| /* |
| * Copyright (c) 2012-2015 Travis Geiselbrecht |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining |
| * a copy of this software and associated documentation files |
| * (the "Software"), to deal in the Software without restriction, |
| * including without limitation the rights to use, copy, modify, merge, |
| * publish, distribute, sublicense, and/or sell copies of the Software, |
| * and to permit persons to whom the Software is furnished to do so, |
| * subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be |
| * included in all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
| * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY |
| * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
| * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE |
| * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| #include <err.h> |
| #include <debug.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <arch/arm/mmu.h> |
| #include <kernel/vm.h> |
| #include <dev/uart.h> |
| #include <dev/interrupt/arm_gic.h> |
| #include <dev/timer/arm_cortex_a9.h> |
| #include <lib/console.h> |
| #include <lib/watchdog.h> |
| #include <platform.h> |
| #include <platform/zynq.h> |
| #include <platform/gem.h> |
| #include <platform/timer.h> |
| #include "platform_p.h" |
| |
| #if ZYNQ_SDRAM_INIT |
| STATIC_ASSERT(SDRAM_SIZE != 0); |
| #endif |
| |
| /* default timeout of the global hardware watchdog */ |
| #ifndef ZYNQ_WATCHDOG_TIMEOUT |
| #define ZYNQ_WATCHDOG_TIMEOUT (1000) // 1 second |
| #endif |
| |
| /* saved REBOOT_STATUS register */ |
| static uint32_t saved_reboot_status; |
| |
| /* target can specify this as the initial jam table to set up the soc */ |
| __WEAK void ps7_init(void) { } |
| |
| /* These should be defined in the target somewhere */ |
| extern const uint32_t zynq_mio_cfg[ZYNQ_MIO_CNT]; |
| extern const long zynq_ddr_cfg[]; |
| extern const uint32_t zynq_ddr_cfg_cnt; |
| extern const zynq_pll_cfg_tree_t zynq_pll_cfg; |
| extern const zynq_clk_cfg_t zynq_clk_cfg; |
| extern const zynq_ddriob_cfg_t zynq_ddriob_cfg; |
| |
| static inline int reg_poll(uint32_t addr,uint32_t mask) |
| { |
| uint32_t iters = UINT_MAX; |
| while (iters-- && !(*REG32(addr) & mask)) ; |
| |
| if (iters) { |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| /* For each PLL we need to configure the cp / res / lock_cnt and then place the PLL in bypass |
| * before doing a reset to switch to the new values. Then bypass is removed to switch back to using |
| * the PLL once its locked. |
| */ |
| int zynq_pll_init(void) { |
| const zynq_pll_cfg_tree_t *cfg = &zynq_pll_cfg; |
| |
| SLCR_REG(ARM_PLL_CFG) = PLL_CFG_LOCK_CNT(cfg->arm.lock_cnt) | PLL_CFG_PLL_CP(cfg->arm.cp) | |
| PLL_CFG_PLL_RES(cfg->arm.res); |
| SLCR_REG(ARM_PLL_CTRL) = PLL_FDIV(cfg->arm.fdiv) | PLL_BYPASS_FORCE | PLL_RESET; |
| SLCR_REG(ARM_PLL_CTRL) &= ~PLL_RESET; |
| |
| if (reg_poll((uintptr_t)&SLCR->PLL_STATUS, PLL_STATUS_ARM_PLL_LOCK) == -1) { |
| return -1; |
| } |
| |
| SLCR_REG(ARM_PLL_CTRL) &= ~PLL_BYPASS_FORCE; |
| SLCR_REG(ARM_CLK_CTRL) = zynq_clk_cfg.arm_clk; |
| |
| #if ZYNQ_SDRAM_INIT |
| SLCR_REG(DDR_PLL_CFG) = PLL_CFG_LOCK_CNT(cfg->ddr.lock_cnt) | PLL_CFG_PLL_CP(cfg->ddr.cp) | |
| PLL_CFG_PLL_RES(cfg->ddr.res); |
| SLCR_REG(DDR_PLL_CTRL) = PLL_FDIV(cfg->ddr.fdiv) | PLL_BYPASS_FORCE | PLL_RESET; |
| SLCR_REG(DDR_PLL_CTRL) &= ~PLL_RESET; |
| |
| if (reg_poll((uintptr_t)&SLCR->PLL_STATUS, PLL_STATUS_DDR_PLL_LOCK) == -1) { |
| return -1; |
| } |
| |
| SLCR_REG(DDR_PLL_CTRL) &= ~PLL_BYPASS_FORCE; |
| SLCR_REG(DDR_CLK_CTRL) = zynq_clk_cfg.ddr_clk; |
| #elif SDRAM_SIZE == 0 |
| /* if we're not using sdram and haven't been told to initialize sdram, stop the DDR pll */ |
| SLCR_REG(DDR_CLK_CTRL) = 0; |
| SLCR_REG(DDR_PLL_CTRL) |= PLL_PWRDOWN; |
| #endif |
| SLCR_REG(IO_PLL_CFG) = PLL_CFG_LOCK_CNT(cfg->io.lock_cnt) | PLL_CFG_PLL_CP(cfg->io.cp) | |
| PLL_CFG_PLL_RES(cfg->io.res); |
| SLCR_REG(IO_PLL_CTRL) = PLL_FDIV(cfg->io.fdiv) | PLL_BYPASS_FORCE | PLL_RESET; |
| SLCR_REG(IO_PLL_CTRL) &= ~PLL_RESET; |
| |
| if (reg_poll((uintptr_t)&SLCR->PLL_STATUS, PLL_STATUS_IO_PLL_LOCK) == -1) { |
| return -1; |
| } |
| |
| SLCR_REG(IO_PLL_CTRL) &= ~PLL_BYPASS_FORCE; |
| return 0; |
| } |
| |
| int zynq_mio_init(void) |
| { |
| |
| /* This DDRIOB configuration applies to both zybo and uzed, but it's possible |
| * it may not work for all boards in the future. Just something to keep in mind |
| * with different memory configurations. |
| */ |
| SLCR_REG(GPIOB_CTRL) = GPIOB_CTRL_VREF_EN; |
| |
| for (size_t pin = 0; pin < countof(zynq_mio_cfg); pin++) { |
| if (zynq_mio_cfg[pin] != MIO_DEFAULT) { |
| SLCR_REG(MIO_PIN_00 + (pin * 4)) = zynq_mio_cfg[pin]; |
| } |
| } |
| |
| SLCR_REG(SD0_WP_CD_SEL) = SDIO0_WP_SEL(0x37) | SDIO0_CD_SEL(0x2F); |
| |
| return 0; |
| } |
| |
| void zynq_clk_init(void) |
| { |
| SLCR_REG(DCI_CLK_CTRL) = zynq_clk_cfg.dci_clk; |
| SLCR_REG(GEM0_CLK_CTRL) = zynq_clk_cfg.gem0_clk; |
| SLCR_REG(GEM0_RCLK_CTRL) = zynq_clk_cfg.gem0_rclk; |
| SLCR_REG(GEM1_CLK_CTRL) = zynq_clk_cfg.gem1_clk; |
| SLCR_REG(GEM1_RCLK_CTRL) = zynq_clk_cfg.gem1_rclk; |
| SLCR_REG(SMC_CLK_CTRL) = zynq_clk_cfg.smc_clk; |
| SLCR_REG(LQSPI_CLK_CTRL) = zynq_clk_cfg.lqspi_clk; |
| SLCR_REG(SDIO_CLK_CTRL) = zynq_clk_cfg.sdio_clk; |
| SLCR_REG(UART_CLK_CTRL) = zynq_clk_cfg.uart_clk; |
| SLCR_REG(SPI_CLK_CTRL) = zynq_clk_cfg.spi_clk; |
| SLCR_REG(CAN_CLK_CTRL) = zynq_clk_cfg.can_clk; |
| SLCR_REG(CAN_MIOCLK_CTRL)= zynq_clk_cfg.can_mioclk; |
| SLCR_REG(USB0_CLK_CTRL) = zynq_clk_cfg.usb0_clk; |
| SLCR_REG(USB1_CLK_CTRL) = zynq_clk_cfg.usb1_clk; |
| SLCR_REG(PCAP_CLK_CTRL) = zynq_clk_cfg.pcap_clk; |
| SLCR_REG(FPGA0_CLK_CTRL) = zynq_clk_cfg.fpga0_clk; |
| SLCR_REG(FPGA1_CLK_CTRL) = zynq_clk_cfg.fpga1_clk; |
| SLCR_REG(FPGA2_CLK_CTRL) = zynq_clk_cfg.fpga2_clk; |
| SLCR_REG(FPGA3_CLK_CTRL) = zynq_clk_cfg.fpga3_clk; |
| SLCR_REG(APER_CLK_CTRL) = zynq_clk_cfg.aper_clk; |
| SLCR_REG(CLK_621_TRUE) = zynq_clk_cfg.clk_621_true; |
| } |
| |
| #if ZYNQ_SDRAM_INIT |
| void zynq_ddr_init(void) |
| { |
| SLCR_REG(DDRIOB_ADDR0) = zynq_ddriob_cfg.addr0; |
| SLCR_REG(DDRIOB_ADDR1) = zynq_ddriob_cfg.addr1; |
| SLCR_REG(DDRIOB_DATA0) = zynq_ddriob_cfg.data0; |
| SLCR_REG(DDRIOB_DATA1) = zynq_ddriob_cfg.data1; |
| SLCR_REG(DDRIOB_DIFF0) = zynq_ddriob_cfg.diff0; |
| SLCR_REG(DDRIOB_DIFF1) = zynq_ddriob_cfg.diff1; |
| SLCR_REG(DDRIOB_CLOCK) = DDRIOB_OUTPUT_EN(0x3); |
| |
| /* These register fields are not documented in the TRM. These |
| * values represent the defaults generated via the Zynq tools |
| */ |
| SLCR_REG(DDRIOB_DRIVE_SLEW_ADDR) = 0x0018C61CU; |
| SLCR_REG(DDRIOB_DRIVE_SLEW_DATA) = 0x00F9861CU; |
| SLCR_REG(DDRIOB_DRIVE_SLEW_DIFF) = 0x00F9861CU; |
| SLCR_REG(DDRIOB_DRIVE_SLEW_CLOCK) = 0x00F9861CU; |
| SLCR_REG(DDRIOB_DDR_CTRL) = 0x00000E60U; |
| SLCR_REG(DDRIOB_DCI_CTRL) = 0x00000001U; |
| SLCR_REG(DDRIOB_DCI_CTRL) |= 0x00000020U; |
| SLCR_REG(DDRIOB_DCI_CTRL) |= 0x00000823U; |
| |
| /* Write addresss / value pairs from target table */ |
| for (size_t i = 0; i < zynq_ddr_cfg_cnt; i += 2) { |
| *REG32(zynq_ddr_cfg[i]) = zynq_ddr_cfg[i+1]; |
| } |
| |
| /* Wait for DCI done */ |
| reg_poll((uintptr_t)&SLCR->DDRIOB_DCI_STATUS, 0x2000); |
| |
| /* Bring ddr out of reset and wait until self refresh */ |
| *REG32(DDRC_CTRL) |= DDRC_CTRL_OUT_OF_RESET; |
| reg_poll(DDRC_MODE_STATUS, DDRC_STS_SELF_REFRESH); |
| |
| /* Switch timer to 64k */ |
| *REG32(0XF8007000) = *REG32(0xF8007000) & ~0x20000000U; |
| |
| if (zynq_ddriob_cfg.ibuf_disable) { |
| SLCR_REG(DDRIOB_DATA0) |= DDRIOB_IBUF_DISABLE_MODE; |
| SLCR_REG(DDRIOB_DATA1) |= DDRIOB_IBUF_DISABLE_MODE; |
| SLCR_REG(DDRIOB_DIFF0) |= DDRIOB_IBUF_DISABLE_MODE; |
| SLCR_REG(DDRIOB_DIFF1) |= DDRIOB_IBUF_DISABLE_MODE; |
| } |
| |
| if (zynq_ddriob_cfg.term_disable) { |
| SLCR_REG(DDRIOB_DATA0) |= DDRIOB_TERM_DISABLE_MODE; |
| SLCR_REG(DDRIOB_DATA1) |= DDRIOB_TERM_DISABLE_MODE; |
| SLCR_REG(DDRIOB_DIFF0) |= DDRIOB_TERM_DISABLE_MODE; |
| SLCR_REG(DDRIOB_DIFF1) |= DDRIOB_TERM_DISABLE_MODE; |
| } |
| } |
| #endif |
| |
| STATIC_ASSERT(IS_ALIGNED(SDRAM_BASE, MB)); |
| STATIC_ASSERT(IS_ALIGNED(SDRAM_SIZE, MB)); |
| |
| #if SDRAM_SIZE != 0 |
| /* if we have sdram, the first 1MB is covered by sram */ |
| #define RAM_SIZE (MB + (SDRAM_SIZE - MB)) |
| #else |
| #define RAM_SIZE (MB) |
| #endif |
| |
| /* initial memory mappings. parsed by start.S */ |
| struct mmu_initial_mapping mmu_initial_mappings[] = { |
| /* 1GB of sram + sdram space */ |
| { .phys = SRAM_BASE, |
| .virt = KERNEL_BASE, |
| .size = RAM_SIZE, |
| .flags = 0, |
| .name = "memory" }, |
| |
| /* AXI fpga fabric bus 0 */ |
| { .phys = 0x40000000, |
| .virt = 0x40000000, |
| .size = (128*1024*1024), |
| .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE, |
| .name = "axi0" }, |
| |
| /* AXI fpga fabric bus 1 */ |
| { .phys = 0x80000000, |
| .virt = 0x80000000, |
| .size = (16*1024*1024), |
| .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE, |
| .name = "axi1" }, |
| /* 0xe0000000 hardware devices */ |
| { .phys = 0xe0000000, |
| .virt = 0xe0000000, |
| .size = 0x00300000, |
| .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE, |
| .name = "hw-e0000000" }, |
| |
| /* 0xe1000000 hardware devices */ |
| { .phys = 0xe1000000, |
| .virt = 0xe1000000, |
| .size = 0x05000000, |
| .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE, |
| .name = "hw-e1000000" }, |
| |
| /* 0xf8000000 hardware devices */ |
| { .phys = 0xf8000000, |
| .virt = 0xf8000000, |
| .size = 0x01000000, |
| .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE, |
| .name = "hw-f8000000" }, |
| |
| /* 0xfc000000 hardware devices */ |
| { .phys = 0xfc000000, |
| .virt = 0xfc000000, |
| .size = 0x02000000, |
| .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE, |
| .name = "hw-fc000000" }, |
| |
| /* sram high aperture */ |
| { .phys = 0xfff00000, |
| .virt = 0xfff00000, |
| .size = 0x00100000, |
| .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE }, |
| |
| /* identity map to let the boot code run */ |
| { .phys = SRAM_BASE, |
| .virt = SRAM_BASE, |
| .size = RAM_SIZE, |
| .flags = MMU_INITIAL_MAPPING_TEMPORARY }, |
| |
| /* null entry to terminate the list */ |
| { 0 } |
| }; |
| |
| #if SDRAM_SIZE != 0 |
| static pmm_arena_t sdram_arena = { |
| .name = "sdram", |
| .base = SDRAM_BASE, |
| .size = SDRAM_SIZE - MB, /* first 1MB is covered by SRAM */ |
| .flags = PMM_ARENA_FLAG_KMAP |
| }; |
| #endif |
| |
| static pmm_arena_t sram_arena = { |
| .name = "sram", |
| .base = SRAM_BASE, |
| .size = SRAM_SIZE, |
| .priority = 1, |
| .flags = PMM_ARENA_FLAG_KMAP |
| }; |
| |
| void platform_init_mmu_mappings(void) |
| { |
| } |
| |
| void platform_early_init(void) |
| { |
| #if 0 |
| ps7_init(); |
| #else |
| /* Unlock the registers and leave them that way */ |
| zynq_slcr_unlock(); |
| zynq_mio_init(); |
| zynq_pll_init(); |
| zynq_clk_init(); |
| #if ZYNQ_SDRAM_INIT |
| zynq_ddr_init(); |
| #endif |
| #endif |
| |
| /* Enable all level shifters */ |
| SLCR_REG(LVL_SHFTR_EN) = 0xF; |
| /* FPGA SW reset (not documented, but mandatory) */ |
| SLCR_REG(FPGA_RST_CTRL) = 0x0; |
| |
| /* zynq manual says this is mandatory for cache init */ |
| *REG32(SLCR_BASE + 0xa1c) = 0x020202; |
| |
| /* save the reboot status register, clear bits we dont want to save */ |
| saved_reboot_status = SLCR->REBOOT_STATUS; |
| SLCR->REBOOT_STATUS &= ~(0xff << 16); |
| |
| /* early initialize the uart so we can printf */ |
| uart_init_early(); |
| |
| /* initialize the interrupt controller */ |
| arm_gic_init(); |
| zynq_gpio_init(); |
| |
| /* initialize the timer block */ |
| arm_cortex_a9_timer_init(CPUPRIV_BASE, zynq_get_arm_timer_freq()); |
| |
| /* initialize the hardware watchdog */ |
| watchdog_hw_init(ZYNQ_WATCHDOG_TIMEOUT); |
| |
| /* bump the 2nd cpu into our code space and remap the top SRAM block */ |
| if (KERNEL_LOAD_OFFSET != 0) { |
| /* construct a trampoline to get the 2nd cpu up to the trap routine */ |
| |
| /* figure out the offset of the trampoline routine in physical space from address 0 */ |
| extern void platform_reset(void); |
| addr_t tramp = (addr_t)&platform_reset; |
| tramp -= KERNEL_BASE; |
| tramp += MEMBASE; |
| |
| /* stuff in a ldr pc, [nextaddrress], and a target address */ |
| uint32_t *ptr = (uint32_t *)KERNEL_BASE; |
| |
| ptr[0] = 0xe51ff004; // ldr pc, [pc, #-4] |
| ptr[1] = tramp; |
| arch_clean_invalidate_cache_range((addr_t)ptr, 8); |
| } |
| |
| /* reset the 2nd cpu, letting it go through its reset vector (at 0x0 physical) */ |
| SLCR_REG(A9_CPU_RST_CTRL) |= (1<<1); // reset cpu 1 |
| spin(10); |
| SLCR_REG(A9_CPU_RST_CTRL) &= ~(1<<1); // unreset cpu 1 |
| |
| /* wait for the 2nd cpu to reset, go through the usual reset vector, and get trapped by our code */ |
| /* see platform/zynq/reset.S */ |
| extern volatile int __cpu_trapped; |
| uint count = 100000; |
| while (--count) { |
| arch_clean_invalidate_cache_range((addr_t)&__cpu_trapped, sizeof(__cpu_trapped)); |
| if (__cpu_trapped != 0) |
| break; |
| } |
| if (count == 0) { |
| panic("ZYNQ: failed to trap 2nd cpu\n"); |
| } |
| |
| /* bounce the 4th sram region down to lower address */ |
| SLCR_REG(OCM_CFG) &= ~0xf; /* all banks at low address */ |
| |
| /* add the main memory arena */ |
| #if !ZYNQ_CODE_IN_SDRAM && SDRAM_SIZE != 0 |
| /* In the case of running from SRAM, and we are using SDRAM, |
| * there is a discontinuity between the end of SRAM (256K) and the start of SDRAM (1MB), |
| * so intentionally bump the boot-time allocator to start in the base of SDRAM. |
| */ |
| extern uintptr_t boot_alloc_start; |
| extern uintptr_t boot_alloc_end; |
| |
| boot_alloc_start = KERNEL_BASE + MB; |
| boot_alloc_end = KERNEL_BASE + MB; |
| #endif |
| |
| #if SDRAM_SIZE != 0 |
| pmm_add_arena(&sdram_arena); |
| #endif |
| pmm_add_arena(&sram_arena); |
| } |
| |
| void platform_init(void) |
| { |
| uart_init(); |
| |
| /* enable if we want to see some hardware boot status */ |
| #if LK_DEBUGLEVEL > 0 |
| printf("zynq boot status:\n"); |
| printf("\tREBOOT_STATUS 0x%x\n", saved_reboot_status); |
| if (BIT(saved_reboot_status, 16)) printf("\t\tSWDT_RST\n"); |
| if (BIT(saved_reboot_status, 17)) printf("\t\tAWDT0_RST\n"); |
| if (BIT(saved_reboot_status, 18)) printf("\t\tAWDT1_RST\n"); |
| if (BIT(saved_reboot_status, 19)) printf("\t\tSLC_RST\n"); |
| if (BIT(saved_reboot_status, 20)) printf("\t\tDBG_RST\n"); |
| if (BIT(saved_reboot_status, 21)) printf("\t\tSRST_B\n"); |
| if (BIT(saved_reboot_status, 22)) printf("\t\tPOR\n"); |
| printf("\tREBOOT_STATE 0x%lx\n", BITS_SHIFT(saved_reboot_status, 31, 24)); |
| printf("\tboot mode 0x%x\n", zynq_get_boot_mode()); |
| #endif |
| } |
| |
| void platform_quiesce(void) |
| { |
| #if ZYNQ_WITH_GEM_ETH |
| gem_disable(); |
| #endif |
| |
| platform_stop_timer(); |
| |
| /* stop the 2nd cpu and hold in reset */ |
| SLCR_REG(A9_CPU_RST_CTRL) |= (1<<1); // reset cpu 1 |
| } |
| |
| /* called from lkboot to see if we want to abort autobooting. |
| * having the BOOT_MODE pins set to JTAG should cause us to hang out in |
| * whatever binary is loaded at the time. |
| */ |
| bool platform_abort_autoboot(void) |
| { |
| /* test BOOT_MODE pins to see if we want to skip the autoboot stuff */ |
| uint32_t boot_mode = zynq_get_boot_mode(); |
| if (boot_mode == ZYNQ_BOOT_MODE_JTAG) { |
| printf("ZYNQ: disabling autoboot due to JTAG/QSPI jumper being set to JTAG\n"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| #if WITH_LIB_CONSOLE |
| static int cmd_zynq(int argc, const cmd_args *argv) |
| { |
| if (argc < 2) { |
| notenoughargs: |
| printf("not enough arguments\n"); |
| usage: |
| printf("usage: %s <command>\n", argv[0].str); |
| printf("\tslcr lock\n"); |
| printf("\tslcr unlock\n"); |
| printf("\tslcr lockstatus\n"); |
| printf("\tmio\n"); |
| printf("\tclocks\n"); |
| printf("\ttrip_watchdog\n"); |
| return -1; |
| } |
| |
| if (!strcmp(argv[1].str, "slcr")) { |
| if (argc < 3) goto notenoughargs; |
| |
| bool print_lock_status = false; |
| if (!strcmp(argv[2].str, "lock")) { |
| zynq_slcr_lock(); |
| print_lock_status = true; |
| } else if (!strcmp(argv[2].str, "unlock")) { |
| zynq_slcr_unlock(); |
| print_lock_status = true; |
| } else if (print_lock_status || !strcmp(argv[2].str, "lockstatus")) { |
| printf("%s\n", (SLCR->SLCR_LOCKSTA & 0x1) ? "locked" : "unlocked"); |
| } else { |
| goto usage; |
| } |
| } else if (!strcmp(argv[1].str, "mio")) { |
| printf("zynq mio:\n"); |
| for (size_t i = 0; i < ZYNQ_MIO_CNT; i++) { |
| printf("\t%02u: 0x%08x", i, *REG32((uintptr_t)&SLCR->MIO_PIN_00 + (i * 4))); |
| if (i % 4 == 3 || i == 53) { |
| putchar('\n'); |
| } |
| } |
| } else if (!strcmp(argv[1].str, "clocks")) { |
| zynq_dump_clocks(); |
| } else if (!strcmp(argv[1].str, "trip_watchdog")) { |
| /* try to trip the watchdog by disabling interrupts for a while */ |
| arch_disable_ints(); |
| for (int i = 0; i < 20; i++) { |
| spin(250000); |
| printf("SWDT MODE 0x%x CONTROL 0x%x STATUS 0x%x\n", SWDT->MODE, SWDT->CONTROL, SWDT->STATUS); |
| } |
| arch_enable_ints(); |
| } else { |
| goto usage; |
| } |
| |
| return 0; |
| } |
| |
| STATIC_COMMAND_START |
| #if LK_DEBUGLEVEL > 1 |
| STATIC_COMMAND("zynq", "zynq configuration commands", &cmd_zynq) |
| #endif |
| STATIC_COMMAND_END(zynq); |
| #endif // WITH_LIB_CONSOLE |