blob: dd2c28850410f2c5c0d972e63e26ebd00e721feb [file] [log] [blame]
/*
* Copyright (c) 2016 MediaTek Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <app.h>
#include <assert.h>
#include <boot_mode.h>
#include <errno.h>
#include <libfdt.h>
#include <kernel/event.h>
#include <kernel/thread.h>
#include <kernel/vm.h>
#include <lib/mempool.h>
#ifdef AB_UPGRADE_APP
#include <lib/bio.h>
#endif
#include <platform.h>
#include <platform/mtk_key.h>
#include <platform/mtk_wdt.h>
#include <trace.h>
#include "fit.h"
#ifdef RTC_CHECK_FASTBOOT
#include "rtc.h"
#endif
#ifdef SET_FDT_EMI_INFO
#include "platform/emi_info_v1.h"
#endif
#define LOCAL_TRACE 0
/* BL33 load and entry point address */
#define CFG_BL33_LOAD_EP_ADDR (BL33_ADDR)
#define ERR_ADDR (0xffffffff)
#ifdef AB_UPGRADE_APP
#define UPG_SUCCEED 2
#endif
typedef void (*jump32_func_type)(uint32_t addr, uint32_t arg1, uint32_t arg2) __NO_RETURN;
typedef void (*jump64_func_type)(uint64_t bl31_addr, uint64_t bl33_addr, uint64_t arg1) __NO_RETURN;
struct fit_load_data {
char *part_name;
char *recovery_part_name;
void *buf;
u32 boot_mode;
ulong kernel_entry;
ulong dtb_load;
ulong trustedos_entry;
};
#ifdef AB_UPGRADE_APP
typedef struct boot_flag boot_flag;
struct boot_flag {
int lastboot;
int usea;
int useb;
int current;
};
#endif
/* global variables, also used in dl_commands.c */
void *kernel_buf;
void *tz_buf;
void *bl33_buf;
__WEAK bool plat_fixup_hook(void* bootimg_dtb_load, ...);
#if ARCH_ARM64
void mtk_sip(uint32_t smc_fid, uint64_t bl31_addr, uint64_t bl33_addr)
{
jump64_func_type jump64_func = (jump64_func_type)bl31_addr;
(*jump64_func)(bl31_addr, bl33_addr, 0UL);
}
#endif
void prepare_bl2_exit(ulong smc_fid, ulong bl31_addr, ulong bl33_addr, ulong arg1)
{
#if ARCH_ARM64
/* switch to el3 via smc, and will jump to mtk_sip from smc handler */
__asm__ volatile("smc #0\n\t");
#else
jump32_func_type jump32_func = (jump32_func_type)bl31_addr;
(*jump32_func)(bl33_addr, 0, 0);
#endif
}
#pragma GCC push_options
#pragma GCC optimize("O1")
static void setup_bl33(uint *bl33, ulong fdt, ulong kernel_ep)
{
bl33[12] = (ulong)fdt;
bl33[14] = (unsigned)0;
bl33[16] = (unsigned)0;
bl33[18] = (unsigned)0;
bl33[20] = (ulong)kernel_ep;
bl33[21] = (ulong)0;
bl33[22] = (unsigned)MACH_TYPE;
}
#pragma GCC pop_options
static int extract_fdt(void *fdt, int size)
{
int ret = 0;
/* DTB maximum size is 2MB */
ret = fdt_open_into(fdt, fdt, size);
if (ret) {
dprintf(CRITICAL, "open fdt failed\n");
return ret;
}
ret = fdt_check_header(fdt);
if (ret) {
dprintf(CRITICAL, "check fdt failed\n");
return ret;
}
return ret;
}
static bool check_uart_enter(void)
{
char c;
if (platform_dgetc(&c, false) != 0)
return false;
return (c == 13);
}
#ifdef AB_UPGRADE_APP
int set_currently_boot_flag(int last_flag, int current_flag, const char *part_name)
{
int ret;
long len = 0;
u32 writesize = 2048;
int index = -1;
unsigned long long ptn = 0;
unsigned long long size = 0;
char *buf;
boot_flag set_flag;
/* read partition */
struct bdev *nand_MISC = bio_open_by_label("misc");
if (!nand_MISC) {
LTRACEF("open misc partition failed.\n");
return 1;
}
buf = malloc(writesize);
if (buf == NULL) {
LTRACEF("malloc for writesize failed.\n");
return 1;
}
memset(buf, 0, writesize);
len = bio_read(nand_MISC, buf, 0, sizeof(boot_flag));
if (len < 0) {
dprintf(CRITICAL, "%s read error. LINE: %d\n", part_name, __LINE__);
free(buf);
buf = NULL;
return -1;
}
/* dump flag for debug */
dprintf(CRITICAL, "current boot flag is %d\n", current_flag);
/* set currently flag to buf */
set_flag.lastboot = last_flag;
set_flag.current = current_flag;
set_flag.usea = (int)-1;
dprintf(CRITICAL, "last_flag boot flag is %d\n", last_flag);
set_flag.useb = (int)-1;
memset(buf, 0, writesize);
memcpy(buf, (void *)&set_flag, sizeof(boot_flag));
/* write buf to offset 0, which size is 2048 */
len = bio_write(nand_MISC, (char *)buf, 0, (u32)writesize);
if (len <= 0) {
dprintf(CRITICAL, "nand write fail, return : %d, error: %s\n",len, strerror(errno));
dprintf(CRITICAL, "buf: %s\n", buf);
ret = -1;
}
else {
dprintf(CRITICAL, "set flag: lastboot = %d, use A = %d, use B = %d, current = %d\n", set_flag.lastboot, set_flag.usea, set_flag.useb, set_flag.current);
ret = 0;
}
if (buf) {
free(buf);
buf = NULL;
}
return ret;
}
int check_boot_partition(const char *part_name)
{
int ret = 0;
boot_flag flag;
int boot = 0;
struct bdev *nand_MISC = bio_open_by_label("misc");
int len = -1;
char *buf;
if (!nand_MISC) {
printf("failed to open MISC\n");
return 0;
}
printf("open MISC successfully\n");
/* read partition */
buf = malloc(sizeof(boot_flag));
if (buf == NULL) {
LTRACEF("malloc for boot_flag failed.\n");
return 2;
}
len = bio_read(nand_MISC, buf, 0, sizeof(boot_flag));
if (len < 0) {
dprintf(CRITICAL, "read %s: boot flag read error. LINE: %d\n", part_name, __LINE__);
free(buf);
buf = NULL;
return -1;
}
memcpy(&flag, (void *)buf, sizeof(boot_flag));
/* dump flag for debug */
dprintf(CRITICAL, "lastboot = %d, use A = %d, use B = %d, current = %d\n", flag.lastboot, flag.usea, flag.useb, flag.current);
/* make dicision */
if (flag.lastboot == 0) {
if (flag.useb == UPG_SUCCEED) {
boot = 1;
dprintf(CRITICAL,"***last succeed boot from A system,upgrade B succeed***\n");
dprintf(CRITICAL,"***now boot from system B***\n");
} else {
boot = 0;
dprintf(CRITICAL,"***last succeed boot from A system,upgrade B failed or no upgrade B***\n");
dprintf(CRITICAL,"***now boot from system A***\n");
}
} else if (flag.lastboot == 1) {
if (flag.usea == UPG_SUCCEED) {
boot = 0;
dprintf(CRITICAL,"***last succeed boot from B system,upgrade A succeed***\n");
dprintf(CRITICAL,"***now boot from system A***\n");
} else {
boot = 1;
dprintf(CRITICAL,"***last succeed boot from B system,upgrade A failed or no upgrade A***\n");
dprintf(CRITICAL,"***now boot from system B***\n");
}
} else {
dprintf(CRITICAL, "boot flag is not match, use default boot partition\n");
boot = 0;
}
if ((flag.current != boot) || (flag.usea == UPG_SUCCEED) || (flag.useb == UPG_SUCCEED)) {
ret = bio_erase(nand_MISC, 0, nand_MISC->total_size); //erase total_size
printf("bio erase ret %d\n", ret);
ret = set_currently_boot_flag(flag.lastboot, boot, part_name);
if (ret!=0)
dprintf(CRITICAL, "set flags fail. LINE: %d\n", __LINE__);
}
if (buf) {
free(buf);
buf = NULL;
}
return boot;
}
static int cmdlineoverlay(void *boot_dtb, char *cmdline, int len)
{
int chosen_node_offset = 0;
int ret = -1;
char separator[2] = {0};
char str_nand[32] = "ubi.mtd=";
char str_emmc[32] = "root=/dev/mmcblk0p";
char str_real[32] = {0};
int header_length = 0;
ret = extract_fdt(boot_dtb, MAX_DTB_SIZE);
if (ret != 0) {
dprintf(CRITICAL, "extract_fdt error.\n");
return -1;
}
chosen_node_offset = fdt_path_offset(boot_dtb, "/chosen");
char *cmdline_read;
int length;
cmdline_read = fdt_getprop(boot_dtb, chosen_node_offset, "bootargs", &length);
dprintf(CRITICAL, "dtsi cmdline: %s ,lenth:%zu\n", cmdline_read, strlen(cmdline_read));
char *pos1;
char *pos2;
if ((pos1 = strstr(cmdline_read,str_nand)))
{
separator[0] = ',';
header_length = strlen(str_nand);
strncpy(str_real, str_nand, header_length);
}
else if ((pos1 = strstr(cmdline_read,str_emmc)))
{
separator[0] = ' ';
header_length = strlen(str_emmc);
strncpy(str_real, str_emmc, header_length);
}
else
{
dprintf(CRITICAL, "no ubi.mtd= or root=/dev/mmcblk0p in cmdline, error!\n");
return -1;
}
pos2 = strstr(pos1, separator);
if (pos2 == NULL) {
dprintf(CRITICAL, "can not find separator in cmdline, error!\n");
return -1;
}
if ((pos2 - pos1 - header_length) <= 0) {
dprintf(CRITICAL, "no part number in cmdline, error!\n");
return -1;
}
char mtdnum_str[3];
char mtdnum_str_new[3];
strncpy(mtdnum_str, pos1 + header_length, (pos2 - pos1 - header_length));
mtdnum_str[pos2 - pos1 - header_length] = '\0';
int mtdnum = atoi(mtdnum_str);
mtdnum ++;
sprintf(mtdnum_str_new, "%d", mtdnum);
if (mtdnum >= 10) {
char half_before[1024] = {'\0'};
char half_behind[1024] = {'\0'};
strncpy(half_before, cmdline_read, pos2 - cmdline_read);
char *pos3 = strstr(half_before, str_real);
strncpy(pos3 + header_length, mtdnum_str_new, 2);
strncpy(half_behind, pos2, strlen(pos2) + 1);
cmdline_read = strncat(half_before, half_behind, strlen(half_behind));
} else {
strncpy(pos1 + header_length, mtdnum_str_new, 1);
}
printf("cmdline new: %s , length: %zu", cmdline_read, strlen(cmdline_read));
ret = fdt_setprop(boot_dtb, chosen_node_offset, "bootargs", cmdline_read, strlen(cmdline_read) + 1);
if (ret != 0) {
dprintf(CRITICAL, "fdt_setprop error.\n");
return -1;
}
ret = fdt_pack(boot_dtb);
if (ret != 0) {
dprintf(CRITICAL, "fdt_pack error.\n");
return -1;
}
return 0;
}
#endif
static bool download_check(void)
{
if (check_fastboot_mode()) {
set_clr_fastboot_mode(false);
dprintf(CRITICAL, "download_check: check_fastboot_mode\n");
return true;
#ifdef RTC_CHECK_FASTBOOT
} else if (rtc_bootloader_check()) {
rtc_bootloader_set_clr(false);
printf("download_check done");
return true;
#endif
} else {
dprintf(CRITICAL, "download_check: check_uart_enter:%d, check_download_key:%d\n",
check_uart_enter(), check_download_key());
return (check_uart_enter() || check_download_key());
}
}
static bool recovery_check(void)
{
if (check_recovery_mode()) {
set_clr_recovery_mode(false);
return true;
} else
return false;
}
static int fit_load_images(void *fit, struct fit_load_data *fit_data)
{
int ret;
/* TODO: decide verify policy with config. */
dprintf(CRITICAL, "verify fit conf sig: %s\n", fit_data->part_name);
ret = fit_conf_verify_sig(NULL, fit);
if (ret < 0)
return ret;
ret = fit_load_image(NULL, "kernel", fit, NULL, NULL,
(paddr_t *)&fit_data->kernel_entry, true);
if (ret && (ret != -ENOENT)) {
dprintf(CRITICAL, "%s load kernel failed\n", fit_data->part_name);
return ret;
}
ret = fit_load_image(NULL, "tee", fit, NULL, NULL,
(paddr_t *)&fit_data->trustedos_entry, true);
if (ret && (ret != -ENOENT)) {
dprintf(CRITICAL, "%s load trustedos failed\n", fit_data->part_name);
return ret;
}
ret = fit_load_image(NULL, "ramdisk", fit, NULL, NULL, NULL, true);
if (ret && (ret != -ENOENT)) {
dprintf(CRITICAL, "%s load ramdisk failed\n", fit_data->part_name);
return ret;
}
ret = fit_load_image(NULL, "fdt", fit, (addr_t *)&fit_data->dtb_load, NULL,
NULL, true);
if (ret && (ret != -ENOENT)) {
fit_data->dtb_load = ERR_ADDR;
dprintf(CRITICAL, "%s load fdt failed\n", fit_data->part_name);
return ret;
}
return 0;
}
static int fit_load_thread(void *arg)
{
int err;
struct fit_load_data *fit_data = (struct fit_load_data *)arg;
if (fit_data->boot_mode == FASTBOOT_BOOT) {
err = fit_load_images(fit_data->buf, fit_data);
return err;
}
while (fit_data->boot_mode == NORMAL_BOOT) {
err = fit_get_image(fit_data->part_name, &fit_data->buf);
if (err)
break;
err = fit_load_images(fit_data->buf, fit_data);
if (err)
break;
return 0;
}
#ifdef AB_UPGRADE_APP
/* For ab upgrade system, there is no recovery mode */
#else
dprintf(CRITICAL, "%s try recovery mode !!\n", fit_data->part_name);
// RECOVERY_BOOT
err = fit_get_image(fit_data->recovery_part_name, &fit_data->buf);
if (err)
return err;
err = fit_load_images(fit_data->buf, fit_data);
#endif
return err;
}
extern void ext_boot(void);
static void fitboot_task(const struct app_descriptor *app, void *args)
{
void *fit, *dtbo_buf;
struct fit_load_data tz, bootimg;
thread_t *tz_t, *bootimg_t;
int ret_tz, ret_bootimg;
int ret;
u32 boot_mode = NORMAL_BOOT;
uint bl33[] = { 0xea000005, /* b BL33_32_ENTRY | ands x5, x0, x0 */
0x58000160, /* .word 0x58000160 | ldr x0, _X0 */
0x58000181, /* .word 0x58000181 | ldr x1, _X1 */
0x580001a2, /* .word 0x580001a2 | ldr x2, _X2 */
0x580001c3, /* .word 0x580001c3 | ldr x3, _X3 */
0x580001e4, /* .word 0x580001e4 | ldr x4, _X4 */
0xd61f0080, /* .word 0xd61f0080 | br x4 */
/* BL33_32_ENTRY: | */
0xe59f0030, /* ldr r0, _R0 | .word 0xe59f0030 */
0xe59f1030, /* ldr r1, _R1 | .word 0xe59f1030 */
0xe59f2004, /* ldr r2, _X0 | .word 0xe59f2004 */
0xe59ff020, /* ldr pc, _X4 | .word 0xe59ff020 */
0x00000000, /* .word 0x00000000 */
0x00000000, /* _X0: .word 0x00000000 */
0x00000000, /* .word 0x00000000 */
0x00000000, /* _X1: .word 0x00000000 */
0x00000000, /* .word 0x00000000 */
0x00000000, /* _X2: .word 0x00000000 */
0x00000000, /* .word 0x00000000 */
0x00000000, /* _X3: .word 0x00000000 */
0x00000000, /* .word 0x00000000 */
0x00000000, /* _X4: .word 0x00000000 */
0x00000000, /* _R0: .word 0x00000000 */
0x00000000, /* _R1: .word 0x00000000 */
0x00000000 /* .word 0x00000000 */
};
/* alloc kernel and tz buffer from mempool */
kernel_buf = mempool_alloc(MAX_KERNEL_SIZE, MEMPOOL_ANY);
tz_buf = mempool_alloc(MAX_TEE_DRAM_SIZE, MEMPOOL_ANY);
if (!kernel_buf || !tz_buf) {
dprintf(CRITICAL, "alloc buf fail, kernel %p, tz %p\n",
kernel_buf, tz_buf);
return;
}
#ifdef AB_UPGRADE_APP
/* For ab upgrade system, there is no recovery mode */
#else
/* recovery */
if (recovery_check()) {
boot_mode = RECOVERY_BOOT;
}
#endif
/* fastboot */
if (download_check()) {
FASTBOOT:
ext_boot();
boot_mode = FASTBOOT_BOOT;
}
bootimg.part_name = (char *)BOOT_PART_NAME;
tz.part_name = (char *)TZ_PART_NAME;
#ifdef AB_UPGRADE_APP
/* disable wdt */
/*1.choose A/B boot & tz img.*/
int boot_part = 0;
boot_part = check_boot_partition("misc");
if (boot_part == 0) {
dprintf(CRITICAL, "choose first boot partition:%s , tee choose: %s\n",(char *)BOOT_PART_NAME, (char *)TZ_PART_NAME);
bootimg.part_name = (char *)BOOT_PART_NAME;
tz.part_name = (char *)TZ_PART_NAME;
//cmdlineoverlay(bootimg.dtb_load, NULL, 0); from b partition,need to set
} else if (boot_part == 1) {
dprintf(CRITICAL, "choose second boot partition: %s , tee choose: %s\n", (char *)RECOVERY_BOOT_PART_NAME, (char *)RECOVERY_TZ_PART_NAME);
bootimg.part_name = (char *)RECOVERY_BOOT_PART_NAME;
tz.part_name = (char *)RECOVERY_TZ_PART_NAME;
} else {
dprintf(CRITICAL, "unknow boot_part (%d), using first boot partition\n", boot_part);
bootimg.part_name = (char *)BOOT_PART_NAME;
tz.part_name = (char *)TZ_PART_NAME;
}
#endif
bootimg.recovery_part_name = (char *)RECOVERY_BOOT_PART_NAME;
bootimg.boot_mode = boot_mode;
bootimg.buf = kernel_buf;
bootimg_t = thread_create("bootimg_ctl", fit_load_thread, &bootimg,
DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
/* create a tz thread to load tz */;
tz.recovery_part_name = (char *)RECOVERY_TZ_PART_NAME;
tz.boot_mode = boot_mode;
tz.buf = tz_buf;
tz_t = thread_create("tz_ctl", fit_load_thread, &tz,
DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
if (!bootimg_t || !tz_t) {
dprintf(CRITICAL, "create load threads failed\n");
return;
}
thread_resume(bootimg_t);
thread_resume(tz_t);
thread_join(bootimg_t, &ret_bootimg, INFINITE_TIME);
thread_join(tz_t, &ret_tz, INFINITE_TIME);
if (ret_bootimg) {
dprintf(CRITICAL, "load boot image failed\n");
goto FASTBOOT;
}
if (ret_tz) {
dprintf(CRITICAL, "load tz image failed\n");
goto FASTBOOT;
}
plat_fixup_hook((void *)bootimg.dtb_load);
dtbo_buf = mempool_alloc(MAX_DTBO_SIZE, MEMPOOL_ANY);
if (!dtbo_buf) {
dprintf(CRITICAL, "alloc dtbo buf fail\n");
return;
}
#ifdef AB_UPGRADE_APP
/*2.overlay cmdline to choose A/B rootfs*/
if (boot_part == 1) {
dprintf(CRITICAL, "load second partitions, need to overlay cmdline\n");
cmdlineoverlay((void *)bootimg.dtb_load, NULL, 0);
}
#endif
#ifdef SET_FDT_EMI_INFO
/* set fdt emi info*/
ret = extract_fdt((void *)bootimg.dtb_load, MAX_DTB_SIZE);
if (ret) {
dprintf(CRITICAL, "extract fdt failed\n");
return;
}
ret = set_fdt_emi_info((void *)bootimg.dtb_load);
if (ret < 0) {
dprintf(CRITICAL, "failed to set fdt emi info\n");
}
ret = fdt_pack((void *)bootimg.dtb_load);
if (ret) {
dprintf(CRITICAL, "ft pack failed\n");
return;
}
#endif
/* check if dtbo is existed */
ret = fit_get_image(DTBO_PART_NAME, &dtbo_buf);
if (ret == 0) {
void *fdt_dtbo;
void *fdt_dtb;
if (bootimg.dtb_load == ERR_ADDR) {
dprintf(CRITICAL, "dtbo failed, no dtb\n");
return;
}
fdt_dtb = (void *)bootimg.dtb_load;
/* extract fdt */
ret = extract_fdt(fdt_dtb, MAX_DTB_SIZE);
if (ret) {
dprintf(CRITICAL, "extract fdt failed\n");
return;
}
dprintf(ALWAYS, "[fitboot] do overlay\n");
fdt_dtbo = (void *)dtbo_buf;
ret = fdt_overlay_apply(fdt_dtb, fdt_dtbo);
if (ret) {
dprintf(CRITICAL, "fdt merge failed, ret %d\n", ret);
return;
}
/* pack fdt */
ret = fdt_pack(fdt_dtb);
if (ret) {
dprintf(CRITICAL, "ft pack failed\n");
return;
}
}
/* load sspm*/
extern void fit_load_sspm_image() __attribute__((weak));
if (fit_load_sspm_image)
fit_load_sspm_image();
/*load spmfw*/
extern void fit_load_spmfw_image() __attribute__((weak));
if (fit_load_spmfw_image)
fit_load_spmfw_image();
/* load bl33 for tz to jump*/
#if WITH_KERNEL_VM
addr_t fdt_pa = kvaddr_to_paddr((void *)bootimg.dtb_load);
#else
addr_t fdt_pa = bootimg.dtb_load;
#endif
setup_bl33(bl33, fdt_pa, (uint)(bootimg.kernel_entry));
memmove((void *)CFG_BL33_LOAD_EP_ADDR, bl33, sizeof(bl33));
ulong bl33_pa = CFG_BL33_LOAD_EP_ADDR;
ulong smc_fid = 0xc2000000UL; /* only used in ARCH_ARM64 */
#if ARCH_ARM64 && WITH_KERNEL_VM
/* 64-bit LK use non identity mapping VA, VA to PA translation needed */
bl33_pa = (ulong)kvaddr_to_paddr((void *)CFG_BL33_LOAD_EP_ADDR);
#endif
dprintf(ALWAYS, "LK run time: %lld (us)\n", current_time_hires());
dprintf(ALWAYS, "jump to tz %p\n", (void *)tz.kernel_entry);
arch_chain_load((void *)prepare_bl2_exit, smc_fid, tz.kernel_entry, bl33_pa, 0UL);
}
APP_START(fitboot)
.entry = fitboot_task,
.flags = 0,
APP_END