blob: 660f941dea1769f3777e2b08634cbbda65cb2a90 [file] [log] [blame]
/*
* Copyright (c) 2014 Travis Geiselbrecht
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <reg.h>
#include <bits.h>
#include <stdio.h>
#include <assert.h>
#include <trace.h>
#include <err.h>
#include <kernel/thread.h>
#include <platform/debug.h>
#include <platform/zynq.h>
#include <target/debugconfig.h>
#include <reg.h>
#define LOCAL_TRACE 0
static uint32_t get_arm_pll_freq(void)
{
LTRACEF("ARM_PLL_CTRL 0x%x\n", SLCR_REG(ARM_PLL_CTRL));
// XXX test that the pll is actually enabled
uint32_t fdiv = BITS_SHIFT(SLCR_REG(ARM_PLL_CTRL), 18, 12);
return EXTERNAL_CLOCK_FREQ * fdiv;
}
static uint32_t get_ddr_pll_freq(void)
{
LTRACEF("DDR_PLL_CTRL 0x%x\n", SLCR_REG(DDR_PLL_CTRL));
// XXX test that the pll is actually enabled
uint32_t fdiv = BITS_SHIFT(SLCR_REG(DDR_PLL_CTRL), 18, 12);
return EXTERNAL_CLOCK_FREQ * fdiv;
}
static uint32_t get_io_pll_freq(void)
{
LTRACEF("IO_PLL_CTRL 0x%x\n", SLCR_REG(IO_PLL_CTRL));
// XXX test that the pll is actually enabled
uint32_t fdiv = BITS_SHIFT(SLCR_REG(IO_PLL_CTRL), 18, 12);
return EXTERNAL_CLOCK_FREQ * fdiv;
}
static uint32_t get_cpu_input_freq(void)
{
LTRACEF("ARM_CLK_CTRL 0x%x\n", SLCR_REG(ARM_CLK_CTRL));
uint32_t divisor = BITS_SHIFT(SLCR_REG(ARM_CLK_CTRL), 13, 8);
uint32_t srcsel = BITS_SHIFT(SLCR_REG(ARM_CLK_CTRL), 5, 4);
uint32_t srcclk;
switch (srcsel) {
default: case 0: case 1: // arm pll
srcclk = get_arm_pll_freq();
break;
case 2: // ddr pll
srcclk = get_ddr_pll_freq();
break;
case 3: // io pll
srcclk = get_io_pll_freq();
break;
}
// cpu 6x4x
return srcclk / divisor;
}
static uint32_t get_cpu_6x4x_freq(void)
{
// cpu 6x4x is the post divided frequency in the cpu clock block
return get_cpu_input_freq();
}
static uint32_t get_cpu_3x2x_freq(void)
{
// cpu 3x2x is always half the speed of 6x4x
return get_cpu_input_freq() / 2;
}
static uint32_t get_cpu_2x_freq(void)
{
// cpu 2x is either /3 or /2 the speed of 6x4x
return get_cpu_input_freq() / ((SLCR_REG(CLK_621_TRUE) & 1) ? 3 : 2);
}
static uint32_t get_cpu_1x_freq(void)
{
// cpu 1x is either /6 or /4 the speed of 6x4x
return get_cpu_input_freq() / ((SLCR_REG(CLK_621_TRUE) & 1) ? 6 : 4);
}
uint32_t zynq_get_arm_freq(void)
{
return get_cpu_6x4x_freq();
}
uint32_t zynq_get_arm_timer_freq(void)
{
return get_cpu_3x2x_freq();
}
uint32_t zynq_get_swdt_freq(void)
{
return get_cpu_1x_freq();
}
struct periph_clock {
addr_t clk_ctrl_reg;
uint enable_bit_pos;
};
static addr_t periph_clk_ctrl_reg(enum zynq_periph periph)
{
DEBUG_ASSERT(periph < _PERIPH_MAX);
switch (periph) {
case PERIPH_USB0: return (uintptr_t)&SLCR->USB0_CLK_CTRL;
case PERIPH_USB1: return (uintptr_t)&SLCR->USB1_CLK_CTRL;
case PERIPH_GEM0: return (uintptr_t)&SLCR->GEM0_CLK_CTRL;
case PERIPH_GEM1: return (uintptr_t)&SLCR->GEM1_CLK_CTRL;
case PERIPH_SMC: return (uintptr_t)&SLCR->SMC_CLK_CTRL;
case PERIPH_LQSPI: return (uintptr_t)&SLCR->LQSPI_CLK_CTRL;
case PERIPH_SDIO0: return (uintptr_t)&SLCR->SDIO_CLK_CTRL;
case PERIPH_SDIO1: return (uintptr_t)&SLCR->SDIO_CLK_CTRL;
case PERIPH_UART0: return (uintptr_t)&SLCR->UART_CLK_CTRL;
case PERIPH_UART1: return (uintptr_t)&SLCR->UART_CLK_CTRL;
case PERIPH_SPI0: return (uintptr_t)&SLCR->SPI_CLK_CTRL;
case PERIPH_SPI1: return (uintptr_t)&SLCR->SPI_CLK_CTRL;
case PERIPH_CAN0: return (uintptr_t)&SLCR->CAN_CLK_CTRL;
case PERIPH_CAN1: return (uintptr_t)&SLCR->CAN_CLK_CTRL;
case PERIPH_DBG: return (uintptr_t)&SLCR->DBG_CLK_CTRL;
case PERIPH_PCAP: return (uintptr_t)&SLCR->PCAP_CLK_CTRL;
case PERIPH_FPGA0: return (uintptr_t)&SLCR->FPGA0_CLK_CTRL;
case PERIPH_FPGA1: return (uintptr_t)&SLCR->FPGA1_CLK_CTRL;
case PERIPH_FPGA2: return (uintptr_t)&SLCR->FPGA2_CLK_CTRL;
case PERIPH_FPGA3: return (uintptr_t)&SLCR->FPGA3_CLK_CTRL;
default: return 0;
}
}
static int periph_clk_ctrl_enable_bitpos(enum zynq_periph periph)
{
switch (periph) {
case PERIPH_SDIO1:
case PERIPH_UART1:
case PERIPH_SPI1:
case PERIPH_CAN1:
return 1;
case PERIPH_FPGA0:
case PERIPH_FPGA1:
case PERIPH_FPGA2:
case PERIPH_FPGA3:
return -1; // enable bit is more complicated on fpga
default:
// most peripherals have the enable bit in bit0
return 0;
}
}
static uint periph_clk_ctrl_divisor_count(enum zynq_periph periph)
{
switch (periph) {
case PERIPH_GEM0:
case PERIPH_GEM1:
case PERIPH_CAN0:
case PERIPH_CAN1:
case PERIPH_FPGA0:
case PERIPH_FPGA1:
case PERIPH_FPGA2:
case PERIPH_FPGA3:
return 2;
default:
// most peripherals have a single divisor
return 1;
}
}
static const char *periph_to_name(enum zynq_periph periph)
{
switch (periph) {
case PERIPH_USB0: return "USB0";
case PERIPH_USB1: return "USB1";
case PERIPH_GEM0: return "GEM0";
case PERIPH_GEM1: return "GEM1";
case PERIPH_SMC: return "SMC";
case PERIPH_LQSPI: return "LQSPI";
case PERIPH_SDIO0: return "SDIO0";
case PERIPH_SDIO1: return "SDIO1";
case PERIPH_UART0: return "UART0";
case PERIPH_UART1: return "UART1";
case PERIPH_SPI0: return "SPI0";
case PERIPH_SPI1: return "SPI1";
case PERIPH_CAN0: return "CAN0";
case PERIPH_CAN1: return "CAN1";
case PERIPH_DBG: return "DBG";
case PERIPH_PCAP: return "PCAP";
case PERIPH_FPGA0: return "FPGA0";
case PERIPH_FPGA1: return "FPGA1";
case PERIPH_FPGA2: return "FPGA2";
case PERIPH_FPGA3: return "FPGA3";
default: return "unknown";
}
}
status_t zynq_set_clock(enum zynq_periph periph, bool enable, enum zynq_clock_source source, uint32_t divisor, uint32_t divisor2)
{
DEBUG_ASSERT(periph < _PERIPH_MAX);
DEBUG_ASSERT(!enable || (divisor > 0 && divisor <= 0x3f));
DEBUG_ASSERT(source < 4);
// get the clock control register base
addr_t clk_reg = periph_clk_ctrl_reg(periph);
DEBUG_ASSERT(clk_reg != 0);
int enable_bitpos = periph_clk_ctrl_enable_bitpos(periph);
zynq_slcr_unlock();
// if we're enabling
if (enable) {
uint32_t ctrl = *REG32(clk_reg);
// set the divisor, divisor2 (if applicable), source, and enable
ctrl = (ctrl & ~(0x3f << 20)) | (divisor2 << 20);
ctrl = (ctrl & ~(0x3f << 8)) | (divisor << 8);
ctrl = (ctrl & ~(0x3 << 4)) | (source << 4);
if (enable_bitpos >= 0)
ctrl |= (1 << enable_bitpos);
*REG32(clk_reg) = ctrl;
} else {
if (enable_bitpos >= 0) {
// disabling
uint32_t ctrl = *REG32(clk_reg);
ctrl &= ~(1 << enable_bitpos);
*REG32(clk_reg) = ctrl;
}
}
zynq_slcr_lock();
return NO_ERROR;
}
uint32_t zynq_get_clock(enum zynq_periph periph)
{
DEBUG_ASSERT(periph < _PERIPH_MAX);
// get the clock control register base
addr_t clk_reg = periph_clk_ctrl_reg(periph);
DEBUG_ASSERT(clk_reg != 0);
int enable_bitpos = periph_clk_ctrl_enable_bitpos(periph);
LTRACEF("clkreg 0x%x\n", *REG32(clk_reg));
// see if it's enabled
if (enable_bitpos >= 0) {
if ((*REG32(clk_reg) & (1 << enable_bitpos)) == 0) {
// not enabled
return 0;
}
}
// get the source clock
uint32_t srcclk;
switch (BITS_SHIFT(*REG32(clk_reg), 5, 4)) {
case 0: case 1:
srcclk = get_io_pll_freq();
break;
case 2:
srcclk = get_arm_pll_freq();
break;
case 3:
srcclk = get_ddr_pll_freq();
break;
}
// get the divisor out of the register
uint32_t divisor = BITS_SHIFT(*REG32(clk_reg), 13, 8);
if (divisor == 0)
return 0;
uint32_t divisor2 = 1;
if (periph_clk_ctrl_divisor_count(periph) == 2) {
divisor2 = BITS_SHIFT(*REG32(clk_reg), 25, 20);
if (divisor2 == 0)
return 0;
}
uint32_t clk = srcclk / divisor / divisor2;
return clk;
}
void zynq_dump_clocks(void)
{
printf("zynq clocks:\n");
printf("\tarm pll %d\n", get_arm_pll_freq());
printf("\tddr pll %d\n", get_ddr_pll_freq());
printf("\tio pll %d\n", get_io_pll_freq());
printf("\tarm clock %d\n", zynq_get_arm_freq());
printf("\tarm timer clock %d\n", zynq_get_arm_timer_freq());
printf("\tcpu6x4x clock %d\n", get_cpu_6x4x_freq());
printf("\tcpu3x2x clock %d\n", get_cpu_3x2x_freq());
printf("\tcpu2x clock %d\n", get_cpu_2x_freq());
printf("\tcpu1x clock %d\n", get_cpu_1x_freq());
printf("peripheral clocks:\n");
for (uint i = 0; i < _PERIPH_MAX; i++) {
printf("\tperiph %d (%s) clock %u\n", i, periph_to_name(i), zynq_get_clock(i));
}
}