blob: eac3cb27f40dc1baedce2bad96cab5259ca6a2c7 [file] [log] [blame]
/*
* Copyright (c) 2015 Gurjant Kalsi <me@gurjantkalsi.com>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <err.h>
#include <pow2.h>
#include <stdlib.h>
#include <string.h>
#include <arch/arm/cm.h>
#include <kernel/event.h>
#include <kernel/mutex.h>
#include <lib/bio.h>
#include <platform/n25qxxa.h>
#include <platform/n25q512a.h>
#include <platform/qspi.h>
#include <trace.h>
#define FOUR_BYTE_ADDR_THRESHOLD (1 << 24)
#define LOCAL_TRACE 0
static QSPI_HandleTypeDef qspi_handle;
static DMA_HandleTypeDef hdma;
static const char device_name[] = "qspi-flash";
static bdev_t qspi_flash_device;
static bio_erase_geometry_info_t geometry;
static mutex_t spiflash_mutex;
// Functions exported to Block I/O handler.
static ssize_t spiflash_bdev_read(struct bdev* device, void* buf, off_t offset, size_t len);
static ssize_t spiflash_bdev_read_block(struct bdev* device, void* buf, bnum_t block, uint count);
static ssize_t spiflash_bdev_write_block(struct bdev* device, const void* buf, bnum_t block, uint count);
static ssize_t spiflash_bdev_erase(struct bdev* device, off_t offset, size_t len);
static int spiflash_ioctl(struct bdev* device, int request, void* argp);
static ssize_t qspi_write_page_unsafe(uint32_t addr, const uint8_t *data);
static ssize_t qspi_erase(bdev_t *device, uint32_t block_addr, uint32_t instruction);
static ssize_t qspi_bulk_erase(bdev_t *device);
static ssize_t qspi_erase_sector(bdev_t *device, uint32_t block_addr);
static ssize_t qspi_erase_subsector(bdev_t *device, uint32_t block_addr);
static HAL_StatusTypeDef qspi_cmd(QSPI_HandleTypeDef*, QSPI_CommandTypeDef*);
static HAL_StatusTypeDef qspi_tx_dma(QSPI_HandleTypeDef*, QSPI_CommandTypeDef*, uint8_t*);
static HAL_StatusTypeDef qspi_rx_dma(QSPI_HandleTypeDef*, QSPI_CommandTypeDef*, uint8_t*);
status_t qspi_enable_linear(void);
status_t qspi_dma_init(QSPI_HandleTypeDef *hqspi);
static uint32_t get_specialized_instruction(uint32_t instruction, uint32_t address);
static uint32_t get_address_size(uint32_t address);
static event_t cmd_event;
static event_t rx_event;
static event_t tx_event;
status_t hal_error_to_status(HAL_StatusTypeDef hal_status);
// Must hold spiflash_mutex before calling.
static status_t qspi_write_enable_unsafe(QSPI_HandleTypeDef* hqspi)
{
QSPI_CommandTypeDef s_command;
QSPI_AutoPollingTypeDef s_config;
HAL_StatusTypeDef status;
/* Enable write operations */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = WRITE_ENABLE_CMD;
s_command.AddressMode = QSPI_ADDRESS_NONE;
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_NONE;
s_command.DummyCycles = 0;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
status = HAL_QSPI_Command(hqspi, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE);
if (status != HAL_OK) {
return hal_error_to_status(status);
}
/* Configure automatic polling mode to wait for write enabling */
s_config.Match = N25QXXA_SR_WREN;
s_config.Mask = N25QXXA_SR_WREN;
s_config.MatchMode = QSPI_MATCH_MODE_AND;
s_config.StatusBytesSize = 1;
s_config.Interval = 0x10;
s_config.AutomaticStop = QSPI_AUTOMATIC_STOP_ENABLE;
s_command.Instruction = READ_STATUS_REG_CMD;
s_command.DataMode = QSPI_DATA_1_LINE;
status = HAL_QSPI_AutoPolling(hqspi, &s_command, &s_config, HAL_QPSI_TIMEOUT_DEFAULT_VALUE);
if (status != HAL_OK) {
return hal_error_to_status(status);
}
return NO_ERROR;
}
// Must hold spiflash_mutex before calling.
static status_t qspi_dummy_cycles_cfg_unsafe(QSPI_HandleTypeDef* hqspi)
{
QSPI_CommandTypeDef s_command;
uint8_t reg;
HAL_StatusTypeDef status;
/* Initialize the read volatile configuration register command */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = READ_VOL_CFG_REG_CMD;
s_command.AddressMode = QSPI_ADDRESS_NONE;
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_1_LINE;
s_command.DummyCycles = 0;
s_command.NbData = 1;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
/* Configure the command */
status = HAL_QSPI_Command(hqspi, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE);
if (status != HAL_OK) {
return hal_error_to_status(status);
}
/* Reception of the data */
status = HAL_QSPI_Receive(hqspi, &reg, HAL_QPSI_TIMEOUT_DEFAULT_VALUE);
if (status != HAL_OK) {
return hal_error_to_status(status);
}
/* Enable write operations */
status = qspi_write_enable_unsafe(hqspi);
if (status != NO_ERROR) {
return status;
}
/* Update volatile configuration register (with new dummy cycles) */
s_command.Instruction = WRITE_VOL_CFG_REG_CMD;
MODIFY_REG(
reg, N25QXXA_VCR_NB_DUMMY,
(N25QXXA_DUMMY_CYCLES_READ_QUAD << POSITION_VAL(N25QXXA_VCR_NB_DUMMY)));
/* Configure the write volatile configuration register command */
status = HAL_QSPI_Command(hqspi, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE);
if (status != HAL_OK) {
return hal_error_to_status(status);
}
/* Transmission of the data */
status = HAL_QSPI_Transmit(hqspi, &reg, HAL_QPSI_TIMEOUT_DEFAULT_VALUE);
if (status != HAL_OK) {
return hal_error_to_status(status);
}
return NO_ERROR;
}
// Must hold spiflash_mutex before calling.
static status_t qspi_auto_polling_mem_ready_unsafe(QSPI_HandleTypeDef* hqspi)
{
QSPI_CommandTypeDef s_command;
QSPI_AutoPollingTypeDef s_config;
HAL_StatusTypeDef status;
/* Configure automatic polling mode to wait for memory ready */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = READ_STATUS_REG_CMD;
s_command.AddressMode = QSPI_ADDRESS_NONE;
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_1_LINE;
s_command.DummyCycles = 0;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
s_config.Match = 0;
s_config.Mask = N25QXXA_SR_WIP;
s_config.MatchMode = QSPI_MATCH_MODE_AND;
s_config.StatusBytesSize = 1;
s_config.Interval = 0x10;
s_config.AutomaticStop = QSPI_AUTOMATIC_STOP_ENABLE;
status = HAL_QSPI_AutoPolling_IT(hqspi, &s_command, &s_config);
if (status != HAL_OK) {
return hal_error_to_status(status);
}
return NO_ERROR;
}
// Must hold spiflash_mutex before calling.
static status_t qspi_reset_memory_unsafe(QSPI_HandleTypeDef* hqspi)
{
QSPI_CommandTypeDef s_command;
HAL_StatusTypeDef status;
/* Initialize the reset enable command */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = RESET_ENABLE_CMD;
s_command.AddressMode = QSPI_ADDRESS_NONE;
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_NONE;
s_command.DummyCycles = 0;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
/* Send the command */
status = qspi_cmd(hqspi, &s_command);
if (status != HAL_OK) {
return hal_error_to_status(status);
}
/* Send the reset memory command */
s_command.Instruction = RESET_MEMORY_CMD;
status = qspi_cmd(hqspi, &s_command);
if (status != HAL_OK) {
return hal_error_to_status(status);
}
/* Configure automatic polling mode to wait the memory is ready */
status = qspi_auto_polling_mem_ready_unsafe(hqspi);
if (status != NO_ERROR) {
return hal_error_to_status(status);
}
return NO_ERROR;
}
static ssize_t spiflash_bdev_read_block(struct bdev* device, void* buf,
bnum_t block, uint count)
{
LTRACEF("device %p, buf %p, block %u, count %u\n",
device, buf, block, count);
if (!IS_ALIGNED((uintptr_t)buf, CACHE_LINE)) {
DEBUG_ASSERT(IS_ALIGNED((uintptr_t)buf, CACHE_LINE));
return ERR_INVALID_ARGS;
}
count = bio_trim_block_range(device, block, count);
if (count == 0)
return 0;
QSPI_CommandTypeDef s_command;
HAL_StatusTypeDef status;
uint64_t largest_offset = (block + count) * device->block_size - 1;
// /* Initialize the read command */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = get_specialized_instruction(QUAD_OUT_FAST_READ_CMD, largest_offset);
s_command.AddressMode = QSPI_ADDRESS_1_LINE;
s_command.AddressSize = get_address_size(largest_offset);
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_4_LINES;
s_command.DummyCycles = N25QXXA_DUMMY_CYCLES_READ_QUAD;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
s_command.NbData = device->block_size;
ssize_t retcode = 0;
mutex_acquire(&spiflash_mutex);
s_command.Address = block * device->block_size;
for (uint i = 0; i < count; i++) {
status = HAL_QSPI_Command(&qspi_handle, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE);
if (status != HAL_OK) {
retcode = hal_error_to_status(status);
goto err;
}
// /* Reception of the data */
status = qspi_rx_dma(&qspi_handle, &s_command, buf);
if (status != HAL_OK) {
retcode = hal_error_to_status(status);
goto err;
}
buf += device->block_size;
retcode += device->block_size;
s_command.Address += device->block_size;
}
err:
mutex_release(&spiflash_mutex);
return retcode;
}
static ssize_t spiflash_bdev_write_block(struct bdev* device, const void* _buf,
bnum_t block, uint count)
{
count = bio_trim_block_range(device, block, count);
if (count == 0) {
return 0;
}
const uint8_t *buf = _buf;
mutex_acquire(&spiflash_mutex);
ssize_t total_bytes_written = 0;
for (; count > 0; count--, block++) {
ssize_t bytes_written = qspi_write_page_unsafe(block * N25QXXA_PAGE_SIZE, buf);
if (bytes_written < 0) {
printf("qspi_write_page_unsafe failed\n");
total_bytes_written = bytes_written;
goto err;
}
buf += N25QXXA_PAGE_SIZE;
total_bytes_written += bytes_written;
}
err:
mutex_release(&spiflash_mutex);
return total_bytes_written;
}
static ssize_t spiflash_bdev_erase(struct bdev* device, off_t offset,
size_t len)
{
len = bio_trim_range(device, offset, len);
if (len == 0) {
return 0;
}
ssize_t total_erased = 0;
mutex_acquire(&spiflash_mutex);
// Choose an erase strategy based on the number of bytes being erased.
if (len == device->total_size && offset == 0) {
// Bulk erase the whole flash.
total_erased = qspi_bulk_erase(device);
goto finish;
}
// Erase as many sectors as necessary, then switch to subsector erase for
// more fine grained erasure.
while (((ssize_t)len - total_erased) >= N25QXXA_SECTOR_SIZE) {
ssize_t erased = qspi_erase_sector(device, offset);
if (erased < 0) {
total_erased = erased;
goto finish;
}
total_erased += erased;
offset += erased;
}
while (total_erased < (ssize_t)len) {
ssize_t erased = qspi_erase_subsector(device, offset);
if (erased < 0) {
total_erased = erased;
goto finish;
}
total_erased += erased;
offset += erased;
}
finish:
mutex_release(&spiflash_mutex);
return total_erased;
}
static int spiflash_ioctl(struct bdev* device, int request, void* argp)
{
int ret = NO_ERROR;
switch (request) {
case BIO_IOCTL_GET_MEM_MAP:
/* put the device into linear mode */
ret = qspi_enable_linear();
// Fallthrough.
case BIO_IOCTL_GET_MAP_ADDR:
if (argp)
*(void **)argp = (void*)QSPI_BASE;
break;
default:
ret = ERR_NOT_SUPPORTED;
}
return ret;
}
static ssize_t qspi_write_page_unsafe(uint32_t addr, const uint8_t *data)
{
if (!IS_ALIGNED(addr, N25QXXA_PAGE_SIZE)) {
return ERR_INVALID_ARGS;
}
HAL_StatusTypeDef status;
QSPI_CommandTypeDef s_command = {
.InstructionMode = QSPI_INSTRUCTION_1_LINE,
.Instruction = get_specialized_instruction(QUAD_IN_FAST_PROG_CMD, addr),
.AddressMode = QSPI_ADDRESS_1_LINE,
.AddressSize = get_address_size(addr),
.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE,
.DataMode = QSPI_DATA_4_LINES,
.DummyCycles = 0,
.DdrMode = QSPI_DDR_MODE_DISABLE,
.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY,
.SIOOMode = QSPI_SIOO_INST_EVERY_CMD,
.Address = addr,
.NbData = N25QXXA_PAGE_SIZE
};
status_t write_enable_result = qspi_write_enable_unsafe(&qspi_handle);
if (write_enable_result != NO_ERROR) {
return write_enable_result;
}
status = HAL_QSPI_Command(&qspi_handle, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE);
if (status != HAL_OK) {
return hal_error_to_status(status);
}
status = qspi_tx_dma(&qspi_handle, &s_command, (uint8_t*)data);
if (status != HAL_OK) {
return hal_error_to_status(status);
}
status_t auto_polling_mem_ready_result =
qspi_auto_polling_mem_ready_unsafe(&qspi_handle);
if (auto_polling_mem_ready_result != NO_ERROR) {
return auto_polling_mem_ready_result;
}
return N25QXXA_PAGE_SIZE;
}
status_t qspi_flash_init(size_t flash_size)
{
status_t result = NO_ERROR;
event_init(&cmd_event, false, EVENT_FLAG_AUTOUNSIGNAL);
event_init(&tx_event, false, EVENT_FLAG_AUTOUNSIGNAL);
event_init(&rx_event, false, EVENT_FLAG_AUTOUNSIGNAL);
mutex_init(&spiflash_mutex);
result = mutex_acquire(&spiflash_mutex);
if (result != NO_ERROR) {
return result;
}
qspi_handle.Instance = QUADSPI;
HAL_StatusTypeDef status;
// Enable the QuadSPI memory interface clock
__HAL_RCC_QSPI_CLK_ENABLE();
// Reset the QuadSPI memory interface
__HAL_RCC_QSPI_FORCE_RESET();
__HAL_RCC_QSPI_RELEASE_RESET();
// Setup the QSPI Flash device.
qspi_handle.Init.ClockPrescaler = 1;
qspi_handle.Init.FifoThreshold = 4;
qspi_handle.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_HALFCYCLE;
qspi_handle.Init.FlashSize = POSITION_VAL(flash_size) - 1;
qspi_handle.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_2_CYCLE;
qspi_handle.Init.ClockMode = QSPI_CLOCK_MODE_0;
qspi_handle.Init.FlashID = QSPI_FLASH_ID_1;
qspi_handle.Init.DualFlash = QSPI_DUALFLASH_DISABLE;
status = HAL_QSPI_Init(&qspi_handle);
if (status != HAL_OK) {
result = hal_error_to_status(status);
goto err;
}
// enable the qspi interrupt
HAL_NVIC_EnableIRQ(QUADSPI_IRQn);
result = qspi_reset_memory_unsafe(&qspi_handle);
if (result != NO_ERROR) {
goto err;
}
result = qspi_dummy_cycles_cfg_unsafe(&qspi_handle);
if (result != NO_ERROR) {
goto err;
}
result = qspi_dma_init(&qspi_handle);
if (result != NO_ERROR) {
goto err;
}
// Initialize the QSPI Flash and register it as a Block I/O device.
geometry.erase_size = log2_uint(N25QXXA_SUBSECTOR_SIZE);
geometry.erase_shift = log2_uint(N25QXXA_SUBSECTOR_SIZE);
geometry.start = 0;
geometry.size = flash_size;
bio_initialize_bdev(&qspi_flash_device, device_name, N25QXXA_PAGE_SIZE,
(flash_size / N25QXXA_PAGE_SIZE), 1, &geometry,
BIO_FLAG_CACHE_ALIGNED_READS);
// qspi_flash_device.read: Use default hook.
qspi_flash_device.read_block = &spiflash_bdev_read_block;
// qspi_flash_device.write has a default hook that will be okay
qspi_flash_device.write_block = &spiflash_bdev_write_block;
qspi_flash_device.erase = &spiflash_bdev_erase;
qspi_flash_device.ioctl = &spiflash_ioctl;
/* we erase to 0xff */
qspi_flash_device.erase_byte = 0xff;
bio_register_device(&qspi_flash_device);
err:
mutex_release(&spiflash_mutex);
return result;
}
status_t hal_error_to_status(HAL_StatusTypeDef hal_status)
{
switch (hal_status) {
case HAL_OK:
return NO_ERROR;
case HAL_ERROR:
return ERR_GENERIC;
case HAL_BUSY:
return ERR_BUSY;
case HAL_TIMEOUT:
return ERR_TIMED_OUT;
default:
return ERR_GENERIC;
}
}
static ssize_t qspi_erase(bdev_t *device, uint32_t block_addr, uint32_t instruction)
{
if (instruction == BULK_ERASE_CMD && block_addr != 0) {
// This call was probably not what the user intended since the
// block_addr is irrelevant when performing a bulk erase.
return ERR_INVALID_ARGS;
}
QSPI_CommandTypeDef erase_cmd;
ssize_t num_erased_bytes;
switch (instruction) {
case SUBSECTOR_ERASE_CMD: {
num_erased_bytes = N25QXXA_SUBSECTOR_SIZE;
erase_cmd.AddressSize = get_address_size(block_addr);
erase_cmd.Instruction = get_specialized_instruction(instruction, block_addr);
erase_cmd.AddressMode = QSPI_ADDRESS_1_LINE;
erase_cmd.Address = block_addr;
break;
}
case SECTOR_ERASE_CMD: {
num_erased_bytes = N25QXXA_SECTOR_SIZE;
erase_cmd.AddressSize = get_address_size(block_addr);
erase_cmd.Instruction = get_specialized_instruction(instruction, block_addr);
erase_cmd.AddressMode = QSPI_ADDRESS_1_LINE;
erase_cmd.Address = block_addr;
break;
}
case BULK_ERASE_CMD: {
num_erased_bytes = device->total_size;
erase_cmd.AddressMode = QSPI_ADDRESS_NONE;
erase_cmd.Instruction = instruction;
break;
}
default: {
// Instruction must be a valid erase instruction.
return ERR_INVALID_ARGS;
}
}
erase_cmd.InstructionMode = QSPI_INSTRUCTION_1_LINE;
erase_cmd.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
erase_cmd.DataMode = QSPI_DATA_NONE;
erase_cmd.DummyCycles = 0;
erase_cmd.DdrMode = QSPI_DDR_MODE_DISABLE;
erase_cmd.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
erase_cmd.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
/* Enable write operations */
status_t qspi_write_enable_result = qspi_write_enable_unsafe(&qspi_handle);
if (qspi_write_enable_result != NO_ERROR) {
return qspi_write_enable_result;
}
/* Send the command */
if (qspi_cmd(&qspi_handle, &erase_cmd) != HAL_OK) {
return ERR_GENERIC;
}
/* Configure automatic polling mode to wait for end of erase */
status_t auto_polling_mem_ready_result =
qspi_auto_polling_mem_ready_unsafe(&qspi_handle);
if (auto_polling_mem_ready_result != NO_ERROR) {
return auto_polling_mem_ready_result;
}
return num_erased_bytes;
}
static ssize_t qspi_bulk_erase(bdev_t *device)
{
return qspi_erase(device, 0, BULK_ERASE_CMD);
}
static ssize_t qspi_erase_sector(bdev_t *device, uint32_t block_addr)
{
return qspi_erase(device, block_addr, SECTOR_ERASE_CMD);
}
static ssize_t qspi_erase_subsector(bdev_t *device, uint32_t block_addr)
{
return qspi_erase(device, block_addr, SUBSECTOR_ERASE_CMD);
}
static HAL_StatusTypeDef qspi_cmd(QSPI_HandleTypeDef* qspi_handle,
QSPI_CommandTypeDef* s_command)
{
HAL_StatusTypeDef result = HAL_QSPI_Command_IT(qspi_handle, s_command);
event_wait(&cmd_event);
return result;
}
// Send data and wait for interrupt.
static HAL_StatusTypeDef qspi_tx_dma(QSPI_HandleTypeDef* qspi_handle, QSPI_CommandTypeDef* s_command, uint8_t* buf)
{
// Make sure cache is flushed to RAM before invoking the DMA controller.
arch_clean_cache_range((addr_t)buf, s_command->NbData);
HAL_StatusTypeDef result = HAL_QSPI_Transmit_DMA(qspi_handle, buf);
event_wait(&tx_event);
return result;
}
// Send data and wait for interrupt.
static HAL_StatusTypeDef qspi_rx_dma(QSPI_HandleTypeDef* qspi_handle, QSPI_CommandTypeDef* s_command, uint8_t* buf)
{
// Make sure the front and back of the buffer are cache aligned.
DEBUG_ASSERT(IS_ALIGNED((uintptr_t)buf, CACHE_LINE));
DEBUG_ASSERT(IS_ALIGNED(((uintptr_t)buf) + s_command->NbData, CACHE_LINE));
arch_invalidate_cache_range((addr_t)buf, s_command->NbData);
HAL_StatusTypeDef result = HAL_QSPI_Receive_DMA(qspi_handle, buf);
event_wait(&rx_event);
return result;
}
void stm32_QUADSPI_IRQ(void)
{
arm_cm_irq_entry();
HAL_QSPI_IRQHandler(&qspi_handle);
arm_cm_irq_exit(true);
}
void stm32_DMA2_Stream7_IRQ(void)
{
arm_cm_irq_entry();
HAL_DMA_IRQHandler(&hdma);
arm_cm_irq_exit(true);
}
/* IRQ Context */
void HAL_QSPI_CmdCpltCallback(QSPI_HandleTypeDef *hqspi)
{
event_signal(&cmd_event, false);
}
/* IRQ Context */
void HAL_QSPI_RxCpltCallback(QSPI_HandleTypeDef *hqspi)
{
event_signal(&rx_event, false);
}
/* IRQ Context */
void HAL_QSPI_TxCpltCallback(QSPI_HandleTypeDef *hqspi)
{
event_signal(&tx_event, false);
}
status_t qspi_dma_init(QSPI_HandleTypeDef *hqspi)
{
/* QSPI DMA Controller Clock */
__HAL_RCC_DMA2_CLK_ENABLE();
hdma.Init.Channel = DMA_CHANNEL_3;
hdma.Init.PeriphInc = DMA_PINC_DISABLE;
hdma.Init.MemInc = DMA_MINC_ENABLE;
hdma.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma.Init.Mode = DMA_NORMAL;
hdma.Init.Priority = DMA_PRIORITY_LOW;
hdma.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
hdma.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
hdma.Init.MemBurst = DMA_MBURST_SINGLE;
hdma.Init.PeriphBurst = DMA_PBURST_SINGLE;
hdma.Instance = DMA2_Stream7;
__HAL_LINKDMA(hqspi, hdma, hdma);
HAL_StatusTypeDef hal_result = HAL_DMA_Init(&hdma);
if (hal_result != HAL_OK) {
return hal_error_to_status(hal_result);
}
HAL_NVIC_EnableIRQ(DMA2_Stream7_IRQn);
return NO_ERROR;
}
static uint32_t get_address_size(uint32_t address)
{
if (address >= FOUR_BYTE_ADDR_THRESHOLD) {
return QSPI_ADDRESS_32_BITS;
}
return QSPI_ADDRESS_24_BITS;
}
// Converts a 3 byte instruction into a 4 byte instruction if necessary.
static uint32_t get_specialized_instruction(uint32_t instruction, uint32_t address)
{
if (address < FOUR_BYTE_ADDR_THRESHOLD) {
return instruction;
}
switch (instruction) {
case READ_CMD:
return READ_4_BYTE_ADDR_CMD;
case FAST_READ_CMD:
return FAST_READ_4_BYTE_ADDR_CMD;
case DUAL_OUT_FAST_READ_CMD:
return DUAL_OUT_FAST_READ_4_BYTE_ADDR_CMD;
case DUAL_INOUT_FAST_READ_CMD:
return DUAL_INOUT_FAST_READ_4_BYTE_ADDR_CMD;
case QUAD_OUT_FAST_READ_CMD:
return QUAD_OUT_FAST_READ_4_BYTE_ADDR_CMD;
case QUAD_INOUT_FAST_READ_CMD:
return QUAD_INOUT_FAST_READ_4_BYTE_ADDR_CMD;
case PAGE_PROG_CMD:
return PAGE_PROG_4_BYTE_ADDR_CMD;
case QUAD_IN_FAST_PROG_CMD:
return QUAD_IN_FAST_PROG_4_BYTE_ADDR_CMD;
case SUBSECTOR_ERASE_CMD:
return SUBSECTOR_ERASE_4_BYTE_ADDR_CMD;
case SECTOR_ERASE_CMD:
return SECTOR_ERASE_4_BYTE_ADDR_CMD;
}
return instruction;
}
status_t qspi_enable_linear(void)
{
status_t result = NO_ERROR;
mutex_acquire(&spiflash_mutex);
result = qspi_dummy_cycles_cfg_unsafe(&qspi_handle);
QSPI_CommandTypeDef s_command = {
.InstructionMode = QSPI_INSTRUCTION_1_LINE,
.AddressSize = QSPI_ADDRESS_24_BITS,
.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE,
.DdrMode = QSPI_DDR_MODE_DISABLE,
.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY,
.AddressMode = QSPI_ADDRESS_1_LINE,
.Instruction = QUAD_OUT_FAST_READ_CMD,
.DataMode = QSPI_DATA_4_LINES,
.DummyCycles = 10,
.SIOOMode = QSPI_SIOO_INST_EVERY_CMD
};
QSPI_MemoryMappedTypeDef linear_mode_cfg = {
.TimeOutActivation = QSPI_TIMEOUT_COUNTER_DISABLE,
};
HAL_StatusTypeDef hal_result = HAL_QSPI_MemoryMapped(&qspi_handle, &s_command, &linear_mode_cfg);
if (hal_result != HAL_OK) {
result = hal_error_to_status(hal_result);
goto err;
}
err:
mutex_release(&spiflash_mutex);
return result;
}