->CHN0_EMI_CONA_VAL |= (temp & 0x00000004) << 1; |
| |
| emi_set->CHN0_EMI_CONA_VAL |= 0x80000000; |
| |
| temp = emi_set->DRAM_RANK_SIZE[0]; |
| emi_set->DRAM_RANK_SIZE[0] = emi_set->DRAM_RANK_SIZE[1]; |
| emi_set->DRAM_RANK_SIZE[1] = temp; |
| |
| if (emi_set->dram_cbt_mode_extern == CBT_R0_NORMAL_R1_BYTE) |
| emi_set->dram_cbt_mode_extern = CBT_R0_BYTE_R1_NORMAL; |
| else if (emi_set->dram_cbt_mode_extern == CBT_R0_BYTE_R1_NORMAL) |
| emi_set->dram_cbt_mode_extern = CBT_R0_NORMAL_R1_BYTE; |
| } |
| } |
| |
| #ifdef DRAM_ADAPTIVE |
| void EMI_rank_swap_handle(void) |
| { |
| static unsigned int handled = 0; |
| int i; |
| |
| if (!handled) { |
| EMI_rank_swap_emi_setting(&g_default_emi_setting); |
| handled = 1; |
| } |
| } |
| #else |
| static void EMI_rank_swap_handle(void) |
| { |
| static unsigned int handled = 0; |
| int i; |
| |
| if (!handled) { |
| EMI_rank_swap_emi_setting(&default_emi_setting); |
| |
| for (i = 0 ; i < num_of_emi_records; i++) |
| EMI_rank_swap_emi_setting(&emi_settings[i]); |
| |
| handled = 1; |
| } |
| } |
| #endif |
| |
| void EMI_set_rank_swap(unsigned int enable) |
| { |
| rank_swap = (enable) ? 1 : 0; |
| } |
| |
| void EMI_Init(DRAMC_CTX_T *p) |
| { |
| EMI_SETTINGS *emi_set; |
| |
| emi_set = get_emi_setting(); |
| |
| if (rank_swap) |
| EMI_rank_swap_handle(); |
| |
| EMI_ESL_Setting1(); //Copy Paste from DE |
| |
| //The following is MDL settings |
| *(volatile unsigned *)EMI_CONA = emi_set->EMI_CONA_VAL; |
| *(volatile unsigned *)EMI_CONH = emi_set->EMI_CONH_VAL; |
| |
| // CHNA and CHNB uses the same CH0 setting |
| *(volatile unsigned *)CHN_EMI_CONA(CHN0_EMI_BASE) = emi_set->CHN0_EMI_CONA_VAL; |
| |
| //#if CHANNEL_NUM == 1 |
| // *(volatile unsigned *)EMI_CONF = 0x0; |
| //#else |
| *(volatile unsigned *)EMI_CONF = emi_set->EMI_CONF_VAL; |
| if (u1IsLP4Family(p->dram_type)) |
| { |
| *(volatile unsigned *)CHN_EMI_CONC(CHN0_EMI_BASE) = 0x0; |
| } else { |
| *(volatile unsigned *)CHN_EMI_CONC(CHN0_EMI_BASE) = emi_set->EMI_CONF_VAL; |
| } |
| //#endif |
| |
| #if 0 |
| #if __ETT__ && !defined(__LPAE__) |
| /* |
| * special emi mapping w/o LPAE support |
| * RANK0_MAX_SIZE_ETT = 0x40000000 --> RANK0 @0x4000_0000~0x7fff_ffff |
| * RANK1_MAX_SIZE_ETT = 0x40000000 --> RANK1 @0x8000_0000~0xbfff_ffff |
| */ |
| /* set all the rank size of all the channels to the minimum value */ |
| *(volatile unsigned int*)EMI_CONH = ((*(volatile unsigned int*)EMI_CONH & 0x0000ffff) | (0x11110000)); |
| |
| /* set all the rank size of all channel-0 to the minimum value */ |
| *(volatile unsigned int*)CHN_EMI_CONA(CHN0_EMI_BASE) |
| = ((*(volatile unsigned int*)CHN_EMI_CONA(CHN0_EMI_BASE) & 0xff00ffff ) | (0x00110000)); |
| |
| #endif |
| #endif |
| |
| dsb(); |
| } |
| |
| void EMI_Init2(void) |
| { |
| EMI_ESL_Setting2(); //Copy Paste from DE |
| |
| EMI_Patch(); //Please add the EMI patch here |
| } |
| |
| static unsigned int emi_conh = 0; |
| static unsigned int chn_emi_cona[2] = {0, 0}; |
| |
| /* return the start address of rank1 */ |
| unsigned int set_emi_before_rank1_mem_test(void) |
| { |
| |
| unsigned int emi_cona; |
| |
| emi_cona = *(volatile unsigned int*)EMI_CONA; |
| emi_conh = *(volatile unsigned int*)EMI_CONH; |
| chn_emi_cona[0] = *(volatile unsigned int*)CHN_EMI_CONA(CHN0_EMI_BASE); |
| #if 0 |
| if (emi_cona & 0x100) { |
| /* set all the rank size of all the channels to the minimum value */ |
| *(volatile unsigned int*)EMI_CONH = ((*(volatile unsigned int*)EMI_CONH & 0x0000ffff) | (0x22220000)); |
| |
| /* set all the rank size of all channel-0 to the minimum value */ |
| *(volatile unsigned int*)CHN_EMI_CONA(CHN0_EMI_BASE) |
| = ((*(volatile unsigned int*)CHN_EMI_CONA(CHN0_EMI_BASE) & 0xff00ffff ) | (0x00220000)); |
| } else { |
| /* set all the rank size of all the channels to the minimum value */ |
| *(volatile unsigned int*)EMI_CONH = ((*(volatile unsigned int*)EMI_CONH & 0x0000ffff) | (0x44440000)); |
| |
| /* set all the rank size of all channel-0 to the minimum value */ |
| *(volatile unsigned int*)CHN_EMI_CONA(CHN0_EMI_BASE) |
| = ((*(volatile unsigned int*)CHN_EMI_CONA(CHN0_EMI_BASE) & 0xff00ffff ) | (0x00440000)); |
| } |
| |
| dsb(); |
| #endif |
| return 0x20000000; |
| |
| } |
| |
| void restore_emi_after_rank1_mem_test(void) |
| { |
| *(volatile unsigned int*)EMI_CONH = emi_conh; |
| *(volatile unsigned int*)CHN_EMI_CONA(CHN0_EMI_BASE) = chn_emi_cona[0]; |
| dsb(); |
| } |
| |
| unsigned int check_gating_error(void) |
| { |
| unsigned int ret = 0; |
| |
| #ifdef LAST_DRAMC |
| unsigned long phy_base; |
| unsigned int i, err_code = 0; |
| unsigned int misc_stberr_rk0_r, misc_stberr_rk0_f, misc_stberr_rk1_r, misc_stberr_rk1_f; |
| |
| phy_base = Channel_B_PHY_AO_BASE_ADDRESS; |
| |
| for (i = 0; i < CHANNEL_NUM; ++i, phy_base += 0x8000, err_code = 0) { |
| misc_stberr_rk0_r = *(volatile unsigned int*)(phy_base + 0x510); |
| misc_stberr_rk0_f = *(volatile unsigned int*)(phy_base + 0x514); |
| misc_stberr_rk1_r = *(volatile unsigned int*)(phy_base + 0x518); |
| misc_stberr_rk1_f = *(volatile unsigned int*)(phy_base + 0x51c); |
| if (misc_stberr_rk0_r & (1 << 16)) { |
| ret |= (1 << i); |
| if ((misc_stberr_rk0_r & 0xffff) != 0) { |
| err_code |= ERR_DRAM_GATING_RK0_R; |
| } |
| if ((misc_stberr_rk0_f & 0xffff) != 0) { |
| err_code |= ERR_DRAM_GATING_RK0_F; |
| } |
| if ((misc_stberr_rk1_r & 0xffff) != 0) { |
| err_code |= ERR_DRAM_GATING_RK1_R; |
| } |
| if ((misc_stberr_rk1_f & 0xffff) != 0) { |
| err_code |= ERR_DRAM_GATING_RK1_F; |
| } |
| dram_fatal_set_gating_err(i, err_code); |
| dram_fatal_set_stberr(i, 0, (misc_stberr_rk0_r & 0xffff) | ((misc_stberr_rk0_f & 0xffff) << 16)); |
| dram_fatal_set_stberr(i, 1, (misc_stberr_rk1_r & 0xffff) | ((misc_stberr_rk1_f & 0xffff) << 16)); |
| } else { |
| dram_fatal_set_gating_err(i, 0); |
| dram_fatal_set_stberr(i, 0, 0); |
| dram_fatal_set_stberr(i, 1, 0); |
| } |
| } |
| #endif |
| |
| return ret; |
| } |
| |
| #if 0 |
| void CHA_HWGW_Print(DRAMC_CTX_T *p) |
| { |
| U8 u1RefreshRate; |
| U32 backup_channel, chIdx; |
| |
| backup_channel = p->channel; |
| |
| #if (FOR_DV_SIMULATION_USED==0) |
| // Read HW gating tracking |
| #ifdef HW_GATING |
| for(chIdx=0; chIdx<p->support_channel_num; chIdx++) |
| { |
| DramcPrintHWGatingStatus(p, chIdx); |
| } |
| #endif |
| |
| #if ENABLE_RX_TRACKING_LP4 |
| for(chIdx=0; chIdx<p->support_channel_num; chIdx++) |
| { |
| DramcPrintRXDQDQSStatus(p, chIdx); |
| } |
| #endif |
| |
| #ifdef IMPEDANCE_TRACKING_ENABLE |
| if(u1IsLP4Family(p->dram_type)) |
| { |
| DramcPrintIMPTrackingStatus(p, CHANNEL_A); |
| //CH_B HW Fail, can't use DramcPrintIMPTrackingStatus(p, CHANNEL_B); |
| } |
| #endif |
| |
| #ifdef TEMP_SENSOR_ENABLE |
| for(chIdx=0; chIdx<p->support_channel_num; chIdx++) |
| { |
| u1RefreshRate = u1GetMR4RefreshRate(p, chIdx); |
| mcSHOW_ERR_MSG(("[CH%d] MRR(MR4) [10:8]=%x\n", chIdx, u1RefreshRate)); |
| } |
| #endif |
| #endif |
| |
| vSetPHY2ChannelMapping(p, backup_channel); |
| } |
| #endif |
| |
| void Dump_EMIRegisters(DRAMC_CTX_T *p) |
| { |
| #ifndef OLYMPUS_TO_BE_PORTING |
| |
| U8 ucstatus = 0; |
| U32 uiAddr; |
| U32 u4value; |
| |
| for (uiAddr=0; uiAddr<0x160; uiAddr+=4) |
| { |
| mcSHOW_DBG_MSG(("EMI offset:%x, value:%x\n", uiAddr, *(volatile unsigned *)(EMI_APB_BASE+uiAddr))); |
| } |
| #endif |
| } |
| |
| void print_DBG_info(DRAMC_CTX_T *p) |
| { |
| #ifndef OLYMPUS_TO_BE_PORTING |
| |
| unsigned int addr = 0x0; |
| U32 u4value; |
| |
| #ifdef DDR_INIT_TIME_PROFILING |
| return; |
| #endif |
| |
| mcSHOW_DBG_MSG(("EMI_CONA=%x\n",*(volatile unsigned *)(EMI_APB_BASE+0x00000000))); |
| mcSHOW_DBG_MSG(("EMI_CONH=%x\n",*(volatile unsigned *)(EMI_APB_BASE+0x00000038))); |
| |
| //RISCReadAll(); |
| #endif |
| } |
| |
| int mt_get_dram_type(void) |
| { |
| #if (fcFOR_CHIP_ID == fcLaurel) |
| return (*((volatile unsigned *)(Channel_A_DRAMC_AO_BASE_ADDRESS+0x10)) >> 10) & 0x7; |
| #else |
| #error No defined mt_get_dram_type for your chip !!! |
| #endif |
| } |
| |
| int mt_get_freq_setting(DRAMC_CTX_T *p) |
| { |
| return p->frequency; |
| } |
| |
| #ifdef DDR_RESERVE_MODE |
| extern u32 g_ddr_reserve_enable; |
| extern u32 g_ddr_reserve_success; |
| #define TIMEOUT 3 |
| extern void before_Dramc_DDR_Reserved_Mode_setting(void); |
| #endif |
| |
| #ifdef DDR_RESERVE_MODE |
| |
| #define CHAN_DRAMC_NAO_MISC_STATUSA(base) (base + 0x80) |
| #define SREF_STATE (1 << 16) |
| |
| static unsigned int is_dramc_exit_slf(void) |
| { |
| unsigned int ret; |
| U32 u4DramType = 0; |
| |
| u4DramType = (*((volatile unsigned int *)(IO_PHYS + 0x22A010)) >> 10 & 0x7); |
| if(u4DramType >=2) //LP3:1, LP4:2, LP4X:3 |
| { |
| ret = *(volatile unsigned *)CHAN_DRAMC_NAO_MISC_STATUSA(Channel_B_DRAMC_NAO_BASE_ADDRESS); |
| if ((ret & SREF_STATE) != 0) { |
| dramc_crit("DRAM CHAN-B is in self-refresh (MISC_STATUSA = 0x%x)\n", ret); |
| return 0; |
| } |
| } |
| else |
| { |
| ret = *(volatile unsigned *)CHAN_DRAMC_NAO_MISC_STATUSA(Channel_A_DRAMC_NAO_BASE_ADDRESS); |
| if ((ret & SREF_STATE) != 0) { |
| dramc_crit("DRAM CHAN-A is in self-refresh (MISC_STATUSA = 0x%x)\n", ret); |
| return 0; |
| } |
| } |
| dramc_crit("ALL DRAM CHAN is not in self-refresh\n"); |
| return 1; |
| } |
| |
| #endif |
| |
| unsigned int dramc_set_vcore_voltage(unsigned int vcore) |
| { |
| #if defined(MTK_PMIC_CHIP_MT6356) || defined(MTK_PMIC_CHIP_MT6389) |
| return mtk_regulator_set_voltage(®_vcore, vcore, MAX_VCORE); |
| #endif |
| return 0; |
| } |
| |
| unsigned int dramc_get_vcore_voltage(void) |
| { |
| #if defined(MTK_PMIC_CHIP_MT6356) || defined(MTK_PMIC_CHIP_MT6389) |
| return mtk_regulator_get_voltage(®_vcore); |
| #else |
| return 0; |
| #endif |
| } |
| |
| unsigned int dramc_set_vdd1_voltage(unsigned int ddr_type, unsigned int vdd1) |
| { |
| #if defined(MTK_PMIC_CHIP_MT6356) || defined(MTK_PMIC_CHIP_MT6389) |
| unsigned int vio18_vocal; |
| unsigned int vio18_votrim; |
| |
| if (vdd1 > 1980000) |
| vdd1 = 188; |
| else if (vdd1 < 1730000) |
| vdd1 = 173; |
| else |
| vdd1 = vdd1 / 10000; |
| |
| if (vdd1 > 190) { |
| vio18_vocal = 0xa; |
| vio18_votrim = (198 - vdd1); |
| vio18_votrim |= 0x8; |
| } else if (vdd1 < 180) { |
| vio18_vocal = 0x0; |
| vio18_votrim = (180 - vdd1); |
| } else { |
| vio18_vocal = (vdd1 - 180); |
| vio18_votrim = 0x0; |
| } |
| |
| #ifdef MTK_PMIC_CHIP_MT6389 |
| pmic_config_interface(PMIC_TMA_KEY_ADDR, 0x9C76, PMIC_TMA_KEY_MASK, PMIC_TMA_KEY_SHIFT); |
| #endif |
| pmic_config_interface(PMIC_RG_VIO18_VOCAL_ADDR, vio18_vocal, PMIC_RG_VIO18_VOCAL_MASK, PMIC_RG_VIO18_VOCAL_SHIFT); |
| pmic_config_interface(PMIC_RG_VIO18_VOTRIM_ADDR, vio18_votrim, PMIC_RG_VIO18_VOTRIM_MASK, PMIC_RG_VIO18_VOTRIM_SHIFT); |
| #ifdef MTK_PMIC_CHIP_MT6389 |
| pmic_config_interface(PMIC_TMA_KEY_ADDR, 0, PMIC_TMA_KEY_MASK, PMIC_TMA_KEY_SHIFT); |
| #endif |
| #endif |
| |
| return 0; |
| } |
| |
| unsigned int dramc_get_vdd1_voltage(void) |
| { |
| #if defined(MTK_PMIC_CHIP_MT6356) || defined(MTK_PMIC_CHIP_MT6389) |
| unsigned int vio18_vocal; |
| unsigned int vio18_votrim; |
| unsigned int vio18 = 0; |
| |
| pmic_read_interface(PMIC_RG_VIO18_VOCAL_ADDR, &vio18_vocal, PMIC_RG_VIO18_VOCAL_MASK, PMIC_RG_VIO18_VOCAL_SHIFT); |
| pmic_read_interface(PMIC_RG_VIO18_VOTRIM_ADDR, &vio18_votrim, PMIC_RG_VIO18_VOTRIM_MASK, PMIC_RG_VIO18_VOTRIM_SHIFT); |
| |
| vio18 = (180 + vio18_vocal + (vio18_votrim & 0x8) - (vio18_votrim & 0x7)) * 10000; |
| |
| return vio18; |
| #else |
| return 0; |
| #endif |
| } |
| |
| #ifdef MTK_PMIC_CHIP_MT6356 |
| static unsigned int lp2_vdram_base[] = {1100000, 1200000}; |
| static unsigned int lp2_vdram_ofs[] = {20000, 40000}; |
| #endif |
| |
| unsigned int dramc_set_vdd2_voltage(unsigned int ddr_type, unsigned int vdd2) |
| { |
| #ifdef MTK_PMIC_CHIP_MT6356 |
| int ret; |
| int mvdd2; |
| |
| pmic_config_interface(PMIC_RG_VDRAM_VOTRIM_ADDR, 0, PMIC_RG_VDRAM_VOTRIM_MASK, PMIC_RG_VDRAM_VOTRIM_SHIFT); |
| if (vdd2 < lp2_vdram_base[0]) { |
| ret = 0; |
| mvdd2 = lp2_vdram_base[ret] + lp2_vdram_ofs[ret] - vdd2; |
| if (mvdd2 > 70000) { |
| mvdd2 = 70000; |
| dramc_debug("voltage too low, reset to lowest=%u\n", mvdd2); |
| } |
| |
| mvdd2 /= 10000; |
| mtk_regulator_set_voltage(®_vdram, lp2_vdram_base[ret] + lp2_vdram_ofs[ret], 1300000); |
| pmic_config_interface(PMIC_RG_VDRAM_VOTRIM_ADDR, mvdd2, PMIC_RG_VDRAM_VOTRIM_MASK, PMIC_RG_VDRAM_VOTRIM_SHIFT); |
| return 0; |
| } |
| |
| for (ret = 0;(unsigned int)ret < (sizeof(lp2_vdram_base) / sizeof(*lp2_vdram_base));ret++) { |
| if (vdd2 < lp2_vdram_base[ret]) { |
| ret -= 1; |
| break; |
| } |
| } |
| |
| if (ret == sizeof(lp2_vdram_base) / sizeof(*lp2_vdram_base)) |
| ret -= 1; |
| |
| vdd2 -= lp2_vdram_base[ret]; |
| if (vdd2 > 100000) { |
| vdd2 = 100000; |
| dramc_debug("voltage offset too high, reset to highest=%u\n", vdd2); |
| } |
| |
| vdd2 /= 10000; |
| |
| mtk_regulator_set_voltage(®_vdram, lp2_vdram_base[ret] + lp2_vdram_ofs[ret], 1300000); |
| pmic_config_interface(PMIC_RG_VDRAM_VOCAL_ADDR, vdd2, PMIC_RG_VDRAM_VOCAL_MASK, PMIC_RG_VDRAM_VOCAL_SHIFT); |
| #endif |
| |
| #ifdef MTK_PMIC_CHIP_MT6389 |
| mtk_regulator_set_voltage(®_vdram, vdd2, 1493750); |
| |
| #endif |
| return 0; |
| } |
| |
| unsigned int dramc_get_vdd2_voltage(unsigned int ddr_type) |
| { |
| unsigned int sum = 0; |
| #ifdef MTK_PMIC_CHIP_MT6356 |
| unsigned int min = 0; |
| |
| sum = mtk_regulator_get_voltage(®_vdram); |
| int ret; |
| |
| for (ret = 0;(unsigned int)ret < sizeof(lp2_vdram_base) / sizeof(*lp2_vdram_base);ret++) { |
| if (sum == lp2_vdram_base[ret] + lp2_vdram_ofs[ret]) { |
| break; |
| } |
| } |
| |
| pmic_read_interface(PMIC_RG_VDRAM_VOCAL_ADDR, &sum, PMIC_RG_VDRAM_VOCAL_MASK, PMIC_RG_VDRAM_VOCAL_SHIFT); |
| |
| sum = lp2_vdram_base[ret] + (sum * 10000); |
| |
| pmic_read_interface(PMIC_RG_VDRAM_VOTRIM_ADDR, &min, PMIC_RG_VDRAM_VOTRIM_MASK, PMIC_RG_VDRAM_VOTRIM_SHIFT); |
| |
| sum -= (min * 10000); |
| #endif |
| |
| #ifdef MTK_PMIC_CHIP_MT6389 |
| sum = mtk_regulator_get_voltage(®_vdram); |
| #endif |
| return sum; |
| } |
| |
| #ifdef MTK_PMIC_CHIP_MT6389 |
| static unsigned int vdram2_base[] = {600000, 1800000}; |
| #endif |
| unsigned int dramc_set_vddq_voltage(unsigned int ddr_type, unsigned int vddq) |
| { |
| #ifdef MTK_PMIC_CHIP_MT6356 |
| #if __ETT__ |
| mtk_regulator_get("ext_buck_vddq", ®_vddq); |
| if (ddr_type == TYPE_LPDDR4X) |
| mtk_regulator_set_voltage(®_vddq, vddq, 1300000); |
| #endif |
| #endif |
| |
| #ifdef MTK_PMIC_CHIP_RT5738 |
| if (ddr_type == TYPE_LPDDR4X) |
| rt5738_set_voltage(RT5738_VDDQ, vddq); |
| #endif |
| |
| #ifdef MTK_PMIC_CHIP_MT6389 |
| mtk_regulator_get("vdram2", ®_vddq); |
| if (ddr_type == TYPE_LPDDR4X) |
| mtk_regulator_set_voltage(®_vddq, vddq, 1300000); |
| |
| unsigned int add = 0; |
| pmic_config_interface(PMIC_TMA_KEY_ADDR, 0x9C76, PMIC_TMA_KEY_MASK, PMIC_TMA_KEY_SHIFT); |
| pmic_config_interface(PMIC_RG_VDRAM2_VOCAL_0_ADDR, 0, PMIC_RG_VDRAM2_VOCAL_0_MASK, PMIC_RG_VDRAM2_VOCAL_0_SHIFT); |
| pmic_config_interface(PMIC_RG_VDRAM2_VOTRIM_ADDR, 0, PMIC_RG_VDRAM2_VOTRIM_MASK, PMIC_RG_VDRAM2_VOTRIM_SHIFT); |
| if (vddq > vdram2_base[0]) |
| { |
| vddq = vddq - vdram2_base[0]; |
| vddq /= 10000; |
| pmic_config_interface(PMIC_RG_VDRAM2_VOCAL_0_ADDR, vddq, PMIC_RG_VDRAM2_VOCAL_0_MASK, PMIC_RG_VDRAM2_VOCAL_0_SHIFT); |
| pmic_read_interface(PMIC_RG_VDRAM2_VOCAL_0_ADDR, &add, PMIC_RG_VDRAM2_VOCAL_0_MASK, PMIC_RG_VDRAM2_VOCAL_0_SHIFT); |
| pmic_config_interface(PMIC_TMA_KEY_ADDR, 0, PMIC_TMA_KEY_MASK, PMIC_TMA_KEY_SHIFT); |
| return 0; |
| } |
| |
| if (vddq < vdram2_base[0]) |
| { |
| vddq = vdram2_base[0] - vddq; |
| vddq /= 10000; |
| pmic_config_interface(PMIC_RG_VDRAM2_VOTRIM_ADDR, vddq, PMIC_RG_VDRAM2_VOTRIM_MASK, PMIC_RG_VDRAM2_VOTRIM_SHIFT); |
| pmic_config_interface(PMIC_TMA_KEY_ADDR, 0, PMIC_TMA_KEY_MASK, PMIC_TMA_KEY_SHIFT); |
| } |
| #endif |
| return 0; |
| } |
| |
| unsigned int dramc_get_vddq_voltage(unsigned int ddr_type) |
| { |
| #ifdef MTK_PMIC_CHIP_MT6356 |
| #if __ETT__ |
| unsigned int sum = 0; |
| |
| sum = mtk_regulator_get_voltage(®_vddq); |
| return sum; |
| #endif |
| #endif |
| |
| #ifdef MTK_PMIC_CHIP_RT5738 |
| unsigned int sum = 0; |
| if (ddr_type == TYPE_LPDDR4X) |
| sum = rt5738_get_voltage(RT5738_VDDQ); |
| return sum; |
| #endif |
| |
| #ifdef MTK_PMIC_CHIP_MT6389 |
| unsigned int sum = 0; |
| |
| sum = mtk_regulator_get_voltage(®_vddq); |
| unsigned int add = 0; |
| pmic_read_interface(PMIC_RG_VDRAM2_VOCAL_0_ADDR, &add, PMIC_RG_VDRAM2_VOCAL_0_MASK, PMIC_RG_VDRAM2_VOCAL_0_SHIFT); |
| sum += add*10000; |
| pmic_read_interface(PMIC_RG_VDRAM2_VOTRIM_ADDR, &add, PMIC_RG_VDRAM2_VOTRIM_MASK, PMIC_RG_VDRAM2_VOTRIM_SHIFT); |
| sum -= add*10000; |
| |
| return sum; |
| #endif |
| } |
| |
| unsigned int mt_get_dram_type_from_hw_trap(void) |
| { |
| static unsigned int ddr_type_detected = 0; |
| static unsigned int pmic_trap_ddr_type = TYPE_LPDDR2; |
| |
| if (!ddr_type_detected) { |
| #if defined(MTK_PMIC_CHIP_MT6356) || defined(MTK_PMIC_CHIP_MT6389) |
| unsigned int hw_trap; |
| hw_trap = get_dram_type(); |
| |
| switch (hw_trap) { |
| case 0: |
| pmic_trap_ddr_type = TYPE_LPDDR2; |
| break; |
| case 2: |
| pmic_trap_ddr_type = TYPE_LPDDR4X; |
| break; |
| default: |
| dramc_crit("[dramc] Wrong HW TRAP\n"); |
| ASSERT(0); |
| break; |
| } |
| dramc_debug("PMIC TRAP GET DDR TYPE: 0x%x\n", pmic_trap_ddr_type); |
| #endif |
| ddr_type_detected = 1; |
| } |
| |
| return pmic_trap_ddr_type; |
| } |
| |
| void setup_dramc_voltage_by_pmic(void) |
| { |
| #ifdef MTK_PMIC_CHIP_MT6356 |
| unsigned int ddr_type = TYPE_LPDDR4X;//mt_get_dram_type_from_hw_trap(); |
| #endif |
| |
| #ifdef MTK_PMIC_CHIP_MT6389 |
| unsigned int ddr_type = mt_get_dram_type_from_hw_trap(); |
| #endif |
| |
| #if defined(MTK_PMIC_CHIP_MT6356) || defined(MTK_PMIC_CHIP_MT6389) |
| int ret; |
| |
| ret = mtk_regulator_get("vcore", ®_vcore); |
| if (ret) |
| dramc_crit("mtk_regulator_get vcore fail\n"); |
| |
| #ifdef MTK_PMIC_CHIP_MT6356 |
| ret = mtk_regulator_get("vdram", ®_vdram); |
| #endif |
| #ifdef MTK_PMIC_CHIP_MT6389 |
| ret = mtk_regulator_get("vdram1", ®_vdram); |
| #endif |
| if (ret) |
| dramc_crit("mtk_regulator_get vdram fail\n"); |
| |
| mtk_regulator_set_mode(®_vcore, 0x1); |
| #endif |
| |
| if (u1IsLP4Family(ddr_type)) { |
| dramc_set_vdd2_voltage(ddr_type, SEL_PREFIX_VDRAM(LP4)); |
| dramc_set_vddq_voltage(ddr_type, SEL_PREFIX_VDDQ); |
| |
| #ifdef VCORE_BIN |
| dramc_set_vcore_voltage(get_vcore_uv_table(0)); |
| #else |
| dramc_set_vcore_voltage(SEL_PREFIX_VCORE(LP4, KOPP0)); |
| #endif |
| } else { |
| /* LPDDR2 */ |
| #ifdef VCORE_BIN |
| dramc_set_vcore_voltage(get_vcore_uv_table(0)); |
| #else |
| dramc_set_vcore_voltage(SEL_PREFIX_VCORE(LP2, KOPP0)); |
| #endif |
| dramc_set_vdd2_voltage(ddr_type, SEL_PREFIX_VDRAM(LP2)); |
| } |
| |
| dramc_crit("Vcore = %d\n", dramc_get_vcore_voltage()); |
| dramc_crit("Vdram = %d\n", dramc_get_vdd2_voltage(ddr_type)); |
| dramc_crit("Vdd1 = %d\n", dramc_get_vdd1_voltage()); |
| if (ddr_type == TYPE_LPDDR4X) |
| dramc_crit("Vddq = %d\n", dramc_get_vddq_voltage(ddr_type)); |
| } |
| |
| static void restore_vcore_setting(void) |
| { |
| #if defined(MTK_PMIC_CHIP_MT6356) || defined(MTK_PMIC_CHIP_MT6389) |
| int ret; |
| |
| ret = mtk_regulator_get("vcore", ®_vcore); |
| if (ret) |
| dramc_crit("mtk_regulator_get vcore fail\n"); |
| #endif |
| |
| #ifdef VCORE_BIN |
| dramc_set_vcore_voltage(get_vcore_uv_table(0)); |
| #else |
| if (u1IsLP4Family(mt_get_dram_type_from_hw_trap())) |
| dramc_set_vcore_voltage(SEL_PREFIX_VCORE(LP4, KOPP0)); |
| else |
| dramc_set_vcore_voltage(SEL_PREFIX_VCORE(LP2, KOPP0)); |
| #endif |
| |
| dramc_crit("Vcore = %d\n", dramc_get_vcore_voltage()); |
| } |
| |
| static void restore_pmic_setting(void) |
| { |
| unsigned int ddr_type = mt_get_dram_type_from_hw_trap(); |
| |
| restore_vcore_setting(); |
| |
| #if defined(MTK_PMIC_CHIP_MT6356) || defined(MTK_PMIC_CHIP_MT6389) |
| int ret; |
| |
| #ifdef MTK_PMIC_CHIP_MT6356 |
| ret = mtk_regulator_get("vdram", ®_vdram); |
| #endif |
| #ifdef MTK_PMIC_CHIP_MT6389 |
| ret = mtk_regulator_get("vdram1", ®_vdram); |
| #endif |
| if (ret) { |
| dramc_crit("mtk_regulator_get vdram fail\n"); |
| return; |
| } |
| #endif |
| |
| if (u1IsLP4Family(ddr_type)) { |
| /* LPDDR4 */ |
| #if defined(MTK_PMIC_CHIP_MT6356) || defined(MTK_PMIC_CHIP_MT6389) |
| ret = mtk_regulator_enable(®_vdram, 1); |
| if (ret) |
| dramc_crit("disable reg_vdram failed\n"); |
| #endif |
| dramc_set_vdd2_voltage(ddr_type, SEL_PREFIX_VDRAM(LP4)); |
| dramc_set_vddq_voltage(ddr_type, SEL_PREFIX_VDDQ); |
| } else |
| dramc_set_vdd2_voltage(ddr_type, SEL_PREFIX_VDRAM(LP2)); |
| |
| dramc_crit("Vdram = %d\n", dramc_get_vdd2_voltage(ddr_type)); |
| if (ddr_type == TYPE_LPDDR4X) |
| dramc_crit("Vddq = %d\n", dramc_get_vddq_voltage(ddr_type)); |
| } |
| |
| void switch_dramc_voltage_to_auto_mode(void) |
| { |
| #if defined(MTK_PMIC_CHIP_MT6356) || defined(MTK_PMIC_CHIP_MT6389) |
| mtk_regulator_set_mode(®_vcore, 0x0); |
| #endif |
| |
| #if 0//def MTK_PMIC_CHIP_RT5738 |
| if (u1IsLP4Family(mt_get_dram_type_from_hw_trap())) { |
| rt5738_set_mode(RT5738_VDD2, 0x0); |
| rt5738_set_mode(RT5738_VDDQ, 0x0); |
| } |
| #endif |
| } |
| |
| void release_dram(void) |
| { |
| #ifdef DDR_RESERVE_MODE |
| int i; |
| int counter = TIMEOUT; |
| |
| // scy: restore pmic setting (VCORE, VDRAM, VSRAM, VDDQ) |
| restore_pmic_setting(); |
| drm_release_rg_dramc_conf_iso();//Release DRAMC/PHY conf ISO |
| Dramc_DDR_Reserved_Mode_setting(); |
| drm_release_rg_dramc_iso();//Release PHY IO ISO |
| drm_release_rg_dramc_sref();//Let DRAM Leave SR |
| |
| // setup for EMI: touch center EMI and channel EMI to enable CLK |
| dramc_crit("[DDR reserve] EMI CONA: %x\n", *(volatile unsigned int*)EMI_CONA); |
| dramc_crit("[DDR reserve] EMI CHA CONA: %x\n", *(volatile unsigned int*)CHN_EMI_CONA(CHN0_EMI_BASE)); |
| for (i=0;i<10;i++); |
| |
| while(counter) |
| { |
| if(is_dramc_exit_slf() == 1) /* expect to exit dram-self-refresh */ |
| break; |
| counter--; |
| } |
| |
| if(counter == 0) |
| { |
| if(g_ddr_reserve_enable==1 && g_ddr_reserve_success==1) |
| { |
| dramc_crit("[DDR Reserve] release dram from self-refresh FAIL!\n"); |
| g_ddr_reserve_success = 0; |
| } |
| } |
| else |
| { |
| dramc_crit("[DDR Reserve] release dram from self-refresh PASS!\n"); |
| } |
| Dramc_DDR_Reserved_Mode_AfterSR(); |
| //Expect to Use LPDDR3200 and PHYPLL as output, so no need to handle |
| //shuffle status since the status will be reset by system reset |
| //There is an PLLL_SHU_GP in SPM which will reset by system reset |
| return; |
| #endif |
| } |
| |
| void check_ddr_reserve_status(void) |
| { |
| #ifdef DDR_RESERVE_MODE |
| /* get status of DCS and DVFSRC */ |
| int dvfsrc_success = drm_is_dvfsrc_success(); |
| int dvfsrc_en = drm_is_dvfsrc_enable(); |
| int counter = TIMEOUT; |
| |
| if(drm_is_reserve_ddr_enabled()) |
| { |
| g_ddr_reserve_enable = 1; |
| #ifdef LAST_DRAMC |
| dram_fatal_set_ddr_rsv_mode_flow(); |
| #endif |
| |
| if(drm_is_reserve_ddr_mode_success()) |
| { |
| while(counter) |
| { |
| if(drm_is_dram_slf()) |
| { |
| g_ddr_reserve_success = 1; |
| break; |
| } |
| counter--; |
| } |
| if(counter == 0) |
| { |
| dramc_crit("[DDR Reserve] ddr reserve mode success but DRAM not in self-refresh!\n"); |
| g_ddr_reserve_success = 0; |
| #ifdef LAST_DRAMC |
| dram_fatal_set_ddr_rsv_mode_err(); |
| #endif |
| } |
| } |
| else |
| { |
| dramc_crit("[DDR Reserve] ddr reserve mode FAIL!\n"); |
| g_ddr_reserve_success = 0; |
| #ifdef LAST_DRAMC |
| dram_fatal_set_ddr_rsv_mode_err(); |
| #endif |
| } |
| /* Disable DDR-reserve mode in pre-loader stage then enable it again in kernel stage */ |
| //drm_dram_reserved(0); |
| |
| /* overwrite g_ddr_reserve_success if some of dvfsrc/drs failed */ |
| /* TODO: check DRS status */ |
| if (dvfsrc_en == 1 && dvfsrc_success == 0) { |
| dramc_crit("[DDR Reserve] DRAM content might be corrupted -> clear g_ddr_reserve_success\n"); |
| g_ddr_reserve_success = 0; |
| |
| if (dvfsrc_en == 1 && dvfsrc_success == 0) { |
| dramc_crit("[DDR Reserve] DVFSRC fail!\n"); |
| #if 0//def LAST_DRAMC |
| dram_fatal_set_dvfsrc_err(); |
| #endif |
| } |
| } else { |
| dramc_crit("[DDR Reserve] DCS/DVFSRC success! (dvfsrc_en=%d)\n", dvfsrc_en); |
| } |
| /* release dram, no matter success or failed */ |
| release_dram(); |
| } |
| else |
| { |
| dramc_crit("[DDR Reserve] ddr reserve mode not be enabled yet\n"); |
| g_ddr_reserve_enable = 0; |
| } |
| #endif |
| } |
| |
| unsigned int DRAM_MRR(int MRR_num) |
| { |
| u16 MRR_value = 0x0; |
| DRAMC_CTX_T *p = psCurrDramCtx; |
| |
| DramcModeRegRead(p, MRR_num, &MRR_value); |
| return MRR_value; |
| } |
| |
| static int mt_get_dram_type_for_dis(void) |
| { |
| return mt_get_dram_type_from_hw_trap(); |
| } |
| |
| #ifndef DRAM_ADAPTIVE |
| #ifdef COMBO_MCP |
| static char id[22]; |
| static int enable_combo_dis = 0; |
| static int emmc_nand_id_len=8; |
| static int fw_id_len; |
| static int mt_get_mdl_number(void) |
| { |
| static int found = 0; |
| static int mdl_number = -1; |
| int i; |
| int j; |
| int has_emmc_nand = 0; |
| int discrete_dram_num = 0; |
| int mcp_dram_num = 0; |
| u64 rank0_size=0, rank1_size=0; |
| |
| extern int platform_get_mcp_id(u8 *id, u32 len, u32 *fw_id_len); |
| unsigned int dram_type; |
| DRAM_INFO_BY_MRR_T DramInfo; |
| DRAM_DRAM_TYPE_T Dis_DramType; |
| DRAM_CBT_MODE_EXTERN_T DramMode; |
| |
| if (!(found)) { |
| int result=0; |
| |
| for (i = 0 ; i < num_of_emi_records; i++) { |
| if ((emi_settings[i].type & 0x0F00) == 0x0000) |
| discrete_dram_num ++; |
| else |
| mcp_dram_num ++; |
| } |
| |
| /*If the number >=2 && |
| * one of them is discrete DRAM |
| * enable combo discrete dram parse flow |
| * */ |
| if ((discrete_dram_num > 0) && (num_of_emi_records >= 2)) |
| enable_combo_dis = 1; |
| |
| dramc_crit("[EMI] mcp_dram_num:%d,discrete_dram_num:%d,enable_combo_dis:%d\r\n",mcp_dram_num,discrete_dram_num,enable_combo_dis); |
| |
| Dis_DramType = mt_get_dram_type_for_dis(); |
| /* resetting dram type */ |
| if (Dis_DramType == TYPE_LPDDR2) |
| Dis_DramType = TYPE_LPDDR3; |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| if (!u1IsLP4Family(Dis_DramType) || read_offline_dram_mdl_data(&DramInfo)) { |
| #endif |
| if (u1IsLP4Family(Dis_DramType)) |
| DramMode = CBT_BYTE_MODE1; |
| else |
| DramMode = CBT_NORMAL_MODE; |
| |
| Init_DRAM(Dis_DramType, DramMode, &DramInfo, GET_MDL_USED); |
| DramInfo.u2MR5VendorID &= 0xFF; |
| |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| if (u1IsLP4Family(Dis_DramType)) |
| write_offline_dram_mdl_data(&DramInfo); |
| } |
| #endif |
| |
| |
| if (u1IsLP4Family(Dis_DramType)) { |
| rank0_size = (u64) DramInfo.u8MR8Density[1][0]; //now only K CHB to save time |
| rank1_size = (u64) DramInfo.u8MR8Density[1][1]; //now only K CHB to save time |
| } else { |
| rank0_size = (u64) DramInfo.u8MR8Density[0][0]; //now only K CHA to save time |
| rank1_size = (u64) DramInfo.u8MR8Density[0][1]; //now only K CHA to save time |
| } |
| |
| /* |
| * |
| * 0. if there is only one discrete dram, use index=0 emi setting and boot it. |
| * */ |
| if ((0 == mcp_dram_num) && (1 == discrete_dram_num)) { |
| mdl_number = 0; |
| found = 1; |
| |
| //K first frequency (1066MHz) |
| |
| return mdl_number; |
| } |
| |
| /* 1. |
| * if there is MCP dram in the list, we try to find emi setting by emmc ID |
| * */ |
| if (mcp_dram_num > 0) { |
| result = platform_get_mcp_id(id, emmc_nand_id_len,&fw_id_len); |
| for (i = 0; i < num_of_emi_records; i++) { |
| if ((emi_settings[i].type & 0xF) != Dis_DramType) |
| continue; |
| |
| if (emi_settings[i].type != 0) { |
| if ((emi_settings[i].type & 0xF00) != 0x000) { |
| /* valid ID */ |
| if (result == 0 |
| #if 0//SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| && (emi_settings[i].DRAM_RANK_SIZE[0] == rank0_size) && |
| (emi_settings[i].DRAM_RANK_SIZE[1] == rank1_size) |
| #endif |
| ) { |
| if ((emi_settings[i].type & 0xF00) == 0x200) { |
| /* eMMC */ |
| if (memcmp(id, emi_settings[i].ID, emi_settings[i].id_length) == 0) { |
| mdl_number = i; |
| found = 1; |
| break; |
| } else { |
| dramc_crit("[MDL] index(%d) emmc id match failed\n",i); |
| } |
| } |
| else if ((emi_settings[i].type & 0xF00) == 0x100) |
| { |
| /* nand */ |
| if (memcmp(id, emi_settings[i].ID, emi_settings[i].id_length) == 0){ |
| mdl_number = i; |
| found = 1; |
| break; |
| } else { |
| dramc_crit("[MDL] index(%d) nand id match failed\n",i); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| /* 2. find emi setting by MODE register 5 |
| * */ |
| // if we have found the index from by eMMC ID checking, we can boot android by the setting |
| // if not, we try by vendor ID |
| if ((0 == found) && (1 == enable_combo_dis)) |
| { |
| EMI_SETTINGS *emi_set; |
| |
| // try to find discrete dram by MR5 (vendor ID) |
| for (i = 0; i < num_of_emi_records; i++) { |
| dramc_crit("[MDL]index:%d, MR5:%x, type:%x, vender_id:%x\n", i, emi_settings[i].iLPDDR3_MODE_REG_5, emi_settings[i].type, DramInfo.u2MR5VendorID); |
| // only check discrete dram type |
| if ((emi_settings[i].type & 0xF) == Dis_DramType && (emi_settings[i].type & 0x0F00) == 0x0000) { |
| // support for combo discrete dram |
| if (emi_settings[i].iLPDDR3_MODE_REG_5 == DramInfo.u2MR5VendorID) { |
| dramc_debug("[MDL] index:%d, rank0_size:0x%llx(0x%llx), rank1_size:0x%llx(0x%llx)\n", i, |
| rank0_size, emi_settings[i].DRAM_RANK_SIZE[0], |
| rank1_size, emi_settings[i].DRAM_RANK_SIZE[1]); |
| if((emi_settings[i].DRAM_RANK_SIZE[0] == rank0_size) && (emi_settings[i].DRAM_RANK_SIZE[1] == rank1_size)) { |
| mdl_number = i; |
| found = 1; |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| dramc_crit("found:%d,i:%d\n",found,i); |
| } |
| |
| return mdl_number; |
| } |
| #endif |
| |
| int get_dram_channel_nr(void) |
| { |
| int channel_nr; |
| |
| channel_nr = (*((volatile unsigned int*)(EMI_CONA)) >> 8) & 0x3; |
| |
| return (0x1 << channel_nr); |
| } |
| |
| int get_dram_rank_nr(void) |
| { |
| int emi_cona; |
| |
| #ifdef COMBO_MCP |
| int index; |
| #ifdef DDR_RESERVE_MODE |
| if(g_ddr_reserve_enable==1 && g_ddr_reserve_success==1) |
| { |
| emi_cona = *(volatile unsigned int*)(EMI_CONA); |
| } |
| else |
| #endif |
| { |
| index = mt_get_mdl_number(); |
| if (index < 0 || index >= num_of_emi_records) |
| { |
| return -1; |
| } |
| |
| emi_cona = emi_settings[index].EMI_CONA_VAL; |
| } |
| #else |
| emi_cona = default_emi_setting.EMI_CONA_VAL; |
| #if CFG_FPGA_PLATFORM |
| return 1; |
| #endif |
| #endif |
| |
| if ((emi_cona & (1 << 17)) != 0 || //for channel 0 |
| (emi_cona & (1 << 16)) != 0 ) //for channel 1 |
| return 2; |
| else |
| return 1; |
| } |
| |
| unsigned int get_dram_mr(unsigned int index) |
| { |
| switch (index) { |
| case 5: |
| return mr5; |
| default: |
| return 0; |
| } |
| } |
| |
| void get_dram_rank_size_by_EMI_CONA (u64 dram_rank_size[]) |
| { |
| unsigned col_bit, row_bit; |
| u64 ch0_rank0_size, ch0_rank1_size, ch1_rank0_size, ch1_rank1_size; |
| #ifndef COMBO_MCP |
| unsigned emi_cona = default_emi_setting.EMI_CONA_VAL; |
| unsigned emi_conh = default_emi_setting.EMI_CONH_VAL; |
| #else |
| unsigned emi_cona = *(volatile unsigned int*)(EMI_CONA); |
| unsigned emi_conh = *(volatile unsigned int*)(EMI_CONH); |
| #endif |
| unsigned nr_chan_enabled = 1; |
| u64 per_chan_rank0_size = 0, per_chan_rank1_size = 0; |
| unsigned shift_for_16bit = 1; // data width = 2 bytes |
| |
| if (emi_cona & 0x2) |
| shift_for_16bit = 0; // data width = 4 bytes |
| |
| dram_rank_size[0] = 0; |
| dram_rank_size[1] = 0; |
| |
| ch0_rank0_size = (emi_conh >> 16) & 0xf; |
| ch0_rank1_size = (emi_conh >> 20) & 0xf; |
| ch1_rank0_size = (emi_conh >> 24) & 0xf; |
| ch1_rank1_size = (emi_conh >> 28) & 0xf; |
| |
| switch ((emi_cona >> 8) & 0x3) { |
| case 0: |
| nr_chan_enabled = 1; |
| break; |
| case 1: |
| nr_chan_enabled = 2; |
| break; |
| case 2: |
| nr_chan_enabled = 4; |
| break; |
| case 3: |
| default: |
| dramc_crit("invalid CHN_EN field in EMI_CONA (0x%x)\n", emi_cona); |
| // assume 4 channel by default |
| nr_chan_enabled = 2; |
| break; |
| } |
| |
| // CH0 EMI |
| { |
| if(ch0_rank0_size == 0) |
| { |
| //rank 0 setting |
| col_bit = ((emi_cona >> 4) & 0x03) + 9; |
| row_bit = ((((emi_cona >> 24) & 0x01) << 2) + ((emi_cona >> 12) & 0x03)) + 13; |
| per_chan_rank0_size = ((u64)(1 << (row_bit + col_bit))) * ((u64)(4 >> shift_for_16bit) * 8); // data width (bytes) * 8 banks |
| } |
| else |
| { |
| per_chan_rank0_size = (ch0_rank0_size * 256 << 20); |
| } |
| |
| if (0 != (emi_cona & (1 << 17))) //rank 1 exist |
| { |
| if(ch0_rank1_size == 0) |
| { |
| col_bit = ((emi_cona >> 6) & 0x03) + 9; |
| row_bit = ((((emi_cona >> 25) & 0x01) << 2) + ((emi_cona >> 14) & 0x03)) + 13; |
| per_chan_rank1_size = ((u64)(1 << (row_bit + col_bit))) * ((u64)(4 >> shift_for_16bit) * 8); // data width (bytes) * 8 banks |
| } |
| else |
| { |
| per_chan_rank1_size = (ch0_rank1_size * 256 << 20); |
| } |
| } |
| |
| if (nr_chan_enabled > 2) { |
| // CH0 EMI have CHA+CHB |
| dram_rank_size[0] = per_chan_rank0_size * 2; |
| dram_rank_size[1] = per_chan_rank1_size * 2; |
| } else { |
| // CH0 EMI is CHA |
| dram_rank_size[0] = per_chan_rank0_size; |
| dram_rank_size[1] = per_chan_rank1_size; |
| } |
| } |
| |
| // CH1 EMI |
| if(nr_chan_enabled >= 2) |
| { |
| if(ch1_rank0_size == 0) |
| { |
| //rank0 setting |
| col_bit = ((emi_cona >> 20) & 0x03) + 9; |
| row_bit = ((((emi_conh >> 4) & 0x01) << 2) + ((emi_cona >> 28) & 0x03)) + 13; |
| per_chan_rank0_size = ((u64)(1 << (row_bit + col_bit))) * ((u64)(4 >> shift_for_16bit) * 8); // data width (bytes) * 8 banks |
| } |
| else |
| { |
| per_chan_rank0_size = (ch1_rank0_size * 256 << 20); |
| } |
| |
| if (0 != (emi_cona & (1 << 16))) //rank 1 exist |
| { |
| if(ch1_rank1_size == 0) |
| { |
| col_bit = ((emi_cona >> 22) & 0x03) + 9; |
| row_bit = ((((emi_conh >> 5) & 0x01) << 2) + ((emi_cona >> 30) & 0x03)) + 13; |
| per_chan_rank1_size = ((u64)(1 << (row_bit + col_bit))) * ((u64)(4 >> shift_for_16bit) * 8); // data width (bytes) * 8 banks |
| } |
| else |
| { |
| per_chan_rank1_size = (ch1_rank1_size * 256 << 20); |
| } |
| } |
| if (nr_chan_enabled > 2) { |
| // CH1 EMI have CHC+CHD |
| dram_rank_size[0] += per_chan_rank0_size * 2; |
| dram_rank_size[1] += per_chan_rank1_size * 2; |
| } else { |
| // CH1 EMI is CHB |
| dram_rank_size[0] += per_chan_rank0_size; |
| dram_rank_size[1] += per_chan_rank1_size; |
| } |
| } |
| |
| //dramc_debug("DRAM rank0 size:0x%llx,\nDRAM rank1 size=0x%llx\n", dram_rank_size[0], dram_rank_size[1]); |
| } |
| |
| #if (FOR_DV_SIMULATION_USED==0) |
| #if !__FLASH_TOOL_DA__ && !__ETT__ |
| void get_dram_rank_size(u64 dram_rank_size[]) |
| { |
| #ifdef COMBO_MCP |
| int index, rank_nr, i; |
| |
| #ifdef DDR_RESERVE_MODE |
| if(g_ddr_reserve_enable==1 && g_ddr_reserve_success==1) |
| { |
| get_dram_rank_size_by_EMI_CONA(dram_rank_size); |
| } |
| else |
| #endif |
| { |
| index = mt_get_mdl_number(); |
| |
| if (index < 0 || index >= num_of_emi_records) |
| { |
| return; |
| } |
| |
| rank_nr = get_dram_rank_nr(); |
| |
| for(i = 0; i < rank_nr; i++){ |
| dram_rank_size[i] = emi_settings[index].DRAM_RANK_SIZE[i]; |
| |
| dramc_debug("%d:dram_rank_size:%llx\n",i,dram_rank_size[i]); |
| } |
| } |
| return; |
| #else |
| get_dram_rank_size_by_EMI_CONA(dram_rank_size); |
| return; |
| #endif |
| } |
| |
| void reserve_dramc_dummy_read(void) |
| { |
| #if 0//def LAST_DRAMC |
| unsigned long long reserve_start; |
| char *reserve_name[4] = {"dramc-rk0", "dramc-rk1", "dramc-rk2", "dramc-rk3"}; |
| unsigned int i; |
| int rank_nr; |
| dram_addr_t dram_addr; |
| |
| dram_addr.ch = 0; |
| |
| rank_nr = get_dram_rank_nr(); |
| if (rank_nr <= 0) { |
| dramc_crit("[DRAMC] reserve dummy read fail\n"); |
| ASSERT(0); |
| } |
| |
| for (i = 0; i < (unsigned int)rank_nr; i++) { |
| dram_addr.rk = i; |
| get_dramc_addr(&dram_addr, 0x0); |
| #ifdef CUSTOM_CONFIG_MAX_DRAM_SIZE |
| if (dram_addr.full_sys_addr > (unsigned long long)CUSTOM_CONFIG_MAX_DRAM_SIZE + 0x40000000LL) |
| break; |
| #endif |
| reserve_start = mblock_reserve_ext(&bootarg.mblock_info, 0x1000, 0x1000, dram_addr.full_sys_addr, 0, reserve_name[i]); |
| if (reserve_start != (dram_addr.full_sys_addr - 0x1000)) { |
| dramc_crit("[DRAMC] dummy read fail (0x%llx)\n", reserve_start); |
| ASSERT(0); |
| } |
| } |
| #endif |
| } |
| #endif //#if !__FLASH_TOOL_DA__ && !__ETT__ |
| #endif |
| #endif //DRAM_ADAPTIVE |
| |
| #ifdef DRAM_ADAPTIVE |
| void get_rank_size_by_emi(u64 dram_rank_size[]); |
| int get_dram_channel_nr(void) |
| { |
| int channel_nr; |
| |
| channel_nr = (*((volatile unsigned int*)(EMI_CONA)) >> 8) & 0x3; |
| |
| return (0x1 << channel_nr); |
| } |
| |
| int get_rank_nr_by_emi(void) |
| { |
| unsigned int cen_emi_cona = *(volatile unsigned int*)(EMI_CONA); |
| |
| if (cen_emi_cona & (0x3 << 16)) |
| return 2; |
| else |
| return 1; |
| } |
| |
| int get_dram_rank_nr(void) |
| { |
| int cen_emi_cona; |
| |
| #ifdef DDR_RESERVE_MODE |
| if (g_ddr_reserve_enable==1 && g_ddr_reserve_success==1) |
| return get_rank_nr_by_emi(); |
| #endif |
| |
| #ifdef DRAM_ADAPTIVE |
| if (!auto_detect_done) |
| ASSERT(0); |
| #endif |
| |
| cen_emi_cona = g_default_emi_setting.EMI_CONA_VAL; |
| |
| if ((cen_emi_cona & (1 << 17)) != 0 || //for channel 0 |
| (cen_emi_cona & (1 << 16)) != 0 ) //for channel 1 |
| return 2; |
| else |
| return 1; |
| } |
| |
| void get_rank_size_by_emi(u64 dram_rank_size[]) |
| { |
| int i; |
| unsigned int quad_ch_ratio; |
| unsigned int col_bit, row_bit; |
| unsigned long long ch0_rank0_size, ch0_rank1_size; |
| unsigned long long ch1_rank0_size, ch1_rank1_size; |
| unsigned int cen_emi_conh = *(volatile unsigned int*)(EMI_CONH); |
| unsigned long long dq_width; |
| |
| switch (mt_get_dram_type_from_hw_trap()) { |
| case TYPE_LPDDR4X: |
| case TYPE_LPDDR2: |
| dq_width = 1; |
| break; |
| default: |
| ASSERT(0); |
| } |
| |
| dram_rank_size[0] = 0; |
| dram_rank_size[1] = 0; |
| |
| ch0_rank0_size = (cen_emi_conh >> 16) & 0xF; |
| ch0_rank1_size = (cen_emi_conh >> 20) & 0xF; |
| ch1_rank0_size = (cen_emi_conh >> 24) & 0xF; |
| ch1_rank1_size = (cen_emi_conh >> 28) & 0xF; |
| |
| quad_ch_ratio = (get_rank_nr_by_emi() == 4)? 2 : 1; |
| ch0_rank0_size = (ch0_rank0_size * quad_ch_ratio) << 28; |
| ch0_rank1_size = (ch0_rank1_size * quad_ch_ratio) << 28; |
| ch1_rank0_size = (ch1_rank0_size * quad_ch_ratio) << 28; |
| ch1_rank1_size = (ch1_rank1_size * quad_ch_ratio) << 28; |
| |
| if(ch0_rank0_size == 0) { |
| dramc_crit("[EMI] undefined CONH for CH0 RANK0\n"); |
| ASSERT(0); |
| } |
| dram_rank_size[0] += ch0_rank0_size; |
| |
| if (get_rank_nr_by_emi() > 1) { |
| if(ch0_rank1_size == 0) { |
| dramc_crit("[EMI] undefined CONH for CH0 RANK1\n"); |
| ASSERT(0); |
| } |
| dram_rank_size[1] += ch0_rank1_size; |
| } |
| |
| if(get_dram_channel_nr() > 1) { |
| if(ch1_rank0_size == 0) { |
| dramc_crit("[EMI] undefined CONH for CH1 RANK0\n"); |
| ASSERT(0); |
| } |
| dram_rank_size[0] += ch1_rank0_size; |
| |
| if (get_rank_nr_by_emi() > 1) { |
| if(ch1_rank1_size == 0) { |
| dramc_crit("[EMI] undefined CONH for CH1 RANK1\n"); |
| ASSERT(0); |
| } |
| dram_rank_size[1] += ch1_rank1_size; |
| } |
| } |
| |
| dramc_crit("DRAM rank0 size:0x%llx,\nDRAM rank1 size=0x%llx\n", |
| dram_rank_size[0], dram_rank_size[1]); |
| } |
| |
| |
| unsigned int get_dram_mr(unsigned int index) |
| { |
| switch (index) { |
| case 5: |
| return mr5; |
| default: |
| return 0; |
| } |
| } |
| |
| #if (FOR_DV_SIMULATION_USED==0) |
| #if !__FLASH_TOOL_DA__ && !__ETT__ |
| void get_dram_rank_size(u64 dram_rank_size[]) |
| { |
| int rank_nr, i; |
| |
| #ifdef DDR_RESERVE_MODE |
| if(g_ddr_reserve_enable==1 && g_ddr_reserve_success==1) |
| return get_rank_size_by_emi(dram_rank_size); |
| #endif |
| |
| #ifdef DRAM_ADAPTIVE |
| if (!auto_detect_done) |
| ASSERT(0); |
| #endif |
| |
| rank_nr = get_dram_rank_nr(); |
| |
| for(i = 0; i < rank_nr; i++) { |
| dram_rank_size[i] = g_default_emi_setting.DRAM_RANK_SIZE[i]; |
| dramc_debug("%d:dram_rank_size:%llx\n",i,dram_rank_size[i]); |
| } |
| } |
| |
| #endif //#if !__FLASH_TOOL_DA__ && !__ETT__ |
| #endif |
| |
| static int update_dram_setting(EMI_SETTINGS *default_emi_setting, unsigned int dram_type, DRAM_INFO_BY_MRR_T *dram_info) |
| { |
| default_emi_setting->type = dram_type; |
| |
| if (dram_info != NULL) { |
| default_emi_setting->DRAM_RANK_SIZE[0] = (u64)(dram_info->u8MR8Density[0][0] + dram_info->u8MR8Density[1][0]); |
| default_emi_setting->DRAM_RANK_SIZE[1] = (u64)(dram_info->u8MR8Density[1][0] + dram_info->u8MR8Density[1][1]); |
| |
| default_emi_setting->iLPDDR3_MODE_REG_5 = dram_info->u2MR5VendorID; |
| |
| if (dram_info->u4RankNum == 1) { // single rank |
| if (dram_info->u1DieNum[RANK_0] == 1) |
| default_emi_setting->dram_cbt_mode_extern = CBT_R0_R1_NORMAL; |
| else if (dram_info->u1DieNum[RANK_0] == 2) |
| default_emi_setting->dram_cbt_mode_extern = CBT_R0_R1_BYTE; |
| else |
| return -1; |
| } else if (dram_info->u4RankNum == 2) { // dual rank |
| if ((dram_info->u1DieNum[RANK_0] == 1) && (dram_info->u1DieNum[RANK_1] == 1)) |
| default_emi_setting->dram_cbt_mode_extern = CBT_R0_R1_NORMAL; |
| else if ((dram_info->u1DieNum[RANK_0] == 1) && (dram_info->u1DieNum[RANK_1] == 2)) |
| default_emi_setting->dram_cbt_mode_extern = CBT_R0_NORMAL_R1_BYTE; |
| else if ((dram_info->u1DieNum[RANK_0] == 2) && (dram_info->u1DieNum[RANK_1] == 1)) |
| default_emi_setting->dram_cbt_mode_extern = CBT_R0_BYTE_R1_NORMAL; |
| else if ((dram_info->u1DieNum[RANK_0] == 2) && (dram_info->u1DieNum[RANK_1] == 2)) |
| default_emi_setting->dram_cbt_mode_extern = CBT_R0_R1_BYTE; |
| else |
| return -2; |
| } else |
| return -3; |
| } else |
| return -4; |
| |
| return 0; |
| } |
| |
| int update_emi_setting(EMI_SETTINGS *default_emi_setting, EMI_INFO_T *emi_info) |
| { |
| unsigned int ddr_type; |
| unsigned int cen_cona_val, cen_conf_val, cen_conh_val; |
| unsigned int chn_cona_val; |
| unsigned int cen_conf_shf; |
| unsigned int col, row, row_ext, rk_size, rk_size_ext, rk_size_chn_ext; |
| unsigned int temp_val; |
| int i; |
| |
| ddr_type = default_emi_setting->type & 0xFF; |
| cen_conh_val = 0x00000003; |
| if (u1IsLP4Family(ddr_type)) { |
| cen_cona_val = 0x00000004; |
| chn_cona_val = 0x04000000; |
| } else { |
| cen_cona_val = 0x00000006; |
| if (emi_info->bank_width[0] == 3) |
| chn_cona_val = 0x00000002; |
| else |
| chn_cona_val = 0x03000002; |
| } |
| |
| for (i = 0; i < emi_info->rk_num; i++) { |
| row = emi_info->row_width[i] - 13; |
| row_ext = row >> 2; |
| row &= 0x3; |
| |
| col = emi_info->col_width[i] - 9; |
| |
| rk_size = emi_info->rank_size[i] >> 28; |
| if (u1IsLP4Family(ddr_type)) |
| rk_size >>= 1; |
| rk_size_ext = rk_size >> 4; |
| rk_size_chn_ext = rk_size_ext & 0x1; |
| rk_size &= 0xF; |
| |
| if (i == 1) { |
| col <<= 2; |
| row <<= 2; |
| row_ext <<= 1; |
| rk_size <<= 4; |
| rk_size_ext <<= 4; |
| rk_size_chn_ext <<= 1; |
| cen_cona_val |= 0x00030000; |
| chn_cona_val |= 0x00000001; |
| } |
| |
| cen_cona_val |= |
| (col << 4) | (row << 12) | (col << 20) | |
| (row_ext << 24) | (row << 28); |
| cen_conh_val |= |
| (row_ext << 4) | (rk_size << 16); |
| chn_cona_val |= |
| (row_ext << 2) | (col << 4) | (row << 12) | |
| (rk_size << 16) | (rk_size_chn_ext << 8); |
| } |
| |
| cen_conf_shf = 0; |
| for (i = 0; i < emi_info->rk_num; i++) { |
| temp_val = 2 + emi_info->col_width[i]; |
| if (cen_conf_shf < temp_val) |
| cen_conf_shf = temp_val; |
| } |
| if (u1IsLP4Family(ddr_type)) |
| cen_conf_val = 0x421 << ((cen_conf_shf - 9) * 4); |
| else |
| { |
| if (emi_info->bank_width[0] == 3) |
| cen_conf_val = 0x421 << ((cen_conf_shf - 8) * 4); |
| else |
| cen_conf_val = 0x21 << ((cen_conf_shf - 8) * 4); |
| } |
| |
| while(cen_conf_val & 0xFFF) { |
| cen_conf_val <<= 4; |
| } |
| |
| dramc_crit("[EMI] %s(0x%x),%s(0x%x),%s(0x%x),%s(0x%x)\n", |
| "CEN_CONA", cen_cona_val, |
| "CEN_CONF", cen_conf_val, |
| "CEN_CONH", cen_conh_val, |
| "CHN_CONA", chn_cona_val); |
| |
| default_emi_setting->EMI_CONA_VAL = cen_cona_val; |
| default_emi_setting->EMI_CONF_VAL = cen_conf_val; |
| default_emi_setting->EMI_CONH_VAL = cen_conh_val; |
| default_emi_setting->CHN0_EMI_CONA_VAL = chn_cona_val; |
| default_emi_setting->CHN1_EMI_CONA_VAL = chn_cona_val; |
| |
| return 0; |
| } |
| |
| static int decode_emi_info(EMI_INFO_T *emi_info, unsigned int dram_type, DRAM_INFO_BY_MRR_T *dram_info) |
| { |
| unsigned int i; |
| unsigned long long die_size; |
| |
| emi_info->dram_type = dram_type; |
| emi_info->ch_num = 1; |
| if (dram_info->u4BankMode == BANK_TYPE_S2) { |
| emi_info->bank_width[0] = 2; |
| emi_info->bank_width[1] = 2; |
| } |
| else { |
| emi_info->bank_width[0] = 3; |
| emi_info->bank_width[1] = 3; |
| } |
| emi_info->col_width[0] = 10; |
| emi_info->col_width[1] = 10; |
| |
| if (dram_info != NULL) { |
| emi_info->rank_size[0] = (u64)(dram_info->u8MR8Density[0][0] + dram_info->u8MR8Density[1][0]); |
| emi_info->rank_size[1] = (u64)(dram_info->u8MR8Density[1][0] + dram_info->u8MR8Density[1][1]); |
| |
| emi_info->rk_num = dram_info->u4RankNum; |
| |
| for (i = 0; i < emi_info->rk_num; i++) { |
| die_size = emi_info->rank_size[i] / dram_info->u1DieNum[i]; |
| switch (die_size | (dram_info->u1DieNum[i] << 4) | u1IsLP4Family(dram_type)) { |
| case 0x20000011ULL: // 4Gb, x16, LP4 |
| emi_info->row_width[i] = 14; |
| break; |
| case 0x20000021ULL: // 4Gb, x8, LP4 |
| case 0x40000021ULL: // 8Gb, x8, LP4 |
| case 0x30000011ULL: // 6Gb, x16, LP4 |
| case 0x40000011ULL: // 8Gb, x16, LP4 |
| emi_info->row_width[i] = 15; |
| break; |
| case 0x30000021ULL: // 6Gb, x8, LP4 |
| case 0x60000011ULL: // 12Gb, x16, LP4 |
| case 0x80000011ULL: // 16Gb, x16, LP4 |
| emi_info->row_width[i] = 16; |
| break; |
| case 0x060000021ULL: // 12Gb, x8, LP4 |
| case 0x080000021ULL: // 16Gb, x8, LP4 |
| case 0x0C0000011ULL: // 24Gb, x16, LP4 |
| case 0x100000011ULL: // 32Gb, x16, LP4 |
| emi_info->row_width[i] = 17; |
| break; |
| case 0x0C0000021ULL: // 24Gb, x8, LP4 |
| case 0x100000021ULL: // 32Gb, x8, LP4 |
| emi_info->row_width[i] = 18; |
| break; |
| //FOR LP2 Decode |
| #if 0 |
| case 0x800010ULL: // 64Mb, x32, LP2 |
| emi_info->col_width[i] = 7; |
| emi_info->row_width[i] = 12; |
| emi_info->bank_width[i] = 2; |
| break; |
| case 0x800020ULL: // 64Mb, x16, LP2 |
| case 0x1000010ULL: // 128Mb, x32, LP2 |
| emi_info->col_width[i] = 8; |
| emi_info->row_width[i] = 12; |
| emi_info->bank_width[i] = 2; |
| break; |
| case 0x1000020ULL: // 128Mb, x16, LP2 |
| emi_info->col_width[i] = 9; |
| emi_info->row_width[i] = 12; |
| emi_info->bank_width[i] = 2; |
| break; |
| case 0x2000010ULL: // 256Mb, x32, LP2 |
| emi_info->col_width[i] = 8; |
| emi_info->row_width[i] = 13; |
| emi_info->bank_width[i] = 2; |
| break; |
| case 0x2000020ULL: // 256Mb, x16, LP2 |
| case 0x4000010ULL: // 512Mb, x32, LP2 |
| emi_info->bank_width[i] = 2; |
| emi_info->col_width[i] = 9; |
| emi_info->row_width[i] = 13; |
| break; |
| case 0x4000020ULL: // 512Mb, x16, LP2 |
| emi_info->col_width[i] = 10; |
| emi_info->row_width[i] = 13; |
| emi_info->bank_width[i] = 2; |
| break; |
| #endif |
| case 0x8000010ULL: // 1Gb, x32, LP2 |
| if (dram_info->u4BankMode == BANK_TYPE_S2) { |
| emi_info->col_width[i] = 9; |
| emi_info->row_width[i] = 14; |
| } else { |
| emi_info->col_width[i] = 9; |
| emi_info->row_width[i] = 13; |
| } |
| break; |
| case 0x8000020ULL: // 1Gb, x16, LP2 |
| if (dram_info->u4BankMode == BANK_TYPE_S2) { |
| emi_info->col_width[i] = 10; |
| emi_info->row_width[i] = 14; |
| } else { |
| emi_info->col_width[i] = 10; |
| emi_info->row_width[i] = 13; |
| } |
| break; |
| case 0x10000010ULL: // 2Gb, x32, LP2 |
| if (dram_info->u4BankMode == BANK_TYPE_S2) { |
| emi_info->col_width[i] = 9; |
| emi_info->row_width[i] = 15; |
| } else { |
| emi_info->col_width[i] = 9; |
| emi_info->row_width[i] = 14; |
| } |
| break; |
| case 0x10000020ULL: // 2Gb, x16, LP2 |
| if (dram_info->u4BankMode == BANK_TYPE_S2) { |
| emi_info->col_width[i] = 10; |
| emi_info->row_width[i] = 15; |
| } else { |
| emi_info->col_width[i] = 10; |
| emi_info->row_width[i] = 14; |
| } |
| break; |
| case 0x20000010ULL: // 4Gb, x32, LP2 |
| emi_info->col_width[i] = 10; |
| emi_info->row_width[i] = 14; |
| break; |
| case 0x20000020ULL: // 4Gb, x16, LP2 |
| emi_info->col_width[i] = 11; |
| emi_info->row_width[i] = 14; |
| break; |
| case 0x40000010ULL: // 8Gb, x32, LP2 |
| emi_info->col_width[i] = 10; |
| emi_info->row_width[i] = 15; |
| break; |
| case 0x40000020ULL: // 8Gb, x16, LP2 |
| emi_info->col_width[i] = 11; |
| emi_info->row_width[i] = 15; |
| break; |
| default: |
| return -1; |
| } |
| } |
| } else |
| return -1; |
| |
| return 0; |
| } |
| #endif |
| |
| |
| #if (FOR_DV_SIMULATION_USED==0) |
| #if !__ETT__ |
| #ifdef DRAM_ADAPTIVE |
| void dram_auto_detection(void) |
| { |
| DRAM_INFO_BY_MRR_T dram_info = {0}; |
| EMI_INFO_T emi_info = {0}; |
| DRAM_CBT_MODE_EXTERN_T dram_mode; |
| unsigned int dram_type; |
| int ret; |
| |
| dram_type = (unsigned int)mt_get_dram_type_for_dis(); |
| if (dram_type == TYPE_LPDDR2) |
| dram_type = TYPE_LPDDR3; |
| g_default_emi_setting.type &= ~0xFF; |
| g_default_emi_setting.type |= (dram_type & 0xFF); |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| if (!u1IsLP4Family(dram_type) || |
| read_offline_dram_mdl_data(&dram_info) < 0) { |
| #endif |
| dram_mode = (u1IsLP4Family(dram_type))? |
| CBT_BYTE_MODE1 : CBT_NORMAL_MODE; |
| |
| dramc_crit("[DRAMC] Init_DRAM GET_MDL_USED start\n"); |
| Init_DRAM(dram_type, dram_mode, &dram_info, GET_MDL_USED); |
| dramc_crit("[DRAMC] Init_DRAM GET_MDL_USED end\n"); |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| if (u1IsLP4Family(dram_type)) |
| write_offline_dram_mdl_data(&dram_info); |
| } |
| #endif |
| |
| |
| ret = update_dram_setting(&g_default_emi_setting, dram_type, &dram_info); |
| if (ret) { |
| dramc_crit("[DRAMC] update_dram_setting err %d\n", ret); |
| ASSERT(0); |
| } |
| |
| ret = decode_emi_info(&emi_info, dram_type, &dram_info); |
| if (ret) { |
| dramc_crit("[DRAMC] decode_emi_info err %d\n", ret); |
| ASSERT(0); |
| } |
| |
| ret = update_emi_setting(&g_default_emi_setting, &emi_info); |
| if (ret) { |
| dramc_crit("[DRAMC] update_emi_setting err %d\n", ret); |
| ASSERT(0); |
| } |
| |
| auto_detect_done = 1; |
| } |
| #endif |
| |
| void mt_set_emi(void) |
| { |
| /*unsigned int SW_CTRL_VC, HW_CTRL_VC;*/ |
| EMI_SETTINGS *emi_set; |
| |
| // set voltage and hw trapping before mdl |
| setup_dramc_voltage_by_pmic(); |
| |
| #ifdef VCORE_BIN |
| dvfsrc_opp_level_mapping(); |
| #endif |
| |
| #ifndef DRAM_ADAPTIVE |
| #ifdef COMBO_MCP |
| int index; |
| |
| index = mt_get_mdl_number(); |
| dramc_crit("[EMI] MDL number = %d\r\n", index); |
| if (index < 0 || index >= num_of_emi_records) |
| { |
| dramc_crit("[EMI] setting failed 0x%x\r\n", index); |
| ASSERT(0); |
| } |
| else |
| { |
| emi_setting_index = index; |
| emi_set = &emi_settings[emi_setting_index]; |
| } |
| #else |
| dramc_crit("[EMI] ComboMCP not ready, using default setting\n"); |
| emi_setting_index = -1; |
| emi_set = &default_emi_setting; |
| #endif |
| mr5 = emi_set->iLPDDR3_MODE_REG_5; |
| #else |
| dram_auto_detection(); |
| emi_set = &g_default_emi_setting; |
| #endif |
| |
| #ifdef DDR_RESERVE_MODE |
| if(g_ddr_reserve_enable==1 && g_ddr_reserve_success==0) |
| Before_Init_DRAM_While_Reserve_Mode_fail(emi_set->type & 0xF); |
| #endif |
| |
| Init_DRAM((emi_set->type & 0xF), emi_set->dram_cbt_mode_extern, NULL, NORMAL_USED); |
| switch_dramc_voltage_to_auto_mode(); |
| restore_vcore_setting(); |
| |
| #if 0 |
| { |
| DRAMC_CTX_T * p = psCurrDramCtx; |
| DramcRegDump(p); |
| } |
| #endif |
| } |
| #endif |
| #endif |
| |
| #define DRAMC_ADDR_SHIFT_CHN(addr, channel) (addr + (channel * 0x10000)) |
| |
| void phy_addr_to_dram_addr(dram_addr_t *dram_addr, unsigned long long phy_addr) |
| { |
| unsigned int emi_cona, emi_conf; |
| unsigned long long rank_size[4]; |
| unsigned int channel_num, rank_num; |
| unsigned int bit_scramble, bit_xor, bit_shift, channel_pos, channel_width; |
| unsigned int temp; |
| unsigned int index; |
| unsigned int ddr_type = mt_get_dram_type_from_hw_trap(); |
| |
| emi_cona = *((volatile unsigned int *)EMI_CONA); |
| emi_conf = *((volatile unsigned int *)EMI_CONF) >> 8; |
| #ifdef DRAM_ADAPTIVE |
| get_rank_size_by_emi(rank_size); |
| #else |
| get_dram_rank_size_by_EMI_CONA(rank_size); |
| #endif |
| rank_num = (unsigned int) get_dram_rank_nr(); |
| channel_num = (unsigned int) get_dram_channel_nr(); |
| |
| if (rank_num >= sizeof(rank_size) / sizeof(*rank_size)) { |
| dramc_crit("[Dramc] Wrong rank_num: %u\n", rank_num); |
| ASSERT(0); |
| } |
| |
| phy_addr -= 0x40000000; |
| for (index = 0; index < rank_num; index++) { |
| if (phy_addr >= rank_size[index]) |
| phy_addr -= rank_size[index]; |
| else |
| break; |
| } |
| |
| for (bit_scramble = 11; bit_scramble < 17; bit_scramble++) { |
| bit_xor = (emi_conf >> (4 * (bit_scramble - 11))) & 0xf; |
| bit_xor &= phy_addr >> 16; |
| for (bit_shift = 0; bit_shift < 4; bit_shift++) |
| phy_addr ^= ((bit_xor>>bit_shift)&0x1) << bit_scramble; |
| } |
| |
| if (channel_num > 1) { |
| channel_pos = ((emi_cona >> 2) & 0x3) + 7; |
| |
| for (channel_width = bit_shift = 0; bit_shift < 4; bit_shift++) { |
| if ((unsigned int)(1 << bit_shift) >= channel_num) |
| break; |
| channel_width++; |
| } |
| |
| switch (channel_width) { |
| case 2: |
| dram_addr->addr = ((phy_addr & ~(((0x1 << 2) << channel_pos) - 1)) >> 2); |
| break; |
| default: |
| dram_addr->addr = ((phy_addr & ~(((0x1 << 1) << channel_pos) - 1)) >> 1); |
| break; |
| } |
| dram_addr->addr |= (phy_addr & ((0x1 << channel_pos) - 1)); |
| } else { |
| dram_addr->addr = phy_addr; |
| } |
| |
| if (u1IsLP4Family(ddr_type)) |
| dram_addr->addr >>= 1; |
| else |
| dram_addr->addr >>= 2; |
| |
| temp = dram_addr->addr; |
| switch ((emi_cona >> 4) & 0x3) { |
| case 0: |
| dram_addr->col = temp & 0x1FF; |
| temp = temp >> 9; |
| break; |
| case 1: |
| dram_addr->col = temp & 0x3FF; |
| temp = temp >> 10; |
| break; |
| case 2: |
| default: |
| dram_addr->col = temp & 0x7FF; |
| temp = temp >> 11; |
| break; |
| } |
| dram_addr->bk = temp & 0x7; |
| temp = temp >> 3; |
| |
| dram_addr->row = temp; |
| |
| //mcSHOW_DBG_MSG(("ch%d, rk%d, dram addr: %x\n", dram_addr->ch, dram_addr->rk, dram_addr->addr)); |
| //mcSHOW_DBG_MSG(("bk%x, row%x, col%x\n", dram_addr->bk, dram_addr->row, dram_addr->col)); |
| } |
| |
| void put_dummy_read_pattern(unsigned long long dst_pa, unsigned long src_pa, unsigned int len) |
| { |
| *((volatile unsigned int *)(CQ_DMA_BASE + 0x018)) = 7 << 16; |
| |
| *((volatile unsigned int *)(CQ_DMA_BASE + 0x01c)) = src_pa & 0xffffffff; |
| *((volatile unsigned int *)(CQ_DMA_BASE + 0x060)) = 0; |
| |
| *((volatile unsigned int *)(CQ_DMA_BASE + 0x020)) = dst_pa & 0xffffffff; |
| *((volatile unsigned int *)(CQ_DMA_BASE + 0x064)) = dst_pa >> 32; |
| |
| *((volatile unsigned int *)(CQ_DMA_BASE + 0x024)) = len; |
| dsb(); |
| *((volatile unsigned int *)(CQ_DMA_BASE + 0x008)) = 0x1; |
| |
| while(*((volatile unsigned int *)(CQ_DMA_BASE + 0x008))); |
| |
| *((volatile unsigned int *)(CQ_DMA_BASE + 0x064)) = 0; |
| } |
| |
| static unsigned int get_dramc_addr(dram_addr_t *dram_addr, unsigned int offset) |
| { |
| unsigned int channel_num, rank_num; |
| unsigned long long dummy_read_addr; |
| unsigned long long rank_size[4]; |
| unsigned int index; |
| unsigned int *src_addr; |
| |
| channel_num = (unsigned int) get_dram_channel_nr(); |
| rank_num = (unsigned int) get_dram_rank_nr(); |
| #ifdef DRAM_ADAPTIVE |
| get_rank_size_by_emi(rank_size); |
| #else |
| get_dram_rank_size_by_EMI_CONA(rank_size); |
| #endif |
| dummy_read_addr = 0x40000000; |
| src_addr = (unsigned int *) 0x40000000; |
| |
| if (dram_addr->ch >= channel_num) { |
| mcSHOW_DBG_MSG(("[DRAMC] invalid channel: %d\n", dram_addr->ch)); |
| return 0; |
| } |
| |
| if (dram_addr->rk >= rank_num) { |
| mcSHOW_DBG_MSG(("[DRAMC] invalid rank: %d\n", dram_addr->rk)); |
| return 0; |
| } |
| |
| for (index = 0; index <= dram_addr->rk; index++) |
| dummy_read_addr += rank_size[index]; |
| dummy_read_addr -= offset; |
| if (dram_addr->ch == 0) |
| dummy_read_addr &= ~(0x100); |
| |
| if (offset == 0x20) { |
| for (index = 0; index < 4; index++) |
| *(src_addr + index) = 0xAAAA5555; |
| put_dummy_read_pattern(dummy_read_addr, (unsigned long)src_addr, 16); |
| } |
| |
| dram_addr->full_sys_addr = dummy_read_addr; |
| phy_addr_to_dram_addr(dram_addr, dummy_read_addr); |
| |
| return dram_addr->addr; |
| } |
| |
| unsigned int get_dummy_read_addr(dram_addr_t *dram_addr) |
| { |
| return get_dramc_addr(dram_addr, 0x20); // 32-byte align for dummy RW pattern |
| } |
| |
| unsigned int get_ta2_addr(dram_addr_t *dram_addr) |
| { |
| unsigned int addr = get_dramc_addr(dram_addr, 0x1000); |
| |
| if (!u1IsLP4Family(mt_get_dram_type_from_hw_trap())) |
| addr <<= 2; |
| |
| return addr & 0xFFFFFFF0; |
| } |
| |
| void init_ta2_single_channel(unsigned int channel) |
| { |
| unsigned int temp; |
| unsigned int matype[2]; |
| unsigned int col_shf[2] = {0, 0}; |
| dram_addr_t dram_addr; |
| DRAMC_CTX_T *p = psCurrDramCtx; |
| int rank_nr; |
| |
| // mt6771: CHN0_EMI for CHN-A; CHN1_EMI for CHN-B |
| if(channel < 2) { |
| matype[0] = (*(volatile unsigned *)EMI_CONA >> 4) & 0x3; |
| matype[1] = (*(volatile unsigned *)EMI_CONA >> 6) & 0x3; |
| } else { |
| matype[0] = (*(volatile unsigned *)EMI_CONA >> 20) & 0x3; |
| matype[1] = (*(volatile unsigned *)EMI_CONA >> 22) & 0x3; |
| } |
| |
| rank_nr = get_dram_rank_nr(); |
| if (rank_nr > 1) { |
| if (matype[0] < matype[1]) { |
| col_shf[0] = matype[1] - matype[0]; |
| matype[0] = matype[1]; |
| } else if (matype[1] < matype[0]) |
| col_shf[1] = matype[0] - matype[1]; |
| } |
| |
| matype[0] = (matype[0] + 1) << 30; |
| |
| // disable self test engine1 and self test engine2 |
| temp = u4IO32Read4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_TEST2_3, channel)) & 0x1FFFFFFF; |
| vIO32Write4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_TEST2_3, channel), temp); |
| |
| // set MATYPE |
| temp = (u4IO32Read4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_SHU_CONF0, channel)) & 0x3FFFFFFF) | matype[0]; |
| vIO32Write4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_SHU_CONF0, channel), temp); |
| temp = (u4IO32Read4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_SHU2_CONF0, channel)) & 0x3FFFFFFF) | matype[0]; |
| vIO32Write4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_SHU2_CONF0, channel), temp); |
| temp = (u4IO32Read4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_SHU3_CONF0, channel)) & 0x3FFFFFFF) | matype[0]; |
| vIO32Write4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_SHU3_CONF0, channel), temp); |
| |
| if (rank_nr > 1) { |
| // set rank address for test agent to auto |
| temp = u4IO32Read4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_TEST2_4, channel)) & 0x8FFFFFFF; |
| temp |= (0x4 << 28); |
| vIO32Write4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_TEST2_4, channel), temp); |
| |
| // set test for both rank0 and rank1 |
| temp = u4IO32Read4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_TEST2_3, channel)) & 0xFFFFFFF0; |
| vIO32Write4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_TEST2_3, channel), temp | 0x1); |
| } |
| |
| // set base address for test agent to reserved space |
| dram_addr.ch = channel; |
| dram_addr.rk = 0; |
| temp = (u4IO32Read4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_TEST2_1, channel)) & 0x0000000F); |
| vIO32Write4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_TEST2_1, channel), temp | (get_ta2_addr(&dram_addr) << col_shf[0])); |
| dram_addr.rk = 1; |
| temp = (u4IO32Read4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_TEST2_5, channel)) & 0x0000000F); |
| vIO32Write4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_TEST2_5, channel), temp | (get_ta2_addr(&dram_addr) << col_shf[1])); |
| |
| // set test length (offset) to 0x20 |
| temp = (u4IO32Read4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_TEST2_2, channel)) & 0x0000000F) | (0x20 << 4); |
| vIO32Write4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_TEST2_2, channel), temp); |
| |
| return; |
| } |
| |
| #ifdef LAST_DRAMC |
| |
| static unsigned int is_last_dramc_initialized(void) |
| { |
| if(last_dramc_info_ptr->ta2_result_magic != LAST_DRAMC_MAGIC_PATTERN) { |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| void update_last_dramc_info(void) |
| { |
| unsigned int chn; |
| unsigned int latch_result = 0; |
| unsigned int temp; |
| unsigned int *curr; |
| DRAMC_CTX_T *p = psCurrDramCtx; |
| |
| // init checksum and magic pattern |
| if(last_dramc_info_ptr->ta2_result_magic != LAST_DRAMC_MAGIC_PATTERN) { |
| last_dramc_info_ptr->ta2_result_magic = LAST_DRAMC_MAGIC_PATTERN; |
| last_dramc_info_ptr->ta2_result_last = 0; |
| last_dramc_info_ptr->ta2_result_past = 0; |
| last_dramc_info_ptr->ta2_result_checksum = LAST_DRAMC_MAGIC_PATTERN; |
| last_dramc_info_ptr->reboot_count = 0; |
| } else { |
| last_dramc_info_ptr->ta2_result_checksum ^= last_dramc_info_ptr->reboot_count; |
| last_dramc_info_ptr->reboot_count++; |
| last_dramc_info_ptr->ta2_result_checksum ^= last_dramc_info_ptr->reboot_count; |
| } |
| |
| // TODO: check DCS status |
| |
| // read data from latch register and reset |
| for (chn = 0; chn < CHANNEL_NUM; ++chn) { |
| //dramc_crit("[LastDRAMC] latch result before RST: %x\n", u4IO32Read4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_WDT_DBG_SIGNAL, chn))); |
| latch_result = (latch_result << 16) | u4IO32Read4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_WDT_DBG_SIGNAL, chn)) & 0xFFFF; |
| temp = u4IO32Read4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_DDRCONF0, chn)); |
| vIO32Write4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_DDRCONF0, chn), temp | 0x00000004); |
| vIO32Write4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_DDRCONF0, chn), temp & 0xFFFFFFFB); |
| //dramc_crit("[LastDRAMC] latch result after RST: %x\n", u4IO32Read4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_WDT_DBG_SIGNAL, chn))); |
| } |
| |
| last_dramc_info_ptr->ta2_result_checksum ^= last_dramc_info_ptr->ta2_result_past ^ latch_result; |
| last_dramc_info_ptr->ta2_result_past = last_dramc_info_ptr->ta2_result_last; |
| last_dramc_info_ptr->ta2_result_last = latch_result; |
| for (temp = 0; temp < sizeof(LAST_DRAMC_INFO_T) / sizeof(temp); temp++) { |
| curr = (unsigned int *)last_dramc_info_ptr + temp; |
| dramc_crit("[LastDRAMC] 0x%x: 0x%x\n", curr, *curr); |
| } |
| |
| return; |
| } |
| |
| void update_last_dramc_k_voltage(DRAMC_CTX_T *p, unsigned int voltage) |
| { |
| unsigned int shu_type; |
| |
| shu_type = get_shuffleIndex_by_Freq(p); |
| |
| last_dramc_info_ptr->k_voltage[shu_type] = voltage; |
| } |
| |
| void init_ta2_all_channel(void) |
| { |
| unsigned int chn; |
| |
| update_last_dramc_info(); |
| |
| // TODO: consider DCS |
| for (chn = 0; chn < CHANNEL_NUM; ++chn) |
| init_ta2_single_channel(chn); |
| } |
| |
| |
| unsigned int check_gating_err_in_dramc_latch(void) |
| { |
| unsigned int chn, ret = 0; |
| DRAMC_CTX_T *p = psCurrDramCtx; |
| |
| if (/*(g_boot_reason == BR_POWER_KEY) || (g_boot_reason == BR_USB) |
| || mtk_wdt_is_pmic_full_reset() ||*/ (is_last_dramc_initialized() == 0)){ |
| dramc_crit("for cold boot, always return 0\n"); |
| return 0; |
| } |
| |
| for (chn = 0; chn <= 3; ++chn) { |
| if (u4IO32Read4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_WDT_DBG_SIGNAL, chn)) & 0x80) { |
| dramc_crit("[dramc] found gating error in channel %d (0x%x)\n", |
| chn, u4IO32Read4B(DRAMC_ADDR_SHIFT_CHN(DRAMC_REG_WDT_DBG_SIGNAL, chn))); |
| ret |= (1 << chn); |
| } |
| } |
| |
| return ret; |
| } |
| |
| void dram_fatal_exception_detection_start(void) |
| { |
| last_dramc_info_ptr = (LAST_DRAMC_INFO_T *) get_dbg_info_base(KEY_LAST_DRAMC); |
| |
| if (/*(g_boot_reason == BR_POWER_KEY) || (g_boot_reason == BR_USB) |
| || mtk_wdt_is_pmic_full_reset() ||*/ (is_last_dramc_initialized() == 0)){ |
| /* cold boot: initialize last_dram_fatal_err_flag and dram_fatal_err_flag */ |
| dramc_crit("[dramc] init SRAM region for DRAM exception detection\n"); |
| last_dramc_info_ptr->last_fatal_err_flag = 0x0; |
| last_dramc_info_ptr->storage_api_err_flag = 0x0; |
| dram_fatal_init_stberr(); |
| } else { |
| last_dramc_info_ptr->last_fatal_err_flag = last_dramc_info_ptr->fatal_err_flag; |
| last_dramc_info_ptr->storage_api_err_flag = 0x0; |
| dram_fatal_backup_stberr(); |
| dram_fatal_init_stberr(); |
| } |
| |
| last_dramc_info_ptr->fatal_err_flag = 1 << OFFSET_DRAM_FATAL_ERR; |
| dsb(); |
| } |
| |
| void dram_fatal_exception_detection_end(void) |
| { |
| last_dramc_info_ptr->fatal_err_flag = 0x0; |
| dsb(); |
| } |
| |
| unsigned int check_dram_fatal_exception(void) |
| { |
| dramc_crit("[dramc] DRAM_FATAL_ERR_FLAG = 0x%x\n", last_dramc_info_ptr->fatal_err_flag); |
| |
| return ((last_dramc_info_ptr->fatal_err_flag & ~((1 << OFFSET_DRAM_FATAL_ERR)|DDR_RSV_MODE_ERR_MASK)) != 0x0) ? 1 : 0; |
| } |
| |
| unsigned int check_last_dram_fatal_exception(void) |
| { |
| dramc_crit("[dramc] LAST_DRAM_FATAL_ERR_FLAG = 0x%x\n", last_dramc_info_ptr->last_fatal_err_flag); |
| |
| return ((last_dramc_info_ptr->last_fatal_err_flag & ~(DDR_RSV_MODE_ERR_MASK)) != 0x0) ? 1 : 0; |
| } |
| |
| void dram_fatal_set_ta2_err(unsigned int chn, unsigned int err_code) |
| { |
| unsigned int shift = OFFSET_DRAM_TA2_ERR + 2 * chn, ret; |
| |
| if (chn > 3) |
| return; |
| |
| ret = last_dramc_info_ptr->fatal_err_flag & ~(0x7 << shift); |
| last_dramc_info_ptr->fatal_err_flag = ret | ((err_code & 0x7) << shift); |
| dsb(); |
| } |
| |
| void dram_fatal_set_gating_err(unsigned int chn, unsigned int err_code) |
| { |
| unsigned int shift = OFFSET_DRAM_GATING_ERR + 4 * chn, ret; |
| |
| if (chn > 3) |
| return; |
| |
| ret = last_dramc_info_ptr->fatal_err_flag & ~(0xf << shift); |
| last_dramc_info_ptr->fatal_err_flag = ret | ((err_code & 0xf) << shift); |
| dsb(); |
| } |
| |
| void dram_fatal_init_stberr(void) |
| { |
| last_dramc_info_ptr->gating_err[0][0] = 0x0; |
| last_dramc_info_ptr->gating_err[0][1] = 0x0; |
| last_dramc_info_ptr->gating_err[1][0] = 0x0; |
| last_dramc_info_ptr->gating_err[1][1] = 0x0; |
| |
| dsb(); |
| } |
| |
| void dram_fatal_backup_stberr(void) |
| { |
| last_dramc_info_ptr->last_gating_err[0][0] = last_dramc_info_ptr->gating_err[0][0]; |
| last_dramc_info_ptr->last_gating_err[0][1] = last_dramc_info_ptr->gating_err[0][1]; |
| last_dramc_info_ptr->last_gating_err[1][0] = last_dramc_info_ptr->gating_err[1][0]; |
| last_dramc_info_ptr->last_gating_err[1][1] = last_dramc_info_ptr->gating_err[1][1]; |
| |
| dsb(); |
| } |
| |
| void dram_fatal_set_stberr(unsigned int chn, unsigned int rk, unsigned int err_code) |
| { |
| if ((chn > 1) || (rk > 1)) |
| return; |
| |
| last_dramc_info_ptr->gating_err[chn][rk] = err_code; |
| |
| dsb(); |
| } |
| |
| void dram_fatal_set_err(unsigned int err_code, unsigned int mask, unsigned int offset) |
| { |
| unsigned int ret; |
| |
| ret = last_dramc_info_ptr->fatal_err_flag & ~(mask << offset); |
| last_dramc_info_ptr->fatal_err_flag = ret | ((err_code & mask) << offset); |
| dsb(); |
| } |
| |
| #endif |
| |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| |
| #if !__ETT__ |
| #include <lib/bio.h> |
| //#include <partition.h> |
| #include <pl_version.h> |
| #endif |
| |
| u32 g_dram_storage_api_err_code; |
| |
| static u16 crc16(const u8* data, u32 length){ |
| u8 x; |
| u16 crc = 0xFFFF; |
| |
| while (length--) { |
| x = crc >> 8 ^ *data++; |
| x ^= x >> 4; |
| crc = (crc << 8) ^ ((u8)(x << 12)) ^ ((u8)(x <<5)) ^ ((u8)x); |
| } |
| return crc; |
| } |
| |
| static void assign_checksum_for_dram_data(DRAM_CALIBRATION_SHU_DATA_T *shu_data) |
| { |
| /* need to initialize checksum to 0 before calculation */ |
| shu_data->checksum = 0; |
| shu_data->checksum = crc16((u8*)shu_data, sizeof(*shu_data)); |
| } |
| |
| static int check_checksum_for_dram_data(DRAM_CALIBRATION_SHU_DATA_T *shu_data) |
| { |
| u16 checksum_in_storage = shu_data->checksum; |
| |
| assign_checksum_for_dram_data(shu_data); |
| |
| return (shu_data->checksum == checksum_in_storage) ? 1 : 0; |
| } |
| |
| #ifdef COMBO_MCP |
| static void assign_checksum_for_mdl_data(DRAM_CALIBRATION_MRR_DATA_T *mrr_info) |
| { |
| /* need to initialize checksum to 0 before calculation */ |
| mrr_info->checksum = 0; |
| mrr_info->checksum = crc16((u8*)mrr_info, sizeof(*mrr_info)); |
| } |
| |
| static int check_checksum_for_mdl_data(DRAM_CALIBRATION_MRR_DATA_T *mrr_info) |
| { |
| u16 checksum_in_storage = mrr_info->checksum; |
| |
| assign_checksum_for_mdl_data(mrr_info); |
| |
| return (mrr_info->checksum == checksum_in_storage) ? 1 : 0; |
| } |
| #endif |
| |
| #if !__ETT__ |
| #ifdef COMBO_MCP |
| static int read_offline_dram_mdl_data(DRAM_INFO_BY_MRR_T *DramInfo) |
| { |
| int i, ret; |
| u16 emi_checksum; |
| bdev_t *bootdev = NULL; |
| DRAM_CALIBRATION_HEADER_T hdr; |
| DRAM_CALIBRATION_MRR_DATA_T mrr_info; |
| DRAM_CALIBRATION_SHU_DATA_T shu_data; |
| DRAM_CALIBRATION_DATA_T *datap = NULL; |
| |
| if (dram_offline_data_flags) |
| goto exit; |
| |
| if (DramInfo == NULL) { |
| dramc_crit("[dramc] DramInfo == NULL, skip\n"); |
| dram_offline_data_flags = ERR_NULL_POINTER; |
| goto exit; |
| } |
| |
| bootdev = bio_open_by_label("bootpara"); |
| if (!bootdev) { |
| bootdev = bio_open("bootpara"); |
| if (!bootdev) { |
| dramc_crit("bootpara is not exist."); |
| dram_offline_data_flags = ERR_BLKDEV_NO_PART; |
| goto exit; |
| } |
| } |
| |
| ret = bio_read(bootdev, (u8*)&hdr, 0, sizeof(hdr)); |
| if (ret != 0) { |
| dramc_crit("[dramc] bio_read %s failed\n", "hdr"); |
| dram_offline_data_flags = ERR_BLKDEV_READ_FAIL; |
| goto exit; |
| } |
| |
| if (hdr.pl_version != PL_VERSION) { |
| /* current preloader version does not match the calibration hdr in storage -> erase the partition */ |
| dramc_crit("[dramc] PL_VERSION is updated, erase the DRAM shu_data\n"); |
| |
| shu_data.checksum = 0; |
| |
| /* clear each shuffle */ |
| for (i = 0; i < DRAM_DFS_SHUFFLE_MAX; i++) { |
| ret = bio_write(bootdev, (u8*)&shu_data, ((unsigned long) &datap->data[i]), sizeof(shu_data)); |
| if (ret != 0) { |
| dramc_crit("[dramc] bio_write failed\n"); |
| dram_offline_data_flags = ERR_BLKDEV_WRITE_FAIL; |
| goto exit; |
| } |
| } |
| |
| dram_offline_data_flags = ERR_PL_UPDATED; |
| goto exit; |
| } |
| |
| /* check magic number */ |
| if (hdr.magic_number != DRAM_CALIBRATION_DATA_MAGIC) { |
| dramc_crit("[dramc] magic number mismatch\n"); |
| dram_offline_data_flags = ERR_MAGIC_NUMBER; |
| goto exit; |
| } |
| |
| ret = bio_read(bootdev, (u8*)&mrr_info, ((unsigned long) &datap->mrr_info), sizeof(mrr_info)); |
| if (ret != 0) { |
| dramc_crit("[dramc] bio_read %s failed\n", "data"); |
| dram_offline_data_flags = ERR_BLKDEV_READ_FAIL; |
| goto exit; |
| } |
| |
| /* check checksum */ |
| if (check_checksum_for_mdl_data(&mrr_info) != 1) { |
| dramc_crit("[dramc] checksum failed\n"); |
| dram_offline_data_flags = ERR_CHECKSUM; |
| |
| goto exit; |
| } |
| |
| emi_checksum = crc16((u8*)emi_settings, sizeof(emi_settings)); |
| |
| if (emi_checksum != mrr_info.emi_checksum) { |
| dramc_crit("[dramc] emi checksum failed\n"); |
| dram_offline_data_flags = ERR_CHECKSUM; |
| |
| goto exit; |
| } |
| |
| /* copy the data stored in storage to the data structure for calibration */ |
| memcpy(DramInfo, &(mrr_info.DramInfo), sizeof(*DramInfo)); |
| |
| exit: |
| if (dram_offline_data_flags) |
| SET_DRAM_STORAGE_API_ERR(dram_offline_data_flags, DRAM_STORAGE_API_READ); |
| |
| return 0 - dram_offline_data_flags; |
| } |
| |
| static int write_offline_dram_mdl_data(DRAM_INFO_BY_MRR_T *DramInfo) |
| { |
| int ret; |
| bdev_t *bootdev = NULL; |
| DRAM_CALIBRATION_HEADER_T hdr; |
| DRAM_CALIBRATION_MRR_DATA_T mrr_info; |
| DRAM_CALIBRATION_DATA_T *datap = NULL; |
| |
| if (DramInfo == NULL) { |
| dramc_crit("[dramc] DramInfo == NULL, skip\n"); |
| SET_DRAM_STORAGE_API_ERR(ERR_NULL_POINTER, DRAM_STORAGE_API_WRITE); |
| return -ERR_NULL_POINTER; |
| } |
| |
| bootdev = bio_open_by_label("bootpara"); |
| if (!bootdev) { |
| bootdev = bio_open("bootpara"); |
| if (!bootdev) { |
| dramc_crit("bootpara is not exist."); |
| return -ERR_BLKDEV_NO_PART; |
| } |
| } |
| |
| memcpy(&(mrr_info.DramInfo), DramInfo, sizeof(*DramInfo)); |
| |
| #if 0 |
| /* assign PL version */ |
| hdr.pl_version = PL_VERSION; |
| |
| /* assign magic number */ |
| hdr.magic_number = DRAM_CALIBRATION_DATA_MAGIC; |
| |
| /* assign api error code */ |
| hdr.calib_err_code = g_dram_storage_api_err_code; |
| |
| ret = blkdev_write(bootdev, part_dram_data_addr, sizeof(hdr), (u8*)&hdr, PART_ID_DRAM_DATA); |
| if (ret != 0) { |
| dramc_crit("[dramc] blkdev_write failed\n"); |
| SET_DRAM_STORAGE_API_ERR(ERR_BLKDEV_WRITE_FAIL, DRAM_STORAGE_API_WRITE); |
| return -ERR_BLKDEV_WRITE_FAIL; |
| } |
| #endif |
| |
| /* calculate and assign checksum */ |
| mrr_info.emi_checksum = crc16((u8*)emi_settings, sizeof(emi_settings)); |
| assign_checksum_for_mdl_data(&mrr_info); |
| |
| ret = bio_write(bootdev, (u8*)&mrr_info, ((unsigned long) &datap->mrr_info), sizeof(mrr_info)); |
| if (ret != 0) { |
| dramc_crit("[dramc] bio_write failed\n"); |
| SET_DRAM_STORAGE_API_ERR(ERR_BLKDEV_WRITE_FAIL, DRAM_STORAGE_API_WRITE); |
| return -ERR_BLKDEV_WRITE_FAIL; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| int read_offline_dram_calibration_data(DRAM_DFS_SHUFFLE_TYPE_T shuffle, SAVE_TIME_FOR_CALIBRATION_T *offLine_SaveData) |
| { |
| int i, ret; |
| bdev_t *bootdev = NULL; |
| DRAM_CALIBRATION_HEADER_T hdr; |
| DRAM_CALIBRATION_SHU_DATA_T shu_data; |
| DRAM_CALIBRATION_DATA_T *datap = NULL; |
| unsigned char *ch; |
| |
| if (dram_offline_data_flags) |
| goto exit; |
| |
| if (offLine_SaveData == NULL) { |
| dramc_crit("[dramc] offLine_SaveData == NULL, skip\n"); |
| dram_offline_data_flags = ERR_NULL_POINTER; |
| goto exit; |
| } |
| |
| bootdev = bio_open_by_label("bootpara"); |
| if (!bootdev) { |
| bootdev = bio_open("bootpara"); |
| if (!bootdev) { |
| dramc_crit("bootpara is not exist."); |
| goto exit; |
| } |
| } |
| |
| if (!part_dram_data_addr) { |
| dram_offline_data_flags = ERR_BLKDEV_NO_PART; |
| goto exit; |
| } |
| |
| ret = bio_read(bootdev, (u8*)&hdr, 0, sizeof(hdr)); |
| if (ret != 0) { |
| dramc_crit("[dramc] bio_read %s failed\n", "hdr"); |
| dram_offline_data_flags = ERR_BLKDEV_READ_FAIL; |
| goto exit; |
| } |
| |
| /* check preloader version */ |
| if (hdr.pl_version != PL_VERSION) { |
| /* current preloader version does not match the calibration hdr in storage -> erase the partition */ |
| dramc_crit("[dramc] PL_VERSION is updated, erase the DRAM shu_data\n"); |
| |
| shu_data.checksum = 0; |
| |
| /* clear each shuffle */ |
| for (i = 0; i < DRAM_DFS_SHUFFLE_MAX; i++) { |
| ret = bio_write(bootdev, (u8*)&shu_data, ((unsigned long) &datap->data[i]), sizeof(shu_data)); |
| if (ret != 0) { |
| dramc_crit("[dramc] bio_write failed\n"); |
| dram_offline_data_flags = ERR_BLKDEV_WRITE_FAIL; |
| goto exit; |
| } |
| } |
| |
| dram_offline_data_flags = ERR_PL_UPDATED; |
| goto exit; |
| } |
| |
| /* check magic number */ |
| if (hdr.magic_number != DRAM_CALIBRATION_DATA_MAGIC) { |
| dramc_crit("[dramc] magic number mismatch\n"); |
| dram_offline_data_flags = ERR_MAGIC_NUMBER; |
| goto exit; |
| } |
| |
| ret = bio_read(bootdev, (u8*)&shu_data, ((unsigned long) &datap->data[shuffle]), sizeof(shu_data)); |
| if (ret != 0) { |
| dramc_crit("[dramc] bio_read %s failed\n", "data"); |
| dram_offline_data_flags = ERR_BLKDEV_READ_FAIL; |
| goto exit; |
| } |
| |
| /* check checksum */ |
| if (check_checksum_for_dram_data(&shu_data) != 1) { |
| dramc_crit("[dramc] checksum failed\n"); |
| dram_offline_data_flags = ERR_CHECKSUM; |
| goto exit; |
| } |
| |
| /* copy the data stored in storage to the data structure for calibration */ |
| memcpy(offLine_SaveData, &(shu_data.calibration_data), sizeof(*offLine_SaveData)); |
| |
| exit: |
| if (dram_offline_data_flags) |
| SET_DRAM_STORAGE_API_ERR(dram_offline_data_flags, DRAM_STORAGE_API_READ); |
| |
| return 0 - dram_offline_data_flags; |
| } |
| |
| int write_offline_dram_calibration_data(DRAM_DFS_SHUFFLE_TYPE_T shuffle, SAVE_TIME_FOR_CALIBRATION_T *offLine_SaveData) |
| { |
| int ret; |
| bdev_t *bootdev = NULL; |
| DRAM_CALIBRATION_HEADER_T hdr; |
| DRAM_CALIBRATION_SHU_DATA_T shu_data; |
| DRAM_CALIBRATION_DATA_T *datap = NULL; |
| |
| if (offLine_SaveData == NULL) { |
| dramc_crit("[dramc] offLine_SaveData == NULL, skip\n"); |
| SET_DRAM_STORAGE_API_ERR(ERR_NULL_POINTER, DRAM_STORAGE_API_WRITE); |
| return -ERR_NULL_POINTER; |
| } |
| |
| bootdev = bio_open_by_label("bootpara"); |
| if (!bootdev) { |
| bootdev = bio_open("bootpara"); |
| if (!bootdev) { |
| dramc_crit("bootpara is not exist."); |
| return -ERR_BLKDEV_NO_PART; |
| } |
| } |
| |
| memcpy(&(shu_data.calibration_data), offLine_SaveData, sizeof(*offLine_SaveData)); |
| |
| /* assign PL version */ |
| hdr.pl_version = PL_VERSION; |
| |
| /* assign magic number */ |
| hdr.magic_number = DRAM_CALIBRATION_DATA_MAGIC; |
| |
| /* assign api error code */ |
| hdr.calib_err_code = g_dram_storage_api_err_code; |
| |
| ret = bio_write(bootdev, (u8*)&hdr, 0, sizeof(hdr)); |
| if (ret != 0) { |
| dramc_crit("[dramc] bio_write failed\n"); |
| SET_DRAM_STORAGE_API_ERR(ERR_BLKDEV_WRITE_FAIL, DRAM_STORAGE_API_WRITE); |
| return -ERR_BLKDEV_WRITE_FAIL; |
| } |
| |
| /* calculate and assign checksum */ |
| assign_checksum_for_dram_data(&shu_data); |
| |
| ret = bio_write(bootdev, (u8*)&shu_data, ((unsigned long) &datap->data[shuffle]), sizeof(shu_data)); |
| if (ret != 0) { |
| dramc_crit("[dramc] bio_write failed\n"); |
| SET_DRAM_STORAGE_API_ERR(ERR_BLKDEV_WRITE_FAIL, DRAM_STORAGE_API_WRITE); |
| return -ERR_BLKDEV_WRITE_FAIL; |
| } |
| |
| return 0; |
| } |
| |
| int clean_dram_calibration_data(void) |
| { |
| int i, ret; |
| bdev_t *bootdev = NULL; |
| DRAM_CALIBRATION_HEADER_T hdr; |
| DRAM_CALIBRATION_SHU_DATA_T shu_data; |
| DRAM_CALIBRATION_DATA_T *datap = NULL; |
| |
| bootdev = bio_open_by_label("bootpara"); |
| if (!bootdev) { |
| bootdev = bio_open("bootpara"); |
| if (!bootdev) { |
| dramc_crit("bootpara is not exist."); |
| return -ERR_BLKDEV_NO_PART; |
| } |
| } |
| |
| memset(&hdr, 0, sizeof(hdr)); |
| |
| ret = bio_write(bootdev, (u8*)&hdr, 0, sizeof(hdr)); |
| if (ret != 0) { |
| dramc_crit("[dramc] bio_write failed\n"); |
| SET_DRAM_STORAGE_API_ERR(ERR_BLKDEV_WRITE_FAIL, DRAM_STORAGE_API_CLEAN); |
| return -ERR_BLKDEV_WRITE_FAIL; |
| } |
| |
| shu_data.checksum = 0; |
| |
| /* clear each shuffle */ |
| for (i = 0; i < DRAM_DFS_SHUFFLE_MAX; i++) { |
| ret = bio_write(bootdev, (u8*)&shu_data, ((unsigned long) &datap->data[i]), sizeof(shu_data)); |
| if (ret != 0) { |
| dramc_crit("[dramc] bio_write failed\n"); |
| SET_DRAM_STORAGE_API_ERR(ERR_BLKDEV_WRITE_FAIL, DRAM_STORAGE_API_WRITE); |
| return -ERR_BLKDEV_WRITE_FAIL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| #else |
| |
| DRAM_CALIBRATION_DATA_T dram_data; // using global variable to avoid stack overflow |
| |
| int read_offline_dram_calibration_data(DRAM_DFS_SHUFFLE_TYPE_T shuffle, SAVE_TIME_FOR_CALIBRATION_T *offLine_SaveData) |
| { |
| return 0; |
| } |
| |
| int write_offline_dram_calibration_data(DRAM_DFS_SHUFFLE_TYPE_T shuffle, SAVE_TIME_FOR_CALIBRATION_T *offLine_SaveData) |
| { |
| return 0; |
| } |
| |
| int clean_dram_calibration_data(void) |
| { |
| return; |
| } |
| #endif |
| |
| |
| void set_err_code_for_storage_api(void) |
| { |
| #ifdef LAST_DRAMC |
| last_dramc_info_ptr->storage_api_err_flag = g_dram_storage_api_err_code; |
| dsb(); |
| #endif |
| } |
| |
| #endif |
| |
| #if __ETT__ |
| #define FHCTL_HP_EN (FHCTL_BASE + 0x004) |
| #define MPLL_FHCTL_CFG (FHCTL_BASE + 0x0A0) |
| #define MPLL_FHCTL_LMT (FHCTL_BASE + 0x0A4) |
| #define MPLL_FHCTL_DDS (FHCTL_BASE + 0x0A8) |
| #define MPLL_CON1 (APMIXED_BASE + 0x2A4) |
| #define MPLL_ID 5 |
| #define SETTING_DF 9 |
| #define SETTING_DT 0 |
| #define SETTING_LOWBND 1 // ssc ratio |
| #define PERCENT_TO_DDSLMT(dDS, pERCENT_M10) (((dDS * pERCENT_M10) >> 5) / 100) |
| |
| void en_mpll_ssc(void) |
| { |
| unsigned int reg_val; |
| |
| *((volatile unsigned int *)0x1000CE08) = 0x1FF; |
| *((volatile unsigned int *)0x1000CE0C) = 0x1FF; |
| |
| reg_val = *((volatile unsigned int *)MPLL_FHCTL_CFG); |
| reg_val &= ~0xFF0000; |
| *((volatile unsigned int *)MPLL_FHCTL_CFG) = reg_val | (SETTING_DF << 20) | (SETTING_DT << 16); |
| |
| reg_val = (*((volatile unsigned int *)MPLL_CON1) & 0x3FFFFF) | 0x80000000; |
| *((volatile unsigned int *)MPLL_FHCTL_DDS) = reg_val; |
| |
| reg_val &= 0x3FFFFF; |
| reg_val = PERCENT_TO_DDSLMT(reg_val, SETTING_LOWBND) << 16; |
| *((volatile unsigned int *)MPLL_FHCTL_LMT) = reg_val; |
| |
| *((volatile unsigned int *)FHCTL_HP_EN) |= (1 << MPLL_ID); |
| dsb(); |
| *((volatile unsigned int *)MPLL_FHCTL_CFG) |= 0x2; |
| dsb(); |
| *((volatile unsigned int *)MPLL_FHCTL_CFG) |= 0x1; |
| dsb(); |
| } |
| |
| void dis_mpll_ssc(void) |
| { |
| *((volatile unsigned int *)MPLL_FHCTL_CFG) &= ~0x2; |
| dsb(); |
| *((volatile unsigned int *)MPLL_FHCTL_CFG) &= ~0x1; |
| dsb(); |
| *((volatile unsigned int *)FHCTL_HP_EN) &= ~(1 << MPLL_ID); |
| dsb(); |
| } |
| #endif |