blob: 25249491a9c7bea04781fd7f2e0613725c4c76f2 [file] [log] [blame]
/*
* Copyright (c) 2015 Google, Inc. All rights reserved
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <debug.h>
#include <trace.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <kernel/thread.h>
#include <kernel/mutex.h>
#include <kernel/spinlock.h>
#include <lib/cmpctmalloc.h>
#include <lib/heap.h>
#include <lib/page_alloc.h>
// Malloc implementation tuned for space.
//
// Allocation strategy takes place with a global mutex. Freelist entries are
// kept in linked lists with 8 different sizes per binary order of magnitude
// and the header size is two words with eager coalescing on free.
#ifdef DEBUG
#define CMPCT_DEBUG
#endif
#define LOCAL_TRACE 0
#define ALLOC_FILL 0x99
#define FREE_FILL 0x77
#define PADDING_FILL 0x55
#if WITH_KERNEL_VM && !defined(HEAP_GROW_SIZE)
#define HEAP_GROW_SIZE (1 * 1024 * 1024) /* Grow aggressively */
#elif !defined(HEAP_GROW_SIZE)
#define HEAP_GROW_SIZE (4 * 1024) /* Grow less aggressively */
#endif
STATIC_ASSERT(IS_PAGE_ALIGNED(HEAP_GROW_SIZE));
// Individual allocations above 4Mbytes are just fetched directly from the
// block allocator.
#define HEAP_ALLOC_VIRTUAL_BITS 22
// When we grow the heap we have to have somewhere in the freelist to put the
// resulting freelist entry, so the freelist has to have a certain number of
// buckets.
STATIC_ASSERT(HEAP_GROW_SIZE <= (1u << HEAP_ALLOC_VIRTUAL_BITS));
// Buckets for allocations. The smallest 15 buckets are 8, 16, 24, etc. up to
// 120 bytes. After that we round up to the nearest size that can be written
// /^0*1...0*$/, giving 8 buckets per order of binary magnitude. The freelist
// entries in a given bucket have at least the given size, plus the header
// size. On 64 bit, the 8 byte bucket is useless, since the freelist header
// is 16 bytes larger than the header, but we have it for simplicity.
#define NUMBER_OF_BUCKETS (1 + 15 + (HEAP_ALLOC_VIRTUAL_BITS - 7) * 8)
// All individual memory areas on the heap start with this.
typedef struct header_struct {
struct header_struct *left; // Pointer to the previous area in memory order.
size_t size;
} header_t;
typedef struct free_struct {
header_t header;
struct free_struct *next;
struct free_struct *prev;
} free_t;
struct heap {
size_t size;
size_t remaining;
mutex_t lock;
free_t *free_lists[NUMBER_OF_BUCKETS];
// We have some 32 bit words that tell us whether there is an entry in the
// freelist.
#define BUCKET_WORDS (((NUMBER_OF_BUCKETS) + 31) >> 5)
uint32_t free_list_bits[BUCKET_WORDS];
};
// Heap static vars.
static struct heap theheap;
static ssize_t heap_grow(size_t len, free_t **bucket);
static void lock(void)
{
mutex_acquire(&theheap.lock);
}
static void unlock(void)
{
mutex_release(&theheap.lock);
}
static void dump_free(header_t *header)
{
dprintf(INFO, "\t\tbase %p, end 0x%lx, len 0x%zx\n", header, (vaddr_t)header + header->size, header->size);
}
void cmpct_dump(void)
{
lock();
dprintf(INFO, "Heap dump (using cmpctmalloc):\n");
dprintf(INFO, "\tsize %lu, remaining %lu\n",
(unsigned long)theheap.size,
(unsigned long)theheap.remaining);
dprintf(INFO, "\tfree list:\n");
for (int i = 0; i < NUMBER_OF_BUCKETS; i++) {
bool header_printed = false;
free_t *free_area = theheap.free_lists[i];
for (; free_area != NULL; free_area = free_area->next) {
ASSERT(free_area != free_area->next);
if (!header_printed) {
dprintf(INFO, "\tbucket %d\n", i);
header_printed = true;
}
dump_free(&free_area->header);
}
}
unlock();
}
// Operates in sizes that don't include the allocation header.
static int size_to_index_helper(
size_t size, size_t *rounded_up_out, int adjust, int increment)
{
// First buckets are simply 8-spaced up to 128.
if (size <= 128) {
if (sizeof(size_t) == 8u && size <= sizeof(free_t) - sizeof(header_t)) {
*rounded_up_out = sizeof(free_t) - sizeof(header_t);
} else {
*rounded_up_out = size;
}
// No allocation is smaller than 8 bytes, so the first bucket is for 8
// byte spaces (not including the header). For 64 bit, the free list
// struct is 16 bytes larger than the header, so no allocation can be
// smaller than that (otherwise how to free it), but we have empty 8
// and 16 byte buckets for simplicity.
return (size >> 3) - 1;
}
// We are going to go up to the next size to round up, but if we hit a
// bucket size exactly we don't want to go up. By subtracting 8 here, we
// will do the right thing (the carry propagates up for the round numbers
// we are interested in).
size += adjust;
// After 128 the buckets are logarithmically spaced, every 16 up to 256,
// every 32 up to 512 etc. This can be thought of as rows of 8 buckets.
// GCC intrinsic count-leading-zeros.
// Eg. 128-255 has 24 leading zeros and we want row to be 4.
unsigned row = sizeof(size_t) * 8 - 4 - __builtin_clzl(size);
// For row 4 we want to shift down 4 bits.
unsigned column = (size >> row) & 7;
int row_column = (row << 3) | column;
row_column += increment;
size = (8 + (row_column & 7)) << (row_column >> 3);
*rounded_up_out = size;
// We start with 15 buckets, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96,
// 104, 112, 120. Then we have row 4, sizes 128 and up, with the
// row-column 8 and up.
int answer = row_column + 15 - 32;
DEBUG_ASSERT(answer < NUMBER_OF_BUCKETS);
return answer;
}
// Round up size to next bucket when allocating.
static int size_to_index_allocating(size_t size, size_t *rounded_up_out)
{
size_t rounded = ROUNDUP(size, 8);
return size_to_index_helper(rounded, rounded_up_out, -8, 1);
}
// Round down size to next bucket when freeing.
static int size_to_index_freeing(size_t size)
{
size_t dummy;
return size_to_index_helper(size, &dummy, 0, 0);
}
inline header_t *tag_as_free(void *left)
{
return (header_t *)((uintptr_t)left | 1);
}
inline bool is_tagged_as_free(header_t *header)
{
return ((uintptr_t)(header->left) & 1) != 0;
}
inline header_t *untag(void *left)
{
return (header_t *)((uintptr_t)left & ~1);
}
inline header_t *right_header(header_t *header)
{
return (header_t *)((char *)header + header->size);
}
inline static void set_free_list_bit(int index)
{
theheap.free_list_bits[index >> 5] |= (1u << (31 - (index & 0x1f)));
}
inline static void clear_free_list_bit(int index)
{
theheap.free_list_bits[index >> 5] &= ~(1u << (31 - (index & 0x1f)));
}
static int find_nonempty_bucket(int index)
{
uint32_t mask = (1u << (31 - (index & 0x1f))) - 1;
mask = mask * 2 + 1;
mask &= theheap.free_list_bits[index >> 5];
if (mask != 0) return (index & ~0x1f) + __builtin_clz(mask);
for (index = ROUNDUP(index + 1, 32); index <= NUMBER_OF_BUCKETS; index += 32) {
mask = theheap.free_list_bits[index >> 5];
if (mask != 0u) return index + __builtin_clz(mask);
}
return -1;
}
static bool is_start_of_os_allocation(header_t *header)
{
return header->left == untag(NULL);
}
static void create_free_area(void *address, void *left, size_t size, free_t **bucket)
{
free_t *free_area = (free_t *)address;
free_area->header.size = size;
free_area->header.left = tag_as_free(left);
if (bucket == NULL) {
int index = size_to_index_freeing(size - sizeof(header_t));
set_free_list_bit(index);
bucket = &theheap.free_lists[index];
}
free_t *old_head = *bucket;
if (old_head != NULL) old_head->prev = free_area;
free_area->next = old_head;
free_area->prev = NULL;
*bucket = free_area;
theheap.remaining += size;
#ifdef CMPCT_DEBUG
memset(free_area + 1, FREE_FILL, size - sizeof(free_t));
#endif
}
static bool is_end_of_os_allocation(char *address)
{
return ((header_t *)address)->size == 0;
}
static void free_to_os(header_t *header, size_t size)
{
DEBUG_ASSERT(IS_PAGE_ALIGNED(size));
page_free(header, size >> PAGE_SIZE_SHIFT);
theheap.size -= size;
}
static void free_memory(void *address, void *left, size_t size)
{
left = untag(left);
if (IS_PAGE_ALIGNED(left) &&
is_start_of_os_allocation(left) &&
is_end_of_os_allocation((char *)address + size)) {
free_to_os(left, size + ((header_t *)left)->size + sizeof(header_t));
} else {
create_free_area(address, left, size, NULL);
}
}
static void unlink_free(free_t *free_area, int bucket)
{
theheap.remaining -= free_area->header.size;
ASSERT(theheap.remaining < 4000000000u);
free_t *next = free_area->next;
free_t *prev = free_area->prev;
if (theheap.free_lists[bucket] == free_area) {
theheap.free_lists[bucket] = next;
if (next == NULL) clear_free_list_bit(bucket);
}
if (prev != NULL) prev->next = next;
if (next != NULL) next->prev = prev;
}
static void unlink_free_unknown_bucket(free_t *free_area)
{
return unlink_free(free_area, size_to_index_freeing(free_area->header.size - sizeof(header_t)));
}
static void *create_allocation_header(
void *address, size_t offset, size_t size, void *left)
{
header_t *standalone = (header_t *)((char *)address + offset);
standalone->left = untag(left);
standalone->size = size;
return standalone + 1;
}
static void FixLeftPointer(header_t *right, header_t *new_left)
{
int tag = (uintptr_t)right->left & 1;
right->left = (header_t *)(((uintptr_t)new_left & ~1) | tag);
}
static void WasteFreeMemory(void)
{
while (theheap.remaining != 0) cmpct_alloc(1);
}
// If we just make a big allocation it gets rounded off. If we actually
// want to use a reasonably accurate amount of memory for test purposes, we
// have to do many small allocations.
static void *TestTrimHelper(ssize_t target)
{
char *answer = NULL;
size_t remaining = theheap.remaining;
while (theheap.remaining - target > 512) {
char *next_block = cmpct_alloc(8 + ((theheap.remaining - target) >> 2));
*(char**)next_block = answer;
answer = next_block;
if (theheap.remaining > remaining) return answer;
// Abandon attemt to hit particular freelist entry size if we accidentally got more memory
// from the OS.
remaining = theheap.remaining;
}
return answer;
}
static void TestTrimFreeHelper(char *block)
{
while (block) {
char *next_block = *(char **)block;
cmpct_free(block);
block = next_block;
}
}
static void cmpct_test_trim(void)
{
WasteFreeMemory();
size_t test_sizes[200];
int sizes = 0;
for (size_t s = 1; s < PAGE_SIZE * 4; s = (s + 1) * 1.1) {
test_sizes[sizes++] = s;
ASSERT(sizes < 200);
}
for (ssize_t s = -32; s <= 32; s += 8) {
test_sizes[sizes++] = PAGE_SIZE + s;
ASSERT(sizes < 200);
}
// Test allocations at the start of an OS allocation.
for (int with_second_alloc = 0; with_second_alloc < 2; with_second_alloc++) {
for (int i = 0; i < sizes; i++) {
size_t s = test_sizes[i];
char *a, *a2 = NULL;
a = cmpct_alloc(s);
if (with_second_alloc) {
a2 = cmpct_alloc(1);
if (s < PAGE_SIZE >> 1) {
// It is the intention of the test that a is at the start of an OS allocation
// and that a2 is "right after" it. Otherwise we are not testing what I
// thought. OS allocations are certainly not smaller than a page, so check in
// that case.
ASSERT((uintptr_t)(a2 - a) < s * 1.13 + 48);
}
}
cmpct_trim();
size_t remaining = theheap.remaining;
// We should have < 1 page on either side of the a allocation.
ASSERT(remaining < PAGE_SIZE * 2);
cmpct_free(a);
if (with_second_alloc) {
// Now only a2 is holding onto the OS allocation.
ASSERT(theheap.remaining > remaining);
} else {
ASSERT(theheap.remaining == 0);
}
remaining = theheap.remaining;
cmpct_trim();
ASSERT(theheap.remaining <= remaining);
// If a was at least one page then the trim should have freed up that page.
if (s >= PAGE_SIZE && with_second_alloc) ASSERT(theheap.remaining < remaining);
if (with_second_alloc) cmpct_free(a2);
}
ASSERT(theheap.remaining == 0);
}
ASSERT(theheap.remaining == 0);
// Now test allocations near the end of an OS allocation.
for (ssize_t wobble = -64; wobble <= 64; wobble += 8) {
for (int i = 0; i < sizes; i++) {
size_t s = test_sizes[i];
if ((ssize_t)s + wobble < 0) continue;
char *start_of_os_alloc = cmpct_alloc(1);
// If the OS allocations are very small this test does not make sense.
if (theheap.remaining <= s + wobble) {
cmpct_free(start_of_os_alloc);
continue;
}
char *big_bit_in_the_middle = TestTrimHelper(s + wobble);
size_t remaining = theheap.remaining;
// If the remaining is big we started a new OS allocation and the test
// makes no sense.
if (remaining > 128 + s * 1.13 + wobble) {
cmpct_free(start_of_os_alloc);
TestTrimFreeHelper(big_bit_in_the_middle);
continue;
}
cmpct_free(start_of_os_alloc);
remaining = theheap.remaining;
// This trim should sometimes trim a page off the end of the OS allocation.
cmpct_trim();
ASSERT(theheap.remaining <= remaining);
remaining = theheap.remaining;
// We should have < 1 page on either side of the big allocation.
ASSERT(remaining < PAGE_SIZE * 2);
TestTrimFreeHelper(big_bit_in_the_middle);
}
}
}
static void cmpct_test_buckets(void)
{
size_t rounded;
unsigned bucket;
// Check for the 8-spaced buckets up to 128.
for (unsigned i = 1; i <= 128; i++) {
// Round up when allocating.
bucket = size_to_index_allocating(i, &rounded);
unsigned expected = (ROUNDUP(i, 8) >> 3) - 1;
ASSERT(bucket == expected);
ASSERT(IS_ALIGNED(rounded, 8));
ASSERT(rounded >= i);
if (i >= sizeof(free_t) - sizeof(header_t)) {
// Once we get above the size of the free area struct (4 words), we
// won't round up much for these small size.
ASSERT(rounded - i < 8);
}
// Only rounded sizes are freed.
if ((i & 7) == 0) {
// Up to size 128 we have exact buckets for each multiple of 8.
ASSERT(bucket == (unsigned)size_to_index_freeing(i));
}
}
int bucket_base = 7;
for (unsigned j = 16; j < 1024; j *= 2, bucket_base += 8) {
// Note the "<=", which ensures that we test the powers of 2 twice to ensure
// that both ways of calculating the bucket number match.
for (unsigned i = j * 8; i <= j * 16; i++) {
// Round up to j multiple in this range when allocating.
bucket = size_to_index_allocating(i, &rounded);
unsigned expected = bucket_base + ROUNDUP(i, j) / j;
ASSERT(bucket == expected);
ASSERT(IS_ALIGNED(rounded, j));
ASSERT(rounded >= i);
ASSERT(rounded - i < j);
// Only 8-rounded sizes are freed or chopped off the end of a free area
// when allocating.
if ((i & 7) == 0) {
// When freeing, if we don't hit the size of the bucket precisely,
// we have to put the free space into a smaller bucket, because
// the buckets have entries that will always be big enough for
// the corresponding allocation size (so we don't have to
// traverse the free chains to find a big enough one).
if ((i % j) == 0) {
ASSERT((int)bucket == size_to_index_freeing(i));
} else {
ASSERT((int)bucket - 1 == size_to_index_freeing(i));
}
}
}
}
}
static void cmpct_test_get_back_newly_freed_helper(size_t size)
{
void *allocated = cmpct_alloc(size);
if (allocated == NULL) return;
char *allocated2 = cmpct_alloc(8);
char *expected_position = (char *)allocated + size;
if (allocated2 < expected_position || allocated2 > expected_position + 128) {
// If the allocated2 allocation is not in the same OS allocation as the
// first allocation then the test may not work as expected (the memory
// may be returned to the OS when we free the first allocation, and we
// might not get it back).
cmpct_free(allocated);
cmpct_free(allocated2);
return;
}
cmpct_free(allocated);
void *allocated3 = cmpct_alloc(size);
// To avoid churn and fragmentation we would want to get the newly freed
// memory back again when we allocate the same size shortly after.
ASSERT(allocated3 == allocated);
cmpct_free(allocated2);
cmpct_free(allocated3);
}
static void cmpct_test_get_back_newly_freed(void)
{
size_t increment = 16;
for (size_t i = 128; i <= 0x8000000; i *= 2, increment *= 2) {
for (size_t j = i; j < i * 2; j += increment) {
cmpct_test_get_back_newly_freed_helper(i - 8);
cmpct_test_get_back_newly_freed_helper(i);
cmpct_test_get_back_newly_freed_helper(i + 1);
}
}
for (size_t i = 1024; i <= 2048; i++) {
cmpct_test_get_back_newly_freed_helper(i);
}
}
static void cmpct_test_return_to_os(void)
{
cmpct_trim();
size_t remaining = theheap.remaining;
// This goes in a new OS allocation since the trim above removed any free
// area big enough to contain it.
void *a = cmpct_alloc(5000);
void *b = cmpct_alloc(2500);
cmpct_free(a);
cmpct_free(b);
// If things work as expected the new allocation is at the start of an OS
// allocation. There's just one sentinel and one header to the left of it.
// It that's not the case then the allocation was met from some space in
// the middle of an OS allocation, and our test won't work as expected, so
// bail out.
if (((uintptr_t)a & (PAGE_SIZE - 1)) != sizeof(header_t) * 2) return;
// No trim needed when the entire OS allocation is free.
ASSERT(remaining == theheap.remaining);
}
void cmpct_test(void)
{
cmpct_test_buckets();
cmpct_test_get_back_newly_freed();
cmpct_test_return_to_os();
cmpct_test_trim();
cmpct_dump();
void *ptr[16];
ptr[0] = cmpct_alloc(8);
ptr[1] = cmpct_alloc(32);
ptr[2] = cmpct_alloc(7);
cmpct_trim();
ptr[3] = cmpct_alloc(0);
ptr[4] = cmpct_alloc(98713);
ptr[5] = cmpct_alloc(16);
cmpct_free(ptr[5]);
cmpct_free(ptr[1]);
cmpct_free(ptr[3]);
cmpct_free(ptr[0]);
cmpct_free(ptr[4]);
cmpct_free(ptr[2]);
cmpct_dump();
cmpct_trim();
cmpct_dump();
int i;
for (i=0; i < 16; i++)
ptr[i] = 0;
for (i=0; i < 32768; i++) {
unsigned int index = (unsigned int)rand() % 16;
if ((i % (16*1024)) == 0)
printf("pass %d\n", i);
// printf("index 0x%x\n", index);
if (ptr[index]) {
// printf("freeing ptr[0x%x] = %p\n", index, ptr[index]);
cmpct_free(ptr[index]);
ptr[index] = 0;
}
unsigned int align = 1 << ((unsigned int)rand() % 8);
ptr[index] = cmpct_memalign((unsigned int)rand() % 32768, align);
// printf("ptr[0x%x] = %p, align 0x%x\n", index, ptr[index], align);
DEBUG_ASSERT(((addr_t)ptr[index] % align) == 0);
// cmpct_dump();
}
for (i=0; i < 16; i++) {
if (ptr[i])
cmpct_free(ptr[i]);
}
cmpct_dump();
}
static void *large_alloc(size_t size)
{
#ifdef CMPCT_DEBUG
size_t requested_size = size;
#endif
size = ROUNDUP(size, 8);
free_t *free_area = NULL;
lock();
heap_grow(size, &free_area);
void *result =
create_allocation_header(free_area, 0, free_area->header.size, free_area->header.left);
// Normally the 'remaining free space' counter would be decremented when we
// unlink the free area from its bucket. However in this case the free
// area was too big to go in any bucket and we had it in our own
// "free_area" variable so there is no unlinking and we have to adjust the
// counter here.
theheap.remaining -= free_area->header.size;
unlock();
#ifdef CMPCT_DEBUG
memset(result, ALLOC_FILL, requested_size);
memset((char *)result + requested_size, PADDING_FILL, free_area->header.size - requested_size);
#endif
return result;
}
void cmpct_trim(void)
{
// Look at free list entries that are at least as large as one page plus a
// header. They might be at the start or the end of a block, so we can trim
// them and free the page(s).
lock();
for (int bucket = size_to_index_freeing(PAGE_SIZE);
bucket < NUMBER_OF_BUCKETS;
bucket++) {
free_t * next;
for (free_t *free_area = theheap.free_lists[bucket];
free_area != NULL;
free_area = next) {
DEBUG_ASSERT(free_area->header.size >= PAGE_SIZE + sizeof(header_t));
next = free_area->next;
header_t *right = right_header(&free_area->header);
if (is_end_of_os_allocation((char *)right)) {
char *old_os_allocation_end = (char *)ROUNDUP((uintptr_t)right, PAGE_SIZE);
// The page will end with a smaller free list entry and a header-sized sentinel.
char *new_os_allocation_end = (char *)
ROUNDUP((uintptr_t)free_area + sizeof(header_t) + sizeof(free_t), PAGE_SIZE);
size_t freed_up = old_os_allocation_end - new_os_allocation_end;
DEBUG_ASSERT(IS_PAGE_ALIGNED(freed_up));
// Rare, because we only look at large freelist entries, but unlucky rounding
// could mean we can't actually free anything here.
if (freed_up == 0) continue;
unlink_free(free_area, bucket);
size_t new_free_size = free_area->header.size - freed_up;
DEBUG_ASSERT(new_free_size >= sizeof(free_t));
// Right sentinel, not free, stops attempts to coalesce right.
create_allocation_header(free_area, new_free_size, 0, free_area);
// Also puts it in the correct bucket.
create_free_area(free_area, untag(free_area->header.left), new_free_size, NULL);
page_free(new_os_allocation_end, freed_up >> PAGE_SIZE_SHIFT);
theheap.size -= freed_up;
} else if (is_start_of_os_allocation(untag(free_area->header.left))) {
char *old_os_allocation_start =
(char *)ROUNDDOWN((uintptr_t)free_area, PAGE_SIZE);
// For the sentinel, we need at least one header-size of space between the page
// edge and the first allocation to the right of the free area.
char *new_os_allocation_start =
(char *)ROUNDDOWN((uintptr_t)(right - 1), PAGE_SIZE);
size_t freed_up = new_os_allocation_start - old_os_allocation_start;
DEBUG_ASSERT(IS_PAGE_ALIGNED(freed_up));
// This should not happen because we only look at the large free list buckets.
if (freed_up == 0) continue;
unlink_free(free_area, bucket);
size_t sentinel_size = sizeof(header_t);
size_t new_free_size = free_area->header.size - freed_up;
if (new_free_size < sizeof(free_t)) {
sentinel_size += new_free_size;
new_free_size = 0;
}
// Left sentinel, not free, stops attempts to coalesce left.
create_allocation_header(new_os_allocation_start, 0, sentinel_size, NULL);
if (new_free_size == 0) {
FixLeftPointer(right, (header_t *)new_os_allocation_start);
} else {
DEBUG_ASSERT(new_free_size >= sizeof(free_t));
char *new_free = new_os_allocation_start + sentinel_size;
// Also puts it in the correct bucket.
create_free_area(new_free, new_os_allocation_start, new_free_size, NULL);
FixLeftPointer(right, (header_t *)new_free);
}
page_free(old_os_allocation_start, freed_up >> PAGE_SIZE_SHIFT);
theheap.size -= freed_up;
}
}
}
unlock();
}
void *cmpct_alloc(size_t size)
{
if (size == 0u) return NULL;
if (size + sizeof(header_t) > (1u << HEAP_ALLOC_VIRTUAL_BITS)) return large_alloc(size);
size_t rounded_up;
int start_bucket = size_to_index_allocating(size, &rounded_up);
rounded_up += sizeof(header_t);
lock();
int bucket = find_nonempty_bucket(start_bucket);
if (bucket == -1) {
// Grow heap by at least 12% if we can.
size_t growby = MIN(1u << HEAP_ALLOC_VIRTUAL_BITS,
MAX(theheap.size >> 3,
MAX(HEAP_GROW_SIZE, rounded_up)));
while (heap_grow(growby, NULL) < 0) {
if (growby <= rounded_up) {
unlock();
return NULL;
}
growby = MAX(growby >> 1, rounded_up);
}
bucket = find_nonempty_bucket(start_bucket);
}
free_t *head = theheap.free_lists[bucket];
size_t left_over = head->header.size - rounded_up;
// We can't carve off the rest for a new free space if it's smaller than the
// free-list linked structure. We also don't carve it off if it's less than
// 1.6% the size of the allocation. This is to avoid small long-lived
// allocations being placed right next to large allocations, hindering
// coalescing and returning pages to the OS.
if (left_over >= sizeof(free_t) && left_over > (size >> 6)) {
header_t *right = right_header(&head->header);
unlink_free(head, bucket);
void *free = (char *)head + rounded_up;
create_free_area(free, head, left_over, NULL);
FixLeftPointer(right, (header_t *)free);
head->header.size -= left_over;
} else {
unlink_free(head, bucket);
}
void *result =
create_allocation_header(head, 0, head->header.size, head->header.left);
#ifdef CMPCT_DEBUG
memset(result, ALLOC_FILL, size);
memset(((char *)result) + size, PADDING_FILL, rounded_up - size - sizeof(header_t));
#endif
unlock();
return result;
}
void *cmpct_memalign(size_t size, size_t alignment)
{
if (alignment < 8) return cmpct_alloc(size);
size_t padded_size =
size + alignment + sizeof(free_t) + sizeof(header_t);
char *unaligned = (char *)cmpct_alloc(padded_size);
lock();
size_t mask = alignment - 1;
uintptr_t payload_int = (uintptr_t)unaligned + sizeof(free_t) +
sizeof(header_t) + mask;
char *payload = (char *)(payload_int & ~mask);
if (unaligned != payload) {
header_t *unaligned_header = (header_t *)unaligned - 1;
header_t *header = (header_t *)payload - 1;
size_t left_over = payload - unaligned;
create_allocation_header(
header, 0, unaligned_header->size - left_over, unaligned_header);
header_t *right = right_header(unaligned_header);
unaligned_header->size = left_over;
FixLeftPointer(right, header);
unlock();
cmpct_free(unaligned);
} else {
unlock();
}
// TODO: Free the part after the aligned allocation.
return payload;
}
void cmpct_free(void *payload)
{
if (payload == NULL) return;
header_t *header = (header_t *)payload - 1;
DEBUG_ASSERT(!is_tagged_as_free(header)); // Double free!
size_t size = header->size;
lock();
header_t *left = header->left;
if (left != NULL && is_tagged_as_free(left)) {
// Coalesce with left free object.
unlink_free_unknown_bucket((free_t *)left);
header_t *right = right_header(header);
if (is_tagged_as_free(right)) {
// Coalesce both sides.
unlink_free_unknown_bucket((free_t *)right);
header_t *right_right = right_header(right);
FixLeftPointer(right_right, left);
free_memory(left, left->left, left->size + size + right->size);
} else {
// Coalesce only left.
FixLeftPointer(right, left);
free_memory(left, left->left, left->size + size);
}
} else {
header_t *right = right_header(header);
if (is_tagged_as_free(right)) {
// Coalesce only right.
header_t *right_right = right_header(right);
unlink_free_unknown_bucket((free_t *)right);
FixLeftPointer(right_right, header);
free_memory(header, left, size + right->size);
} else {
free_memory(header, left, size);
}
}
unlock();
}
void *cmpct_realloc(void *payload, size_t size)
{
if (payload == NULL) return cmpct_alloc(size);
header_t *header = (header_t *)payload - 1;
size_t old_size = header->size - sizeof(header_t);
void *new_payload = cmpct_alloc(size);
memcpy(new_payload, payload, MIN(size, old_size));
cmpct_free(payload);
return new_payload;
}
static void add_to_heap(void *new_area, size_t size, free_t **bucket)
{
void *top = (char *)new_area + size;
header_t *left_sentinel = (header_t *)new_area;
// Not free, stops attempts to coalesce left.
create_allocation_header(left_sentinel, 0, sizeof(header_t), NULL);
header_t *new_header = left_sentinel + 1;
size_t free_size = size - 2 * sizeof(header_t);
create_free_area(new_header, left_sentinel, free_size, bucket);
header_t *right_sentinel = (header_t *)(top - sizeof(header_t));
// Not free, stops attempts to coalesce right.
create_allocation_header(right_sentinel, 0, 0, new_header);
}
// Create a new free-list entry of at least size bytes (including the
// allocation header). Called with the lock, apart from during init.
static ssize_t heap_grow(size_t size, free_t **bucket)
{
// The new free list entry will have a header on each side (the
// sentinels) so we need to grow the gross heap size by this much more.
size += 2 * sizeof(header_t);
size = ROUNDUP(size, PAGE_SIZE);
void *ptr = page_alloc(size >> PAGE_SIZE_SHIFT);
theheap.size += size;
if (ptr == NULL) return -1;
LTRACEF("growing heap by 0x%zx bytes, new ptr %p\n", size, ptr);
add_to_heap(ptr, size, bucket);
return size;
}
void cmpct_init(void)
{
LTRACE_ENTRY;
// Create a mutex.
mutex_init(&theheap.lock);
// Initialize the free list.
for (int i = 0; i < NUMBER_OF_BUCKETS; i++) {
theheap.free_lists[i] = NULL;
}
for (int i = 0; i < BUCKET_WORDS; i++) {
theheap.free_list_bits[i] = 0;
}
size_t initial_alloc = HEAP_GROW_SIZE - 2 * sizeof(header_t);
theheap.remaining = 0;
heap_grow(initial_alloc, NULL);
}