blob: 30aa33abc3b32115aa39eecdbc8cc354ffa8540a [file] [log] [blame]
/*----------------------------------------------------------------------------*
* Copyright Statement: *
* *
* This software/firmware and related documentation ("MediaTek Software") *
* are protected under international and related jurisdictions'copyright laws *
* as unpublished works. The information contained herein is confidential and *
* proprietary to MediaTek Inc. Without the prior written permission of *
* MediaTek Inc., any reproduction, modification, use or disclosure of *
* MediaTek Software, and information contained herein, in whole or in part, *
* shall be strictly prohibited. *
* MediaTek Inc. Copyright (C) 2010. All rights reserved. *
* *
* BY OPENING THIS FILE, RECEIVER HEREBY UNEQUIVOCALLY ACKNOWLEDGES AND *
* AGREES TO THE FOLLOWING: *
* *
* 1)Any and all intellectual property rights (including without *
* limitation, patent, copyright, and trade secrets) in and to this *
* Software/firmware and related documentation ("MediaTek Software") shall *
* remain the exclusive property of MediaTek Inc. Any and all intellectual *
* property rights (including without limitation, patent, copyright, and *
* trade secrets) in and to any modifications and derivatives to MediaTek *
* Software, whoever made, shall also remain the exclusive property of *
* MediaTek Inc. Nothing herein shall be construed as any transfer of any *
* title to any intellectual property right in MediaTek Software to Receiver. *
* *
* 2)This MediaTek Software Receiver received from MediaTek Inc. and/or its *
* representatives is provided to Receiver on an "AS IS" basis only. *
* MediaTek Inc. expressly disclaims all warranties, expressed or implied, *
* including but not limited to any implied warranties of merchantability, *
* non-infringement and fitness for a particular purpose and any warranties *
* arising out of course of performance, course of dealing or usage of trade. *
* MediaTek Inc. does not provide any warranty whatsoever with respect to the *
* software of any third party which may be used by, incorporated in, or *
* supplied with the MediaTek Software, and Receiver agrees to look only to *
* such third parties for any warranty claim relating thereto. Receiver *
* expressly acknowledges that it is Receiver's sole responsibility to obtain *
* from any third party all proper licenses contained in or delivered with *
* MediaTek Software. MediaTek is not responsible for any MediaTek Software *
* releases made to Receiver's specifications or to conform to a particular *
* standard or open forum. *
* *
* 3)Receiver further acknowledge that Receiver may, either presently *
* and/or in the future, instruct MediaTek Inc. to assist it in the *
* development and the implementation, in accordance with Receiver's designs, *
* of certain softwares relating to Receiver's product(s) (the "Services"). *
* Except as may be otherwise agreed to in writing, no warranties of any *
* kind, whether express or implied, are given by MediaTek Inc. with respect *
* to the Services provided, and the Services are provided on an "AS IS" *
* basis. Receiver further acknowledges that the Services may contain errors *
* that testing is important and it is solely responsible for fully testing *
* the Services and/or derivatives thereof before they are used, sublicensed *
* or distributed. Should there be any third party action brought against *
* MediaTek Inc. arising out of or relating to the Services, Receiver agree *
* to fully indemnify and hold MediaTek Inc. harmless. If the parties *
* mutually agree to enter into or continue a business relationship or other *
* arrangement, the terms and conditions set forth herein shall remain *
* effective and, unless explicitly stated otherwise, shall prevail in the *
* event of a conflict in the terms in any agreements entered into between *
* the parties. *
* *
* 4)Receiver's sole and exclusive remedy and MediaTek Inc.'s entire and *
* cumulative liability with respect to MediaTek Software released hereunder *
* will be, at MediaTek Inc.'s sole discretion, to replace or revise the *
* MediaTek Software at issue. *
* *
* 5)The transaction contemplated hereunder shall be construed in *
* accordance with the laws of Singapore, excluding its conflict of laws *
* principles. Any disputes, controversies or claims arising thereof and *
* related thereto shall be settled via arbitration in Singapore, under the *
* then current rules of the International Chamber of Commerce (ICC). The *
* arbitration shall be conducted in English. The awards of the arbitration *
* shall be final and binding upon both parties and shall be entered and *
* enforceable in any court of competent jurisdiction. *
*---------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
*
* Description:
*
*---------------------------------------------------------------------------*/
#include <assert.h>
#include <printf.h>
#include <memory.h>
#include <platform/mt2731.h>
#include <platform/mtk_drm.h>
#include <reg.h>
#include <emi.h>
#include <emi_hw.h>
#include <emi_mpu_mt.h>
#ifdef DDR_RESERVE_MODE
u32 g_ddr_reserve_enable;
u32 g_ddr_reserve_success;
u32 g_ddr_reserve_ready;
u32 g_ddr_reserve_ta_err;
#endif
static int complex_mem_test(unsigned long start, unsigned int len);
static int simple_mem_test(unsigned long start, unsigned int len);
extern unsigned int set_emi_before_rank1_mem_test(void);
extern void restore_emi_after_rank1_mem_test(void);
// --------------------------------------------------------
// init EMI
// --------------------------------------------------------
void mt_mem_init(void)
{
int region, dgroup;
#if CFG_FPGA_PLATFORM
return;
#endif
#ifdef LAST_DRAMC
dram_fatal_exception_detection_start();
if (check_last_dram_fatal_exception() != 0 || check_gating_err_in_dramc_latch() != 0) {
#if SUPPORT_SAVE_TIME_FOR_CALIBRATION
int ret;
printf("[save time for cal] dram fatal exception found -> clear calibration data\n");
ret = clean_dram_calibration_data();
SET_DATA_FORMATTED_STORAGE_API_ERR();
printf("[save time for cal] clean_dram_calibration_data done (ret=%d)\n", ret);
#endif
}
#endif
/* clear EMI MPU protect setting */
for (region = 0; region < EMI_MPU_REGION_NUM; region++) {
DRV_WriteReg32(EMI_MPU_SA(region), 0x0);
DRV_WriteReg32(EMI_MPU_EA(region), 0x0);
for (dgroup = EMI_MPU_DGROUP_NUM - 1; dgroup >= 0; dgroup--)
DRV_WriteReg32(EMI_MPU_APC(region, dgroup), 0x0);
}
#ifdef DDR_RESERVE_MODE
unsigned int emi_cona;
if((g_ddr_reserve_enable==1) && (g_ddr_reserve_success==1)) {
/* EMI register dummy read: give clock to EMI APB register to avoid DRAM access hang */
emi_cona = *(volatile unsigned int *)(EMI_CONA);
printf("[DDR Reserve mode] EMI dummy read CONA = 0x%x\n", emi_cona);
/* disable transaction mask */
*(volatile unsigned int *) (IO_PHYS + 0x22D3FC) &= 0xFFFFFFFE;
*(volatile unsigned int *) (IO_PHYS + 0x2353FC) &= 0xFFFFFFFE;
/* disable EMI APB protect */
DRV_WriteReg32(EMI_MPU_CTRL, DRV_Reg32(EMI_MPU_CTRL)&0xFFFFFFFE);
if (g_ddr_reserve_ta_err != 0) {
printf("[DDR Reserve mode] TA2 ERR = %d -> overwrite tag.ddr_reserve_success to 0\n", g_ddr_reserve_ta_err);
}
} else /* normal boot */
#endif
{
/* disable EMI APB protect */
printf("EMI_MPU_CTRL=%x 1st\n",DRV_Reg32(EMI_MPU_CTRL));
DRV_WriteReg32(EMI_MPU_CTRL, DRV_Reg32(EMI_MPU_CTRL)&0xFFFFFFFE);
printf("EMI_MPU_CTRL=%x 2nd\n",DRV_Reg32(EMI_MPU_CTRL));
#ifdef DDR_RESERVE_MODE
/* force clear RGU control for DRAMC before calibration */
drm_release_rg_dramc_conf_iso();//Release DRAMC/PHY conf ISO
drm_release_rg_dramc_iso();//Release PHY IO ISO
drm_release_rg_dramc_sref();//Let DRAM Leave SR
#endif
mt_set_emi();
#if defined(LAST_DRAMC) & SUPPORT_SAVE_TIME_FOR_CALIBRATION
set_err_code_for_storage_api();
#endif
}
#ifdef DDR_RESERVE_MODE
g_ddr_reserve_ready = 0x9502;
/* Disable DDR-reserve mode in pre-loader stage then enable it again in kernel stage */
drm_dram_reserved(0);
#endif
#ifdef LAST_DRAMC
unsigned rk0_err = 0, rk1_err = 0;
#endif
int i = 0;
/* MEM_TEST_START is kernel base addr */
if ((i = complex_mem_test(MEM_TEST_START, MEM_TEST_SIZE)) == 0) {
#if ARCH_ARM64
printf("[dramc] 1st complex mem test pass (start addr:0x%lx)\n", MEM_TEST_START);
#endif
} else {
#if ARCH_ARM64
printf("[dramc] 1st complex mem test fail :%x (start addr:0x%lx)\n", i, MEM_TEST_START);
#endif
#ifdef LAST_DRAMC
rk0_err = 1;
#else
ASSERT(0);
#endif
}
#if DUAL_RANK_ENABLE
if (get_dram_rank_nr() >= 2) {
/* need to test rank1 */
unsigned int rank1_start_address = MEM_TEST_START + set_emi_before_rank1_mem_test();
#ifdef DDR_RESERVE_MODE
/* simple mem test to avoid memory corruption in DDR reserve mode */
if((g_ddr_reserve_enable==1) && (g_ddr_reserve_success==1)) {
i = simple_mem_test(rank1_start_address, MEM_TEST_SIZE);
} else
#endif
i = complex_mem_test(rank1_start_address, MEM_TEST_SIZE);
restore_emi_after_rank1_mem_test();
if (i == 0) {
printf("[dramc] 2nd complex mem test pass (start addr:0x%x, 0x0 @Rank1)\n", rank1_start_address);
} else {
printf("[dramc] 2nd complex mem test fail :%x (start addr:0x%x, 0x0 @Rank1)\n", i, rank1_start_address);
#ifdef LAST_DRAMC
rk1_err = 1;
#else
ASSERT(0);
#endif
}
}
#endif
#ifdef LAST_DRAMC
init_ta2_all_channel();
dram_fatal_set_cpu_rw_err((rk1_err << 1)|rk0_err);
/* TODO: TA2 test */
/* check gating error */
check_gating_error();
if (check_dram_fatal_exception() == 1) {
printf("[dramc] fatal dram exception found! reset system..\n");
while(1);
}
dram_fatal_exception_detection_end();
#endif
}
// --------------------------------------------------------
// do memory test
// --------------------------------------------------------
#define PATTERN1 0x5A5A5A5A
#define PATTERN2 0xA5A5A5A5
static int simple_mem_test(unsigned long start, unsigned int len)
{
unsigned int *MEM32_BASE = (unsigned int *) start;
unsigned int i, orig_val, new_val;
for (i = 0; i < (len >> 2); ++i) {
orig_val = MEM32_BASE[i];
dsb();
MEM32_BASE[i] = PATTERN1;
dsb();
new_val = MEM32_BASE[i];
if (new_val != PATTERN1)
return -1;
dsb();
MEM32_BASE[i] = orig_val;
}
return 0;
}
static int complex_mem_test(unsigned long start, unsigned int len)
{
unsigned char *MEM8_BASE = (unsigned char *) start;
unsigned short *MEM16_BASE = (unsigned short *) start;
unsigned int *MEM32_BASE = (unsigned int *) start;
unsigned int *MEM_BASE = (unsigned int *) start;
unsigned char pattern8;
unsigned short pattern16;
unsigned long i, j, size;
unsigned int value, pattern32;
return 0;
size = len >> 2;
/* === Verify the tied bits (tied high) === */
for (i = 0; i < size; i++)
{
MEM32_BASE[i] = 0;
}
for (i = 0; i < size; i++)
{
if (MEM32_BASE[i] != 0)
{
return -1;
}
else
{
MEM32_BASE[i] = 0xffffffff;
}
}
/* === Verify the tied bits (tied low) === */
for (i = 0; i < size; i++)
{
if (MEM32_BASE[i] != 0xffffffff)
{
return -2;
}
else
MEM32_BASE[i] = 0x00;
}
/* === Verify pattern 1 (0x00~0xff) === */
pattern8 = 0x00;
for (i = 0; i < len; i++)
MEM8_BASE[i] = pattern8++;
pattern8 = 0x00;
for (i = 0; i < len; i++)
{
if (MEM8_BASE[i] != pattern8++)
{
return -3;
}
}
/* === Verify pattern 2 (0x00~0xff) === */
pattern8 = 0x00;
for (i = j = 0; i < len; i += 2, j++)
{
if (MEM8_BASE[i] == pattern8)
MEM16_BASE[j] = pattern8;
if (MEM16_BASE[j] != pattern8)
{
return -4;
}
pattern8 += 2;
}
/* === Verify pattern 3 (0x00~0xffff) === */
pattern16 = 0x00;
for (i = 0; i < (len >> 1); i++)
MEM16_BASE[i] = pattern16++;
pattern16 = 0x00;
for (i = 0; i < (len >> 1); i++)
{
if (MEM16_BASE[i] != pattern16++)
{
return -5;
}
}
/* === Verify pattern 4 (0x00~0xffffffff) === */
pattern32 = 0x00;
for (i = 0; i < (len >> 2); i++)
MEM32_BASE[i] = pattern32++;
pattern32 = 0x00;
for (i = 0; i < (len >> 2); i++)
{
if (MEM32_BASE[i] != pattern32++)
{
return -6;
}
}
/* === Pattern 5: Filling memory range with 0x44332211 === */
for (i = 0; i < size; i++)
MEM32_BASE[i] = 0x44332211;
/* === Read Check then Fill Memory with a5a5a5a5 Pattern === */
for (i = 0; i < size; i++)
{
if (MEM32_BASE[i] != 0x44332211)
{
return -7;
}
else
{
MEM32_BASE[i] = 0xa5a5a5a5;
}
}
/* === Read Check then Fill Memory with 00 Byte Pattern at offset 0h === */
for (i = 0; i < size; i++)
{
if (MEM32_BASE[i] != 0xa5a5a5a5)
{
return -8;
}
else
{
MEM8_BASE[i * 4] = 0x00;
}
}
/* === Read Check then Fill Memory with 00 Byte Pattern at offset 2h === */
for (i = 0; i < size; i++)
{
if (MEM32_BASE[i] != 0xa5a5a500)
{
return -9;
}
else
{
MEM8_BASE[i * 4 + 2] = 0x00;
}
}
/* === Read Check then Fill Memory with 00 Byte Pattern at offset 1h === */
for (i = 0; i < size; i++)
{
if (MEM32_BASE[i] != 0xa500a500)
{
return -10;
}
else
{
MEM8_BASE[i * 4 + 1] = 0x00;
}
}
/* === Read Check then Fill Memory with 00 Byte Pattern at offset 3h === */
for (i = 0; i < size; i++)
{
if (MEM32_BASE[i] != 0xa5000000)
{
return -11;
}
else
{
MEM8_BASE[i * 4 + 3] = 0x00;
}
}
/* === Read Check then Fill Memory with ffff Word Pattern at offset 1h == */
for (i = 0; i < size; i++)
{
if (MEM32_BASE[i] != 0x00000000)
{
return -12;
}
else
{
MEM16_BASE[i * 2 + 1] = 0xffff;
}
}
/* === Read Check then Fill Memory with ffff Word Pattern at offset 0h == */
for (i = 0; i < size; i++)
{
if (MEM32_BASE[i] != 0xffff0000)
{
return -13;
}
else
{
MEM16_BASE[i * 2] = 0xffff;
}
}
/*=== Read Check === */
for (i = 0; i < size; i++)
{
if (MEM32_BASE[i] != 0xffffffff)
{
return -14;
}
}
/************************************************
* Additional verification
************************************************/
/* === stage 1 => write 0 === */
for (i = 0; i < size; i++)
{
MEM_BASE[i] = PATTERN1;
}
/* === stage 2 => read 0, write 0xF === */
for (i = 0; i < size; i++)
{
value = MEM_BASE[i];
if (value != PATTERN1)
{
return -15;
}
MEM_BASE[i] = PATTERN2;
}
/* === stage 3 => read 0xF, write 0 === */
for (i = 0; i < size; i++)
{
value = MEM_BASE[i];
if (value != PATTERN2)
{
return -16;
}
MEM_BASE[i] = PATTERN1;
}
/* === stage 4 => read 0, write 0xF === */
for (i = 0; i < size; i++)
{
value = MEM_BASE[i];
if (value != PATTERN1)
{
return -17;
}
MEM_BASE[i] = PATTERN2;
}
/* === stage 5 => read 0xF, write 0 === */
for (i = 0; i < size; i++)
{
value = MEM_BASE[i];
if (value != PATTERN2)
{
return -18;
}
MEM_BASE[i] = PATTERN1;
}
/* === stage 6 => read 0 === */
for (i = 0; i < size; i++)
{
value = MEM_BASE[i];
if (value != PATTERN1)
{
return -19;
}
}
/* === 1/2/4-byte combination test === */
i = (unsigned long) MEM_BASE;
while (i < (unsigned long) MEM_BASE + (size << 2))
{
*((unsigned char *) i) = 0x78;
i += 1;
*((unsigned char *) i) = 0x56;
i += 1;
*((unsigned short *) i) = 0x1234;
i += 2;
*((unsigned int *) i) = 0x12345678;
i += 4;
*((unsigned short *) i) = 0x5678;
i += 2;
*((unsigned char *) i) = 0x34;
i += 1;
*((unsigned char *) i) = 0x12;
i += 1;
*((unsigned int *) i) = 0x12345678;
i += 4;
*((unsigned char *) i) = 0x78;
i += 1;
*((unsigned char *) i) = 0x56;
i += 1;
*((unsigned short *) i) = 0x1234;
i += 2;
*((unsigned int *) i) = 0x12345678;
i += 4;
*((unsigned short *) i) = 0x5678;
i += 2;
*((unsigned char *) i) = 0x34;
i += 1;
*((unsigned char *) i) = 0x12;
i += 1;
*((unsigned int *) i) = 0x12345678;
i += 4;
}
for (i = 0; i < size; i++)
{
value = MEM_BASE[i];
if (value != 0x12345678)
{
return -20;
}
}
/* === Verify pattern 1 (0x00~0xff) === */
pattern8 = 0x00;
MEM8_BASE[0] = pattern8;
for (i = 0; i < size * 4; i++)
{
unsigned char waddr8, raddr8;
waddr8 = i + 1;
raddr8 = i;
if (i < size * 4 - 1)
MEM8_BASE[waddr8] = pattern8 + 1;
if (MEM8_BASE[raddr8] != pattern8)
{
return -21;
}
pattern8++;
}
/* === Verify pattern 2 (0x00~0xffff) === */
pattern16 = 0x00;
MEM16_BASE[0] = pattern16;
for (i = 0; i < size * 2; i++)
{
if (i < size * 2 - 1)
MEM16_BASE[i + 1] = pattern16 + 1;
if (MEM16_BASE[i] != pattern16)
{
return -22;
}
pattern16++;
}
/* === Verify pattern 3 (0x00~0xffffffff) === */
pattern32 = 0x00;
MEM32_BASE[0] = pattern32;
for (i = 0; i < size; i++)
{
if (i < size - 1)
MEM32_BASE[i + 1] = pattern32 + 1;
if (MEM32_BASE[i] != pattern32)
{
return -23;
}
pattern32++;
}
return 0;
}
size_t mt_mem_size(void)
{
/* [TODO] query dram size instead of hardcode */
size_t size;
size = 0x10000000;
dprintf(CRITICAL, "mt_mem_size %zx\n", size);
return size;
}