blob: 9324c16ffdb8cb7139406e8b335d8c9e96c76e03 [file] [log] [blame]
/*
* Copyright (c) 2015 Travis Geiselbrecht
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* COPYRIGHT(c) 2015 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
#include <err.h>
#include <debug.h>
#include <trace.h>
#include <target.h>
#include <compiler.h>
#include <dev/gpio.h>
#include <platform/stm32.h>
#include <platform/sdram.h>
/*
* sdram initialization sequence, taken from
* STM32Cube_FW_F7_V1.1.0/Drivers/BSP
*/
/**
* @brief SDRAM status structure definition
*/
#define SDRAM_OK ((uint8_t)0x00)
#define SDRAM_ERROR ((uint8_t)0x01)
/* SDRAM refresh counter (100Mhz SD clock) */
#define REFRESH_COUNT ((uint32_t)0x0603)
#define SDRAM_TIMEOUT ((uint32_t)0xFFFF)
/* DMA definitions for SDRAM DMA transfer */
#define __DMAx_CLK_ENABLE __HAL_RCC_DMA2_CLK_ENABLE
#define __DMAx_CLK_DISABLE __HAL_RCC_DMA2_CLK_DISABLE
#define SDRAM_DMAx_CHANNEL DMA_CHANNEL_0
#define SDRAM_DMAx_STREAM DMA2_Stream0
#define SDRAM_DMAx_IRQn DMA2_Stream0_IRQn
#define SDRAM_DMAx_IRQHandler DMA2_Stream0_IRQHandler
/**
* @brief FMC SDRAM Mode definition register defines
*/
#define SDRAM_MODEREG_BURST_LENGTH_1 ((uint16_t)0x0000)
#define SDRAM_MODEREG_BURST_LENGTH_2 ((uint16_t)0x0001)
#define SDRAM_MODEREG_BURST_LENGTH_4 ((uint16_t)0x0002)
#define SDRAM_MODEREG_BURST_LENGTH_8 ((uint16_t)0x0004)
#define SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL ((uint16_t)0x0000)
#define SDRAM_MODEREG_BURST_TYPE_INTERLEAVED ((uint16_t)0x0008)
#define SDRAM_MODEREG_CAS_LATENCY_1 ((uint16_t)0x0010)
#define SDRAM_MODEREG_CAS_LATENCY_2 ((uint16_t)0x0020)
#define SDRAM_MODEREG_CAS_LATENCY_3 ((uint16_t)0x0030)
#define SDRAM_MODEREG_OPERATING_MODE_STANDARD ((uint16_t)0x0000)
#define SDRAM_MODEREG_WRITEBURST_MODE_PROGRAMMED ((uint16_t)0x0000)
#define SDRAM_MODEREG_WRITEBURST_MODE_SINGLE ((uint16_t)0x0200)
static SDRAM_HandleTypeDef sdramHandle;
/**
* @brief Programs the SDRAM device.
* @param RefreshCount: SDRAM refresh counter value
* @retval None
*/
static void BSP_SDRAM_Initialization_sequence(uint32_t RefreshCount,
uint32_t CasLatency)
{
__IO uint32_t tmpmrd = 0;
FMC_SDRAM_CommandTypeDef Command;
/* Step 1: Configure a clock configuration enable command */
Command.CommandMode = FMC_SDRAM_CMD_CLK_ENABLE;
Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
Command.AutoRefreshNumber = 1;
Command.ModeRegisterDefinition = 0;
/* Send the command */
HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT);
/* Step 2: Insert 100 us minimum delay */
spin(1000);
/* Step 3: Configure a PALL (precharge all) command */
Command.CommandMode = FMC_SDRAM_CMD_PALL;
Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
Command.AutoRefreshNumber = 1;
Command.ModeRegisterDefinition = 0;
/* Send the command */
HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT);
/* Step 4: Configure an Auto Refresh command */
Command.CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE;
Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
Command.AutoRefreshNumber = 8;
Command.ModeRegisterDefinition = 0;
/* Send the command */
HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT);
/* Step 5: Program the external memory mode register */
tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_1 |\
SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL |\
SDRAM_MODEREG_OPERATING_MODE_STANDARD |\
SDRAM_MODEREG_WRITEBURST_MODE_SINGLE;
tmpmrd |= CasLatency;
Command.CommandMode = FMC_SDRAM_CMD_LOAD_MODE;
Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
Command.AutoRefreshNumber = 1;
Command.ModeRegisterDefinition = tmpmrd;
/* Send the command */
HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT);
/* Step 6: Set the refresh rate counter */
/* Set the device refresh rate */
HAL_SDRAM_ProgramRefreshRate(&sdramHandle, RefreshCount);
}
static uint32_t GetMemoryWidth(sdram_config_t* config)
{
switch (config->bus_width) {
case SDRAM_BUS_WIDTH_8 : return FMC_SDRAM_MEM_BUS_WIDTH_8;
case SDRAM_BUS_WIDTH_16 : return FMC_SDRAM_MEM_BUS_WIDTH_16;
case SDRAM_BUS_WIDTH_32 : return FMC_SDRAM_MEM_BUS_WIDTH_32;
}
return 0;
}
static uint32_t GetColumnBitsNumber(sdram_config_t* config)
{
switch (config->col_bits_num) {
case SDRAM_COLUMN_BITS_8 : return FMC_SDRAM_COLUMN_BITS_NUM_8;
case SDRAM_COLUMN_BITS_9 : return FMC_SDRAM_COLUMN_BITS_NUM_9;
case SDRAM_COLUMN_BITS_10 : return FMC_SDRAM_COLUMN_BITS_NUM_10;
case SDRAM_COLUMN_BITS_11 : return FMC_SDRAM_COLUMN_BITS_NUM_11;
}
return 0;
}
static uint32_t GetCasLatencyFMC(sdram_config_t* config)
{
switch (config->cas_latency) {
case SDRAM_CAS_LATENCY_1 : return FMC_SDRAM_CAS_LATENCY_1;
case SDRAM_CAS_LATENCY_2 : return FMC_SDRAM_CAS_LATENCY_2;
case SDRAM_CAS_LATENCY_3 : return FMC_SDRAM_CAS_LATENCY_3;
}
return 0;
}
static uint32_t GetCasLatencyModeReg(sdram_config_t* config)
{
switch (config->cas_latency) {
case SDRAM_CAS_LATENCY_1 : return SDRAM_MODEREG_CAS_LATENCY_1;
case SDRAM_CAS_LATENCY_2 : return SDRAM_MODEREG_CAS_LATENCY_2;
case SDRAM_CAS_LATENCY_3 : return SDRAM_MODEREG_CAS_LATENCY_3;
}
return 0;
}
/**
* @brief Initializes the SDRAM device.
* @retval SDRAM status
*/
uint8_t stm32_sdram_init(sdram_config_t* config)
{
static uint8_t sdramstatus = SDRAM_ERROR;
static DMA_HandleTypeDef dma_handle;
/* SDRAM device configuration */
sdramHandle.Instance = FMC_SDRAM_DEVICE;
/* Timing configuration for 100Mhz as SDRAM clock frequency (System clock is up to 200Mhz) */
FMC_SDRAM_TimingTypeDef Timing;
Timing.LoadToActiveDelay = 2;
Timing.ExitSelfRefreshDelay = 7;
Timing.SelfRefreshTime = 4;
Timing.RowCycleDelay = 7;
Timing.WriteRecoveryTime = 2;
Timing.RPDelay = 2;
Timing.RCDDelay = 2;
sdramHandle.Init.SDBank = FMC_SDRAM_BANK1;
sdramHandle.Init.ColumnBitsNumber = GetColumnBitsNumber(config);
sdramHandle.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12;
sdramHandle.Init.MemoryDataWidth = GetMemoryWidth(config);
sdramHandle.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
sdramHandle.Init.CASLatency = GetCasLatencyFMC(config);
sdramHandle.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
sdramHandle.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2;
sdramHandle.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE;
sdramHandle.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;
/* Enable FMC clock */
__HAL_RCC_FMC_CLK_ENABLE();
/* Enable chosen DMAx clock */
__DMAx_CLK_ENABLE();
/* SDRAM GPIO initialization */
stm_sdram_GPIO_init();
/* Configure common DMA parameters */
dma_handle.Init.Channel = SDRAM_DMAx_CHANNEL;
dma_handle.Init.Direction = DMA_MEMORY_TO_MEMORY;
dma_handle.Init.PeriphInc = DMA_PINC_ENABLE;
dma_handle.Init.MemInc = DMA_MINC_ENABLE;
dma_handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
dma_handle.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
dma_handle.Init.Mode = DMA_NORMAL;
dma_handle.Init.Priority = DMA_PRIORITY_HIGH;
dma_handle.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
dma_handle.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
dma_handle.Init.MemBurst = DMA_MBURST_SINGLE;
dma_handle.Init.PeriphBurst = DMA_PBURST_SINGLE;
dma_handle.Instance = SDRAM_DMAx_STREAM;
/* Associate the DMA handle */
__HAL_LINKDMA(&sdramHandle, hdma, dma_handle);
/* Deinitialize the stream for new transfer */
HAL_DMA_DeInit(&dma_handle);
/* Configure the DMA stream */
HAL_DMA_Init(&dma_handle);
#if 0
/* NVIC configuration for DMA transfer complete interrupt */
HAL_NVIC_SetPriority(SDRAM_DMAx_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(SDRAM_DMAx_IRQn);
#endif
if (HAL_SDRAM_Init(&sdramHandle, &Timing) != HAL_OK) {
sdramstatus = SDRAM_ERROR;
} else {
sdramstatus = SDRAM_OK;
}
/* SDRAM initialization sequence */
BSP_SDRAM_Initialization_sequence(REFRESH_COUNT,
GetCasLatencyModeReg(config));
return sdramstatus;
}