blob: 85b655b876e2d6c6569de1a6da1b8176ab0085b9 [file] [log] [blame]
/* Copyright 2004-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <debug.h>
#include <string.h>
#include <sys/types.h>
#include <trace.h>
#include "sha512.h"
#define LOCAL_TRACE 0
#if defined(__aarch64__)
#define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
int SHA512_Init(SHA512_CTX *c)
{
c->h[0] = U64(0x6a09e667f3bcc908);
c->h[1] = U64(0xbb67ae8584caa73b);
c->h[2] = U64(0x3c6ef372fe94f82b);
c->h[3] = U64(0xa54ff53a5f1d36f1);
c->h[4] = U64(0x510e527fade682d1);
c->h[5] = U64(0x9b05688c2b3e6c1f);
c->h[6] = U64(0x1f83d9abfb41bd6b);
c->h[7] = U64(0x5be0cd19137e2179);
c->Nl = 0;
c->Nh = 0;
c->num = 0;
c->md_len = SHA512_DIGEST_LENGTH;
return 1;
}
void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);
int SHA512_Final(unsigned char *md, SHA512_CTX *c)
{
unsigned char *p = (unsigned char *)c->u.p;
size_t n = c->num;
p[n] = 0x80; /* There always is a room for one */
n++;
if (n > (sizeof(c->u) - 16))
memset(p + n, 0, sizeof(c->u) - n), n = 0,
sha512_block_data_order(c, p, 1);
memset(p + n, 0, sizeof(c->u) - 16 - n);
# ifdef B_ENDIAN
c->u.d[SHA_LBLOCK - 2] = c->Nh;
c->u.d[SHA_LBLOCK - 1] = c->Nl;
# else
p[sizeof(c->u) - 1] = (unsigned char)(c->Nl);
p[sizeof(c->u) - 2] = (unsigned char)(c->Nl >> 8);
p[sizeof(c->u) - 3] = (unsigned char)(c->Nl >> 16);
p[sizeof(c->u) - 4] = (unsigned char)(c->Nl >> 24);
p[sizeof(c->u) - 5] = (unsigned char)(c->Nl >> 32);
p[sizeof(c->u) - 6] = (unsigned char)(c->Nl >> 40);
p[sizeof(c->u) - 7] = (unsigned char)(c->Nl >> 48);
p[sizeof(c->u) - 8] = (unsigned char)(c->Nl >> 56);
p[sizeof(c->u) - 9] = (unsigned char)(c->Nh);
p[sizeof(c->u) - 10] = (unsigned char)(c->Nh >> 8);
p[sizeof(c->u) - 11] = (unsigned char)(c->Nh >> 16);
p[sizeof(c->u) - 12] = (unsigned char)(c->Nh >> 24);
p[sizeof(c->u) - 13] = (unsigned char)(c->Nh >> 32);
p[sizeof(c->u) - 14] = (unsigned char)(c->Nh >> 40);
p[sizeof(c->u) - 15] = (unsigned char)(c->Nh >> 48);
p[sizeof(c->u) - 16] = (unsigned char)(c->Nh >> 56);
# endif
sha512_block_data_order(c, p, 1);
if (md == 0)
return 0;
switch (c->md_len) {
case SHA512_DIGEST_LENGTH:
for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
SHA_LONG64 t = c->h[n];
*(md++) = (unsigned char)(t >> 56);
*(md++) = (unsigned char)(t >> 48);
*(md++) = (unsigned char)(t >> 40);
*(md++) = (unsigned char)(t >> 32);
*(md++) = (unsigned char)(t >> 24);
*(md++) = (unsigned char)(t >> 16);
*(md++) = (unsigned char)(t >> 8);
*(md++) = (unsigned char)(t);
}
break;
/* ... as well as make sure md_len is not abused. */
default:
return 0;
}
return 1;
}
int SHA512_Update(SHA512_CTX *c, const void *_data, size_t len)
{
SHA_LONG64 l;
unsigned char *p = c->u.p;
const unsigned char *data = (const unsigned char *)_data;
if (len == 0)
return 1;
l = (c->Nl + (((SHA_LONG64) len) << 3)) & U64(0xffffffffffffffff);
if (l < c->Nl)
c->Nh++;
if (sizeof(len) >= 8)
c->Nh += (((SHA_LONG64) len) >> 61);
c->Nl = l;
if (c->num != 0) {
size_t n = sizeof(c->u) - c->num;
if (len < n) {
memcpy(p + c->num, data, len), c->num += (unsigned int)len;
return 1;
} else {
memcpy(p + c->num, data, n), c->num = 0;
len -= n, data += n;
sha512_block_data_order(c, p, 1);
}
}
if (len >= sizeof(c->u)) {
# ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
if ((size_t)data % sizeof(c->u.d[0]) != 0)
while (len >= sizeof(c->u))
memcpy(p, data, sizeof(c->u)),
sha512_block_data_order(c, p, 1),
len -= sizeof(c->u), data += sizeof(c->u);
else
# endif
sha512_block_data_order(c, data, len / sizeof(c->u)),
data += len, len %= sizeof(c->u), data -= len;
}
if (len != 0)
memcpy(p, data, len), c->num = (int)len;
return 1;
}
void SHA512_Transform(SHA512_CTX *c, const unsigned char *data)
{
# ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
if ((size_t)data % sizeof(c->u.d[0]) != 0)
memcpy(c->u.p, data, sizeof(c->u.p)), data = c->u.p;
# endif
sha512_block_data_order(c, data, 1);
}
unsigned char *SHA512(const void *d, size_t n, unsigned char *md)
{
SHA512_CTX c;
static unsigned char m[SHA512_DIGEST_LENGTH];
if (md == NULL)
md = m;
SHA512_Init(&c);
SHA512_Update(&c, d, n);
SHA512_Final(md, &c);
return (md);
}
int sha512_hash(const void *input, int len, u8 *output)
{
SHA512_CTX s_ctx;
memset((void *)&s_ctx, 0, sizeof(s_ctx));
SHA512_Init(&s_ctx);
SHA512_Update(&s_ctx,input,len);
SHA512_Final(output,&s_ctx);
return 0;
}
#elif defined(__arm__)
int SHA512_Init(SHA512_CTX *c)
{
PANIC_UNIMPLEMENTED;
return -1;
}
int SHA512_Update(SHA512_CTX *c, const void *_data, size_t len)
{
PANIC_UNIMPLEMENTED;
return -1;
}
int SHA512_Final(unsigned char *md, SHA512_CTX *c)
{
PANIC_UNIMPLEMENTED;
return -1;
}
int sha512_hash(const void *input, int len, u8 *output)
{
PANIC_UNIMPLEMENTED;
return -1;
}
#endif
#define SHA512_ASM
#if 0
# ifndef SHA512_ASM
static const SHA_LONG64 K512[80] = {
U64(0x428a2f98d728ae22), U64(0x7137449123ef65cd),
U64(0xb5c0fbcfec4d3b2f), U64(0xe9b5dba58189dbbc),
U64(0x3956c25bf348b538), U64(0x59f111f1b605d019),
U64(0x923f82a4af194f9b), U64(0xab1c5ed5da6d8118),
U64(0xd807aa98a3030242), U64(0x12835b0145706fbe),
U64(0x243185be4ee4b28c), U64(0x550c7dc3d5ffb4e2),
U64(0x72be5d74f27b896f), U64(0x80deb1fe3b1696b1),
U64(0x9bdc06a725c71235), U64(0xc19bf174cf692694),
U64(0xe49b69c19ef14ad2), U64(0xefbe4786384f25e3),
U64(0x0fc19dc68b8cd5b5), U64(0x240ca1cc77ac9c65),
U64(0x2de92c6f592b0275), U64(0x4a7484aa6ea6e483),
U64(0x5cb0a9dcbd41fbd4), U64(0x76f988da831153b5),
U64(0x983e5152ee66dfab), U64(0xa831c66d2db43210),
U64(0xb00327c898fb213f), U64(0xbf597fc7beef0ee4),
U64(0xc6e00bf33da88fc2), U64(0xd5a79147930aa725),
U64(0x06ca6351e003826f), U64(0x142929670a0e6e70),
U64(0x27b70a8546d22ffc), U64(0x2e1b21385c26c926),
U64(0x4d2c6dfc5ac42aed), U64(0x53380d139d95b3df),
U64(0x650a73548baf63de), U64(0x766a0abb3c77b2a8),
U64(0x81c2c92e47edaee6), U64(0x92722c851482353b),
U64(0xa2bfe8a14cf10364), U64(0xa81a664bbc423001),
U64(0xc24b8b70d0f89791), U64(0xc76c51a30654be30),
U64(0xd192e819d6ef5218), U64(0xd69906245565a910),
U64(0xf40e35855771202a), U64(0x106aa07032bbd1b8),
U64(0x19a4c116b8d2d0c8), U64(0x1e376c085141ab53),
U64(0x2748774cdf8eeb99), U64(0x34b0bcb5e19b48a8),
U64(0x391c0cb3c5c95a63), U64(0x4ed8aa4ae3418acb),
U64(0x5b9cca4f7763e373), U64(0x682e6ff3d6b2b8a3),
U64(0x748f82ee5defb2fc), U64(0x78a5636f43172f60),
U64(0x84c87814a1f0ab72), U64(0x8cc702081a6439ec),
U64(0x90befffa23631e28), U64(0xa4506cebde82bde9),
U64(0xbef9a3f7b2c67915), U64(0xc67178f2e372532b),
U64(0xca273eceea26619c), U64(0xd186b8c721c0c207),
U64(0xeada7dd6cde0eb1e), U64(0xf57d4f7fee6ed178),
U64(0x06f067aa72176fba), U64(0x0a637dc5a2c898a6),
U64(0x113f9804bef90dae), U64(0x1b710b35131c471b),
U64(0x28db77f523047d84), U64(0x32caab7b40c72493),
U64(0x3c9ebe0a15c9bebc), U64(0x431d67c49c100d4c),
U64(0x4cc5d4becb3e42b6), U64(0x597f299cfc657e2a),
U64(0x5fcb6fab3ad6faec), U64(0x6c44198c4a475817)
};
# ifndef PEDANTIC
# if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
# if defined(__x86_64) || defined(__x86_64__)
# define ROTR(a,n) ({ SHA_LONG64 ret; \
asm ("rorq %1,%0" \
: "=r"(ret) \
: "J"(n),"0"(a) \
: "cc"); ret; })
# if !defined(B_ENDIAN)
# define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
asm ("bswapq %0" \
: "=r"(ret) \
: "0"(ret)); ret; })
# endif
# elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
# define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
unsigned int hi=p[0],lo=p[1]; \
asm ("bswapl %0; bswapl %1;" \
: "=r"(lo),"=r"(hi) \
: "0"(lo),"1"(hi)); \
((SHA_LONG64)hi)<<32|lo; })
# elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
# define ROTR(a,n) ({ SHA_LONG64 ret; \
asm ("rotrdi %0,%1,%2" \
: "=r"(ret) \
: "r"(a),"K"(n)); ret; })
# elif defined(__aarch64__)
# define ROTR(a,n) ({ SHA_LONG64 ret; \
asm ("ror %0,%1,%2" \
: "=r"(ret) \
: "r"(a),"I"(n)); ret; })
# if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
__BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__
# define PULL64(x) ({ SHA_LONG64 ret; \
asm ("rev %0,%1" \
: "=r"(ret) \
: "r"(*((const SHA_LONG64 *)(&(x))))); ret; })
# endif
# endif
# elif defined(_MSC_VER)
# define ROTR(a,n) _rotr64((a),n)
# if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
static SHA_LONG64 __fastcall __pull64be(const void *x)
{
_asm mov edx,[ecx + 0]
_asm mov eax,[ecx + 4]
_asm bswap edx _asm bswap eax
}
# define PULL64(x) __pull64be(&(x))
# if _MSC_VER<=1200
# pragma inline_depth(0)
# endif
# endif
# endif
# endif
# ifndef PULL64
# define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
# define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
# endif
# ifndef ROTR
# define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
# endif
# define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
# define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
# define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
# define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
# define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
# define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
# if defined(__i386) || defined(__i386__) || defined(_M_IX86)
/*
* This code should give better results on 32-bit CPU with less than
* ~24 registers, both size and performance wise...
*/
# elif defined(OPENSSL_SMALL_FOOTPRINT)
# else
# define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
h = Sigma0(a) + Maj(a,b,c); \
d += T1; h += T1; } while (0)
# define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \
s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \
s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \
T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \
ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0)
# endif
# endif /* SHA512_ASM */
#endif