blob: 543bd523db82b87cb4d8207898a246ff69084262 [file] [log] [blame]
/*
* Copyright (c) 2008-2015 Travis Geiselbrecht
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <debug.h>
#include <trace.h>
#include <rand.h>
#include <err.h>
#include <assert.h>
#include <string.h>
#include <app/tests.h>
#include <kernel/thread.h>
#include <kernel/mutex.h>
#include <kernel/semaphore.h>
#include <kernel/event.h>
#include <platform.h>
static int sleep_thread(void *arg)
{
for (;;) {
printf("sleeper %p\n", get_current_thread());
thread_sleep(rand() % 500);
}
return 0;
}
int sleep_test(void)
{
int i;
for (i=0; i < 16; i++)
thread_detach_and_resume(thread_create("sleeper", &sleep_thread, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));
return 0;
}
static semaphore_t sem;
static const int sem_total_its = 10000;
static const int sem_thread_max_its = 1000;
static const int sem_start_value = 10;
static int sem_remaining_its = 0;
static int sem_threads = 0;
static mutex_t sem_test_mutex;
static int semaphore_producer(void *unused)
{
printf("semaphore producer %p starting up, running for %d iterations\n", get_current_thread(), sem_total_its);
for (int x = 0; x < sem_total_its; x++) {
sem_post(&sem, true);
}
return 0;
}
static int semaphore_consumer(void *unused)
{
unsigned int iterations = 0;
mutex_acquire(&sem_test_mutex);
if (sem_remaining_its >= sem_thread_max_its) {
iterations = rand();
iterations %= sem_thread_max_its;
} else {
iterations = sem_remaining_its;
}
sem_remaining_its -= iterations;
mutex_release(&sem_test_mutex);
printf("semaphore consumer %p starting up, running for %u iterations\n", get_current_thread(), iterations);
for (unsigned int x = 0; x < iterations; x++)
sem_wait(&sem);
printf("semaphore consumer %p done\n", get_current_thread());
atomic_add(&sem_threads, -1);
return 0;
}
static int semaphore_test(void)
{
static semaphore_t isem = SEMAPHORE_INITIAL_VALUE(isem, 99);
printf("preinitialized sempahore:\n");
hexdump(&isem, sizeof(isem));
sem_init(&sem, sem_start_value);
mutex_init(&sem_test_mutex);
sem_remaining_its = sem_total_its;
while (1) {
mutex_acquire(&sem_test_mutex);
if (sem_remaining_its) {
thread_detach_and_resume(thread_create("semaphore consumer", &semaphore_consumer, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));
atomic_add(&sem_threads, 1);
} else {
mutex_release(&sem_test_mutex);
break;
}
mutex_release(&sem_test_mutex);
}
thread_detach_and_resume(thread_create("semaphore producer", &semaphore_producer, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));
while (sem_threads)
thread_yield();
if (sem.count == sem_start_value)
printf("semaphore tests successfully complete\n");
else
printf("semaphore tests failed: %d != %d\n", sem.count, sem_start_value);
sem_destroy(&sem);
mutex_destroy(&sem_test_mutex);
return 0;
}
static int mutex_thread(void *arg)
{
int i;
const int iterations = 1000000;
static volatile int shared = 0;
mutex_t *m = (mutex_t *)arg;
printf("mutex tester thread %p starting up, will go for %d iterations\n", get_current_thread(), iterations);
for (i = 0; i < iterations; i++) {
mutex_acquire(m);
if (shared != 0)
panic("someone else has messed with the shared data\n");
shared = (intptr_t)get_current_thread();
thread_yield();
shared = 0;
mutex_release(m);
thread_yield();
}
return 0;
}
static int mutex_timeout_thread(void *arg)
{
mutex_t *timeout_mutex = (mutex_t *)arg;
status_t err;
printf("mutex_timeout_thread acquiring mutex %p with 1 second timeout\n", timeout_mutex);
err = mutex_acquire_timeout(timeout_mutex, 1000);
if (err == ERR_TIMED_OUT)
printf("mutex_acquire_timeout returns with TIMEOUT\n");
else
printf("mutex_acquire_timeout returns %d\n", err);
return err;
}
static int mutex_zerotimeout_thread(void *arg)
{
mutex_t *timeout_mutex = (mutex_t *)arg;
status_t err;
printf("mutex_zerotimeout_thread acquiring mutex %p with zero second timeout\n", timeout_mutex);
err = mutex_acquire_timeout(timeout_mutex, 0);
if (err == ERR_TIMED_OUT)
printf("mutex_acquire_timeout returns with TIMEOUT\n");
else
printf("mutex_acquire_timeout returns %d\n", err);
return err;
}
int mutex_test(void)
{
static mutex_t imutex = MUTEX_INITIAL_VALUE(imutex);
printf("preinitialized mutex:\n");
hexdump(&imutex, sizeof(imutex));
mutex_t m;
mutex_init(&m);
thread_t *threads[5];
for (uint i=0; i < countof(threads); i++) {
threads[i] = thread_create("mutex tester", &mutex_thread, &m, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
thread_resume(threads[i]);
}
for (uint i=0; i < countof(threads); i++) {
thread_join(threads[i], NULL, INFINITE_TIME);
}
printf("done with simple mutex tests\n");
printf("testing mutex timeout\n");
mutex_t timeout_mutex;
mutex_init(&timeout_mutex);
mutex_acquire(&timeout_mutex);
for (uint i=0; i < 2; i++) {
threads[i] = thread_create("mutex timeout tester", &mutex_timeout_thread, (void *)&timeout_mutex, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
thread_resume(threads[i]);
}
for (uint i=2; i < 4; i++) {
threads[i] = thread_create("mutex timeout tester", &mutex_zerotimeout_thread, (void *)&timeout_mutex, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
thread_resume(threads[i]);
}
thread_sleep(5000);
mutex_release(&timeout_mutex);
for (uint i=0; i < 4; i++) {
thread_join(threads[i], NULL, INFINITE_TIME);
}
printf("done with mutex tests\n");
mutex_destroy(&timeout_mutex);
return 0;
}
static event_t e;
static int event_signaller(void *arg)
{
printf("event signaller pausing\n");
thread_sleep(1000);
// for (;;) {
printf("signalling event\n");
event_signal(&e, true);
printf("done signalling event\n");
thread_yield();
// }
return 0;
}
static int event_waiter(void *arg)
{
int count = (intptr_t)arg;
printf("event waiter starting\n");
while (count > 0) {
printf("%p: waiting on event...\n", get_current_thread());
if (event_wait(&e) < 0) {
printf("%p: event_wait() returned error\n", get_current_thread());
return -1;
}
printf("%p: done waiting on event...\n", get_current_thread());
thread_yield();
count--;
}
return 0;
}
void event_test(void)
{
thread_t *threads[5];
static event_t ievent = EVENT_INITIAL_VALUE(ievent, true, 0x1234);
printf("preinitialized event:\n");
hexdump(&ievent, sizeof(ievent));
printf("event tests starting\n");
/* make sure signalling the event wakes up all the threads */
event_init(&e, false, 0);
threads[0] = thread_create("event signaller", &event_signaller, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
threads[1] = thread_create("event waiter 0", &event_waiter, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
threads[2] = thread_create("event waiter 1", &event_waiter, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
threads[3] = thread_create("event waiter 2", &event_waiter, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
threads[4] = thread_create("event waiter 3", &event_waiter, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
for (uint i = 0; i < countof(threads); i++)
thread_resume(threads[i]);
thread_sleep(2000);
printf("destroying event\n");
event_destroy(&e);
for (uint i = 0; i < countof(threads); i++)
thread_join(threads[i], NULL, INFINITE_TIME);
/* make sure signalling the event wakes up precisely one thread */
event_init(&e, false, EVENT_FLAG_AUTOUNSIGNAL);
threads[0] = thread_create("event signaller", &event_signaller, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
threads[1] = thread_create("event waiter 0", &event_waiter, (void *)99, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
threads[2] = thread_create("event waiter 1", &event_waiter, (void *)99, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
threads[3] = thread_create("event waiter 2", &event_waiter, (void *)99, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
threads[4] = thread_create("event waiter 3", &event_waiter, (void *)99, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
for (uint i = 0; i < countof(threads); i++)
thread_resume(threads[i]);
thread_sleep(2000);
event_destroy(&e);
for (uint i = 0; i < countof(threads); i++)
thread_join(threads[i], NULL, INFINITE_TIME);
printf("event tests done\n");
}
static int quantum_tester(void *arg)
{
for (;;) {
printf("%p: in this thread. rq %d\n", get_current_thread(), get_current_thread()->remaining_quantum);
}
return 0;
}
void quantum_test(void)
{
thread_detach_and_resume(thread_create("quantum tester 0", &quantum_tester, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));
thread_detach_and_resume(thread_create("quantum tester 1", &quantum_tester, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));
thread_detach_and_resume(thread_create("quantum tester 2", &quantum_tester, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));
thread_detach_and_resume(thread_create("quantum tester 3", &quantum_tester, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));
}
static event_t context_switch_event;
static event_t context_switch_done_event;
static int context_switch_tester(void *arg)
{
int i;
uint total_count = 0;
const int iter = 100000;
int thread_count = (intptr_t)arg;
event_wait(&context_switch_event);
uint count = arch_cycle_count();
for (i = 0; i < iter; i++) {
thread_yield();
}
total_count += arch_cycle_count() - count;
thread_sleep(1000);
printf("took %u cycles to yield %d times, %u per yield, %u per yield per thread\n",
total_count, iter, total_count / iter, total_count / iter / thread_count);
event_signal(&context_switch_done_event, true);
return 0;
}
void context_switch_test(void)
{
event_init(&context_switch_event, false, 0);
event_init(&context_switch_done_event, false, 0);
thread_detach_and_resume(thread_create("context switch idle", &context_switch_tester, (void *)1, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));
thread_sleep(100);
event_signal(&context_switch_event, true);
event_wait(&context_switch_done_event);
thread_sleep(100);
event_unsignal(&context_switch_event);
event_unsignal(&context_switch_done_event);
thread_detach_and_resume(thread_create("context switch 2a", &context_switch_tester, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));
thread_detach_and_resume(thread_create("context switch 2b", &context_switch_tester, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));
thread_sleep(100);
event_signal(&context_switch_event, true);
event_wait(&context_switch_done_event);
thread_sleep(100);
event_unsignal(&context_switch_event);
event_unsignal(&context_switch_done_event);
thread_detach_and_resume(thread_create("context switch 4a", &context_switch_tester, (void *)4, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));
thread_detach_and_resume(thread_create("context switch 4b", &context_switch_tester, (void *)4, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));
thread_detach_and_resume(thread_create("context switch 4c", &context_switch_tester, (void *)4, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));
thread_detach_and_resume(thread_create("context switch 4d", &context_switch_tester, (void *)4, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));
thread_sleep(100);
event_signal(&context_switch_event, true);
event_wait(&context_switch_done_event);
thread_sleep(100);
}
static volatile int atomic;
static volatile int atomic_count;
static int atomic_tester(void *arg)
{
int add = (intptr_t)arg;
int i;
const int iter = 10000000;
TRACEF("add %d, %d iterations\n", add, iter);
for (i=0; i < iter; i++) {
atomic_add(&atomic, add);
}
int old = atomic_add(&atomic_count, -1);
TRACEF("exiting, old count %d\n", old);
return 0;
}
static void atomic_test(void)
{
atomic = 0;
atomic_count = 8;
printf("testing atomic routines\n");
thread_t *threads[8];
threads[0] = thread_create("atomic tester 1", &atomic_tester, (void *)1, LOW_PRIORITY, DEFAULT_STACK_SIZE);
threads[1] = thread_create("atomic tester 1", &atomic_tester, (void *)1, LOW_PRIORITY, DEFAULT_STACK_SIZE);
threads[2] = thread_create("atomic tester 1", &atomic_tester, (void *)1, LOW_PRIORITY, DEFAULT_STACK_SIZE);
threads[3] = thread_create("atomic tester 1", &atomic_tester, (void *)1, LOW_PRIORITY, DEFAULT_STACK_SIZE);
threads[4] = thread_create("atomic tester 2", &atomic_tester, (void *)-1, LOW_PRIORITY, DEFAULT_STACK_SIZE);
threads[5] = thread_create("atomic tester 2", &atomic_tester, (void *)-1, LOW_PRIORITY, DEFAULT_STACK_SIZE);
threads[6] = thread_create("atomic tester 2", &atomic_tester, (void *)-1, LOW_PRIORITY, DEFAULT_STACK_SIZE);
threads[7] = thread_create("atomic tester 2", &atomic_tester, (void *)-1, LOW_PRIORITY, DEFAULT_STACK_SIZE);
/* start all the threads */
for (uint i = 0; i < countof(threads); i++)
thread_resume(threads[i]);
/* wait for them to all stop */
for (uint i = 0; i < countof(threads); i++) {
thread_join(threads[i], NULL, INFINITE_TIME);
}
printf("atomic count == %d (should be zero)\n", atomic);
}
static volatile int preempt_count;
static int preempt_tester(void *arg)
{
spin(1000000);
printf("exiting ts %lld\n", current_time_hires());
atomic_add(&preempt_count, -1);
#undef COUNT
return 0;
}
static void preempt_test(void)
{
/* create 5 threads, let them run. If the system is properly timer preempting,
* the threads should interleave each other at a fine enough granularity so
* that they complete at roughly the same time. */
printf("testing preemption\n");
preempt_count = 5;
for (int i = 0; i < preempt_count; i++)
thread_detach_and_resume(thread_create("preempt tester", &preempt_tester, NULL, LOW_PRIORITY, DEFAULT_STACK_SIZE));
while (preempt_count > 0) {
thread_sleep(1000);
}
printf("done with preempt test, above time stamps should be very close\n");
/* do the same as above, but mark the threads as real time, which should
* effectively disable timer based preemption for them. They should
* complete in order, about a second apart. */
printf("testing real time preemption\n");
preempt_count = 5;
for (int i = 0; i < preempt_count; i++) {
thread_t *t = thread_create("preempt tester", &preempt_tester, NULL, LOW_PRIORITY, DEFAULT_STACK_SIZE);
thread_set_real_time(t);
thread_detach_and_resume(t);
}
while (preempt_count > 0) {
thread_sleep(1000);
}
printf("done with real-time preempt test, above time stamps should be 1 second apart\n");
}
static int join_tester(void *arg)
{
long val = (long)arg;
printf("\t\tjoin tester starting\n");
thread_sleep(500);
printf("\t\tjoin tester exiting with result %ld\n", val);
return val;
}
static int join_tester_server(void *arg)
{
int ret;
status_t err;
thread_t *t;
printf("\ttesting thread_join/thread_detach\n");
printf("\tcreating and waiting on thread to exit with thread_join\n");
t = thread_create("join tester", &join_tester, (void *)1, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
thread_resume(t);
ret = 99;
printf("\tthread magic is 0x%x (should be 0x%x)\n", t->magic, THREAD_MAGIC);
err = thread_join(t, &ret, INFINITE_TIME);
printf("\tthread_join returns err %d, retval %d\n", err, ret);
printf("\tthread magic is 0x%x (should be 0)\n", t->magic);
printf("\tcreating and waiting on thread to exit with thread_join, after thread has exited\n");
t = thread_create("join tester", &join_tester, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
thread_resume(t);
thread_sleep(1000); // wait until thread is already dead
ret = 99;
printf("\tthread magic is 0x%x (should be 0x%x)\n", t->magic, THREAD_MAGIC);
err = thread_join(t, &ret, INFINITE_TIME);
printf("\tthread_join returns err %d, retval %d\n", err, ret);
printf("\tthread magic is 0x%x (should be 0)\n", t->magic);
printf("\tcreating a thread, detaching it, let it exit on its own\n");
t = thread_create("join tester", &join_tester, (void *)3, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
thread_detach(t);
thread_resume(t);
thread_sleep(1000); // wait until the thread should be dead
printf("\tthread magic is 0x%x (should be 0)\n", t->magic);
printf("\tcreating a thread, detaching it after it should be dead\n");
t = thread_create("join tester", &join_tester, (void *)4, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
thread_resume(t);
thread_sleep(1000); // wait until thread is already dead
printf("\tthread magic is 0x%x (should be 0x%x)\n", t->magic, THREAD_MAGIC);
thread_detach(t);
printf("\tthread magic is 0x%x\n", t->magic);
printf("\texiting join tester server\n");
return 55;
}
static void join_test(void)
{
int ret;
status_t err;
thread_t *t;
printf("testing thread_join/thread_detach\n");
printf("creating thread join server thread\n");
t = thread_create("join tester server", &join_tester_server, (void *)1, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
thread_resume(t);
ret = 99;
err = thread_join(t, &ret, INFINITE_TIME);
printf("thread_join returns err %d, retval %d (should be 0 and 55)\n", err, ret);
}
static void spinlock_test(void)
{
spin_lock_saved_state_t state;
spin_lock_t lock;
spin_lock_init(&lock);
// verify basic functionality (single core)
printf("testing spinlock:\n");
ASSERT(!spin_lock_held(&lock));
ASSERT(!arch_ints_disabled());
spin_lock_irqsave(&lock, state);
ASSERT(arch_ints_disabled());
ASSERT(spin_lock_held(&lock));
spin_unlock_irqrestore(&lock, state);
ASSERT(!spin_lock_held(&lock));
ASSERT(!arch_ints_disabled());
printf("seems to work\n");
#define COUNT (1024*1024)
uint32_t c = arch_cycle_count();
for (uint i = 0; i < COUNT; i++) {
spin_lock(&lock);
spin_unlock(&lock);
}
c = arch_cycle_count() - c;
printf("%u cycles to acquire/release lock %u times (%u cycles per)\n", c, COUNT, c / COUNT);
c = arch_cycle_count();
for (uint i = 0; i < COUNT; i++) {
spin_lock_irqsave(&lock, state);
spin_unlock_irqrestore(&lock, state);
}
c = arch_cycle_count() - c;
printf("%u cycles to acquire/release lock w/irqsave %u times (%u cycles per)\n", c, COUNT, c / COUNT);
#undef COUNT
}
int thread_tests(int argc, const cmd_args *argv)
{
mutex_test();
semaphore_test();
event_test();
spinlock_test();
atomic_test();
thread_sleep(200);
context_switch_test();
preempt_test();
join_test();
return 0;
}
static int spinner_thread(void *arg)
{
for (;;)
;
return 0;
}
int spinner(int argc, const cmd_args *argv)
{
if (argc < 2) {
printf("not enough args\n");
printf("usage: %s <priority> <rt>\n", argv[0].str);
return -1;
}
thread_t *t = thread_create("spinner", spinner_thread, NULL, argv[1].u, DEFAULT_STACK_SIZE);
if (!t)
return ERR_NO_MEMORY;
if (argc >= 3 && !strcmp(argv[2].str, "rt")) {
thread_set_real_time(t);
}
thread_resume(t);
return 0;
}
/* vim: set ts=4 sw=4 noexpandtab: */