blob: dc4ed4d02f1d34427c71d71cdfc842c26135ba56 [file] [log] [blame]
/*
* Copyright (c) 2008-2009,2012-2015 Travis Geiselbrecht
* Copyright (c) 2009 Corey Tabaka
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <debug.h>
#include <trace.h>
#include <assert.h>
#include <err.h>
#include <list.h>
#include <rand.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <kernel/mutex.h>
#include <lib/miniheap.h>
#include <lib/heap.h>
#include <lib/page_alloc.h>
#define LOCAL_TRACE 0
#define DEBUG_HEAP 0
#define ALLOC_FILL 0x99
#define FREE_FILL 0x77
#define PADDING_FILL 0x55
#define PADDING_SIZE 64
// whether or not the heap will try to trim itself every time a free happens
#ifndef MINIHEAP_AUTOTRIM
#define MINIHEAP_AUTOTRIM 0
#endif
#define HEAP_MAGIC 'HEAP'
struct free_heap_chunk {
struct list_node node;
size_t len;
};
struct heap {
void *base;
size_t len;
size_t remaining;
size_t low_watermark;
mutex_t lock;
struct list_node free_list;
};
// heap static vars
static struct heap theheap;
// structure placed at the beginning every allocation
struct alloc_struct_begin {
#if LK_DEBUGLEVEL > 1
unsigned int magic;
#endif
void *ptr;
size_t size;
#if DEBUG_HEAP
void *padding_start;
size_t padding_size;
#endif
};
static ssize_t heap_grow(size_t len);
static void dump_free_chunk(struct free_heap_chunk *chunk)
{
dprintf(INFO, "\t\tbase %p, end 0x%lx, len 0x%zx\n", chunk, (vaddr_t)chunk + chunk->len, chunk->len);
}
void miniheap_dump(void)
{
dprintf(INFO, "Heap dump (using miniheap):\n");
dprintf(INFO, "\tbase %p, len 0x%zx\n", theheap.base, theheap.len);
dprintf(INFO, "\tfree list:\n");
mutex_acquire(&theheap.lock);
struct free_heap_chunk *chunk;
list_for_every_entry(&theheap.free_list, chunk, struct free_heap_chunk, node) {
dump_free_chunk(chunk);
}
mutex_release(&theheap.lock);
}
// try to insert this free chunk into the free list, consuming the chunk by merging it with
// nearby ones if possible. Returns base of whatever chunk it became in the list.
static struct free_heap_chunk *heap_insert_free_chunk(struct free_heap_chunk *chunk)
{
#if LK_DEBUGLEVEL > INFO
vaddr_t chunk_end = (vaddr_t)chunk + chunk->len;
#endif
LTRACEF("chunk ptr %p, size 0x%zx\n", chunk, chunk->len);
struct free_heap_chunk *next_chunk;
struct free_heap_chunk *last_chunk;
mutex_acquire(&theheap.lock);
theheap.remaining += chunk->len;
// walk through the list, finding the node to insert before
list_for_every_entry(&theheap.free_list, next_chunk, struct free_heap_chunk, node) {
if (chunk < next_chunk) {
DEBUG_ASSERT(chunk_end <= (vaddr_t)next_chunk);
list_add_before(&next_chunk->node, &chunk->node);
goto try_merge;
}
}
// walked off the end of the list, add it at the tail
list_add_tail(&theheap.free_list, &chunk->node);
// try to merge with the previous chunk
try_merge:
last_chunk = list_prev_type(&theheap.free_list, &chunk->node, struct free_heap_chunk, node);
if (last_chunk) {
if ((vaddr_t)last_chunk + last_chunk->len == (vaddr_t)chunk) {
// easy, just extend the previous chunk
last_chunk->len += chunk->len;
// remove ourself from the list
list_delete(&chunk->node);
// set the chunk pointer to the newly extended chunk, in case
// it needs to merge with the next chunk below
chunk = last_chunk;
}
}
// try to merge with the next chunk
if (next_chunk) {
if ((vaddr_t)chunk + chunk->len == (vaddr_t)next_chunk) {
// extend our chunk
chunk->len += next_chunk->len;
// remove them from the list
list_delete(&next_chunk->node);
}
}
mutex_release(&theheap.lock);
return chunk;
}
static struct free_heap_chunk *heap_create_free_chunk(void *ptr, size_t len, bool allow_debug)
{
DEBUG_ASSERT((len % sizeof(void *)) == 0); // size must be aligned on pointer boundary
#if DEBUG_HEAP
if (allow_debug)
memset(ptr, FREE_FILL, len);
#endif
struct free_heap_chunk *chunk = (struct free_heap_chunk *)ptr;
chunk->len = len;
return chunk;
}
void *miniheap_alloc(size_t size, unsigned int alignment)
{
void *ptr;
#if DEBUG_HEAP
size_t original_size = size;
#endif
LTRACEF("size %zd, align %d\n", size, alignment);
// alignment must be power of 2
if (alignment & (alignment - 1))
return NULL;
// we always put a size field + base pointer + magic in front of the allocation
size += sizeof(struct alloc_struct_begin);
#if DEBUG_HEAP
size += PADDING_SIZE;
#endif
// make sure we allocate at least the size of a struct free_heap_chunk so that
// when we free it, we can create a struct free_heap_chunk struct and stick it
// in the spot
if (size < sizeof(struct free_heap_chunk))
size = sizeof(struct free_heap_chunk);
// round up size to a multiple of native pointer size
size = ROUNDUP(size, sizeof(void *));
// deal with nonzero alignments
if (alignment > 0) {
if (alignment < 16)
alignment = 16;
// add alignment for worst case fit
size += alignment;
}
int retry_count = 0;
retry:
mutex_acquire(&theheap.lock);
// walk through the list
ptr = NULL;
struct free_heap_chunk *chunk;
list_for_every_entry(&theheap.free_list, chunk, struct free_heap_chunk, node) {
DEBUG_ASSERT((chunk->len % sizeof(void *)) == 0); // len should always be a multiple of pointer size
// is it big enough to service our allocation?
if (chunk->len >= size) {
ptr = chunk;
// remove it from the list
struct list_node *next_node = list_next(&theheap.free_list, &chunk->node);
list_delete(&chunk->node);
if (chunk->len > size + sizeof(struct free_heap_chunk)) {
// there's enough space in this chunk to create a new one after the allocation
struct free_heap_chunk *newchunk = heap_create_free_chunk((uint8_t *)ptr + size, chunk->len - size, true);
// truncate this chunk
chunk->len -= chunk->len - size;
// add the new one where chunk used to be
if (next_node)
list_add_before(next_node, &newchunk->node);
else
list_add_tail(&theheap.free_list, &newchunk->node);
}
// the allocated size is actually the length of this chunk, not the size requested
DEBUG_ASSERT(chunk->len >= size);
size = chunk->len;
#if DEBUG_HEAP
memset(ptr, ALLOC_FILL, size);
#endif
ptr = (void *)((addr_t)ptr + sizeof(struct alloc_struct_begin));
// align the output if requested
if (alignment > 0) {
ptr = (void *)ROUNDUP((addr_t)ptr, (addr_t)alignment);
}
struct alloc_struct_begin *as = (struct alloc_struct_begin *)ptr;
as--;
#if LK_DEBUGLEVEL > 1
as->magic = HEAP_MAGIC;
#endif
as->ptr = (void *)chunk;
as->size = size;
theheap.remaining -= size;
if (theheap.remaining < theheap.low_watermark) {
theheap.low_watermark = theheap.remaining;
}
#if DEBUG_HEAP
as->padding_start = ((uint8_t *)ptr + original_size);
as->padding_size = (((addr_t)chunk + size) - ((addr_t)ptr + original_size));
// printf("padding start %p, size %u, chunk %p, size %u\n", as->padding_start, as->padding_size, chunk, size);
memset(as->padding_start, PADDING_FILL, as->padding_size);
#endif
break;
}
}
mutex_release(&theheap.lock);
/* try to grow the heap if we can */
if (ptr == NULL && retry_count == 0) {
ssize_t err = heap_grow(size);
if (err >= 0) {
retry_count++;
goto retry;
}
}
LTRACEF("returning ptr %p\n", ptr);
return ptr;
}
void *miniheap_realloc(void *ptr, size_t size)
{
/* slow implementation */
if (!ptr)
return miniheap_alloc(size, 0);
if (size == 0) {
miniheap_free(ptr);
return NULL;
}
// XXX better implementation
void *p = miniheap_alloc(size, 0);
if (!p)
return NULL;
memcpy(p, ptr, size); // XXX wrong
miniheap_free(ptr);
return p;
}
void miniheap_free(void *ptr)
{
if (!ptr)
return;
LTRACEF("ptr %p\n", ptr);
// check for the old allocation structure
struct alloc_struct_begin *as = (struct alloc_struct_begin *)ptr;
as--;
DEBUG_ASSERT(as->magic == HEAP_MAGIC);
#if DEBUG_HEAP
{
uint i;
uint8_t *pad = (uint8_t *)as->padding_start;
for (i = 0; i < as->padding_size; i++) {
if (pad[i] != PADDING_FILL) {
printf("free at %p scribbled outside the lines:\n", ptr);
hexdump(pad, as->padding_size);
panic("die\n");
}
}
}
#endif
LTRACEF("allocation was %zd bytes long at ptr %p\n", as->size, as->ptr);
// looks good, create a free chunk and add it to the pool
heap_insert_free_chunk(heap_create_free_chunk(as->ptr, as->size, true));
#if MINIHEAP_AUTOTRIM
miniheap_trim();
#endif
}
void miniheap_trim(void)
{
LTRACE_ENTRY;
mutex_acquire(&theheap.lock);
// walk through the list, finding free chunks that can be returned to the page allocator
struct free_heap_chunk *chunk;
struct free_heap_chunk *next_chunk;
list_for_every_entry_safe(&theheap.free_list, chunk, next_chunk, struct free_heap_chunk, node) {
LTRACEF("looking at chunk %p, len 0x%zx\n", chunk, chunk->len);
uintptr_t start = (uintptr_t)chunk;
uintptr_t end = start + chunk->len;
DEBUG_ASSERT(end > start); // make sure it doesn't wrap the address space and has a positive len
// compute the page aligned region in this free block (if any)
uintptr_t start_page = ROUNDUP(start, PAGE_SIZE);
uintptr_t end_page = ROUNDDOWN(end, PAGE_SIZE);
DEBUG_ASSERT(end_page <= end);
DEBUG_ASSERT(start_page >= start);
LTRACEF("start page 0x%lx, end page 0x%lx\n", start_page, end_page);
retry:
// see if the free block encompasses at least one page
if (unlikely(end_page > start_page)) {
LTRACEF("could trim: start 0x%lx, end 0x%lx\n", start_page, end_page);
// cases where the start of the block is already page aligned
if (start_page == start) {
// look for special case, we're going to completely remove the chunk
if (end_page == end) {
LTRACEF("special case, free chunk completely covers page(s)\n");
list_delete(&chunk->node);
goto free_chunk;
}
} else {
// start of block is not page aligned,
// will there be enough space before the block if we trim?
if (start_page - start < sizeof(struct free_heap_chunk)) {
LTRACEF("not enough space for free chunk before\n");
start_page += PAGE_SIZE;
goto retry;
}
}
// do we need to split the free block and create a new block afterwards?
if (end_page < end) {
size_t new_chunk_size = end - end_page;
LTRACEF("will have to split, new chunk will be 0x%zx bytes long\n", new_chunk_size);
// if there's not enough space afterwards for a free chunk, we can't free the last page
if (new_chunk_size < sizeof(struct free_heap_chunk)) {
LTRACEF("not enough space for free chunk afterwards\n");
end_page -= PAGE_SIZE;
goto retry;
}
// trim the new space off the end of the current chunk
chunk->len -= new_chunk_size;
end = end_page;
// create a new chunk after the one we're trimming
struct free_heap_chunk *new_chunk = heap_create_free_chunk((void *)end_page, new_chunk_size, false);
// link it with the current block
list_add_after(&chunk->node, &new_chunk->node);
}
// check again to see if we are now completely covering a block
if (start_page == start && end_page == end) {
LTRACEF("special case, after splitting off new chunk, free chunk completely covers page(s)\n");
list_delete(&chunk->node);
goto free_chunk;
}
// trim the size of the block
chunk->len -= end_page - start_page;
free_chunk:
// return it to the allocator
LTRACEF("returning %p size 0x%lx to the page allocator\n", (void *)start_page, end_page - start_page);
page_free((void *)start_page, (end_page - start_page) / PAGE_SIZE);
// tweak accounting
theheap.remaining -= end_page - start_page;
}
}
mutex_release(&theheap.lock);
}
void miniheap_get_stats(struct miniheap_stats *ptr)
{
struct free_heap_chunk *chunk;
ptr->heap_start = theheap.base;
ptr->heap_len = theheap.len;
ptr->heap_free=0;
ptr->heap_max_chunk = 0;
mutex_acquire(&theheap.lock);
list_for_every_entry(&theheap.free_list, chunk, struct free_heap_chunk, node) {
ptr->heap_free += chunk->len;
if (chunk->len > ptr->heap_max_chunk) {
ptr->heap_max_chunk = chunk->len;
}
}
ptr->heap_low_watermark = theheap.low_watermark;
mutex_release(&theheap.lock);
}
static ssize_t heap_grow(size_t size)
{
size = ROUNDUP(size, PAGE_SIZE);
void *ptr = page_alloc(size / PAGE_SIZE);
if (!ptr) {
TRACEF("failed to grow kernel heap by 0x%zx bytes\n", size);
return ERR_NO_MEMORY;
}
LTRACEF("growing heap by 0x%zx bytes, new ptr %p\n", size, ptr);
heap_insert_free_chunk(heap_create_free_chunk(ptr, size, true));
/* change the heap start and end variables */
if ((uintptr_t)ptr < (uintptr_t)theheap.base || theheap.base == 0)
theheap.base = ptr;
uintptr_t endptr = (uintptr_t)ptr + size;
if (endptr > (uintptr_t)theheap.base + theheap.len) {
theheap.len = (uintptr_t)endptr - (uintptr_t)theheap.base;
}
return size;
}
void miniheap_init(void *ptr, size_t len)
{
LTRACEF("ptr %p, len %zu\n", ptr, len);
// create a mutex
mutex_init(&theheap.lock);
// initialize the free list
list_initialize(&theheap.free_list);
// set the heap range
theheap.base = ptr;
theheap.len = len;
theheap.remaining = 0; // will get set by heap_insert_free_chunk()
theheap.low_watermark = 0;
// if passed a default range, use it
if (len > 0)
heap_insert_free_chunk(heap_create_free_chunk(ptr, len, true));
}