blob: b807c1d4e07d0695cb3cbbc1a5003f9033e3bedb [file] [log] [blame]
/*
* Copyright (c) 2014 Brian Swetland
* Copyright (c) 2014 Travis Geiselbrecht
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <debug.h>
#include <assert.h>
#include <trace.h>
#include <compiler.h>
#include <stdio.h>
#include <stdlib.h>
#include <err.h>
#include <string.h>
#include <rand.h>
#include <reg.h>
#include <pow2.h>
#include <lib/bio.h>
#include <lib/console.h>
#include <dev/qspi.h>
#include <kernel/thread.h>
#include <platform/zynq.h>
#define LOCAL_TRACE 0
// parameters specifically for the 16MB spansion S25FL128S flash
#define PARAMETER_AREA_SIZE (128*1024)
#define PAGE_PROGRAM_SIZE (256) // can be something else based on the part
#define PAGE_ERASE_SLEEP_TIME (150) // amount of time before waiting to check if erase completed
#define SECTOR_ERASE_SIZE (4096)
#define LARGE_SECTOR_ERASE_SIZE (64*1024)
#define STS_PROGRAM_ERR (1<<6)
#define STS_ERASE_ERR (1<<5)
#define STS_BUSY (1<<0)
#define MAX_GEOMETRY_COUNT (2)
struct spi_flash {
bool detected;
struct qspi_ctxt qspi;
bdev_t bdev;
bio_erase_geometry_info_t geometry[MAX_GEOMETRY_COUNT];
off_t size;
};
static struct spi_flash flash;
static ssize_t spiflash_bdev_read(struct bdev *, void *buf, off_t offset, size_t len);
static ssize_t spiflash_bdev_read_block(struct bdev *, void *buf, bnum_t block, uint count);
static ssize_t spiflash_bdev_write_block(struct bdev *, const void *buf, bnum_t block, uint count);
static ssize_t spiflash_bdev_erase(struct bdev *, off_t offset, size_t len);
static int spiflash_ioctl(struct bdev *, int request, void *argp);
// adjust 24 bit address to be correct-byte-order for 32bit qspi commands
static uint32_t qspi_fix_addr(uint32_t addr)
{
DEBUG_ASSERT((addr & ~(0x00ffffff)) == 0); // only dealing with 24bit addresses
return ((addr & 0xff) << 24) | ((addr&0xff00) << 8) | ((addr>>8) & 0xff00);
}
static void qspi_rd32(struct qspi_ctxt *qspi, uint32_t addr, uint32_t *data, uint32_t count)
{
qspi_rd(qspi, qspi_fix_addr(addr) | 0x6B, 4, data, count);
}
static inline void qspi_wren(struct qspi_ctxt *qspi)
{
qspi_wr1(qspi, 0x06);
}
static inline void qspi_clsr(struct qspi_ctxt *qspi)
{
qspi_wr1(qspi, 0x30);
}
static inline uint32_t qspi_rd_cr1(struct qspi_ctxt *qspi)
{
return qspi_rd1(qspi, 0x35) >> 24;
}
static inline uint32_t qspi_rd_status(struct qspi_ctxt *qspi)
{
return qspi_rd1(qspi, 0x05) >> 24;
}
static inline void qspi_wr_status_cr1(struct qspi_ctxt *qspi, uint8_t status, uint8_t cr1)
{
uint32_t cmd = (cr1 << 16) | (status << 8) | 0x01;
qspi_wren(qspi);
qspi_wr3(qspi, cmd);
}
static ssize_t qspi_erase_sector(struct qspi_ctxt *qspi, uint32_t addr)
{
uint32_t cmd;
uint32_t status;
ssize_t toerase;
LTRACEF("addr 0x%x\n", addr);
DEBUG_ASSERT(qspi);
if (addr < PARAMETER_AREA_SIZE) {
// erase a small parameter sector (4K)
DEBUG_ASSERT(IS_ALIGNED(addr, SECTOR_ERASE_SIZE));
if (!IS_ALIGNED(addr, SECTOR_ERASE_SIZE))
return ERR_INVALID_ARGS;
cmd = 0x20;
toerase = SECTOR_ERASE_SIZE;
} else {
// erase a large sector (64k or 256k)
DEBUG_ASSERT(IS_ALIGNED(addr, LARGE_SECTOR_ERASE_SIZE));
if (!IS_ALIGNED(addr, LARGE_SECTOR_ERASE_SIZE))
return ERR_INVALID_ARGS;
cmd = 0xd8;
toerase = LARGE_SECTOR_ERASE_SIZE;
}
qspi_wren(qspi);
qspi_wr(qspi, qspi_fix_addr(addr) | cmd, 3, 0, 0);
thread_sleep(PAGE_ERASE_SLEEP_TIME);
while ((status = qspi_rd_status(qspi)) & STS_BUSY)
;
LTRACEF("status 0x%x\n", status);
if (status & (STS_PROGRAM_ERR | STS_ERASE_ERR)) {
TRACEF("failed @ 0x%x\n", addr);
qspi_clsr(qspi);
return ERR_IO;
}
return toerase;
}
static ssize_t qspi_write_page(struct qspi_ctxt *qspi, uint32_t addr, const uint8_t *data)
{
uint32_t oldkhz, status;
LTRACEF("addr 0x%x, data %p\n", addr, data);
DEBUG_ASSERT(qspi);
DEBUG_ASSERT(data);
DEBUG_ASSERT(IS_ALIGNED(addr, PAGE_PROGRAM_SIZE));
if (!IS_ALIGNED(addr, PAGE_PROGRAM_SIZE))
return ERR_INVALID_ARGS;
oldkhz = qspi->khz;
if (qspi_set_speed(qspi, 80000))
return ERR_IO;
qspi_wren(qspi);
qspi_wr(qspi, qspi_fix_addr(addr) | 0x32, 3, (uint32_t *)data, PAGE_PROGRAM_SIZE / 4);
qspi_set_speed(qspi, oldkhz);
while ((status = qspi_rd_status(qspi)) & STS_BUSY) ;
if (status & (STS_PROGRAM_ERR | STS_ERASE_ERR)) {
printf("qspi_write_page failed @ %x\n", addr);
qspi_clsr(qspi);
return ERR_IO;
}
return PAGE_PROGRAM_SIZE;
}
static ssize_t spiflash_read_cfi(void *buf, size_t len)
{
DEBUG_ASSERT(len > 0 && (len % 4) == 0);
qspi_rd(&flash.qspi, 0x9f, 0, buf, len / 4);
if (len < 4)
return len;
/* look at byte 3 of the cfi, which says the total length of the cfi structure */
size_t cfi_len = ((uint8_t *)buf)[3];
if (cfi_len == 0)
cfi_len = 512;
else
cfi_len += 3;
return MIN(len, cfi_len);
}
static ssize_t spiflash_read_otp(void *buf, uint32_t addr, size_t len)
{
DEBUG_ASSERT(len > 0 && (len % 4) == 0);
if (len > 1024)
len = 1024;
qspi_rd(&flash.qspi, 0x4b, 4, buf, len / 4);
if (len < 4)
return len;
return len;
}
status_t spiflash_detect(void)
{
if (flash.detected)
return NO_ERROR;
qspi_init(&flash.qspi, 100000);
/* read and parse the cfi */
uint8_t *buf = calloc(1, 512);
ssize_t len = spiflash_read_cfi(buf, 512);
if (len < 4)
goto nodetect;
LTRACEF("looking at vendor/device id combination: %02x:%02x:%02x\n", buf[0], buf[1], buf[2]);
/* at the moment, we only support particular spansion flashes */
if (buf[0] != 0x01) goto nodetect;
if (buf[1] == 0x20 && buf[2] == 0x18) {
/* 128Mb version */
flash.size = 16*1024*1024;
} else if (buf[1] == 0x02 && buf[2] == 0x19) {
/* 256Mb version */
flash.size = 32*1024*1024;
} else {
TRACEF("unknown vendor/device id combination: %02x:%02x:%02x\n",
buf[0], buf[1], buf[2]);
goto nodetect;
}
/* Fill out our geometry info based on the CFI */
size_t region_count = buf[0x2C];
if (region_count > countof(flash.geometry)) {
TRACEF("erase region count (%zu) exceeds max allowed (%zu)\n",
region_count, countof(flash.geometry));
goto nodetect;
}
size_t offset = 0;
for (size_t i = 0; i < region_count; i++) {
const uint8_t* info = buf + 0x2D + (i << 2);
size_t pages = ((((size_t)info[1]) << 8) | info[0]) + 1;
size_t erase_size = ((((size_t)info[3]) << 8) | info[2]) << 8;
if (!ispow2(erase_size)) {
TRACEF("Region %zu page size (%zu) is not a power of 2\n",
i, erase_size);
goto nodetect;
}
flash.geometry[i].erase_size = erase_size;
flash.geometry[i].erase_shift = log2_uint(erase_size);
flash.geometry[i].start = offset;
flash.geometry[i].size = pages << flash.geometry[i].erase_shift;
size_t erase_mask = ((size_t)0x1 << flash.geometry[i].erase_shift) - 1;
if (offset & erase_mask) {
TRACEF("Region %zu not aligned to erase boundary (start %zu, erase size %zu)\n",
i, offset, erase_size);
goto nodetect;
}
offset += flash.geometry[i].size;
}
free(buf);
/* read the 16 byte random number out of the OTP area and add to the rand entropy pool */
uint32_t r[4];
memset(r, 0, sizeof(r));
spiflash_read_otp(r, 0, 16);
LTRACEF("OTP random %08x%08x%08x%08x\n", r[0], r[1], r[2], r[3]);
rand_add_entropy(r, sizeof(r));
flash.detected = true;
/* see if we're in serial mode */
uint32_t cr1 = qspi_rd_cr1(&flash.qspi);
if ((cr1 & (1<<1)) == 0) {
printf("spiflash: device not in quad mode, cannot use for read/write\n");
goto nouse;
}
/* construct the block device */
bio_initialize_bdev(&flash.bdev, "spi0",
PAGE_PROGRAM_SIZE, flash.size / PAGE_PROGRAM_SIZE,
region_count, flash.geometry, BIO_FLAGS_NONE);
/* override our block device hooks */
flash.bdev.read = &spiflash_bdev_read;
flash.bdev.read_block = &spiflash_bdev_read_block;
// flash.bdev.write has a default hook that will be okay
flash.bdev.write_block = &spiflash_bdev_write_block;
flash.bdev.erase = &spiflash_bdev_erase;
flash.bdev.ioctl = &spiflash_ioctl;
/* we erase to 0xff */
flash.bdev.erase_byte = 0xff;
bio_register_device(&flash.bdev);
LTRACEF("found flash of size 0x%llx\n", flash.size);
nouse:
return NO_ERROR;
nodetect:
LTRACEF("flash not found\n");
free(buf);
flash.detected = false;
return ERR_NOT_FOUND;
}
// bio layer hooks
static ssize_t spiflash_bdev_read(struct bdev *bdev, void *buf, off_t offset, size_t len)
{
LTRACEF("dev %p, buf %p, offset 0x%llx, len 0x%zx\n", bdev, buf, offset, len);
DEBUG_ASSERT(flash.detected);
len = bio_trim_range(bdev, offset, len);
if (len == 0)
return 0;
// XXX handle not mulitple of 4
qspi_rd32(&flash.qspi, offset, buf, len / 4);
return len;
}
static ssize_t spiflash_bdev_read_block(struct bdev *bdev, void *buf, bnum_t block, uint count)
{
LTRACEF("dev %p, buf %p, block 0x%x, count %u\n", bdev, buf, block, count);
count = bio_trim_block_range(bdev, block, count);
if (count == 0)
return 0;
return spiflash_bdev_read(bdev, buf, block << bdev->block_shift, count << bdev->block_shift);
}
static ssize_t spiflash_bdev_write_block(struct bdev *bdev, const void *_buf, bnum_t block, uint count)
{
LTRACEF("dev %p, buf %p, block 0x%x, count %u\n", bdev, _buf, block, count);
DEBUG_ASSERT(bdev->block_size == PAGE_PROGRAM_SIZE);
count = bio_trim_block_range(bdev, block, count);
if (count == 0)
return 0;
const uint8_t *buf = _buf;
ssize_t written = 0;
while (count > 0) {
ssize_t err = qspi_write_page(&flash.qspi, block * PAGE_PROGRAM_SIZE, buf);
if (err < 0)
return err;
buf += PAGE_PROGRAM_SIZE;
written += err;
block++;
count--;
}
return written;
}
static ssize_t spiflash_bdev_erase(struct bdev *bdev, off_t offset, size_t len)
{
LTRACEF("dev %p, offset 0x%llx, len 0x%zx\n", bdev, offset, len);
len = bio_trim_range(bdev, offset, len);
if (len == 0)
return 0;
ssize_t erased = 0;
while (erased < (ssize_t)len) {
ssize_t err = qspi_erase_sector(&flash.qspi, offset);
if (err < 0)
return err;
erased += err;
offset += err;
}
return erased;
}
static int spiflash_ioctl(struct bdev *bdev, int request, void *argp)
{
LTRACEF("dev %p, request %d, argp %p\n", bdev, request, argp);
int ret = NO_ERROR;
switch (request) {
case BIO_IOCTL_GET_MEM_MAP:
/* put the device into linear mode */
ret = qspi_enable_linear(&flash.qspi);
// Fallthrough.
case BIO_IOCTL_GET_MAP_ADDR:
if (argp)
*(void **)argp = (void *)QSPI_LINEAR_BASE;
break;
case BIO_IOCTL_PUT_MEM_MAP:
/* put the device back into regular mode */
ret = qspi_disable_linear(&flash.qspi);
break;
default:
ret = ERR_NOT_SUPPORTED;
}
return ret;
}
// debug tests
int cmd_spiflash(int argc, const cmd_args *argv)
{
if (argc < 2) {
notenoughargs:
printf("not enough arguments\n");
usage:
printf("usage:\n");
#if LK_DEBUGLEVEL > 1
printf("\t%s detect\n", argv[0].str);
printf("\t%s cfi\n", argv[0].str);
printf("\t%s cr1\n", argv[0].str);
printf("\t%s otp\n", argv[0].str);
printf("\t%s linear [true/false]\n", argv[0].str);
printf("\t%s read <offset> <length>\n", argv[0].str);
printf("\t%s write <offset> <length> <address>\n", argv[0].str);
printf("\t%s erase <offset>\n", argv[0].str);
#endif
printf("\t%s setquad (dangerous)\n", argv[0].str);
return ERR_INVALID_ARGS;
}
#if LK_DEBUGLEVEL > 1
if (!strcmp(argv[1].str, "detect")) {
spiflash_detect();
} else if (!strcmp(argv[1].str, "cr1")) {
if (!flash.detected) {
printf("flash not detected\n");
return -1;
}
uint32_t cr1 = qspi_rd_cr1(&flash.qspi);
printf("cr1 0x%x\n", cr1);
} else if (!strcmp(argv[1].str, "cfi")) {
if (!flash.detected) {
printf("flash not detected\n");
return -1;
}
uint8_t *buf = calloc(1, 512);
ssize_t len = spiflash_read_cfi(buf, 512);
printf("returned cfi len %ld\n", len);
hexdump8(buf, len);
free(buf);
} else if (!strcmp(argv[1].str, "otp")) {
if (!flash.detected) {
printf("flash not detected\n");
return -1;
}
uint8_t *buf = calloc(1, 1024);
ssize_t len = spiflash_read_otp(buf, 0, 1024);
printf("spiflash_read_otp returns %ld\n", len);
hexdump8(buf, len);
free(buf);
} else if (!strcmp(argv[1].str, "linear")) {
if (argc < 3) goto notenoughargs;
if (!flash.detected) {
printf("flash not detected\n");
return -1;
}
if (argv[2].b)
qspi_enable_linear(&flash.qspi);
else
qspi_disable_linear(&flash.qspi);
} else if (!strcmp(argv[1].str, "read")) {
if (argc < 4) goto notenoughargs;
if (!flash.detected) {
printf("flash not detected\n");
return -1;
}
uint8_t *buf = calloc(1, argv[3].u);
qspi_rd32(&flash.qspi, argv[2].u, (uint32_t *)buf, argv[3].u / 4);
hexdump8(buf, argv[3].u);
free(buf);
} else if (!strcmp(argv[1].str, "write")) {
if (argc < 5) goto notenoughargs;
if (!flash.detected) {
printf("flash not detected\n");
return -1;
}
status_t err = qspi_write_page(&flash.qspi, argv[2].u, argv[4].p);
printf("write_page returns %d\n", err);
} else if (!strcmp(argv[1].str, "erase")) {
if (argc < 3) goto notenoughargs;
if (!flash.detected) {
printf("flash not detected\n");
return -1;
}
status_t err = qspi_erase_sector(&flash.qspi, argv[2].u);
printf("erase returns %d\n", err);
} else
#endif
if (!strcmp(argv[1].str, "setquad")) {
if (!flash.detected) {
printf("flash not detected\n");
return -1;
}
uint32_t cr1 = qspi_rd_cr1(&flash.qspi);
printf("cr1 before 0x%x\n", cr1);
if (cr1 & (1<<1)) {
printf("flash already in quad mode\n");
return 0;
}
qspi_wr_status_cr1(&flash.qspi, 0, cr1 | (1<<1));
thread_sleep(500);
cr1 = qspi_rd_cr1(&flash.qspi);
printf("cr1 after 0x%x\n", cr1);
} else {
printf("unknown command\n");
goto usage;
}
return 0;
}
#if defined(WITH_LIB_CONSOLE)
#include <lib/console.h>
STATIC_COMMAND_START
STATIC_COMMAND("spiflash", "spi flash manipulation utilities", cmd_spiflash)
STATIC_COMMAND_END(qspi);
#endif
// vim: set ts=4 sw=4 noexpandtab: