| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * CAAM/SEC 4.x QI transport/backend driver | 
 |  * Queue Interface backend functionality | 
 |  * | 
 |  * Copyright 2013-2016 Freescale Semiconductor, Inc. | 
 |  * Copyright 2016-2017 NXP | 
 |  */ | 
 |  | 
 | #include <linux/cpumask.h> | 
 | #include <linux/kthread.h> | 
 | #include <soc/fsl/qman.h> | 
 |  | 
 | #include "regs.h" | 
 | #include "qi.h" | 
 | #include "desc.h" | 
 | #include "intern.h" | 
 | #include "desc_constr.h" | 
 |  | 
 | #define PREHDR_RSLS_SHIFT	31 | 
 |  | 
 | /* | 
 |  * Use a reasonable backlog of frames (per CPU) as congestion threshold, | 
 |  * so that resources used by the in-flight buffers do not become a memory hog. | 
 |  */ | 
 | #define MAX_RSP_FQ_BACKLOG_PER_CPU	256 | 
 |  | 
 | #define CAAM_QI_ENQUEUE_RETRIES	10000 | 
 |  | 
 | #define CAAM_NAPI_WEIGHT	63 | 
 |  | 
 | /* | 
 |  * caam_napi - struct holding CAAM NAPI-related params | 
 |  * @irqtask: IRQ task for QI backend | 
 |  * @p: QMan portal | 
 |  */ | 
 | struct caam_napi { | 
 | 	struct napi_struct irqtask; | 
 | 	struct qman_portal *p; | 
 | }; | 
 |  | 
 | /* | 
 |  * caam_qi_pcpu_priv - percpu private data structure to main list of pending | 
 |  *                     responses expected on each cpu. | 
 |  * @caam_napi: CAAM NAPI params | 
 |  * @net_dev: netdev used by NAPI | 
 |  * @rsp_fq: response FQ from CAAM | 
 |  */ | 
 | struct caam_qi_pcpu_priv { | 
 | 	struct caam_napi caam_napi; | 
 | 	struct net_device net_dev; | 
 | 	struct qman_fq *rsp_fq; | 
 | } ____cacheline_aligned; | 
 |  | 
 | static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv); | 
 | static DEFINE_PER_CPU(int, last_cpu); | 
 |  | 
 | /* | 
 |  * caam_qi_priv - CAAM QI backend private params | 
 |  * @cgr: QMan congestion group | 
 |  * @qi_pdev: platform device for QI backend | 
 |  */ | 
 | struct caam_qi_priv { | 
 | 	struct qman_cgr cgr; | 
 | 	struct platform_device *qi_pdev; | 
 | }; | 
 |  | 
 | static struct caam_qi_priv qipriv ____cacheline_aligned; | 
 |  | 
 | /* | 
 |  * This is written by only one core - the one that initialized the CGR - and | 
 |  * read by multiple cores (all the others). | 
 |  */ | 
 | bool caam_congested __read_mostly; | 
 | EXPORT_SYMBOL(caam_congested); | 
 |  | 
 | #ifdef CONFIG_DEBUG_FS | 
 | /* | 
 |  * This is a counter for the number of times the congestion group (where all | 
 |  * the request and response queueus are) reached congestion. Incremented | 
 |  * each time the congestion callback is called with congested == true. | 
 |  */ | 
 | static u64 times_congested; | 
 | #endif | 
 |  | 
 | /* | 
 |  * CPU from where the module initialised. This is required because QMan driver | 
 |  * requires CGRs to be removed from same CPU from where they were originally | 
 |  * allocated. | 
 |  */ | 
 | static int mod_init_cpu; | 
 |  | 
 | /* | 
 |  * This is a a cache of buffers, from which the users of CAAM QI driver | 
 |  * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than | 
 |  * doing malloc on the hotpath. | 
 |  * NOTE: A more elegant solution would be to have some headroom in the frames | 
 |  *       being processed. This could be added by the dpaa-ethernet driver. | 
 |  *       This would pose a problem for userspace application processing which | 
 |  *       cannot know of this limitation. So for now, this will work. | 
 |  * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here | 
 |  */ | 
 | static struct kmem_cache *qi_cache; | 
 |  | 
 | int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req) | 
 | { | 
 | 	struct qm_fd fd; | 
 | 	dma_addr_t addr; | 
 | 	int ret; | 
 | 	int num_retries = 0; | 
 |  | 
 | 	qm_fd_clear_fd(&fd); | 
 | 	qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1])); | 
 |  | 
 | 	addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt), | 
 | 			      DMA_BIDIRECTIONAL); | 
 | 	if (dma_mapping_error(qidev, addr)) { | 
 | 		dev_err(qidev, "DMA mapping error for QI enqueue request\n"); | 
 | 		return -EIO; | 
 | 	} | 
 | 	qm_fd_addr_set64(&fd, addr); | 
 |  | 
 | 	do { | 
 | 		ret = qman_enqueue(req->drv_ctx->req_fq, &fd); | 
 | 		if (likely(!ret)) | 
 | 			return 0; | 
 |  | 
 | 		if (ret != -EBUSY) | 
 | 			break; | 
 | 		num_retries++; | 
 | 	} while (num_retries < CAAM_QI_ENQUEUE_RETRIES); | 
 |  | 
 | 	dev_err(qidev, "qman_enqueue failed: %d\n", ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(caam_qi_enqueue); | 
 |  | 
 | static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq, | 
 | 			   const union qm_mr_entry *msg) | 
 | { | 
 | 	const struct qm_fd *fd; | 
 | 	struct caam_drv_req *drv_req; | 
 | 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev); | 
 |  | 
 | 	fd = &msg->ern.fd; | 
 |  | 
 | 	if (qm_fd_get_format(fd) != qm_fd_compound) { | 
 | 		dev_err(qidev, "Non-compound FD from CAAM\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd)); | 
 | 	if (!drv_req) { | 
 | 		dev_err(qidev, | 
 | 			"Can't find original request for CAAM response\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), | 
 | 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); | 
 |  | 
 | 	drv_req->cbk(drv_req, -EIO); | 
 | } | 
 |  | 
 | static struct qman_fq *create_caam_req_fq(struct device *qidev, | 
 | 					  struct qman_fq *rsp_fq, | 
 | 					  dma_addr_t hwdesc, | 
 | 					  int fq_sched_flag) | 
 | { | 
 | 	int ret; | 
 | 	struct qman_fq *req_fq; | 
 | 	struct qm_mcc_initfq opts; | 
 |  | 
 | 	req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC); | 
 | 	if (!req_fq) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	req_fq->cb.ern = caam_fq_ern_cb; | 
 | 	req_fq->cb.fqs = NULL; | 
 |  | 
 | 	ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID | | 
 | 				QMAN_FQ_FLAG_TO_DCPORTAL, req_fq); | 
 | 	if (ret) { | 
 | 		dev_err(qidev, "Failed to create session req FQ\n"); | 
 | 		goto create_req_fq_fail; | 
 | 	} | 
 |  | 
 | 	memset(&opts, 0, sizeof(opts)); | 
 | 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | | 
 | 				   QM_INITFQ_WE_CONTEXTB | | 
 | 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); | 
 | 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); | 
 | 	qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2); | 
 | 	opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq)); | 
 | 	qm_fqd_context_a_set64(&opts.fqd, hwdesc); | 
 | 	opts.fqd.cgid = qipriv.cgr.cgrid; | 
 |  | 
 | 	ret = qman_init_fq(req_fq, fq_sched_flag, &opts); | 
 | 	if (ret) { | 
 | 		dev_err(qidev, "Failed to init session req FQ\n"); | 
 | 		goto init_req_fq_fail; | 
 | 	} | 
 |  | 
 | 	dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid, | 
 | 		smp_processor_id()); | 
 | 	return req_fq; | 
 |  | 
 | init_req_fq_fail: | 
 | 	qman_destroy_fq(req_fq); | 
 | create_req_fq_fail: | 
 | 	kfree(req_fq); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static int empty_retired_fq(struct device *qidev, struct qman_fq *fq) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT | | 
 | 				    QMAN_VOLATILE_FLAG_FINISH, | 
 | 				    QM_VDQCR_PRECEDENCE_VDQCR | | 
 | 				    QM_VDQCR_NUMFRAMES_TILLEMPTY); | 
 | 	if (ret) { | 
 | 		dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		struct qman_portal *p; | 
 |  | 
 | 		p = qman_get_affine_portal(smp_processor_id()); | 
 | 		qman_p_poll_dqrr(p, 16); | 
 | 	} while (fq->flags & QMAN_FQ_STATE_NE); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kill_fq(struct device *qidev, struct qman_fq *fq) | 
 | { | 
 | 	u32 flags; | 
 | 	int ret; | 
 |  | 
 | 	ret = qman_retire_fq(fq, &flags); | 
 | 	if (ret < 0) { | 
 | 		dev_err(qidev, "qman_retire_fq failed: %d\n", ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (!ret) | 
 | 		goto empty_fq; | 
 |  | 
 | 	/* Async FQ retirement condition */ | 
 | 	if (ret == 1) { | 
 | 		/* Retry till FQ gets in retired state */ | 
 | 		do { | 
 | 			msleep(20); | 
 | 		} while (fq->state != qman_fq_state_retired); | 
 |  | 
 | 		WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS); | 
 | 		WARN_ON(fq->flags & QMAN_FQ_STATE_ORL); | 
 | 	} | 
 |  | 
 | empty_fq: | 
 | 	if (fq->flags & QMAN_FQ_STATE_NE) { | 
 | 		ret = empty_retired_fq(qidev, fq); | 
 | 		if (ret) { | 
 | 			dev_err(qidev, "empty_retired_fq fail for FQ: %u\n", | 
 | 				fq->fqid); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = qman_oos_fq(fq); | 
 | 	if (ret) | 
 | 		dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid); | 
 |  | 
 | 	qman_destroy_fq(fq); | 
 | 	kfree(fq); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int empty_caam_fq(struct qman_fq *fq) | 
 | { | 
 | 	int ret; | 
 | 	struct qm_mcr_queryfq_np np; | 
 |  | 
 | 	/* Wait till the older CAAM FQ get empty */ | 
 | 	do { | 
 | 		ret = qman_query_fq_np(fq, &np); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		if (!qm_mcr_np_get(&np, frm_cnt)) | 
 | 			break; | 
 |  | 
 | 		msleep(20); | 
 | 	} while (1); | 
 |  | 
 | 	/* | 
 | 	 * Give extra time for pending jobs from this FQ in holding tanks | 
 | 	 * to get processed | 
 | 	 */ | 
 | 	msleep(20); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc) | 
 | { | 
 | 	int ret; | 
 | 	u32 num_words; | 
 | 	struct qman_fq *new_fq, *old_fq; | 
 | 	struct device *qidev = drv_ctx->qidev; | 
 |  | 
 | 	num_words = desc_len(sh_desc); | 
 | 	if (num_words > MAX_SDLEN) { | 
 | 		dev_err(qidev, "Invalid descriptor len: %d words\n", num_words); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Note down older req FQ */ | 
 | 	old_fq = drv_ctx->req_fq; | 
 |  | 
 | 	/* Create a new req FQ in parked state */ | 
 | 	new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq, | 
 | 				    drv_ctx->context_a, 0); | 
 | 	if (unlikely(IS_ERR_OR_NULL(new_fq))) { | 
 | 		dev_err(qidev, "FQ allocation for shdesc update failed\n"); | 
 | 		return PTR_ERR(new_fq); | 
 | 	} | 
 |  | 
 | 	/* Hook up new FQ to context so that new requests keep queuing */ | 
 | 	drv_ctx->req_fq = new_fq; | 
 |  | 
 | 	/* Empty and remove the older FQ */ | 
 | 	ret = empty_caam_fq(old_fq); | 
 | 	if (ret) { | 
 | 		dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret); | 
 |  | 
 | 		/* We can revert to older FQ */ | 
 | 		drv_ctx->req_fq = old_fq; | 
 |  | 
 | 		if (kill_fq(qidev, new_fq)) | 
 | 			dev_warn(qidev, "New CAAM FQ kill failed\n"); | 
 |  | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Re-initialise pre-header. Set RSLS and SDLEN. | 
 | 	 * Update the shared descriptor for driver context. | 
 | 	 */ | 
 | 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | | 
 | 					   num_words); | 
 | 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); | 
 | 	dma_sync_single_for_device(qidev, drv_ctx->context_a, | 
 | 				   sizeof(drv_ctx->sh_desc) + | 
 | 				   sizeof(drv_ctx->prehdr), | 
 | 				   DMA_BIDIRECTIONAL); | 
 |  | 
 | 	/* Put the new FQ in scheduled state */ | 
 | 	ret = qman_schedule_fq(new_fq); | 
 | 	if (ret) { | 
 | 		dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret); | 
 |  | 
 | 		/* | 
 | 		 * We can kill new FQ and revert to old FQ. | 
 | 		 * Since the desc is already modified, it is success case | 
 | 		 */ | 
 |  | 
 | 		drv_ctx->req_fq = old_fq; | 
 |  | 
 | 		if (kill_fq(qidev, new_fq)) | 
 | 			dev_warn(qidev, "New CAAM FQ kill failed\n"); | 
 | 	} else if (kill_fq(qidev, old_fq)) { | 
 | 		dev_warn(qidev, "Old CAAM FQ kill failed\n"); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(caam_drv_ctx_update); | 
 |  | 
 | struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev, | 
 | 				       int *cpu, | 
 | 				       u32 *sh_desc) | 
 | { | 
 | 	size_t size; | 
 | 	u32 num_words; | 
 | 	dma_addr_t hwdesc; | 
 | 	struct caam_drv_ctx *drv_ctx; | 
 | 	const cpumask_t *cpus = qman_affine_cpus(); | 
 |  | 
 | 	num_words = desc_len(sh_desc); | 
 | 	if (num_words > MAX_SDLEN) { | 
 | 		dev_err(qidev, "Invalid descriptor len: %d words\n", | 
 | 			num_words); | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC); | 
 | 	if (!drv_ctx) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	/* | 
 | 	 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor | 
 | 	 * and dma-map them. | 
 | 	 */ | 
 | 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | | 
 | 					   num_words); | 
 | 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); | 
 | 	size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc); | 
 | 	hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size, | 
 | 				DMA_BIDIRECTIONAL); | 
 | 	if (dma_mapping_error(qidev, hwdesc)) { | 
 | 		dev_err(qidev, "DMA map error for preheader + shdesc\n"); | 
 | 		kfree(drv_ctx); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 | 	drv_ctx->context_a = hwdesc; | 
 |  | 
 | 	/* If given CPU does not own the portal, choose another one that does */ | 
 | 	if (!cpumask_test_cpu(*cpu, cpus)) { | 
 | 		int *pcpu = &get_cpu_var(last_cpu); | 
 |  | 
 | 		*pcpu = cpumask_next(*pcpu, cpus); | 
 | 		if (*pcpu >= nr_cpu_ids) | 
 | 			*pcpu = cpumask_first(cpus); | 
 | 		*cpu = *pcpu; | 
 |  | 
 | 		put_cpu_var(last_cpu); | 
 | 	} | 
 | 	drv_ctx->cpu = *cpu; | 
 |  | 
 | 	/* Find response FQ hooked with this CPU */ | 
 | 	drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu); | 
 |  | 
 | 	/* Attach request FQ */ | 
 | 	drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc, | 
 | 					     QMAN_INITFQ_FLAG_SCHED); | 
 | 	if (unlikely(IS_ERR_OR_NULL(drv_ctx->req_fq))) { | 
 | 		dev_err(qidev, "create_caam_req_fq failed\n"); | 
 | 		dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL); | 
 | 		kfree(drv_ctx); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	drv_ctx->qidev = qidev; | 
 | 	return drv_ctx; | 
 | } | 
 | EXPORT_SYMBOL(caam_drv_ctx_init); | 
 |  | 
 | void *qi_cache_alloc(gfp_t flags) | 
 | { | 
 | 	return kmem_cache_alloc(qi_cache, flags); | 
 | } | 
 | EXPORT_SYMBOL(qi_cache_alloc); | 
 |  | 
 | void qi_cache_free(void *obj) | 
 | { | 
 | 	kmem_cache_free(qi_cache, obj); | 
 | } | 
 | EXPORT_SYMBOL(qi_cache_free); | 
 |  | 
 | static int caam_qi_poll(struct napi_struct *napi, int budget) | 
 | { | 
 | 	struct caam_napi *np = container_of(napi, struct caam_napi, irqtask); | 
 |  | 
 | 	int cleaned = qman_p_poll_dqrr(np->p, budget); | 
 |  | 
 | 	if (cleaned < budget) { | 
 | 		napi_complete(napi); | 
 | 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); | 
 | 	} | 
 |  | 
 | 	return cleaned; | 
 | } | 
 |  | 
 | void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx) | 
 | { | 
 | 	if (IS_ERR_OR_NULL(drv_ctx)) | 
 | 		return; | 
 |  | 
 | 	/* Remove request FQ */ | 
 | 	if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq)) | 
 | 		dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n"); | 
 |  | 
 | 	dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a, | 
 | 			 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr), | 
 | 			 DMA_BIDIRECTIONAL); | 
 | 	kfree(drv_ctx); | 
 | } | 
 | EXPORT_SYMBOL(caam_drv_ctx_rel); | 
 |  | 
 | int caam_qi_shutdown(struct device *qidev) | 
 | { | 
 | 	int i, ret; | 
 | 	struct caam_qi_priv *priv = dev_get_drvdata(qidev); | 
 | 	const cpumask_t *cpus = qman_affine_cpus(); | 
 | 	struct cpumask old_cpumask = current->cpus_allowed; | 
 |  | 
 | 	for_each_cpu(i, cpus) { | 
 | 		struct napi_struct *irqtask; | 
 |  | 
 | 		irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask; | 
 | 		napi_disable(irqtask); | 
 | 		netif_napi_del(irqtask); | 
 |  | 
 | 		if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i))) | 
 | 			dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * QMan driver requires CGRs to be deleted from same CPU from where they | 
 | 	 * were instantiated. Hence we get the module removal execute from the | 
 | 	 * same CPU from where it was originally inserted. | 
 | 	 */ | 
 | 	set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu)); | 
 |  | 
 | 	ret = qman_delete_cgr(&priv->cgr); | 
 | 	if (ret) | 
 | 		dev_err(qidev, "Deletion of CGR failed: %d\n", ret); | 
 | 	else | 
 | 		qman_release_cgrid(priv->cgr.cgrid); | 
 |  | 
 | 	kmem_cache_destroy(qi_cache); | 
 |  | 
 | 	/* Now that we're done with the CGRs, restore the cpus allowed mask */ | 
 | 	set_cpus_allowed_ptr(current, &old_cpumask); | 
 |  | 
 | 	platform_device_unregister(priv->qi_pdev); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested) | 
 | { | 
 | 	caam_congested = congested; | 
 |  | 
 | 	if (congested) { | 
 | #ifdef CONFIG_DEBUG_FS | 
 | 		times_congested++; | 
 | #endif | 
 | 		pr_debug_ratelimited("CAAM entered congestion\n"); | 
 |  | 
 | 	} else { | 
 | 		pr_debug_ratelimited("CAAM exited congestion\n"); | 
 | 	} | 
 | } | 
 |  | 
 | static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np) | 
 | { | 
 | 	/* | 
 | 	 * In case of threaded ISR, for RT kernels in_irq() does not return | 
 | 	 * appropriate value, so use in_serving_softirq to distinguish between | 
 | 	 * softirq and irq contexts. | 
 | 	 */ | 
 | 	if (unlikely(in_irq() || !in_serving_softirq())) { | 
 | 		/* Disable QMan IRQ source and invoke NAPI */ | 
 | 		qman_p_irqsource_remove(p, QM_PIRQ_DQRI); | 
 | 		np->p = p; | 
 | 		napi_schedule(&np->irqtask); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p, | 
 | 						    struct qman_fq *rsp_fq, | 
 | 						    const struct qm_dqrr_entry *dqrr) | 
 | { | 
 | 	struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi); | 
 | 	struct caam_drv_req *drv_req; | 
 | 	const struct qm_fd *fd; | 
 | 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev); | 
 | 	u32 status; | 
 |  | 
 | 	if (caam_qi_napi_schedule(p, caam_napi)) | 
 | 		return qman_cb_dqrr_stop; | 
 |  | 
 | 	fd = &dqrr->fd; | 
 | 	status = be32_to_cpu(fd->status); | 
 | 	if (unlikely(status)) | 
 | 		dev_err(qidev, "Error: %#x in CAAM response FD\n", status); | 
 |  | 
 | 	if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) { | 
 | 		dev_err(qidev, "Non-compound FD from CAAM\n"); | 
 | 		return qman_cb_dqrr_consume; | 
 | 	} | 
 |  | 
 | 	drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd)); | 
 | 	if (unlikely(!drv_req)) { | 
 | 		dev_err(qidev, | 
 | 			"Can't find original request for caam response\n"); | 
 | 		return qman_cb_dqrr_consume; | 
 | 	} | 
 |  | 
 | 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), | 
 | 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); | 
 |  | 
 | 	drv_req->cbk(drv_req, status); | 
 | 	return qman_cb_dqrr_consume; | 
 | } | 
 |  | 
 | static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu) | 
 | { | 
 | 	struct qm_mcc_initfq opts; | 
 | 	struct qman_fq *fq; | 
 | 	int ret; | 
 |  | 
 | 	fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA); | 
 | 	if (!fq) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	fq->cb.dqrr = caam_rsp_fq_dqrr_cb; | 
 |  | 
 | 	ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE | | 
 | 			     QMAN_FQ_FLAG_DYNAMIC_FQID, fq); | 
 | 	if (ret) { | 
 | 		dev_err(qidev, "Rsp FQ create failed\n"); | 
 | 		kfree(fq); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	memset(&opts, 0, sizeof(opts)); | 
 | 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | | 
 | 				   QM_INITFQ_WE_CONTEXTB | | 
 | 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); | 
 | 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING | | 
 | 				       QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); | 
 | 	qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3); | 
 | 	opts.fqd.cgid = qipriv.cgr.cgrid; | 
 | 	opts.fqd.context_a.stashing.exclusive =	QM_STASHING_EXCL_CTX | | 
 | 						QM_STASHING_EXCL_DATA; | 
 | 	qm_fqd_set_stashing(&opts.fqd, 0, 1, 1); | 
 |  | 
 | 	ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts); | 
 | 	if (ret) { | 
 | 		dev_err(qidev, "Rsp FQ init failed\n"); | 
 | 		kfree(fq); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq; | 
 |  | 
 | 	dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int init_cgr(struct device *qidev) | 
 | { | 
 | 	int ret; | 
 | 	struct qm_mcc_initcgr opts; | 
 | 	const u64 cpus = *(u64 *)qman_affine_cpus(); | 
 | 	const int num_cpus = hweight64(cpus); | 
 | 	const u64 val = num_cpus * MAX_RSP_FQ_BACKLOG_PER_CPU; | 
 |  | 
 | 	ret = qman_alloc_cgrid(&qipriv.cgr.cgrid); | 
 | 	if (ret) { | 
 | 		dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	qipriv.cgr.cb = cgr_cb; | 
 | 	memset(&opts, 0, sizeof(opts)); | 
 | 	opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES | | 
 | 				   QM_CGR_WE_MODE); | 
 | 	opts.cgr.cscn_en = QM_CGR_EN; | 
 | 	opts.cgr.mode = QMAN_CGR_MODE_FRAME; | 
 | 	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1); | 
 |  | 
 | 	ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts); | 
 | 	if (ret) { | 
 | 		dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret, | 
 | 			qipriv.cgr.cgrid); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	dev_dbg(qidev, "Congestion threshold set to %llu\n", val); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int alloc_rsp_fqs(struct device *qidev) | 
 | { | 
 | 	int ret, i; | 
 | 	const cpumask_t *cpus = qman_affine_cpus(); | 
 |  | 
 | 	/*Now create response FQs*/ | 
 | 	for_each_cpu(i, cpus) { | 
 | 		ret = alloc_rsp_fq_cpu(qidev, i); | 
 | 		if (ret) { | 
 | 			dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_rsp_fqs(void) | 
 | { | 
 | 	int i; | 
 | 	const cpumask_t *cpus = qman_affine_cpus(); | 
 |  | 
 | 	for_each_cpu(i, cpus) | 
 | 		kfree(per_cpu(pcpu_qipriv.rsp_fq, i)); | 
 | } | 
 |  | 
 | int caam_qi_init(struct platform_device *caam_pdev) | 
 | { | 
 | 	int err, i; | 
 | 	struct platform_device *qi_pdev; | 
 | 	struct device *ctrldev = &caam_pdev->dev, *qidev; | 
 | 	struct caam_drv_private *ctrlpriv; | 
 | 	const cpumask_t *cpus = qman_affine_cpus(); | 
 | 	struct cpumask old_cpumask = current->cpus_allowed; | 
 | 	static struct platform_device_info qi_pdev_info = { | 
 | 		.name = "caam_qi", | 
 | 		.id = PLATFORM_DEVID_NONE | 
 | 	}; | 
 |  | 
 | 	/* | 
 | 	 * QMAN requires CGRs to be removed from same CPU+portal from where it | 
 | 	 * was originally allocated. Hence we need to note down the | 
 | 	 * initialisation CPU and use the same CPU for module exit. | 
 | 	 * We select the first CPU to from the list of portal owning CPUs. | 
 | 	 * Then we pin module init to this CPU. | 
 | 	 */ | 
 | 	mod_init_cpu = cpumask_first(cpus); | 
 | 	set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu)); | 
 |  | 
 | 	qi_pdev_info.parent = ctrldev; | 
 | 	qi_pdev_info.dma_mask = dma_get_mask(ctrldev); | 
 | 	qi_pdev = platform_device_register_full(&qi_pdev_info); | 
 | 	if (IS_ERR(qi_pdev)) | 
 | 		return PTR_ERR(qi_pdev); | 
 | 	set_dma_ops(&qi_pdev->dev, get_dma_ops(ctrldev)); | 
 |  | 
 | 	ctrlpriv = dev_get_drvdata(ctrldev); | 
 | 	qidev = &qi_pdev->dev; | 
 |  | 
 | 	qipriv.qi_pdev = qi_pdev; | 
 | 	dev_set_drvdata(qidev, &qipriv); | 
 |  | 
 | 	/* Initialize the congestion detection */ | 
 | 	err = init_cgr(qidev); | 
 | 	if (err) { | 
 | 		dev_err(qidev, "CGR initialization failed: %d\n", err); | 
 | 		platform_device_unregister(qi_pdev); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* Initialise response FQs */ | 
 | 	err = alloc_rsp_fqs(qidev); | 
 | 	if (err) { | 
 | 		dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err); | 
 | 		free_rsp_fqs(); | 
 | 		platform_device_unregister(qi_pdev); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Enable the NAPI contexts on each of the core which has an affine | 
 | 	 * portal. | 
 | 	 */ | 
 | 	for_each_cpu(i, cpus) { | 
 | 		struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i); | 
 | 		struct caam_napi *caam_napi = &priv->caam_napi; | 
 | 		struct napi_struct *irqtask = &caam_napi->irqtask; | 
 | 		struct net_device *net_dev = &priv->net_dev; | 
 |  | 
 | 		net_dev->dev = *qidev; | 
 | 		INIT_LIST_HEAD(&net_dev->napi_list); | 
 |  | 
 | 		netif_napi_add(net_dev, irqtask, caam_qi_poll, | 
 | 			       CAAM_NAPI_WEIGHT); | 
 |  | 
 | 		napi_enable(irqtask); | 
 | 	} | 
 |  | 
 | 	/* Hook up QI device to parent controlling caam device */ | 
 | 	ctrlpriv->qidev = qidev; | 
 |  | 
 | 	qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0, | 
 | 				     SLAB_CACHE_DMA, NULL); | 
 | 	if (!qi_cache) { | 
 | 		dev_err(qidev, "Can't allocate CAAM cache\n"); | 
 | 		free_rsp_fqs(); | 
 | 		platform_device_unregister(qi_pdev); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Done with the CGRs; restore the cpus allowed mask */ | 
 | 	set_cpus_allowed_ptr(current, &old_cpumask); | 
 | #ifdef CONFIG_DEBUG_FS | 
 | 	debugfs_create_file("qi_congested", 0444, ctrlpriv->ctl, | 
 | 			    ×_congested, &caam_fops_u64_ro); | 
 | #endif | 
 | 	dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n"); | 
 | 	return 0; | 
 | } |