blob: 1ae6ffe3c115dfdc342eb0e2ca106fdbc361c546 [file] [log] [blame]
/*
* Copyright (c) 2018 MediaTek Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <malloc.h>
#include <platform/mtk_wdt.h>
#include <stdint.h>
#include <string.h>
#include "aee.h"
#include "kdump.h"
#include "kdump_sdhc.h"
#define PAGE_SIZE 4096
#define DEVICE_SECTOR_BYTES 512
FAT_Para m_bFATInfo;
uint32_t m_bLastFATPage;
struct aee_timer total_time;
static struct mrdump_dev *dumpdev;
LfnEntry g_LfnEntry = {
0x41, // sequence number
{'C','\0','E','\0','D','\0','u','\0','m','\0'}, // name characters (five UTF-16 characters)
0x0F, // attributes (always 0x0F)
0x00, // reserved (alwyas 0x00)
0xDF, // checksum of DOS file name
{'p','\0','.','\0','k','\0','d','\0','m','\0','p','\0'}, // name characters (six UTF-16 characters)
0x0000, // word of first cluster (always 0x0000)
{'\0','\0',0xFF,0xFF}
};
DirEntry g_DirEntry = {
{'C','E','D','U','M','P','~','1','K','D','M'}, // name
0x20, // attr
0x00, // NTflags
0x00, // createdTimeMsec
0x63E8, // createdTime
0x2E21, // createdDate
0x2E21, // lastAccessDate
0x0000, // clusFirstHigh
0x6490, // time
0x2E21, // date
0x0000, // clusFirst
0x00000000 // size
};
unsigned int OALGetTickCount(void)
{
return 0 ;
}
static unsigned char ToLower(unsigned char c)
{
if ((c >= 'A') && (c <= 'Z'))
return c+ 'a' - 'A';
else
return c;
}
static bool Compare_sd(const uint8_t *a, const uint8_t *b, int length)
{
while (length--) {
if (ToLower(*a++) != ToLower(*b++))
return false;
}
return true;
}
static uint32_t BytesToNum_sd(uint8_t *b, int bytes)
{
uint32_t result = 0;
int i;
for (i = 0; i < bytes; i++) {
result |= b[i] << (i << 3);
}
return result;
}
static bool fatfs_dev_read(struct mrdump_dev *dev, uint64_t sector_addr, uint8_t *pdBuf, int32_t blockLen)
{
return dev->read(dev, sector_addr * DEVICE_SECTOR_BYTES, pdBuf, blockLen * DEVICE_SECTOR_BYTES);
}
static bool fatfs_dev_write(struct mrdump_dev *dev, uint64_t sector_addr, uint8_t *pdBuf, int32_t blockLen)
{
return dev->write(dev, sector_addr * DEVICE_SECTOR_BYTES, pdBuf, blockLen * DEVICE_SECTOR_BYTES);
}
static void fatfs_commit_fat_entry(FileHandler *pFileHandler, int fat_offset, uint32_t value)
{
if (m_bFATInfo.FileSysType == FAT_32) {
pFileHandler->FATBuffer[fat_offset * 4] = (value) & 0xff;
pFileHandler->FATBuffer[fat_offset * 4 + 1] = (value >> 8) & 0xff;
pFileHandler->FATBuffer[fat_offset * 4 + 2] = (value >> 16) & 0xff;
pFileHandler->FATBuffer[fat_offset * 4 + 3] = (value >> 24) & 0xff;
} else {
pFileHandler->FATBuffer[fat_offset * 2] = (value) & 0xff;
pFileHandler->FATBuffer[fat_offset * 2 + 1] = (value >> 8) & 0xff;
}
}
uint32_t FindBootPartition_sd(uint8_t *SectorBuffer)
{
uint32_t PartitionStart;
uint32_t PartitionTpye;
PartitionTpye = BytesToNum_sd(SectorBuffer + 0x1c2, 1);
PartitionStart = BytesToNum_sd(SectorBuffer + 0x1c6, 4);
voprintf_debug("SDCard: PartitionStart=0x%x ,PartitionTpye=0x%x\n", PartitionStart, PartitionTpye);
if (PartitionTpye == 5) {
if (!fatfs_dev_read(dumpdev, PartitionStart,SectorBuffer,1)) {
voprintf_debug("SDCard: can not find BootPosition! \n");
return 0;
}
PartitionStart += BytesToNum_sd(SectorBuffer + 0x1c6, 4);
voprintf_debug("SDCard: PartitionStart=0x%x\n", PartitionStart);
}
return PartitionStart;
}
bool ReadBootPartition_sd(uint8_t *SectorBuffer)
{
m_bFATInfo.BPB_BytsPerSec = BytesToNum_sd(SectorBuffer+11, 2);
m_bFATInfo.BPB_SecPerClus = BytesToNum_sd(SectorBuffer+13, 1);
m_bFATInfo.BPB_RsvdSecCnt = BytesToNum_sd(SectorBuffer+14, 2);
m_bFATInfo.BPB_NumFATs = BytesToNum_sd(SectorBuffer+16, 1);
m_bFATInfo.BPB_FATSz = BytesToNum_sd(SectorBuffer+22, 2);
if (m_bFATInfo.BPB_FATSz) {
m_bFATInfo.FileSysType = FAT_16;
m_bFATInfo.BPB_RootEntCnt = BytesToNum_sd(SectorBuffer+17, 2);
m_bFATInfo.BPB_TotSec = BytesToNum_sd(SectorBuffer+19, 2);
m_bFATInfo.BPB_RootClus = 0;
voprintf_debug("SDCard: FilSysType = FAT16\n");
} else {
m_bFATInfo.FileSysType = FAT_32;
m_bFATInfo.BPB_TotSec = BytesToNum_sd(SectorBuffer+32, 4);
m_bFATInfo.BPB_FATSz = BytesToNum_sd(SectorBuffer+36, 4);
m_bFATInfo.BPB_RootEntCnt = 0;
m_bFATInfo.BPB_RootClus = BytesToNum_sd(SectorBuffer+44, 4);
voprintf_debug("SDCard: FilSysType = FAT32\n");
}
voprintf_debug("SDCard: BPB_BytsPerSec = 0x%04x\n", m_bFATInfo.BPB_BytsPerSec);
voprintf_debug("SDCard: BPB_SecPerClus = 0x%02x\n", m_bFATInfo.BPB_SecPerClus);
voprintf_debug("SDCard: BPB_RsvdSecCnt = 0x%04x\n", m_bFATInfo.BPB_RsvdSecCnt);
voprintf_debug("SDCard: BPB_NumFATs = 0x%02x\n", m_bFATInfo.BPB_NumFATs);
voprintf_debug("SDCard: BPB_FATSz = 0x%08x\n", m_bFATInfo.BPB_FATSz);
voprintf_debug("SDCard: BPB_RootClus = 0x%08x\n", m_bFATInfo.BPB_RootClus);
voprintf_debug("SDCard: BPB_TotSec = 0x%08x\n", m_bFATInfo.BPB_TotSec);
if ((PAGE_SIZE > m_bFATInfo.BPB_SecPerClus * m_bFATInfo.BPB_BytsPerSec) ||
((m_bFATInfo.BPB_SecPerClus * m_bFATInfo.BPB_BytsPerSec) % PAGE_SIZE != 0)) {
voprintf_error("Can't support SDCard cluster bytes %d\n", m_bFATInfo.BPB_SecPerClus * m_bFATInfo.BPB_BytsPerSec);
return false;
}
return true;
}
static bool Block0_is_BootSector(uint8_t *Ptr)
{
uint32_t BytesPerSec = 0;
uint32_t SecPerClus = 0;
uint32_t BPB_Media = 0;
BytesPerSec = BytesToNum_sd(Ptr + 11, 2);
if (!((BytesPerSec == 512)||(BytesPerSec == 1024)||(BytesPerSec == 2048)||(BytesPerSec == 4096))) {
voprintf_error("Unsupport sector size %d\n", BytesPerSec);
return false;
}
SecPerClus = BytesToNum_sd(Ptr + 13, 1);
if (!((SecPerClus == 1)||(SecPerClus == 2)||(SecPerClus == 4)||
(SecPerClus == 8)||(SecPerClus == 16)||(SecPerClus == 32)||
(SecPerClus == 64)||(SecPerClus == 128)) &&
(SecPerClus * BytesPerSec <= 0x10000)) {
voprintf_error("Unsupport cluster size %d\n", SecPerClus);
return false;
}
BPB_Media = BytesToNum_sd(Ptr + 21, 1);
if (!((BPB_Media == 0xF8)||(BPB_Media == 0xF0)||(BPB_Media == 0xF9)||
(BPB_Media == 0xFA)||(BPB_Media == 0xFB)||(BPB_Media == 0xFC)||
(BPB_Media == 0xFD)||(BPB_Media == 0xFE)||(BPB_Media == 0xFF))) {
voprintf_error("Unsupport media descriptor %d\n", BPB_Media);
return false;
}
return true;
}
bool GetBPBInfo_sd(uint8_t *Ptr)
{
m_bFATInfo.BPB_BytsPerSec = 512;
m_bFATInfo.BootStartSec = 0;
//*pSectorPosition
if (!fatfs_dev_read(dumpdev, m_bFATInfo.BootStartSec, Ptr, 1)) {
voprintf_error("SDCard: can not find MBR\n");
return false;
}
// Add support block0 is bootPartition
if (Block0_is_BootSector(Ptr)) {
m_bFATInfo.BootStartSec = 0;
} else {
m_bFATInfo.BootStartSec = FindBootPartition_sd(Ptr);
if (!fatfs_dev_read(dumpdev, m_bFATInfo.BootStartSec, Ptr, 1)) {
voprintf_error("SDCard: can't find BootPosition\n");
mrdump_status_error("SDCard: can't find BootPosition\n");
return false;
}
if (!Block0_is_BootSector(Ptr)) {
voprintf_error("SDCard: BPB sector dismatch FAT Spec\n");
mrdump_status_error("SDCard: BPB sector dismatch FAT Spec\n");
return false;
}
}
if (!ReadBootPartition_sd(Ptr)) {
voprintf_error("SDCard: can not Read BootPartition\n");
mrdump_status_error("SDCard: can not Read BootPartition\n");
return false;
}
m_bFATInfo.FATStartSec = m_bFATInfo.BootStartSec + m_bFATInfo.BPB_RsvdSecCnt;
if (m_bFATInfo.FileSysType == FAT_32) {
m_bFATInfo.ClusStartSec = m_bFATInfo.FATStartSec+(m_bFATInfo.BPB_NumFATs)*(m_bFATInfo.BPB_FATSz);
m_bFATInfo.RootDirStartSec = m_bFATInfo.ClusStartSec + (m_bFATInfo.BPB_RootClus-2)*(m_bFATInfo.BPB_SecPerClus);
} else {
m_bFATInfo.RootDirStartSec = m_bFATInfo.FATStartSec+(m_bFATInfo.BPB_NumFATs)*(m_bFATInfo.BPB_FATSz);
m_bFATInfo.ClusStartSec = m_bFATInfo.RootDirStartSec+32*m_bFATInfo.BPB_RootEntCnt/m_bFATInfo.BPB_BytsPerSec;
}
return true;
}
uint32_t FindFirstClusInFAT_sd(uint32_t StartClusNum, uint8_t *Ptr)
{
uint32_t SectorNum;
uint32_t NextClusterPosition;
uint32_t BytsPerFAT;
uint32_t BytsPerAdd;
if (m_bFATInfo.FileSysType == FAT_32)
BytsPerAdd = 4;//FAT32
else
BytsPerAdd = 2;//FAT16
BytsPerFAT = m_bFATInfo.BPB_BytsPerSec/BytsPerAdd;
m_bLastFATPage = StartClusNum/BytsPerFAT;
SectorNum = m_bFATInfo.FATStartSec+m_bLastFATPage;
#ifdef SD_DATA_PRINT
voprintf_verbose("SDCard: now FATSec = %d \n",SectorNum);
#endif
if (!fatfs_dev_read(dumpdev, SectorNum, Ptr, 1)) {
voprintf_error("SDCard: can not FindFirstClusInFAT_sd\n");
// FIXME: this is not right, why return 0?
return 0;
}
NextClusterPosition = BytesToNum_sd(Ptr+BytsPerAdd * (StartClusNum%BytsPerFAT), BytsPerAdd);
#ifdef SD_DATA_PRINT
voprintf_verbose("SDCard: NextClusterPosition = %08x\n", NextClusterPosition);
#endif
return NextClusterPosition;
}
uint32_t FindNextClusInFAT_sd(uint32_t StartClusNum, uint8_t *Ptr)
{
uint32_t SectorNum;
uint32_t NextClusterPosition;
uint32_t BytsPerFAT;
uint32_t BytsPerAdd;
uint32_t TempPage;
if (m_bFATInfo.FileSysType==FAT_32)
BytsPerAdd = 4;//FAT32
else
BytsPerAdd = 2;//FAT16
BytsPerFAT = m_bFATInfo.BPB_BytsPerSec/BytsPerAdd;
TempPage = StartClusNum/BytsPerFAT;
if (TempPage!=m_bLastFATPage) {
SectorNum = m_bFATInfo.FATStartSec+TempPage;
#ifdef SD_DATA_PRINT
DBGKDUMP_PRINTK("SDCard: now FATSec = %d \n",SectorNum);
#endif
if (!fatfs_dev_read(dumpdev, SectorNum,Ptr,1)) {
voprintf_error("SDCard: can not FindNextClusInFAT_sd! \n");
// FIXME: this is not right, why return 0?
return 0;
}
m_bLastFATPage=TempPage;
#if 0
for (j=0; j<(int)m_bFATInfo.BPB_BytsPerSec; j++) {
if ((j%16)==0) DBGKDUMP_PRINTK("i= 0x%04x ",j);
DBGKDUMP_PRINTK(" %02x ", Ptr[j]);
if (((j+1)%16)==0) DBGKDUMP_PRINTK(" i= %d\n",j);
}
#endif
}
NextClusterPosition=BytesToNum_sd(Ptr+BytsPerAdd*(StartClusNum%BytsPerFAT),BytsPerAdd);
#ifdef SD_DATA_PRINT
DBGKDUMP_PRINTK("SDCard: NextClusterPosition = %08x \n",NextClusterPosition);
#endif
return NextClusterPosition;
}
uint32_t FindFirstFreeClusInFAT_sd(FileHandler *pFileHandler)
{
uint32_t i;
uint32_t SectorNum;
uint32_t FreeClusterNum;
uint32_t value;
uint32_t FATSector, FATOffset;
uint32_t EntryPerSector;
uint32_t BytsPerAdd;
if (m_bFATInfo.FileSysType==FAT_32)
BytsPerAdd = 4;//FAT32
else
BytsPerAdd = 2;//FAT16
FreeClusterNum = 0;
EntryPerSector = m_bFATInfo.BPB_BytsPerSec/BytsPerAdd;
FATSector = pFileHandler->CurrClusterNum/EntryPerSector;
FATOffset = pFileHandler->CurrClusterNum%EntryPerSector + 1; // start search frome next cluster
// for safty, we don't use all FAT entries, just reserve the last FAT sector
while (FATSector < (m_bFATInfo.BPB_FATSz-1)) {
// Read new FAT sector to cache
SectorNum = m_bFATInfo.FATStartSec+FATSector;
if (!fatfs_dev_read(dumpdev, SectorNum, pFileHandler->FATBuffer, 1)) {
voprintf_error("SDCard: %s read failed\n", __func__);
return 0;
}
for (i=FATOffset; i<EntryPerSector; i++) {
value = BytesToNum_sd(pFileHandler->FATBuffer+i*BytsPerAdd, BytsPerAdd);
if (value == 0) {
FreeClusterNum = FATSector*EntryPerSector + i; // found free entry in FAT
pFileHandler->FATSector = FATSector;
return FreeClusterNum;
}
}
// try next FAT sector
FATSector++;
FATOffset = 0;
}
return 0;
}
uint32_t ChainFreeClusInFAT_sd(FileHandler *pFileHandler)
{
uint32_t i;
uint32_t SectorNum;
uint32_t FreeClusterNum;
uint32_t value;
uint32_t CurrFATSector, CurrFATOffset;
uint32_t NextFATSector, NextFATOffset;
uint32_t EntryPerSector;
uint32_t BytsPerAdd;
uint8_t TempFAT[512];
uint8_t *pBuf;
if (m_bFATInfo.FileSysType==FAT_32)
BytsPerAdd = 4;//FAT32
else
BytsPerAdd = 2;//FAT16
FreeClusterNum = 0;
EntryPerSector = m_bFATInfo.BPB_BytsPerSec/BytsPerAdd;
CurrFATSector = pFileHandler->CurrClusterNum/EntryPerSector;
CurrFATOffset = pFileHandler->CurrClusterNum%EntryPerSector;
NextFATSector = CurrFATSector;
NextFATOffset = CurrFATOffset+1; // start search frome next cluster
memset(TempFAT,0,512);
pBuf = pFileHandler->FATBuffer;
// for safty, we don't use all FAT entries, just reserve the last FAT sector
while (NextFATSector < (m_bFATInfo.BPB_FATSz-1)) {
if (NextFATSector != pFileHandler->FATSector) {
// FAT sector changed, read new FAT sector to temp buffer
pBuf = TempFAT;
SectorNum = m_bFATInfo.FATStartSec+NextFATSector;
if (!fatfs_dev_read(dumpdev, SectorNum, pBuf, 1)) {
voprintf_error("SDCard: %s read failed\n", __func__);
return 0;
}
}
// find free cluster in FAT cache
for (i=NextFATOffset; i<EntryPerSector; i++) {
value = BytesToNum_sd(pBuf+i*BytsPerAdd, BytsPerAdd);
if (value == 0) {
FreeClusterNum = NextFATSector*EntryPerSector + i; // found free entry in FAT
// commit FAT entry
fatfs_commit_fat_entry(pFileHandler, CurrFATOffset, FreeClusterNum);
break;
}
}
if (FreeClusterNum!=0) {
break;
}
// try next FAT sector
NextFATSector++;
NextFATOffset = 0;
}
// check if need to refresh cache
if ((FreeClusterNum != 0) && (NextFATSector != pFileHandler->FATSector)) {
// FAT sector changed, flush cache to SD
SectorNum = m_bFATInfo.FATStartSec+CurrFATSector;
if (!fatfs_dev_write(dumpdev, SectorNum, pFileHandler->FATBuffer, 1)) {
voprintf_error("SDCard: %s write failed\n", __func__);
return 0;
}
// copy temp buffer to cache
memcpy(pFileHandler->FATBuffer, TempFAT, 512);
pFileHandler->FATSector = NextFATSector;
}
return FreeClusterNum;
}
bool MarkEndClusInFAT_sd(FileHandler *pFileHandler)
{
uint32_t SectorNum;
uint32_t BytsPerAdd;
uint32_t EntryPerSector;
uint32_t FATSector;
uint32_t FATOffset;
if (m_bFATInfo.FileSysType==FAT_32)
BytsPerAdd = 4;//FAT32
else
BytsPerAdd = 2;//FAT16
EntryPerSector = m_bFATInfo.BPB_BytsPerSec/BytsPerAdd;
FATSector = pFileHandler->CurrClusterNum/EntryPerSector;
FATOffset = pFileHandler->CurrClusterNum%EntryPerSector;
SectorNum = m_bFATInfo.FATStartSec+FATSector;
if (FATSector != pFileHandler->FATSector) {
if (!fatfs_dev_read(dumpdev, SectorNum, pFileHandler->FATBuffer, 1)) {
voprintf_error("SDCard: MarkEndClusInFAT_sd dumpdev->read failed\n");
return false;
}
}
fatfs_commit_fat_entry(pFileHandler, FATOffset, 0xffffffff);
// flush FAT cache to SD
if (!fatfs_dev_write(dumpdev, SectorNum, pFileHandler->FATBuffer, 1)) {
voprintf_error("SDCard: MarkEndClusInFAT_sd dumpdev->write failed\n");
return false;
}
return true;
}
bool DeleteFileInFAT_sd(FileHandler *pFileHandler)
{
uint32_t StartClusNum;
uint32_t SectorNum;
uint32_t NextClusNum;
uint32_t FATSector, FATOffset;
uint32_t EntryPerSector;
uint32_t BytsPerAdd;
bool NewSector = true;
bool LastEntry = false;
if (m_bFATInfo.FileSysType == FAT_32) {
BytsPerAdd = 4;//FAT32
} else {
BytsPerAdd = 2;//FAT16
}
EntryPerSector = m_bFATInfo.BPB_BytsPerSec/BytsPerAdd;
StartClusNum = pFileHandler->CurrClusterNum;
SectorNum = m_bFATInfo.FATStartSec+StartClusNum/EntryPerSector;
while (!LastEntry) {
FATSector = StartClusNum/EntryPerSector;
FATOffset = StartClusNum%EntryPerSector;
if (NewSector) {
SectorNum = m_bFATInfo.FATStartSec+FATSector;
#ifdef SD_DATA_PRINT
DBGKDUMP_PRINTK("SDCard: now FATSec = %d \n",SectorNum);
#endif
if (!fatfs_dev_read(dumpdev, SectorNum, pFileHandler->FATBuffer, 1)) {
voprintf_error("SDCard: DeleteFile_sd read failed\n");
return false;
}
NewSector = false;
}
NextClusNum = BytesToNum_sd(pFileHandler->FATBuffer+FATOffset*BytsPerAdd, BytsPerAdd);
fatfs_commit_fat_entry(pFileHandler, FATOffset, 0x0);
// Release FAT entry
if (m_bFATInfo.FileSysType==FAT_32) {
if ((NextClusNum >= 0xFFFFFF8) || (NextClusNum == 0)) {
LastEntry = true;
}
} else {
if ((NextClusNum >= 0xFFF8) || (NextClusNum == 0)) {
LastEntry = true;
}
}
if (NextClusNum/EntryPerSector != FATSector) {
NewSector = true; // next cluster is not at current FAT Sector, write current FAT sector back
}
if (NewSector || LastEntry) {
if (!fatfs_dev_write(dumpdev, SectorNum, pFileHandler->FATBuffer, 1)) {
voprintf_error("SDCard: DeleteFile_sd write failed\n");
return false;
}
}
StartClusNum = NextClusNum;
}
#ifdef SD_DATA_PRINT
DBGKDUMP_PRINTK("SDCard: NextClusterPosition = %08x \n",NextClusterPosition);
#endif
return true;
}
static bool OpenDumpFile_sd(FileHandler *pFileHandler)
{
int i, j, times;
uint32_t SectorNum;
uint32_t Temp;
uint32_t dwStartTick;
uint32_t FindFile_TIMEOUT = 60000;
int SecLen;
uint32_t NextRootFAT = 0;
uint8_t RootDirFAT[512];
bool foundLfn = false;
// init File Handler
memset(pFileHandler, 0, sizeof(FileHandler));
if (!GetBPBInfo_sd(pFileHandler->FileBuffer)) {
return false;
}
dwStartTick = OALGetTickCount();
voprintf_debug("SDCard: FATStartSec=%d RootdirStartSec=%d\n", m_bFATInfo.FATStartSec, m_bFATInfo.RootDirStartSec);
SectorNum = m_bFATInfo.RootDirStartSec;
if (m_bFATInfo.FileSysType == FAT_16) {
SecLen=32;
times=1;
} else {
SecLen = m_bFATInfo.BPB_SecPerClus;
times=MaxFindFileClusNum;
}
while (times) {
for (i = 0; i < SecLen; i++) {
if (!fatfs_dev_read(dumpdev, SectorNum, pFileHandler->FileBuffer, 1)) {
voprintf_error("SDCard: can not read RootDir!\n");
return false;
}
for (j=0; j<(int)m_bFATInfo.BPB_BytsPerSec; j+=32) {
if (foundLfn) {
Temp = BytesToNum_sd(pFileHandler->FileBuffer+j+20, 2);
pFileHandler->CurrClusterNum |= (Temp<<16);
Temp = BytesToNum_sd(pFileHandler->FileBuffer+j+26, 2);
pFileHandler->CurrClusterNum |= (Temp&0xFFFF);
// delete file DIR entries
memset(pFileHandler->FileBuffer+j, 0, 32);
if (!fatfs_dev_write(dumpdev, SectorNum, pFileHandler->FileBuffer, 1)) {
voprintf_error("SDCard: can not write directory entry!\n");
return false;
}
// delete file in FAT entries
if (!DeleteFileInFAT_sd(pFileHandler)) {
voprintf_error("SDCard: can not delete file in FAT entries!\n");
return false;
}
goto Done;
} else if (pFileHandler->FileBuffer[j] == 0x41 &&
Compare_sd(pFileHandler->FileBuffer+j+1, g_LfnEntry.name1, 10) &&
Compare_sd(pFileHandler->FileBuffer+j+14, g_LfnEntry.name2, 12)) {
#if 0
// delete LFN entries
memset(pFileHandler->FileBuffer+j, 0, 32);
if (!fatfs_dev_write(dumpdev, SectorNum, pFileHandler->FileBuffer, 1)) {
voprintf_error("SDCard: can not write LFN entry!\n");
return false;
}
foundLfn = true;
#else
voprintf_error("SDCard: dump file exist, skip dumping\n");
mrdump_status_error("File exist at SDCARD, skip dumping\n");
return false;
#endif
}
}
SectorNum+=1;
}
if ((OALGetTickCount() - dwStartTick) >= FindFile_TIMEOUT) {
voprintf_error("SDCard: Find File timeout\n");
return false;
}
if (m_bFATInfo.FileSysType==FAT_32) {
if (times==MaxFindFileClusNum) {
NextRootFAT=FindFirstClusInFAT_sd(m_bFATInfo.BPB_RootClus, RootDirFAT);
if (NextRootFAT>=0xFFFFFF8) {
break;
}
} else {
NextRootFAT=FindNextClusInFAT_sd(NextRootFAT, RootDirFAT);
if (NextRootFAT >= 0xFFFFFF8) {
break;
}
}
voprintf_info("SDCard: NextRootFAT=0x%08x \n", NextRootFAT);
SectorNum=m_bFATInfo.ClusStartSec + (NextRootFAT-2)*(m_bFATInfo.BPB_SecPerClus);
} else {
// FAT16
break;
}
times--;
}
Done:
// return a free cluster to create new file
pFileHandler->CurrClusterNum = 2;
pFileHandler->CurrClusterNum = FindFirstFreeClusInFAT_sd(pFileHandler);
pFileHandler->PrevClusterNum = pFileHandler->CurrClusterNum;
g_DirEntry.clusFirstHigh = (uint16_t)((pFileHandler->CurrClusterNum >> 16) & 0xFFFF);
g_DirEntry.clusFirst = (uint16_t)(pFileHandler->CurrClusterNum & 0xFFFF);
if (!pFileHandler->CurrClusterNum) {
pFileHandler->DiskFull = true;
voprintf_error("SDCard full, not free space available at create file\n");
mrdump_status_error("SDCard full, not free space available at create file\n");
return false;
}
voprintf_debug("%s: ok\n", __func__);
return true;
}
bool UpdateDirectoryEntry_sd(FileHandler *pFileHandler)
{
int i, j, times;
uint32_t SectorNum;
uint32_t dwStartTick;
uint32_t FindFile_TIMEOUT = 60000;
int SecLen;
uint32_t NextRootFAT = 0;
uint8_t RootDirFAT[512];
dwStartTick = OALGetTickCount();
voprintf_info("SDCard: FATStartSec = %d \n",m_bFATInfo.FATStartSec);
voprintf_info("SDCard: RootDirStartSec = %d \n", m_bFATInfo.RootDirStartSec);
SectorNum = m_bFATInfo.RootDirStartSec;
if (m_bFATInfo.FileSysType==FAT_16) {
SecLen=32;
times=1;
} else {
SecLen = m_bFATInfo.BPB_SecPerClus;
times=MaxFindFileClusNum;
}
while (times) {
for (i = 0; i < SecLen; i++) {
if (!fatfs_dev_read(dumpdev, SectorNum, pFileHandler->FileBuffer, 1)) {
voprintf_error("SDCard: can not read RootDir!\n");
return false;
}
for (j = 0; j < (int)(m_bFATInfo.BPB_BytsPerSec - 32); j += 32) {
if ((pFileHandler->FileBuffer[j] == 0x0 || pFileHandler->FileBuffer[j] == 0xE5) &&
(pFileHandler->FileBuffer[j+32] == 0x0 || pFileHandler->FileBuffer[j+32] == 0xE5)) {
memcpy(pFileHandler->FileBuffer+j, &g_LfnEntry, sizeof(LfnEntry));
memcpy(pFileHandler->FileBuffer+j+32, &g_DirEntry, sizeof(DirEntry));
if (!fatfs_dev_write(dumpdev, SectorNum, pFileHandler->FileBuffer, 1)) {
voprintf_error("SDCard: can not read RootDir! \n");
return false;
}
return true;
}
}
SectorNum += 1;
}
if ((OALGetTickCount() - dwStartTick) >= FindFile_TIMEOUT) {
voprintf_error("SDCard: Find File Error timeout\n");
return false;
}
if (m_bFATInfo.FileSysType==FAT_32) {
if (times == MaxFindFileClusNum) {
NextRootFAT=FindFirstClusInFAT_sd(m_bFATInfo.BPB_RootClus, RootDirFAT);
if (NextRootFAT>=0xFFFFFF8) {
voprintf_error("SDCard: Dump file not exsited.\n");
break;
}
} else {
NextRootFAT=FindNextClusInFAT_sd(NextRootFAT, RootDirFAT);
if (NextRootFAT>=0xFFFFFF8) {
voprintf_error("SDCard: Dump file not exsited.\n");
break;
}
}
voprintf_error("SDCard: NextRootFAT=0x%08x \n", NextRootFAT);
SectorNum=m_bFATInfo.ClusStartSec + (NextRootFAT-2)*(m_bFATInfo.BPB_SecPerClus);
} else {
// FAT16
break;
}
times--;
}
return false;
}
static bool WriteDumpFile_sd(FileHandler *pFileHandler, uint8_t *Ptr, uint32_t Length, uint32_t Total)
{
uint32_t i;
uint32_t SectorNum;
uint32_t FreeClusterNum;
uint8_t val;
uint32_t ClusterSize = m_bFATInfo.BPB_SecPerClus * m_bFATInfo.BPB_BytsPerSec;
while (Length > 0) {
// for every cluster boundary, check disk free space
if (pFileHandler->DiskFull) {
return false;
}
for (i = pFileHandler->BufferLen; (i < ClusterSize) && (Length > 0); i++) {
val = *Ptr++;
pFileHandler->FileBuffer[pFileHandler->BufferLen++] = val;
pFileHandler->CheckSum += val;
pFileHandler->TotalLen++;
Length--;
}
// a cluster collected, flush to SD
if (pFileHandler->BufferLen == ClusterSize) {
pFileHandler->BufferLen = 0;
SectorNum=m_bFATInfo.ClusStartSec + (pFileHandler->CurrClusterNum-2)*(m_bFATInfo.BPB_SecPerClus);
//DBGKDUMP_PRINTK("SDCard: WriteDumpFile_sd() write sd card from %d blocks!\n",SectorNum);
if (!fatfs_dev_write(dumpdev, SectorNum, pFileHandler->FileBuffer, m_bFATInfo.BPB_SecPerClus)) {
voprintf_error("SDCard: WriteDumpFile_sd() write file content from %d blocks failed!!!!\n",SectorNum);
return false;
}
pFileHandler->PrevClusterNum = pFileHandler->CurrClusterNum;
FreeClusterNum = ChainFreeClusInFAT_sd(pFileHandler);
if (FreeClusterNum == 0) {
pFileHandler->DiskFull = true;
voprintf_error("SDcard full, no free space available\n");
mrdump_status_error("SDcard full, no free space available\n");
return false;
}
pFileHandler->CurrClusterNum =FreeClusterNum;
} else if (pFileHandler->BufferLen > ClusterSize) {
voprintf_error("SDCard: WriteDumpFile_sd() BufferLen error!\n");
}
}
return true;
}
static bool CloseDumpFile_sd(FileHandler *pFileHandler)
{
uint32_t SectorNum;
g_DirEntry.size = pFileHandler->TotalLen;
#if 0
uint16_t year;
g_DirEntry.createdTime = g_DirEntry.time = (((INREG16(&m_pRTCRegs->RTC_TC_HOU) << 11) & 0xF800) |
((INREG16(&m_pRTCRegs->RTC_TC_MIN) << 5) & 0x7E0) |
((INREG16(&m_pRTCRegs->RTC_TC_SEC)>>1) & 0x1F));
year = INREG16(&m_pRTCRegs->RTC_TC_YEA);
year = (year > 20) ? (year-20) : 0;
g_DirEntry.createdDate = g_DirEntry.date = (((year<<9) & 0xFE00) |
((INREG16(&m_pRTCRegs->RTC_TC_MTH)<<5) & 0x1E0) |
(INREG16(&m_pRTCRegs->RTC_TC_DOM) & 0x1F));
#endif
g_DirEntry.createdTime = g_DirEntry.time = 0;
g_DirEntry.createdDate = g_DirEntry.date = 0;
if (pFileHandler->BufferLen == 0) {
// the free cluster is not used, so that the last cluster should be the previous one
pFileHandler->CurrClusterNum = pFileHandler->PrevClusterNum;
} else if (!pFileHandler->DiskFull) {
// flush the reset data
SectorNum=m_bFATInfo.ClusStartSec + (pFileHandler->CurrClusterNum-2)*(m_bFATInfo.BPB_SecPerClus);
if (!fatfs_dev_write(dumpdev, SectorNum, pFileHandler->FileBuffer, m_bFATInfo.BPB_SecPerClus)) {
voprintf_error("SDCard: CloseFile_sd() write file content failed!\n");
return false;
}
}
if (!MarkEndClusInFAT_sd(pFileHandler)) {
voprintf_error("SDCard: CloseFile_sd() MarkEndClusInFAT_sd failed!\n");
return false;
}
if (!UpdateDirectoryEntry_sd(pFileHandler)) {
voprintf_error("SDCard: CloseFile_sd() UpdateDirectoryEntry_sd failed!\n");
return false;
}
return true;
}
static int sd_write_cb(void *handle, void *buf, int size)
{
if (WriteDumpFile_sd(handle, buf, size, 0)) {
return size;
} else {
return 0;
}
}
int mrdump_vfat_output(const struct mrdump_control_block *mrdump_cb, const struct kzip_addlist *memlist, struct mrdump_dev *mrdump_dev)
{
if (mrdump_dev == NULL) {
return -1;
}
dumpdev = mrdump_dev;
voprintf_info("Output to VFAT Partition %s\n", dumpdev->name);
FileHandler *file_handle = memalign(16, sizeof(FileHandler));
if (file_handle == NULL) {
voprintf_error("No enough memory.");
return -1;
}
memset(file_handle, 0, sizeof(FileHandler));
mtk_wdt_restart();
bool ok = true;
if (OpenDumpFile_sd(file_handle)) {
mtk_wdt_restart();
struct kzip_file *zf = kzip_open(file_handle, sd_write_cb);
if (zf != NULL) {
if (!kzip_add_file(zf, memlist, "SYS_COREDUMP")) {
ok = false;
}
kzip_close(zf);
zf = NULL;
} else {
ok = false;
}
mtk_wdt_restart();
CloseDumpFile_sd(file_handle);
free(file_handle);
if (ok) {
mrdump_status_ok("OUTPUT:%s\nMODE:%s\n", "VFAT_INT_STORAGE", mrdump_mode2string(mrdump_cb->crash_record.reboot_mode));
}
}
return ok ? 0 : -1;
}