| /* | 
 |  * drivers/mtd/nand/diskonchip.c | 
 |  * | 
 |  * (C) 2003 Red Hat, Inc. | 
 |  * (C) 2004 Dan Brown <dan_brown@ieee.org> | 
 |  * (C) 2004 Kalev Lember <kalev@smartlink.ee> | 
 |  * | 
 |  * Author: David Woodhouse <dwmw2@infradead.org> | 
 |  * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org> | 
 |  * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee> | 
 |  * | 
 |  * Error correction code lifted from the old docecc code | 
 |  * Author: Fabrice Bellard (fabrice.bellard@netgem.com) | 
 |  * Copyright (C) 2000 Netgem S.A. | 
 |  * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de> | 
 |  * | 
 |  * Interface to generic NAND code for M-Systems DiskOnChip devices | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/rslib.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/io.h> | 
 |  | 
 | #include <linux/mtd/mtd.h> | 
 | #include <linux/mtd/rawnand.h> | 
 | #include <linux/mtd/doc2000.h> | 
 | #include <linux/mtd/partitions.h> | 
 | #include <linux/mtd/inftl.h> | 
 | #include <linux/module.h> | 
 |  | 
 | /* Where to look for the devices? */ | 
 | #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS | 
 | #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0 | 
 | #endif | 
 |  | 
 | static unsigned long doc_locations[] __initdata = { | 
 | #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) | 
 | #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH | 
 | 	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, | 
 | 	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, | 
 | 	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, | 
 | 	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, | 
 | 	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, | 
 | #else | 
 | 	0xc8000, 0xca000, 0xcc000, 0xce000, | 
 | 	0xd0000, 0xd2000, 0xd4000, 0xd6000, | 
 | 	0xd8000, 0xda000, 0xdc000, 0xde000, | 
 | 	0xe0000, 0xe2000, 0xe4000, 0xe6000, | 
 | 	0xe8000, 0xea000, 0xec000, 0xee000, | 
 | #endif | 
 | #endif | 
 | 	0xffffffff }; | 
 |  | 
 | static struct mtd_info *doclist = NULL; | 
 |  | 
 | struct doc_priv { | 
 | 	void __iomem *virtadr; | 
 | 	unsigned long physadr; | 
 | 	u_char ChipID; | 
 | 	u_char CDSNControl; | 
 | 	int chips_per_floor;	/* The number of chips detected on each floor */ | 
 | 	int curfloor; | 
 | 	int curchip; | 
 | 	int mh0_page; | 
 | 	int mh1_page; | 
 | 	struct mtd_info *nextdoc; | 
 |  | 
 | 	/* Handle the last stage of initialization (BBT scan, partitioning) */ | 
 | 	int (*late_init)(struct mtd_info *mtd); | 
 | }; | 
 |  | 
 | /* This is the ecc value computed by the HW ecc generator upon writing an empty | 
 |    page, one with all 0xff for data. */ | 
 | static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; | 
 |  | 
 | #define INFTL_BBT_RESERVED_BLOCKS 4 | 
 |  | 
 | #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) | 
 | #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) | 
 | #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) | 
 |  | 
 | static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, | 
 | 			      unsigned int bitmask); | 
 | static void doc200x_select_chip(struct mtd_info *mtd, int chip); | 
 |  | 
 | static int debug = 0; | 
 | module_param(debug, int, 0); | 
 |  | 
 | static int try_dword = 1; | 
 | module_param(try_dword, int, 0); | 
 |  | 
 | static int no_ecc_failures = 0; | 
 | module_param(no_ecc_failures, int, 0); | 
 |  | 
 | static int no_autopart = 0; | 
 | module_param(no_autopart, int, 0); | 
 |  | 
 | static int show_firmware_partition = 0; | 
 | module_param(show_firmware_partition, int, 0); | 
 |  | 
 | #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE | 
 | static int inftl_bbt_write = 1; | 
 | #else | 
 | static int inftl_bbt_write = 0; | 
 | #endif | 
 | module_param(inftl_bbt_write, int, 0); | 
 |  | 
 | static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS; | 
 | module_param(doc_config_location, ulong, 0); | 
 | MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); | 
 |  | 
 | /* Sector size for HW ECC */ | 
 | #define SECTOR_SIZE 512 | 
 | /* The sector bytes are packed into NB_DATA 10 bit words */ | 
 | #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) | 
 | /* Number of roots */ | 
 | #define NROOTS 4 | 
 | /* First consective root */ | 
 | #define FCR 510 | 
 | /* Number of symbols */ | 
 | #define NN 1023 | 
 |  | 
 | /* the Reed Solomon control structure */ | 
 | static struct rs_control *rs_decoder; | 
 |  | 
 | /* | 
 |  * The HW decoder in the DoC ASIC's provides us a error syndrome, | 
 |  * which we must convert to a standard syndrome usable by the generic | 
 |  * Reed-Solomon library code. | 
 |  * | 
 |  * Fabrice Bellard figured this out in the old docecc code. I added | 
 |  * some comments, improved a minor bit and converted it to make use | 
 |  * of the generic Reed-Solomon library. tglx | 
 |  */ | 
 | static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) | 
 | { | 
 | 	int i, j, nerr, errpos[8]; | 
 | 	uint8_t parity; | 
 | 	uint16_t ds[4], s[5], tmp, errval[8], syn[4]; | 
 |  | 
 | 	memset(syn, 0, sizeof(syn)); | 
 | 	/* Convert the ecc bytes into words */ | 
 | 	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); | 
 | 	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); | 
 | 	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); | 
 | 	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); | 
 | 	parity = ecc[1]; | 
 |  | 
 | 	/* Initialize the syndrome buffer */ | 
 | 	for (i = 0; i < NROOTS; i++) | 
 | 		s[i] = ds[0]; | 
 | 	/* | 
 | 	 *  Evaluate | 
 | 	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] | 
 | 	 *  where x = alpha^(FCR + i) | 
 | 	 */ | 
 | 	for (j = 1; j < NROOTS; j++) { | 
 | 		if (ds[j] == 0) | 
 | 			continue; | 
 | 		tmp = rs->index_of[ds[j]]; | 
 | 		for (i = 0; i < NROOTS; i++) | 
 | 			s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)]; | 
 | 	} | 
 |  | 
 | 	/* Calc syn[i] = s[i] / alpha^(v + i) */ | 
 | 	for (i = 0; i < NROOTS; i++) { | 
 | 		if (s[i]) | 
 | 			syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i)); | 
 | 	} | 
 | 	/* Call the decoder library */ | 
 | 	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); | 
 |  | 
 | 	/* Incorrectable errors ? */ | 
 | 	if (nerr < 0) | 
 | 		return nerr; | 
 |  | 
 | 	/* | 
 | 	 * Correct the errors. The bitpositions are a bit of magic, | 
 | 	 * but they are given by the design of the de/encoder circuit | 
 | 	 * in the DoC ASIC's. | 
 | 	 */ | 
 | 	for (i = 0; i < nerr; i++) { | 
 | 		int index, bitpos, pos = 1015 - errpos[i]; | 
 | 		uint8_t val; | 
 | 		if (pos >= NB_DATA && pos < 1019) | 
 | 			continue; | 
 | 		if (pos < NB_DATA) { | 
 | 			/* extract bit position (MSB first) */ | 
 | 			pos = 10 * (NB_DATA - 1 - pos) - 6; | 
 | 			/* now correct the following 10 bits. At most two bytes | 
 | 			   can be modified since pos is even */ | 
 | 			index = (pos >> 3) ^ 1; | 
 | 			bitpos = pos & 7; | 
 | 			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { | 
 | 				val = (uint8_t) (errval[i] >> (2 + bitpos)); | 
 | 				parity ^= val; | 
 | 				if (index < SECTOR_SIZE) | 
 | 					data[index] ^= val; | 
 | 			} | 
 | 			index = ((pos >> 3) + 1) ^ 1; | 
 | 			bitpos = (bitpos + 10) & 7; | 
 | 			if (bitpos == 0) | 
 | 				bitpos = 8; | 
 | 			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { | 
 | 				val = (uint8_t) (errval[i] << (8 - bitpos)); | 
 | 				parity ^= val; | 
 | 				if (index < SECTOR_SIZE) | 
 | 					data[index] ^= val; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	/* If the parity is wrong, no rescue possible */ | 
 | 	return parity ? -EBADMSG : nerr; | 
 | } | 
 |  | 
 | static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) | 
 | { | 
 | 	volatile char dummy; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < cycles; i++) { | 
 | 		if (DoC_is_Millennium(doc)) | 
 | 			dummy = ReadDOC(doc->virtadr, NOP); | 
 | 		else if (DoC_is_MillenniumPlus(doc)) | 
 | 			dummy = ReadDOC(doc->virtadr, Mplus_NOP); | 
 | 		else | 
 | 			dummy = ReadDOC(doc->virtadr, DOCStatus); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | #define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) | 
 |  | 
 | /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ | 
 | static int _DoC_WaitReady(struct doc_priv *doc) | 
 | { | 
 | 	void __iomem *docptr = doc->virtadr; | 
 | 	unsigned long timeo = jiffies + (HZ * 10); | 
 |  | 
 | 	if (debug) | 
 | 		printk("_DoC_WaitReady...\n"); | 
 | 	/* Out-of-line routine to wait for chip response */ | 
 | 	if (DoC_is_MillenniumPlus(doc)) { | 
 | 		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { | 
 | 			if (time_after(jiffies, timeo)) { | 
 | 				printk("_DoC_WaitReady timed out.\n"); | 
 | 				return -EIO; | 
 | 			} | 
 | 			udelay(1); | 
 | 			cond_resched(); | 
 | 		} | 
 | 	} else { | 
 | 		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { | 
 | 			if (time_after(jiffies, timeo)) { | 
 | 				printk("_DoC_WaitReady timed out.\n"); | 
 | 				return -EIO; | 
 | 			} | 
 | 			udelay(1); | 
 | 			cond_resched(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int DoC_WaitReady(struct doc_priv *doc) | 
 | { | 
 | 	void __iomem *docptr = doc->virtadr; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (DoC_is_MillenniumPlus(doc)) { | 
 | 		DoC_Delay(doc, 4); | 
 |  | 
 | 		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) | 
 | 			/* Call the out-of-line routine to wait */ | 
 | 			ret = _DoC_WaitReady(doc); | 
 | 	} else { | 
 | 		DoC_Delay(doc, 4); | 
 |  | 
 | 		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) | 
 | 			/* Call the out-of-line routine to wait */ | 
 | 			ret = _DoC_WaitReady(doc); | 
 | 		DoC_Delay(doc, 2); | 
 | 	} | 
 |  | 
 | 	if (debug) | 
 | 		printk("DoC_WaitReady OK\n"); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void doc2000_write_byte(struct mtd_info *mtd, u_char datum) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 |  | 
 | 	if (debug) | 
 | 		printk("write_byte %02x\n", datum); | 
 | 	WriteDOC(datum, docptr, CDSNSlowIO); | 
 | 	WriteDOC(datum, docptr, 2k_CDSN_IO); | 
 | } | 
 |  | 
 | static u_char doc2000_read_byte(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 | 	u_char ret; | 
 |  | 
 | 	ReadDOC(docptr, CDSNSlowIO); | 
 | 	DoC_Delay(doc, 2); | 
 | 	ret = ReadDOC(docptr, 2k_CDSN_IO); | 
 | 	if (debug) | 
 | 		printk("read_byte returns %02x\n", ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 | 	int i; | 
 | 	if (debug) | 
 | 		printk("writebuf of %d bytes: ", len); | 
 | 	for (i = 0; i < len; i++) { | 
 | 		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); | 
 | 		if (debug && i < 16) | 
 | 			printk("%02x ", buf[i]); | 
 | 	} | 
 | 	if (debug) | 
 | 		printk("\n"); | 
 | } | 
 |  | 
 | static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 | 	int i; | 
 |  | 
 | 	if (debug) | 
 | 		printk("readbuf of %d bytes: ", len); | 
 |  | 
 | 	for (i = 0; i < len; i++) { | 
 | 		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); | 
 | 	} | 
 | } | 
 |  | 
 | static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 | 	int i; | 
 |  | 
 | 	if (debug) | 
 | 		printk("readbuf_dword of %d bytes: ", len); | 
 |  | 
 | 	if (unlikely((((unsigned long)buf) | len) & 3)) { | 
 | 		for (i = 0; i < len; i++) { | 
 | 			*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i); | 
 | 		} | 
 | 	} else { | 
 | 		for (i = 0; i < len; i += 4) { | 
 | 			*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	uint16_t ret; | 
 |  | 
 | 	doc200x_select_chip(mtd, nr); | 
 | 	doc200x_hwcontrol(mtd, NAND_CMD_READID, | 
 | 			  NAND_CTRL_CLE | NAND_CTRL_CHANGE); | 
 | 	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); | 
 | 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); | 
 |  | 
 | 	/* We can't use dev_ready here, but at least we wait for the | 
 | 	 * command to complete | 
 | 	 */ | 
 | 	udelay(50); | 
 |  | 
 | 	ret = this->read_byte(mtd) << 8; | 
 | 	ret |= this->read_byte(mtd); | 
 |  | 
 | 	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { | 
 | 		/* First chip probe. See if we get same results by 32-bit access */ | 
 | 		union { | 
 | 			uint32_t dword; | 
 | 			uint8_t byte[4]; | 
 | 		} ident; | 
 | 		void __iomem *docptr = doc->virtadr; | 
 |  | 
 | 		doc200x_hwcontrol(mtd, NAND_CMD_READID, | 
 | 				  NAND_CTRL_CLE | NAND_CTRL_CHANGE); | 
 | 		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); | 
 | 		doc200x_hwcontrol(mtd, NAND_CMD_NONE, | 
 | 				  NAND_NCE | NAND_CTRL_CHANGE); | 
 |  | 
 | 		udelay(50); | 
 |  | 
 | 		ident.dword = readl(docptr + DoC_2k_CDSN_IO); | 
 | 		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { | 
 | 			printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n"); | 
 | 			this->read_buf = &doc2000_readbuf_dword; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __init doc2000_count_chips(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	uint16_t mfrid; | 
 | 	int i; | 
 |  | 
 | 	/* Max 4 chips per floor on DiskOnChip 2000 */ | 
 | 	doc->chips_per_floor = 4; | 
 |  | 
 | 	/* Find out what the first chip is */ | 
 | 	mfrid = doc200x_ident_chip(mtd, 0); | 
 |  | 
 | 	/* Find how many chips in each floor. */ | 
 | 	for (i = 1; i < 4; i++) { | 
 | 		if (doc200x_ident_chip(mtd, i) != mfrid) | 
 | 			break; | 
 | 	} | 
 | 	doc->chips_per_floor = i; | 
 | 	printk(KERN_DEBUG "Detected %d chips per floor.\n", i); | 
 | } | 
 |  | 
 | static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this) | 
 | { | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 |  | 
 | 	int status; | 
 |  | 
 | 	DoC_WaitReady(doc); | 
 | 	this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); | 
 | 	DoC_WaitReady(doc); | 
 | 	status = (int)this->read_byte(mtd); | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 | static void doc2001_write_byte(struct mtd_info *mtd, u_char datum) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 |  | 
 | 	WriteDOC(datum, docptr, CDSNSlowIO); | 
 | 	WriteDOC(datum, docptr, Mil_CDSN_IO); | 
 | 	WriteDOC(datum, docptr, WritePipeTerm); | 
 | } | 
 |  | 
 | static u_char doc2001_read_byte(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 |  | 
 | 	//ReadDOC(docptr, CDSNSlowIO); | 
 | 	/* 11.4.5 -- delay twice to allow extended length cycle */ | 
 | 	DoC_Delay(doc, 2); | 
 | 	ReadDOC(docptr, ReadPipeInit); | 
 | 	//return ReadDOC(docptr, Mil_CDSN_IO); | 
 | 	return ReadDOC(docptr, LastDataRead); | 
 | } | 
 |  | 
 | static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < len; i++) | 
 | 		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); | 
 | 	/* Terminate write pipeline */ | 
 | 	WriteDOC(0x00, docptr, WritePipeTerm); | 
 | } | 
 |  | 
 | static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 | 	int i; | 
 |  | 
 | 	/* Start read pipeline */ | 
 | 	ReadDOC(docptr, ReadPipeInit); | 
 |  | 
 | 	for (i = 0; i < len - 1; i++) | 
 | 		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); | 
 |  | 
 | 	/* Terminate read pipeline */ | 
 | 	buf[i] = ReadDOC(docptr, LastDataRead); | 
 | } | 
 |  | 
 | static u_char doc2001plus_read_byte(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 | 	u_char ret; | 
 |  | 
 | 	ReadDOC(docptr, Mplus_ReadPipeInit); | 
 | 	ReadDOC(docptr, Mplus_ReadPipeInit); | 
 | 	ret = ReadDOC(docptr, Mplus_LastDataRead); | 
 | 	if (debug) | 
 | 		printk("read_byte returns %02x\n", ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 | 	int i; | 
 |  | 
 | 	if (debug) | 
 | 		printk("writebuf of %d bytes: ", len); | 
 | 	for (i = 0; i < len; i++) { | 
 | 		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); | 
 | 		if (debug && i < 16) | 
 | 			printk("%02x ", buf[i]); | 
 | 	} | 
 | 	if (debug) | 
 | 		printk("\n"); | 
 | } | 
 |  | 
 | static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 | 	int i; | 
 |  | 
 | 	if (debug) | 
 | 		printk("readbuf of %d bytes: ", len); | 
 |  | 
 | 	/* Start read pipeline */ | 
 | 	ReadDOC(docptr, Mplus_ReadPipeInit); | 
 | 	ReadDOC(docptr, Mplus_ReadPipeInit); | 
 |  | 
 | 	for (i = 0; i < len - 2; i++) { | 
 | 		buf[i] = ReadDOC(docptr, Mil_CDSN_IO); | 
 | 		if (debug && i < 16) | 
 | 			printk("%02x ", buf[i]); | 
 | 	} | 
 |  | 
 | 	/* Terminate read pipeline */ | 
 | 	buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead); | 
 | 	if (debug && i < 16) | 
 | 		printk("%02x ", buf[len - 2]); | 
 | 	buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead); | 
 | 	if (debug && i < 16) | 
 | 		printk("%02x ", buf[len - 1]); | 
 | 	if (debug) | 
 | 		printk("\n"); | 
 | } | 
 |  | 
 | static void doc2001plus_select_chip(struct mtd_info *mtd, int chip) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 | 	int floor = 0; | 
 |  | 
 | 	if (debug) | 
 | 		printk("select chip (%d)\n", chip); | 
 |  | 
 | 	if (chip == -1) { | 
 | 		/* Disable flash internally */ | 
 | 		WriteDOC(0, docptr, Mplus_FlashSelect); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	floor = chip / doc->chips_per_floor; | 
 | 	chip -= (floor * doc->chips_per_floor); | 
 |  | 
 | 	/* Assert ChipEnable and deassert WriteProtect */ | 
 | 	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect); | 
 | 	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); | 
 |  | 
 | 	doc->curchip = chip; | 
 | 	doc->curfloor = floor; | 
 | } | 
 |  | 
 | static void doc200x_select_chip(struct mtd_info *mtd, int chip) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 | 	int floor = 0; | 
 |  | 
 | 	if (debug) | 
 | 		printk("select chip (%d)\n", chip); | 
 |  | 
 | 	if (chip == -1) | 
 | 		return; | 
 |  | 
 | 	floor = chip / doc->chips_per_floor; | 
 | 	chip -= (floor * doc->chips_per_floor); | 
 |  | 
 | 	/* 11.4.4 -- deassert CE before changing chip */ | 
 | 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); | 
 |  | 
 | 	WriteDOC(floor, docptr, FloorSelect); | 
 | 	WriteDOC(chip, docptr, CDSNDeviceSelect); | 
 |  | 
 | 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); | 
 |  | 
 | 	doc->curchip = chip; | 
 | 	doc->curfloor = floor; | 
 | } | 
 |  | 
 | #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE) | 
 |  | 
 | static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, | 
 | 			      unsigned int ctrl) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 |  | 
 | 	if (ctrl & NAND_CTRL_CHANGE) { | 
 | 		doc->CDSNControl &= ~CDSN_CTRL_MSK; | 
 | 		doc->CDSNControl |= ctrl & CDSN_CTRL_MSK; | 
 | 		if (debug) | 
 | 			printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl); | 
 | 		WriteDOC(doc->CDSNControl, docptr, CDSNControl); | 
 | 		/* 11.4.3 -- 4 NOPs after CSDNControl write */ | 
 | 		DoC_Delay(doc, 4); | 
 | 	} | 
 | 	if (cmd != NAND_CMD_NONE) { | 
 | 		if (DoC_is_2000(doc)) | 
 | 			doc2000_write_byte(mtd, cmd); | 
 | 		else | 
 | 			doc2001_write_byte(mtd, cmd); | 
 | 	} | 
 | } | 
 |  | 
 | static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 |  | 
 | 	/* | 
 | 	 * Must terminate write pipeline before sending any commands | 
 | 	 * to the device. | 
 | 	 */ | 
 | 	if (command == NAND_CMD_PAGEPROG) { | 
 | 		WriteDOC(0x00, docptr, Mplus_WritePipeTerm); | 
 | 		WriteDOC(0x00, docptr, Mplus_WritePipeTerm); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Write out the command to the device. | 
 | 	 */ | 
 | 	if (command == NAND_CMD_SEQIN) { | 
 | 		int readcmd; | 
 |  | 
 | 		if (column >= mtd->writesize) { | 
 | 			/* OOB area */ | 
 | 			column -= mtd->writesize; | 
 | 			readcmd = NAND_CMD_READOOB; | 
 | 		} else if (column < 256) { | 
 | 			/* First 256 bytes --> READ0 */ | 
 | 			readcmd = NAND_CMD_READ0; | 
 | 		} else { | 
 | 			column -= 256; | 
 | 			readcmd = NAND_CMD_READ1; | 
 | 		} | 
 | 		WriteDOC(readcmd, docptr, Mplus_FlashCmd); | 
 | 	} | 
 | 	WriteDOC(command, docptr, Mplus_FlashCmd); | 
 | 	WriteDOC(0, docptr, Mplus_WritePipeTerm); | 
 | 	WriteDOC(0, docptr, Mplus_WritePipeTerm); | 
 |  | 
 | 	if (column != -1 || page_addr != -1) { | 
 | 		/* Serially input address */ | 
 | 		if (column != -1) { | 
 | 			/* Adjust columns for 16 bit buswidth */ | 
 | 			if (this->options & NAND_BUSWIDTH_16 && | 
 | 					!nand_opcode_8bits(command)) | 
 | 				column >>= 1; | 
 | 			WriteDOC(column, docptr, Mplus_FlashAddress); | 
 | 		} | 
 | 		if (page_addr != -1) { | 
 | 			WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress); | 
 | 			WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress); | 
 | 			/* One more address cycle for higher density devices */ | 
 | 			if (this->chipsize & 0x0c000000) { | 
 | 				WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress); | 
 | 				printk("high density\n"); | 
 | 			} | 
 | 		} | 
 | 		WriteDOC(0, docptr, Mplus_WritePipeTerm); | 
 | 		WriteDOC(0, docptr, Mplus_WritePipeTerm); | 
 | 		/* deassert ALE */ | 
 | 		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || | 
 | 		    command == NAND_CMD_READOOB || command == NAND_CMD_READID) | 
 | 			WriteDOC(0, docptr, Mplus_FlashControl); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * program and erase have their own busy handlers | 
 | 	 * status and sequential in needs no delay | 
 | 	 */ | 
 | 	switch (command) { | 
 |  | 
 | 	case NAND_CMD_PAGEPROG: | 
 | 	case NAND_CMD_ERASE1: | 
 | 	case NAND_CMD_ERASE2: | 
 | 	case NAND_CMD_SEQIN: | 
 | 	case NAND_CMD_STATUS: | 
 | 		return; | 
 |  | 
 | 	case NAND_CMD_RESET: | 
 | 		if (this->dev_ready) | 
 | 			break; | 
 | 		udelay(this->chip_delay); | 
 | 		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd); | 
 | 		WriteDOC(0, docptr, Mplus_WritePipeTerm); | 
 | 		WriteDOC(0, docptr, Mplus_WritePipeTerm); | 
 | 		while (!(this->read_byte(mtd) & 0x40)) ; | 
 | 		return; | 
 |  | 
 | 		/* This applies to read commands */ | 
 | 	default: | 
 | 		/* | 
 | 		 * If we don't have access to the busy pin, we apply the given | 
 | 		 * command delay | 
 | 		 */ | 
 | 		if (!this->dev_ready) { | 
 | 			udelay(this->chip_delay); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Apply this short delay always to ensure that we do wait tWB in | 
 | 	 * any case on any machine. */ | 
 | 	ndelay(100); | 
 | 	/* wait until command is processed */ | 
 | 	while (!this->dev_ready(mtd)) ; | 
 | } | 
 |  | 
 | static int doc200x_dev_ready(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 |  | 
 | 	if (DoC_is_MillenniumPlus(doc)) { | 
 | 		/* 11.4.2 -- must NOP four times before checking FR/B# */ | 
 | 		DoC_Delay(doc, 4); | 
 | 		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { | 
 | 			if (debug) | 
 | 				printk("not ready\n"); | 
 | 			return 0; | 
 | 		} | 
 | 		if (debug) | 
 | 			printk("was ready\n"); | 
 | 		return 1; | 
 | 	} else { | 
 | 		/* 11.4.2 -- must NOP four times before checking FR/B# */ | 
 | 		DoC_Delay(doc, 4); | 
 | 		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { | 
 | 			if (debug) | 
 | 				printk("not ready\n"); | 
 | 			return 0; | 
 | 		} | 
 | 		/* 11.4.2 -- Must NOP twice if it's ready */ | 
 | 		DoC_Delay(doc, 2); | 
 | 		if (debug) | 
 | 			printk("was ready\n"); | 
 | 		return 1; | 
 | 	} | 
 | } | 
 |  | 
 | static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs) | 
 | { | 
 | 	/* This is our last resort if we couldn't find or create a BBT.  Just | 
 | 	   pretend all blocks are good. */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 |  | 
 | 	/* Prime the ECC engine */ | 
 | 	switch (mode) { | 
 | 	case NAND_ECC_READ: | 
 | 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf); | 
 | 		WriteDOC(DOC_ECC_EN, docptr, ECCConf); | 
 | 		break; | 
 | 	case NAND_ECC_WRITE: | 
 | 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf); | 
 | 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 |  | 
 | 	/* Prime the ECC engine */ | 
 | 	switch (mode) { | 
 | 	case NAND_ECC_READ: | 
 | 		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); | 
 | 		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); | 
 | 		break; | 
 | 	case NAND_ECC_WRITE: | 
 | 		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); | 
 | 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* This code is only called on write */ | 
 | static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 | 	int i; | 
 | 	int emptymatch = 1; | 
 |  | 
 | 	/* flush the pipeline */ | 
 | 	if (DoC_is_2000(doc)) { | 
 | 		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); | 
 | 		WriteDOC(0, docptr, 2k_CDSN_IO); | 
 | 		WriteDOC(0, docptr, 2k_CDSN_IO); | 
 | 		WriteDOC(0, docptr, 2k_CDSN_IO); | 
 | 		WriteDOC(doc->CDSNControl, docptr, CDSNControl); | 
 | 	} else if (DoC_is_MillenniumPlus(doc)) { | 
 | 		WriteDOC(0, docptr, Mplus_NOP); | 
 | 		WriteDOC(0, docptr, Mplus_NOP); | 
 | 		WriteDOC(0, docptr, Mplus_NOP); | 
 | 	} else { | 
 | 		WriteDOC(0, docptr, NOP); | 
 | 		WriteDOC(0, docptr, NOP); | 
 | 		WriteDOC(0, docptr, NOP); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < 6; i++) { | 
 | 		if (DoC_is_MillenniumPlus(doc)) | 
 | 			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); | 
 | 		else | 
 | 			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); | 
 | 		if (ecc_code[i] != empty_write_ecc[i]) | 
 | 			emptymatch = 0; | 
 | 	} | 
 | 	if (DoC_is_MillenniumPlus(doc)) | 
 | 		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); | 
 | 	else | 
 | 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf); | 
 | #if 0 | 
 | 	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */ | 
 | 	if (emptymatch) { | 
 | 		/* Note: this somewhat expensive test should not be triggered | 
 | 		   often.  It could be optimized away by examining the data in | 
 | 		   the writebuf routine, and remembering the result. */ | 
 | 		for (i = 0; i < 512; i++) { | 
 | 			if (dat[i] == 0xff) | 
 | 				continue; | 
 | 			emptymatch = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	/* If emptymatch still =1, we do have an all-0xff data buffer. | 
 | 	   Return all-0xff ecc value instead of the computed one, so | 
 | 	   it'll look just like a freshly-erased page. */ | 
 | 	if (emptymatch) | 
 | 		memset(ecc_code, 0xff, 6); | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, | 
 | 				u_char *read_ecc, u_char *isnull) | 
 | { | 
 | 	int i, ret = 0; | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	void __iomem *docptr = doc->virtadr; | 
 | 	uint8_t calc_ecc[6]; | 
 | 	volatile u_char dummy; | 
 |  | 
 | 	/* flush the pipeline */ | 
 | 	if (DoC_is_2000(doc)) { | 
 | 		dummy = ReadDOC(docptr, 2k_ECCStatus); | 
 | 		dummy = ReadDOC(docptr, 2k_ECCStatus); | 
 | 		dummy = ReadDOC(docptr, 2k_ECCStatus); | 
 | 	} else if (DoC_is_MillenniumPlus(doc)) { | 
 | 		dummy = ReadDOC(docptr, Mplus_ECCConf); | 
 | 		dummy = ReadDOC(docptr, Mplus_ECCConf); | 
 | 		dummy = ReadDOC(docptr, Mplus_ECCConf); | 
 | 	} else { | 
 | 		dummy = ReadDOC(docptr, ECCConf); | 
 | 		dummy = ReadDOC(docptr, ECCConf); | 
 | 		dummy = ReadDOC(docptr, ECCConf); | 
 | 	} | 
 |  | 
 | 	/* Error occurred ? */ | 
 | 	if (dummy & 0x80) { | 
 | 		for (i = 0; i < 6; i++) { | 
 | 			if (DoC_is_MillenniumPlus(doc)) | 
 | 				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); | 
 | 			else | 
 | 				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); | 
 | 		} | 
 |  | 
 | 		ret = doc_ecc_decode(rs_decoder, dat, calc_ecc); | 
 | 		if (ret > 0) | 
 | 			printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret); | 
 | 	} | 
 | 	if (DoC_is_MillenniumPlus(doc)) | 
 | 		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); | 
 | 	else | 
 | 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf); | 
 | 	if (no_ecc_failures && mtd_is_eccerr(ret)) { | 
 | 		printk(KERN_ERR "suppressing ECC failure\n"); | 
 | 		ret = 0; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | //u_char mydatabuf[528]; | 
 |  | 
 | static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section, | 
 | 				 struct mtd_oob_region *oobregion) | 
 | { | 
 | 	if (section) | 
 | 		return -ERANGE; | 
 |  | 
 | 	oobregion->offset = 0; | 
 | 	oobregion->length = 6; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int doc200x_ooblayout_free(struct mtd_info *mtd, int section, | 
 | 				  struct mtd_oob_region *oobregion) | 
 | { | 
 | 	if (section > 1) | 
 | 		return -ERANGE; | 
 |  | 
 | 	/* | 
 | 	 * The strange out-of-order free bytes definition is a (possibly | 
 | 	 * unneeded) attempt to retain compatibility.  It used to read: | 
 | 	 *	.oobfree = { {8, 8} } | 
 | 	 * Since that leaves two bytes unusable, it was changed.  But the | 
 | 	 * following scheme might affect existing jffs2 installs by moving the | 
 | 	 * cleanmarker: | 
 | 	 *	.oobfree = { {6, 10} } | 
 | 	 * jffs2 seems to handle the above gracefully, but the current scheme | 
 | 	 * seems safer. The only problem with it is that any code retrieving | 
 | 	 * free bytes position must be able to handle out-of-order segments. | 
 | 	 */ | 
 | 	if (!section) { | 
 | 		oobregion->offset = 8; | 
 | 		oobregion->length = 8; | 
 | 	} else { | 
 | 		oobregion->offset = 6; | 
 | 		oobregion->length = 2; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = { | 
 | 	.ecc = doc200x_ooblayout_ecc, | 
 | 	.free = doc200x_ooblayout_free, | 
 | }; | 
 |  | 
 | /* Find the (I)NFTL Media Header, and optionally also the mirror media header. | 
 |    On successful return, buf will contain a copy of the media header for | 
 |    further processing.  id is the string to scan for, and will presumably be | 
 |    either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media | 
 |    header.  The page #s of the found media headers are placed in mh0_page and | 
 |    mh1_page in the DOC private structure. */ | 
 | static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	unsigned offs; | 
 | 	int ret; | 
 | 	size_t retlen; | 
 |  | 
 | 	for (offs = 0; offs < mtd->size; offs += mtd->erasesize) { | 
 | 		ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); | 
 | 		if (retlen != mtd->writesize) | 
 | 			continue; | 
 | 		if (ret) { | 
 | 			printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs); | 
 | 		} | 
 | 		if (memcmp(buf, id, 6)) | 
 | 			continue; | 
 | 		printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs); | 
 | 		if (doc->mh0_page == -1) { | 
 | 			doc->mh0_page = offs >> this->page_shift; | 
 | 			if (!findmirror) | 
 | 				return 1; | 
 | 			continue; | 
 | 		} | 
 | 		doc->mh1_page = offs >> this->page_shift; | 
 | 		return 2; | 
 | 	} | 
 | 	if (doc->mh0_page == -1) { | 
 | 		printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id); | 
 | 		return 0; | 
 | 	} | 
 | 	/* Only one mediaheader was found.  We want buf to contain a | 
 | 	   mediaheader on return, so we'll have to re-read the one we found. */ | 
 | 	offs = doc->mh0_page << this->page_shift; | 
 | 	ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); | 
 | 	if (retlen != mtd->writesize) { | 
 | 		/* Insanity.  Give up. */ | 
 | 		printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	int ret = 0; | 
 | 	u_char *buf; | 
 | 	struct NFTLMediaHeader *mh; | 
 | 	const unsigned psize = 1 << this->page_shift; | 
 | 	int numparts = 0; | 
 | 	unsigned blocks, maxblocks; | 
 | 	int offs, numheaders; | 
 |  | 
 | 	buf = kmalloc(mtd->writesize, GFP_KERNEL); | 
 | 	if (!buf) { | 
 | 		return 0; | 
 | 	} | 
 | 	if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1))) | 
 | 		goto out; | 
 | 	mh = (struct NFTLMediaHeader *)buf; | 
 |  | 
 | 	le16_to_cpus(&mh->NumEraseUnits); | 
 | 	le16_to_cpus(&mh->FirstPhysicalEUN); | 
 | 	le32_to_cpus(&mh->FormattedSize); | 
 |  | 
 | 	printk(KERN_INFO "    DataOrgID        = %s\n" | 
 | 			 "    NumEraseUnits    = %d\n" | 
 | 			 "    FirstPhysicalEUN = %d\n" | 
 | 			 "    FormattedSize    = %d\n" | 
 | 			 "    UnitSizeFactor   = %d\n", | 
 | 		mh->DataOrgID, mh->NumEraseUnits, | 
 | 		mh->FirstPhysicalEUN, mh->FormattedSize, | 
 | 		mh->UnitSizeFactor); | 
 |  | 
 | 	blocks = mtd->size >> this->phys_erase_shift; | 
 | 	maxblocks = min(32768U, mtd->erasesize - psize); | 
 |  | 
 | 	if (mh->UnitSizeFactor == 0x00) { | 
 | 		/* Auto-determine UnitSizeFactor.  The constraints are: | 
 | 		   - There can be at most 32768 virtual blocks. | 
 | 		   - There can be at most (virtual block size - page size) | 
 | 		   virtual blocks (because MediaHeader+BBT must fit in 1). | 
 | 		 */ | 
 | 		mh->UnitSizeFactor = 0xff; | 
 | 		while (blocks > maxblocks) { | 
 | 			blocks >>= 1; | 
 | 			maxblocks = min(32768U, (maxblocks << 1) + psize); | 
 | 			mh->UnitSizeFactor--; | 
 | 		} | 
 | 		printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); | 
 | 	} | 
 |  | 
 | 	/* NOTE: The lines below modify internal variables of the NAND and MTD | 
 | 	   layers; variables with have already been configured by nand_scan. | 
 | 	   Unfortunately, we didn't know before this point what these values | 
 | 	   should be.  Thus, this code is somewhat dependent on the exact | 
 | 	   implementation of the NAND layer.  */ | 
 | 	if (mh->UnitSizeFactor != 0xff) { | 
 | 		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); | 
 | 		mtd->erasesize <<= (0xff - mh->UnitSizeFactor); | 
 | 		printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize); | 
 | 		blocks = mtd->size >> this->bbt_erase_shift; | 
 | 		maxblocks = min(32768U, mtd->erasesize - psize); | 
 | 	} | 
 |  | 
 | 	if (blocks > maxblocks) { | 
 | 		printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Skip past the media headers. */ | 
 | 	offs = max(doc->mh0_page, doc->mh1_page); | 
 | 	offs <<= this->page_shift; | 
 | 	offs += mtd->erasesize; | 
 |  | 
 | 	if (show_firmware_partition == 1) { | 
 | 		parts[0].name = " DiskOnChip Firmware / Media Header partition"; | 
 | 		parts[0].offset = 0; | 
 | 		parts[0].size = offs; | 
 | 		numparts = 1; | 
 | 	} | 
 |  | 
 | 	parts[numparts].name = " DiskOnChip BDTL partition"; | 
 | 	parts[numparts].offset = offs; | 
 | 	parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; | 
 |  | 
 | 	offs += parts[numparts].size; | 
 | 	numparts++; | 
 |  | 
 | 	if (offs < mtd->size) { | 
 | 		parts[numparts].name = " DiskOnChip Remainder partition"; | 
 | 		parts[numparts].offset = offs; | 
 | 		parts[numparts].size = mtd->size - offs; | 
 | 		numparts++; | 
 | 	} | 
 |  | 
 | 	ret = numparts; | 
 |  out: | 
 | 	kfree(buf); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* This is a stripped-down copy of the code in inftlmount.c */ | 
 | static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	int ret = 0; | 
 | 	u_char *buf; | 
 | 	struct INFTLMediaHeader *mh; | 
 | 	struct INFTLPartition *ip; | 
 | 	int numparts = 0; | 
 | 	int blocks; | 
 | 	int vshift, lastvunit = 0; | 
 | 	int i; | 
 | 	int end = mtd->size; | 
 |  | 
 | 	if (inftl_bbt_write) | 
 | 		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); | 
 |  | 
 | 	buf = kmalloc(mtd->writesize, GFP_KERNEL); | 
 | 	if (!buf) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!find_media_headers(mtd, buf, "BNAND", 0)) | 
 | 		goto out; | 
 | 	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); | 
 | 	mh = (struct INFTLMediaHeader *)buf; | 
 |  | 
 | 	le32_to_cpus(&mh->NoOfBootImageBlocks); | 
 | 	le32_to_cpus(&mh->NoOfBinaryPartitions); | 
 | 	le32_to_cpus(&mh->NoOfBDTLPartitions); | 
 | 	le32_to_cpus(&mh->BlockMultiplierBits); | 
 | 	le32_to_cpus(&mh->FormatFlags); | 
 | 	le32_to_cpus(&mh->PercentUsed); | 
 |  | 
 | 	printk(KERN_INFO "    bootRecordID          = %s\n" | 
 | 			 "    NoOfBootImageBlocks   = %d\n" | 
 | 			 "    NoOfBinaryPartitions  = %d\n" | 
 | 			 "    NoOfBDTLPartitions    = %d\n" | 
 | 			 "    BlockMultiplerBits    = %d\n" | 
 | 			 "    FormatFlgs            = %d\n" | 
 | 			 "    OsakVersion           = %d.%d.%d.%d\n" | 
 | 			 "    PercentUsed           = %d\n", | 
 | 		mh->bootRecordID, mh->NoOfBootImageBlocks, | 
 | 		mh->NoOfBinaryPartitions, | 
 | 		mh->NoOfBDTLPartitions, | 
 | 		mh->BlockMultiplierBits, mh->FormatFlags, | 
 | 		((unsigned char *) &mh->OsakVersion)[0] & 0xf, | 
 | 		((unsigned char *) &mh->OsakVersion)[1] & 0xf, | 
 | 		((unsigned char *) &mh->OsakVersion)[2] & 0xf, | 
 | 		((unsigned char *) &mh->OsakVersion)[3] & 0xf, | 
 | 		mh->PercentUsed); | 
 |  | 
 | 	vshift = this->phys_erase_shift + mh->BlockMultiplierBits; | 
 |  | 
 | 	blocks = mtd->size >> vshift; | 
 | 	if (blocks > 32768) { | 
 | 		printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); | 
 | 	if (inftl_bbt_write && (blocks > mtd->erasesize)) { | 
 | 		printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Scan the partitions */ | 
 | 	for (i = 0; (i < 4); i++) { | 
 | 		ip = &(mh->Partitions[i]); | 
 | 		le32_to_cpus(&ip->virtualUnits); | 
 | 		le32_to_cpus(&ip->firstUnit); | 
 | 		le32_to_cpus(&ip->lastUnit); | 
 | 		le32_to_cpus(&ip->flags); | 
 | 		le32_to_cpus(&ip->spareUnits); | 
 | 		le32_to_cpus(&ip->Reserved0); | 
 |  | 
 | 		printk(KERN_INFO	"    PARTITION[%d] ->\n" | 
 | 			"        virtualUnits    = %d\n" | 
 | 			"        firstUnit       = %d\n" | 
 | 			"        lastUnit        = %d\n" | 
 | 			"        flags           = 0x%x\n" | 
 | 			"        spareUnits      = %d\n", | 
 | 			i, ip->virtualUnits, ip->firstUnit, | 
 | 			ip->lastUnit, ip->flags, | 
 | 			ip->spareUnits); | 
 |  | 
 | 		if ((show_firmware_partition == 1) && | 
 | 		    (i == 0) && (ip->firstUnit > 0)) { | 
 | 			parts[0].name = " DiskOnChip IPL / Media Header partition"; | 
 | 			parts[0].offset = 0; | 
 | 			parts[0].size = mtd->erasesize * ip->firstUnit; | 
 | 			numparts = 1; | 
 | 		} | 
 |  | 
 | 		if (ip->flags & INFTL_BINARY) | 
 | 			parts[numparts].name = " DiskOnChip BDK partition"; | 
 | 		else | 
 | 			parts[numparts].name = " DiskOnChip BDTL partition"; | 
 | 		parts[numparts].offset = ip->firstUnit << vshift; | 
 | 		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; | 
 | 		numparts++; | 
 | 		if (ip->lastUnit > lastvunit) | 
 | 			lastvunit = ip->lastUnit; | 
 | 		if (ip->flags & INFTL_LAST) | 
 | 			break; | 
 | 	} | 
 | 	lastvunit++; | 
 | 	if ((lastvunit << vshift) < end) { | 
 | 		parts[numparts].name = " DiskOnChip Remainder partition"; | 
 | 		parts[numparts].offset = lastvunit << vshift; | 
 | 		parts[numparts].size = end - parts[numparts].offset; | 
 | 		numparts++; | 
 | 	} | 
 | 	ret = numparts; | 
 |  out: | 
 | 	kfree(buf); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __init nftl_scan_bbt(struct mtd_info *mtd) | 
 | { | 
 | 	int ret, numparts; | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	struct mtd_partition parts[2]; | 
 |  | 
 | 	memset((char *)parts, 0, sizeof(parts)); | 
 | 	/* On NFTL, we have to find the media headers before we can read the | 
 | 	   BBTs, since they're stored in the media header eraseblocks. */ | 
 | 	numparts = nftl_partscan(mtd, parts); | 
 | 	if (!numparts) | 
 | 		return -EIO; | 
 | 	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | | 
 | 				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | | 
 | 				NAND_BBT_VERSION; | 
 | 	this->bbt_td->veroffs = 7; | 
 | 	this->bbt_td->pages[0] = doc->mh0_page + 1; | 
 | 	if (doc->mh1_page != -1) { | 
 | 		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | | 
 | 					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | | 
 | 					NAND_BBT_VERSION; | 
 | 		this->bbt_md->veroffs = 7; | 
 | 		this->bbt_md->pages[0] = doc->mh1_page + 1; | 
 | 	} else { | 
 | 		this->bbt_md = NULL; | 
 | 	} | 
 |  | 
 | 	ret = this->scan_bbt(mtd); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); | 
 | } | 
 |  | 
 | static int __init inftl_scan_bbt(struct mtd_info *mtd) | 
 | { | 
 | 	int ret, numparts; | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 | 	struct mtd_partition parts[5]; | 
 |  | 
 | 	if (this->numchips > doc->chips_per_floor) { | 
 | 		printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (DoC_is_MillenniumPlus(doc)) { | 
 | 		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; | 
 | 		if (inftl_bbt_write) | 
 | 			this->bbt_td->options |= NAND_BBT_WRITE; | 
 | 		this->bbt_td->pages[0] = 2; | 
 | 		this->bbt_md = NULL; | 
 | 	} else { | 
 | 		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; | 
 | 		if (inftl_bbt_write) | 
 | 			this->bbt_td->options |= NAND_BBT_WRITE; | 
 | 		this->bbt_td->offs = 8; | 
 | 		this->bbt_td->len = 8; | 
 | 		this->bbt_td->veroffs = 7; | 
 | 		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; | 
 | 		this->bbt_td->reserved_block_code = 0x01; | 
 | 		this->bbt_td->pattern = "MSYS_BBT"; | 
 |  | 
 | 		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; | 
 | 		if (inftl_bbt_write) | 
 | 			this->bbt_md->options |= NAND_BBT_WRITE; | 
 | 		this->bbt_md->offs = 8; | 
 | 		this->bbt_md->len = 8; | 
 | 		this->bbt_md->veroffs = 7; | 
 | 		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; | 
 | 		this->bbt_md->reserved_block_code = 0x01; | 
 | 		this->bbt_md->pattern = "TBB_SYSM"; | 
 | 	} | 
 |  | 
 | 	ret = this->scan_bbt(mtd); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	memset((char *)parts, 0, sizeof(parts)); | 
 | 	numparts = inftl_partscan(mtd, parts); | 
 | 	/* At least for now, require the INFTL Media Header.  We could probably | 
 | 	   do without it for non-INFTL use, since all it gives us is | 
 | 	   autopartitioning, but I want to give it more thought. */ | 
 | 	if (!numparts) | 
 | 		return -EIO; | 
 | 	return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); | 
 | } | 
 |  | 
 | static inline int __init doc2000_init(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 |  | 
 | 	this->read_byte = doc2000_read_byte; | 
 | 	this->write_buf = doc2000_writebuf; | 
 | 	this->read_buf = doc2000_readbuf; | 
 | 	doc->late_init = nftl_scan_bbt; | 
 |  | 
 | 	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; | 
 | 	doc2000_count_chips(mtd); | 
 | 	mtd->name = "DiskOnChip 2000 (NFTL Model)"; | 
 | 	return (4 * doc->chips_per_floor); | 
 | } | 
 |  | 
 | static inline int __init doc2001_init(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 |  | 
 | 	this->read_byte = doc2001_read_byte; | 
 | 	this->write_buf = doc2001_writebuf; | 
 | 	this->read_buf = doc2001_readbuf; | 
 |  | 
 | 	ReadDOC(doc->virtadr, ChipID); | 
 | 	ReadDOC(doc->virtadr, ChipID); | 
 | 	ReadDOC(doc->virtadr, ChipID); | 
 | 	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { | 
 | 		/* It's not a Millennium; it's one of the newer | 
 | 		   DiskOnChip 2000 units with a similar ASIC. | 
 | 		   Treat it like a Millennium, except that it | 
 | 		   can have multiple chips. */ | 
 | 		doc2000_count_chips(mtd); | 
 | 		mtd->name = "DiskOnChip 2000 (INFTL Model)"; | 
 | 		doc->late_init = inftl_scan_bbt; | 
 | 		return (4 * doc->chips_per_floor); | 
 | 	} else { | 
 | 		/* Bog-standard Millennium */ | 
 | 		doc->chips_per_floor = 1; | 
 | 		mtd->name = "DiskOnChip Millennium"; | 
 | 		doc->late_init = nftl_scan_bbt; | 
 | 		return 1; | 
 | 	} | 
 | } | 
 |  | 
 | static inline int __init doc2001plus_init(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *this = mtd_to_nand(mtd); | 
 | 	struct doc_priv *doc = nand_get_controller_data(this); | 
 |  | 
 | 	this->read_byte = doc2001plus_read_byte; | 
 | 	this->write_buf = doc2001plus_writebuf; | 
 | 	this->read_buf = doc2001plus_readbuf; | 
 | 	doc->late_init = inftl_scan_bbt; | 
 | 	this->cmd_ctrl = NULL; | 
 | 	this->select_chip = doc2001plus_select_chip; | 
 | 	this->cmdfunc = doc2001plus_command; | 
 | 	this->ecc.hwctl = doc2001plus_enable_hwecc; | 
 |  | 
 | 	doc->chips_per_floor = 1; | 
 | 	mtd->name = "DiskOnChip Millennium Plus"; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __init doc_probe(unsigned long physadr) | 
 | { | 
 | 	unsigned char ChipID; | 
 | 	struct mtd_info *mtd; | 
 | 	struct nand_chip *nand; | 
 | 	struct doc_priv *doc; | 
 | 	void __iomem *virtadr; | 
 | 	unsigned char save_control; | 
 | 	unsigned char tmp, tmpb, tmpc; | 
 | 	int reg, len, numchips; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip")) | 
 | 		return -EBUSY; | 
 | 	virtadr = ioremap(physadr, DOC_IOREMAP_LEN); | 
 | 	if (!virtadr) { | 
 | 		printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); | 
 | 		ret = -EIO; | 
 | 		goto error_ioremap; | 
 | 	} | 
 |  | 
 | 	/* It's not possible to cleanly detect the DiskOnChip - the | 
 | 	 * bootup procedure will put the device into reset mode, and | 
 | 	 * it's not possible to talk to it without actually writing | 
 | 	 * to the DOCControl register. So we store the current contents | 
 | 	 * of the DOCControl register's location, in case we later decide | 
 | 	 * that it's not a DiskOnChip, and want to put it back how we | 
 | 	 * found it. | 
 | 	 */ | 
 | 	save_control = ReadDOC(virtadr, DOCControl); | 
 |  | 
 | 	/* Reset the DiskOnChip ASIC */ | 
 | 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); | 
 | 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); | 
 |  | 
 | 	/* Enable the DiskOnChip ASIC */ | 
 | 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); | 
 | 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); | 
 |  | 
 | 	ChipID = ReadDOC(virtadr, ChipID); | 
 |  | 
 | 	switch (ChipID) { | 
 | 	case DOC_ChipID_Doc2k: | 
 | 		reg = DoC_2k_ECCStatus; | 
 | 		break; | 
 | 	case DOC_ChipID_DocMil: | 
 | 		reg = DoC_ECCConf; | 
 | 		break; | 
 | 	case DOC_ChipID_DocMilPlus16: | 
 | 	case DOC_ChipID_DocMilPlus32: | 
 | 	case 0: | 
 | 		/* Possible Millennium Plus, need to do more checks */ | 
 | 		/* Possibly release from power down mode */ | 
 | 		for (tmp = 0; (tmp < 4); tmp++) | 
 | 			ReadDOC(virtadr, Mplus_Power); | 
 |  | 
 | 		/* Reset the Millennium Plus ASIC */ | 
 | 		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; | 
 | 		WriteDOC(tmp, virtadr, Mplus_DOCControl); | 
 | 		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); | 
 |  | 
 | 		mdelay(1); | 
 | 		/* Enable the Millennium Plus ASIC */ | 
 | 		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; | 
 | 		WriteDOC(tmp, virtadr, Mplus_DOCControl); | 
 | 		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); | 
 | 		mdelay(1); | 
 |  | 
 | 		ChipID = ReadDOC(virtadr, ChipID); | 
 |  | 
 | 		switch (ChipID) { | 
 | 		case DOC_ChipID_DocMilPlus16: | 
 | 			reg = DoC_Mplus_Toggle; | 
 | 			break; | 
 | 		case DOC_ChipID_DocMilPlus32: | 
 | 			printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); | 
 | 		default: | 
 | 			ret = -ENODEV; | 
 | 			goto notfound; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		ret = -ENODEV; | 
 | 		goto notfound; | 
 | 	} | 
 | 	/* Check the TOGGLE bit in the ECC register */ | 
 | 	tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; | 
 | 	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; | 
 | 	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; | 
 | 	if ((tmp == tmpb) || (tmp != tmpc)) { | 
 | 		printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); | 
 | 		ret = -ENODEV; | 
 | 		goto notfound; | 
 | 	} | 
 |  | 
 | 	for (mtd = doclist; mtd; mtd = doc->nextdoc) { | 
 | 		unsigned char oldval; | 
 | 		unsigned char newval; | 
 | 		nand = mtd_to_nand(mtd); | 
 | 		doc = nand_get_controller_data(nand); | 
 | 		/* Use the alias resolution register to determine if this is | 
 | 		   in fact the same DOC aliased to a new address.  If writes | 
 | 		   to one chip's alias resolution register change the value on | 
 | 		   the other chip, they're the same chip. */ | 
 | 		if (ChipID == DOC_ChipID_DocMilPlus16) { | 
 | 			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); | 
 | 			newval = ReadDOC(virtadr, Mplus_AliasResolution); | 
 | 		} else { | 
 | 			oldval = ReadDOC(doc->virtadr, AliasResolution); | 
 | 			newval = ReadDOC(virtadr, AliasResolution); | 
 | 		} | 
 | 		if (oldval != newval) | 
 | 			continue; | 
 | 		if (ChipID == DOC_ChipID_DocMilPlus16) { | 
 | 			WriteDOC(~newval, virtadr, Mplus_AliasResolution); | 
 | 			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); | 
 | 			WriteDOC(newval, virtadr, Mplus_AliasResolution);	// restore it | 
 | 		} else { | 
 | 			WriteDOC(~newval, virtadr, AliasResolution); | 
 | 			oldval = ReadDOC(doc->virtadr, AliasResolution); | 
 | 			WriteDOC(newval, virtadr, AliasResolution);	// restore it | 
 | 		} | 
 | 		newval = ~newval; | 
 | 		if (oldval == newval) { | 
 | 			printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr); | 
 | 			goto notfound; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr); | 
 |  | 
 | 	len = sizeof(struct nand_chip) + sizeof(struct doc_priv) + | 
 | 	      (2 * sizeof(struct nand_bbt_descr)); | 
 | 	nand = kzalloc(len, GFP_KERNEL); | 
 | 	if (!nand) { | 
 | 		ret = -ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	mtd			= nand_to_mtd(nand); | 
 | 	doc			= (struct doc_priv *) (nand + 1); | 
 | 	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1); | 
 | 	nand->bbt_md		= nand->bbt_td + 1; | 
 |  | 
 | 	mtd->owner		= THIS_MODULE; | 
 | 	mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops); | 
 |  | 
 | 	nand_set_controller_data(nand, doc); | 
 | 	nand->select_chip	= doc200x_select_chip; | 
 | 	nand->cmd_ctrl		= doc200x_hwcontrol; | 
 | 	nand->dev_ready		= doc200x_dev_ready; | 
 | 	nand->waitfunc		= doc200x_wait; | 
 | 	nand->block_bad		= doc200x_block_bad; | 
 | 	nand->ecc.hwctl		= doc200x_enable_hwecc; | 
 | 	nand->ecc.calculate	= doc200x_calculate_ecc; | 
 | 	nand->ecc.correct	= doc200x_correct_data; | 
 |  | 
 | 	nand->ecc.mode		= NAND_ECC_HW_SYNDROME; | 
 | 	nand->ecc.size		= 512; | 
 | 	nand->ecc.bytes		= 6; | 
 | 	nand->ecc.strength	= 2; | 
 | 	nand->ecc.options	= NAND_ECC_GENERIC_ERASED_CHECK; | 
 | 	nand->bbt_options	= NAND_BBT_USE_FLASH; | 
 | 	/* Skip the automatic BBT scan so we can run it manually */ | 
 | 	nand->options		|= NAND_SKIP_BBTSCAN; | 
 |  | 
 | 	doc->physadr		= physadr; | 
 | 	doc->virtadr		= virtadr; | 
 | 	doc->ChipID		= ChipID; | 
 | 	doc->curfloor		= -1; | 
 | 	doc->curchip		= -1; | 
 | 	doc->mh0_page		= -1; | 
 | 	doc->mh1_page		= -1; | 
 | 	doc->nextdoc		= doclist; | 
 |  | 
 | 	if (ChipID == DOC_ChipID_Doc2k) | 
 | 		numchips = doc2000_init(mtd); | 
 | 	else if (ChipID == DOC_ChipID_DocMilPlus16) | 
 | 		numchips = doc2001plus_init(mtd); | 
 | 	else | 
 | 		numchips = doc2001_init(mtd); | 
 |  | 
 | 	if ((ret = nand_scan(mtd, numchips)) || (ret = doc->late_init(mtd))) { | 
 | 		/* DBB note: i believe nand_cleanup is necessary here, as | 
 | 		   buffers may have been allocated in nand_base.  Check with | 
 | 		   Thomas. FIX ME! */ | 
 | 		nand_cleanup(nand); | 
 | 		kfree(nand); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* Success! */ | 
 | 	doclist = mtd; | 
 | 	return 0; | 
 |  | 
 |  notfound: | 
 | 	/* Put back the contents of the DOCControl register, in case it's not | 
 | 	   actually a DiskOnChip.  */ | 
 | 	WriteDOC(save_control, virtadr, DOCControl); | 
 |  fail: | 
 | 	iounmap(virtadr); | 
 |  | 
 | error_ioremap: | 
 | 	release_mem_region(physadr, DOC_IOREMAP_LEN); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void release_nanddoc(void) | 
 | { | 
 | 	struct mtd_info *mtd, *nextmtd; | 
 | 	struct nand_chip *nand; | 
 | 	struct doc_priv *doc; | 
 |  | 
 | 	for (mtd = doclist; mtd; mtd = nextmtd) { | 
 | 		nand = mtd_to_nand(mtd); | 
 | 		doc = nand_get_controller_data(nand); | 
 |  | 
 | 		nextmtd = doc->nextdoc; | 
 | 		nand_release(nand); | 
 | 		iounmap(doc->virtadr); | 
 | 		release_mem_region(doc->physadr, DOC_IOREMAP_LEN); | 
 | 		kfree(nand); | 
 | 	} | 
 | } | 
 |  | 
 | static int __init init_nanddoc(void) | 
 | { | 
 | 	int i, ret = 0; | 
 |  | 
 | 	/* We could create the decoder on demand, if memory is a concern. | 
 | 	 * This way we have it handy, if an error happens | 
 | 	 * | 
 | 	 * Symbolsize is 10 (bits) | 
 | 	 * Primitve polynomial is x^10+x^3+1 | 
 | 	 * first consecutive root is 510 | 
 | 	 * primitve element to generate roots = 1 | 
 | 	 * generator polinomial degree = 4 | 
 | 	 */ | 
 | 	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); | 
 | 	if (!rs_decoder) { | 
 | 		printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (doc_config_location) { | 
 | 		printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); | 
 | 		ret = doc_probe(doc_config_location); | 
 | 		if (ret < 0) | 
 | 			goto outerr; | 
 | 	} else { | 
 | 		for (i = 0; (doc_locations[i] != 0xffffffff); i++) { | 
 | 			doc_probe(doc_locations[i]); | 
 | 		} | 
 | 	} | 
 | 	/* No banner message any more. Print a message if no DiskOnChip | 
 | 	   found, so the user knows we at least tried. */ | 
 | 	if (!doclist) { | 
 | 		printk(KERN_INFO "No valid DiskOnChip devices found\n"); | 
 | 		ret = -ENODEV; | 
 | 		goto outerr; | 
 | 	} | 
 | 	return 0; | 
 |  outerr: | 
 | 	free_rs(rs_decoder); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __exit cleanup_nanddoc(void) | 
 | { | 
 | 	/* Cleanup the nand/DoC resources */ | 
 | 	release_nanddoc(); | 
 |  | 
 | 	/* Free the reed solomon resources */ | 
 | 	if (rs_decoder) { | 
 | 		free_rs(rs_decoder); | 
 | 	} | 
 | } | 
 |  | 
 | module_init(init_nanddoc); | 
 | module_exit(cleanup_nanddoc); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); | 
 | MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver"); |