| /* | 
 |  * This file is part of UBIFS. | 
 |  * | 
 |  * Copyright (C) 2006-2008 Nokia Corporation. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License version 2 as published by | 
 |  * the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License along with | 
 |  * this program; if not, write to the Free Software Foundation, Inc., 51 | 
 |  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | 
 |  * | 
 |  * Authors: Adrian Hunter | 
 |  *          Artem Bityutskiy (Битюцкий Артём) | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file implements TNC (Tree Node Cache) which caches indexing nodes of | 
 |  * the UBIFS B-tree. | 
 |  * | 
 |  * At the moment the locking rules of the TNC tree are quite simple and | 
 |  * straightforward. We just have a mutex and lock it when we traverse the | 
 |  * tree. If a znode is not in memory, we read it from flash while still having | 
 |  * the mutex locked. | 
 |  */ | 
 |  | 
 | #include <linux/crc32.h> | 
 | #include <linux/slab.h> | 
 | #include "ubifs.h" | 
 |  | 
 | static int try_read_node(const struct ubifs_info *c, void *buf, int type, | 
 | 			 int len, int lnum, int offs); | 
 | static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, | 
 | 			      struct ubifs_zbranch *zbr, void *node); | 
 |  | 
 | /* | 
 |  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. | 
 |  * @NAME_LESS: name corresponding to the first argument is less than second | 
 |  * @NAME_MATCHES: names match | 
 |  * @NAME_GREATER: name corresponding to the second argument is greater than | 
 |  *                first | 
 |  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media | 
 |  * | 
 |  * These constants were introduce to improve readability. | 
 |  */ | 
 | enum { | 
 | 	NAME_LESS    = 0, | 
 | 	NAME_MATCHES = 1, | 
 | 	NAME_GREATER = 2, | 
 | 	NOT_ON_MEDIA = 3, | 
 | }; | 
 |  | 
 | /** | 
 |  * insert_old_idx - record an index node obsoleted since the last commit start. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: LEB number of obsoleted index node | 
 |  * @offs: offset of obsoleted index node | 
 |  * | 
 |  * Returns %0 on success, and a negative error code on failure. | 
 |  * | 
 |  * For recovery, there must always be a complete intact version of the index on | 
 |  * flash at all times. That is called the "old index". It is the index as at the | 
 |  * time of the last successful commit. Many of the index nodes in the old index | 
 |  * may be dirty, but they must not be erased until the next successful commit | 
 |  * (at which point that index becomes the old index). | 
 |  * | 
 |  * That means that the garbage collection and the in-the-gaps method of | 
 |  * committing must be able to determine if an index node is in the old index. | 
 |  * Most of the old index nodes can be found by looking up the TNC using the | 
 |  * 'lookup_znode()' function. However, some of the old index nodes may have | 
 |  * been deleted from the current index or may have been changed so much that | 
 |  * they cannot be easily found. In those cases, an entry is added to an RB-tree. | 
 |  * That is what this function does. The RB-tree is ordered by LEB number and | 
 |  * offset because they uniquely identify the old index node. | 
 |  */ | 
 | static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) | 
 | { | 
 | 	struct ubifs_old_idx *old_idx, *o; | 
 | 	struct rb_node **p, *parent = NULL; | 
 |  | 
 | 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); | 
 | 	if (unlikely(!old_idx)) | 
 | 		return -ENOMEM; | 
 | 	old_idx->lnum = lnum; | 
 | 	old_idx->offs = offs; | 
 |  | 
 | 	p = &c->old_idx.rb_node; | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		o = rb_entry(parent, struct ubifs_old_idx, rb); | 
 | 		if (lnum < o->lnum) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (lnum > o->lnum) | 
 | 			p = &(*p)->rb_right; | 
 | 		else if (offs < o->offs) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (offs > o->offs) | 
 | 			p = &(*p)->rb_right; | 
 | 		else { | 
 | 			ubifs_err(c, "old idx added twice!"); | 
 | 			kfree(old_idx); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	rb_link_node(&old_idx->rb, parent, p); | 
 | 	rb_insert_color(&old_idx->rb, &c->old_idx); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * insert_old_idx_znode - record a znode obsoleted since last commit start. | 
 |  * @c: UBIFS file-system description object | 
 |  * @znode: znode of obsoleted index node | 
 |  * | 
 |  * Returns %0 on success, and a negative error code on failure. | 
 |  */ | 
 | int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) | 
 | { | 
 | 	if (znode->parent) { | 
 | 		struct ubifs_zbranch *zbr; | 
 |  | 
 | 		zbr = &znode->parent->zbranch[znode->iip]; | 
 | 		if (zbr->len) | 
 | 			return insert_old_idx(c, zbr->lnum, zbr->offs); | 
 | 	} else | 
 | 		if (c->zroot.len) | 
 | 			return insert_old_idx(c, c->zroot.lnum, | 
 | 					      c->zroot.offs); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. | 
 |  * @c: UBIFS file-system description object | 
 |  * @znode: znode of obsoleted index node | 
 |  * | 
 |  * Returns %0 on success, and a negative error code on failure. | 
 |  */ | 
 | static int ins_clr_old_idx_znode(struct ubifs_info *c, | 
 | 				 struct ubifs_znode *znode) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (znode->parent) { | 
 | 		struct ubifs_zbranch *zbr; | 
 |  | 
 | 		zbr = &znode->parent->zbranch[znode->iip]; | 
 | 		if (zbr->len) { | 
 | 			err = insert_old_idx(c, zbr->lnum, zbr->offs); | 
 | 			if (err) | 
 | 				return err; | 
 | 			zbr->lnum = 0; | 
 | 			zbr->offs = 0; | 
 | 			zbr->len = 0; | 
 | 		} | 
 | 	} else | 
 | 		if (c->zroot.len) { | 
 | 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); | 
 | 			if (err) | 
 | 				return err; | 
 | 			c->zroot.lnum = 0; | 
 | 			c->zroot.offs = 0; | 
 | 			c->zroot.len = 0; | 
 | 		} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * destroy_old_idx - destroy the old_idx RB-tree. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * During start commit, the old_idx RB-tree is used to avoid overwriting index | 
 |  * nodes that were in the index last commit but have since been deleted.  This | 
 |  * is necessary for recovery i.e. the old index must be kept intact until the | 
 |  * new index is successfully written.  The old-idx RB-tree is used for the | 
 |  * in-the-gaps method of writing index nodes and is destroyed every commit. | 
 |  */ | 
 | void destroy_old_idx(struct ubifs_info *c) | 
 | { | 
 | 	struct ubifs_old_idx *old_idx, *n; | 
 |  | 
 | 	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb) | 
 | 		kfree(old_idx); | 
 |  | 
 | 	c->old_idx = RB_ROOT; | 
 | } | 
 |  | 
 | /** | 
 |  * copy_znode - copy a dirty znode. | 
 |  * @c: UBIFS file-system description object | 
 |  * @znode: znode to copy | 
 |  * | 
 |  * A dirty znode being committed may not be changed, so it is copied. | 
 |  */ | 
 | static struct ubifs_znode *copy_znode(struct ubifs_info *c, | 
 | 				      struct ubifs_znode *znode) | 
 | { | 
 | 	struct ubifs_znode *zn; | 
 |  | 
 | 	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS); | 
 | 	if (unlikely(!zn)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	zn->cnext = NULL; | 
 | 	__set_bit(DIRTY_ZNODE, &zn->flags); | 
 | 	__clear_bit(COW_ZNODE, &zn->flags); | 
 |  | 
 | 	ubifs_assert(!ubifs_zn_obsolete(znode)); | 
 | 	__set_bit(OBSOLETE_ZNODE, &znode->flags); | 
 |  | 
 | 	if (znode->level != 0) { | 
 | 		int i; | 
 | 		const int n = zn->child_cnt; | 
 |  | 
 | 		/* The children now have new parent */ | 
 | 		for (i = 0; i < n; i++) { | 
 | 			struct ubifs_zbranch *zbr = &zn->zbranch[i]; | 
 |  | 
 | 			if (zbr->znode) | 
 | 				zbr->znode->parent = zn; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	atomic_long_inc(&c->dirty_zn_cnt); | 
 | 	return zn; | 
 | } | 
 |  | 
 | /** | 
 |  * add_idx_dirt - add dirt due to a dirty znode. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: LEB number of index node | 
 |  * @dirt: size of index node | 
 |  * | 
 |  * This function updates lprops dirty space and the new size of the index. | 
 |  */ | 
 | static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) | 
 | { | 
 | 	c->calc_idx_sz -= ALIGN(dirt, 8); | 
 | 	return ubifs_add_dirt(c, lnum, dirt); | 
 | } | 
 |  | 
 | /** | 
 |  * dirty_cow_znode - ensure a znode is not being committed. | 
 |  * @c: UBIFS file-system description object | 
 |  * @zbr: branch of znode to check | 
 |  * | 
 |  * Returns dirtied znode on success or negative error code on failure. | 
 |  */ | 
 | static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, | 
 | 					   struct ubifs_zbranch *zbr) | 
 | { | 
 | 	struct ubifs_znode *znode = zbr->znode; | 
 | 	struct ubifs_znode *zn; | 
 | 	int err; | 
 |  | 
 | 	if (!ubifs_zn_cow(znode)) { | 
 | 		/* znode is not being committed */ | 
 | 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { | 
 | 			atomic_long_inc(&c->dirty_zn_cnt); | 
 | 			atomic_long_dec(&c->clean_zn_cnt); | 
 | 			atomic_long_dec(&ubifs_clean_zn_cnt); | 
 | 			err = add_idx_dirt(c, zbr->lnum, zbr->len); | 
 | 			if (unlikely(err)) | 
 | 				return ERR_PTR(err); | 
 | 		} | 
 | 		return znode; | 
 | 	} | 
 |  | 
 | 	zn = copy_znode(c, znode); | 
 | 	if (IS_ERR(zn)) | 
 | 		return zn; | 
 |  | 
 | 	if (zbr->len) { | 
 | 		err = insert_old_idx(c, zbr->lnum, zbr->offs); | 
 | 		if (unlikely(err)) | 
 | 			return ERR_PTR(err); | 
 | 		err = add_idx_dirt(c, zbr->lnum, zbr->len); | 
 | 	} else | 
 | 		err = 0; | 
 |  | 
 | 	zbr->znode = zn; | 
 | 	zbr->lnum = 0; | 
 | 	zbr->offs = 0; | 
 | 	zbr->len = 0; | 
 |  | 
 | 	if (unlikely(err)) | 
 | 		return ERR_PTR(err); | 
 | 	return zn; | 
 | } | 
 |  | 
 | /** | 
 |  * lnc_add - add a leaf node to the leaf node cache. | 
 |  * @c: UBIFS file-system description object | 
 |  * @zbr: zbranch of leaf node | 
 |  * @node: leaf node | 
 |  * | 
 |  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The | 
 |  * purpose of the leaf node cache is to save re-reading the same leaf node over | 
 |  * and over again. Most things are cached by VFS, however the file system must | 
 |  * cache directory entries for readdir and for resolving hash collisions. The | 
 |  * present implementation of the leaf node cache is extremely simple, and | 
 |  * allows for error returns that are not used but that may be needed if a more | 
 |  * complex implementation is created. | 
 |  * | 
 |  * Note, this function does not add the @node object to LNC directly, but | 
 |  * allocates a copy of the object and adds the copy to LNC. The reason for this | 
 |  * is that @node has been allocated outside of the TNC subsystem and will be | 
 |  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC | 
 |  * may be changed at any time, e.g. freed by the shrinker. | 
 |  */ | 
 | static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, | 
 | 		   const void *node) | 
 | { | 
 | 	int err; | 
 | 	void *lnc_node; | 
 | 	const struct ubifs_dent_node *dent = node; | 
 |  | 
 | 	ubifs_assert(!zbr->leaf); | 
 | 	ubifs_assert(zbr->len != 0); | 
 | 	ubifs_assert(is_hash_key(c, &zbr->key)); | 
 |  | 
 | 	err = ubifs_validate_entry(c, dent); | 
 | 	if (err) { | 
 | 		dump_stack(); | 
 | 		ubifs_dump_node(c, dent); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	lnc_node = kmemdup(node, zbr->len, GFP_NOFS); | 
 | 	if (!lnc_node) | 
 | 		/* We don't have to have the cache, so no error */ | 
 | 		return 0; | 
 |  | 
 | 	zbr->leaf = lnc_node; | 
 | 	return 0; | 
 | } | 
 |  | 
 |  /** | 
 |  * lnc_add_directly - add a leaf node to the leaf-node-cache. | 
 |  * @c: UBIFS file-system description object | 
 |  * @zbr: zbranch of leaf node | 
 |  * @node: leaf node | 
 |  * | 
 |  * This function is similar to 'lnc_add()', but it does not create a copy of | 
 |  * @node but inserts @node to TNC directly. | 
 |  */ | 
 | static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, | 
 | 			    void *node) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	ubifs_assert(!zbr->leaf); | 
 | 	ubifs_assert(zbr->len != 0); | 
 |  | 
 | 	err = ubifs_validate_entry(c, node); | 
 | 	if (err) { | 
 | 		dump_stack(); | 
 | 		ubifs_dump_node(c, node); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	zbr->leaf = node; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * lnc_free - remove a leaf node from the leaf node cache. | 
 |  * @zbr: zbranch of leaf node | 
 |  * @node: leaf node | 
 |  */ | 
 | static void lnc_free(struct ubifs_zbranch *zbr) | 
 | { | 
 | 	if (!zbr->leaf) | 
 | 		return; | 
 | 	kfree(zbr->leaf); | 
 | 	zbr->leaf = NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * tnc_read_hashed_node - read a "hashed" leaf node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @zbr: key and position of the node | 
 |  * @node: node is returned here | 
 |  * | 
 |  * This function reads a "hashed" node defined by @zbr from the leaf node cache | 
 |  * (in it is there) or from the hash media, in which case the node is also | 
 |  * added to LNC. Returns zero in case of success or a negative negative error | 
 |  * code in case of failure. | 
 |  */ | 
 | static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, | 
 | 				void *node) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	ubifs_assert(is_hash_key(c, &zbr->key)); | 
 |  | 
 | 	if (zbr->leaf) { | 
 | 		/* Read from the leaf node cache */ | 
 | 		ubifs_assert(zbr->len != 0); | 
 | 		memcpy(node, zbr->leaf, zbr->len); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (c->replaying) { | 
 | 		err = fallible_read_node(c, &zbr->key, zbr, node); | 
 | 		/* | 
 | 		 * When the node was not found, return -ENOENT, 0 otherwise. | 
 | 		 * Negative return codes stay as-is. | 
 | 		 */ | 
 | 		if (err == 0) | 
 | 			err = -ENOENT; | 
 | 		else if (err == 1) | 
 | 			err = 0; | 
 | 	} else { | 
 | 		err = ubifs_tnc_read_node(c, zbr, node); | 
 | 	} | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Add the node to the leaf node cache */ | 
 | 	err = lnc_add(c, zbr, node); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * try_read_node - read a node if it is a node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer to read to | 
 |  * @type: node type | 
 |  * @len: node length (not aligned) | 
 |  * @lnum: LEB number of node to read | 
 |  * @offs: offset of node to read | 
 |  * | 
 |  * This function tries to read a node of known type and length, checks it and | 
 |  * stores it in @buf. This function returns %1 if a node is present and %0 if | 
 |  * a node is not present. A negative error code is returned for I/O errors. | 
 |  * This function performs that same function as ubifs_read_node except that | 
 |  * it does not require that there is actually a node present and instead | 
 |  * the return code indicates if a node was read. | 
 |  * | 
 |  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc | 
 |  * is true (it is controlled by corresponding mount option). However, if | 
 |  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to | 
 |  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is | 
 |  * because during mounting or re-mounting from R/O mode to R/W mode we may read | 
 |  * journal nodes (when replying the journal or doing the recovery) and the | 
 |  * journal nodes may potentially be corrupted, so checking is required. | 
 |  */ | 
 | static int try_read_node(const struct ubifs_info *c, void *buf, int type, | 
 | 			 int len, int lnum, int offs) | 
 | { | 
 | 	int err, node_len; | 
 | 	struct ubifs_ch *ch = buf; | 
 | 	uint32_t crc, node_crc; | 
 |  | 
 | 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); | 
 |  | 
 | 	err = ubifs_leb_read(c, lnum, buf, offs, len, 1); | 
 | 	if (err) { | 
 | 		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d", | 
 | 			  type, lnum, offs, err); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) | 
 | 		return 0; | 
 |  | 
 | 	if (ch->node_type != type) | 
 | 		return 0; | 
 |  | 
 | 	node_len = le32_to_cpu(ch->len); | 
 | 	if (node_len != len) | 
 | 		return 0; | 
 |  | 
 | 	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting && | 
 | 	    !c->remounting_rw) | 
 | 		return 1; | 
 |  | 
 | 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); | 
 | 	node_crc = le32_to_cpu(ch->crc); | 
 | 	if (crc != node_crc) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * fallible_read_node - try to read a leaf node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key:  key of node to read | 
 |  * @zbr:  position of node | 
 |  * @node: node returned | 
 |  * | 
 |  * This function tries to read a node and returns %1 if the node is read, %0 | 
 |  * if the node is not present, and a negative error code in the case of error. | 
 |  */ | 
 | static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, | 
 | 			      struct ubifs_zbranch *zbr, void *node) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs); | 
 |  | 
 | 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, | 
 | 			    zbr->offs); | 
 | 	if (ret == 1) { | 
 | 		union ubifs_key node_key; | 
 | 		struct ubifs_dent_node *dent = node; | 
 |  | 
 | 		/* All nodes have key in the same place */ | 
 | 		key_read(c, &dent->key, &node_key); | 
 | 		if (keys_cmp(c, key, &node_key) != 0) | 
 | 			ret = 0; | 
 | 	} | 
 | 	if (ret == 0 && c->replaying) | 
 | 		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ", | 
 | 			zbr->lnum, zbr->offs, zbr->len); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * matches_name - determine if a direntry or xattr entry matches a given name. | 
 |  * @c: UBIFS file-system description object | 
 |  * @zbr: zbranch of dent | 
 |  * @nm: name to match | 
 |  * | 
 |  * This function checks if xentry/direntry referred by zbranch @zbr matches name | 
 |  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by | 
 |  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case | 
 |  * of failure, a negative error code is returned. | 
 |  */ | 
 | static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, | 
 | 			const struct fscrypt_name *nm) | 
 | { | 
 | 	struct ubifs_dent_node *dent; | 
 | 	int nlen, err; | 
 |  | 
 | 	/* If possible, match against the dent in the leaf node cache */ | 
 | 	if (!zbr->leaf) { | 
 | 		dent = kmalloc(zbr->len, GFP_NOFS); | 
 | 		if (!dent) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		err = ubifs_tnc_read_node(c, zbr, dent); | 
 | 		if (err) | 
 | 			goto out_free; | 
 |  | 
 | 		/* Add the node to the leaf node cache */ | 
 | 		err = lnc_add_directly(c, zbr, dent); | 
 | 		if (err) | 
 | 			goto out_free; | 
 | 	} else | 
 | 		dent = zbr->leaf; | 
 |  | 
 | 	nlen = le16_to_cpu(dent->nlen); | 
 | 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); | 
 | 	if (err == 0) { | 
 | 		if (nlen == fname_len(nm)) | 
 | 			return NAME_MATCHES; | 
 | 		else if (nlen < fname_len(nm)) | 
 | 			return NAME_LESS; | 
 | 		else | 
 | 			return NAME_GREATER; | 
 | 	} else if (err < 0) | 
 | 		return NAME_LESS; | 
 | 	else | 
 | 		return NAME_GREATER; | 
 |  | 
 | out_free: | 
 | 	kfree(dent); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * get_znode - get a TNC znode that may not be loaded yet. | 
 |  * @c: UBIFS file-system description object | 
 |  * @znode: parent znode | 
 |  * @n: znode branch slot number | 
 |  * | 
 |  * This function returns the znode or a negative error code. | 
 |  */ | 
 | static struct ubifs_znode *get_znode(struct ubifs_info *c, | 
 | 				     struct ubifs_znode *znode, int n) | 
 | { | 
 | 	struct ubifs_zbranch *zbr; | 
 |  | 
 | 	zbr = &znode->zbranch[n]; | 
 | 	if (zbr->znode) | 
 | 		znode = zbr->znode; | 
 | 	else | 
 | 		znode = ubifs_load_znode(c, zbr, znode, n); | 
 | 	return znode; | 
 | } | 
 |  | 
 | /** | 
 |  * tnc_next - find next TNC entry. | 
 |  * @c: UBIFS file-system description object | 
 |  * @zn: znode is passed and returned here | 
 |  * @n: znode branch slot number is passed and returned here | 
 |  * | 
 |  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is | 
 |  * no next entry, or a negative error code otherwise. | 
 |  */ | 
 | static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) | 
 | { | 
 | 	struct ubifs_znode *znode = *zn; | 
 | 	int nn = *n; | 
 |  | 
 | 	nn += 1; | 
 | 	if (nn < znode->child_cnt) { | 
 | 		*n = nn; | 
 | 		return 0; | 
 | 	} | 
 | 	while (1) { | 
 | 		struct ubifs_znode *zp; | 
 |  | 
 | 		zp = znode->parent; | 
 | 		if (!zp) | 
 | 			return -ENOENT; | 
 | 		nn = znode->iip + 1; | 
 | 		znode = zp; | 
 | 		if (nn < znode->child_cnt) { | 
 | 			znode = get_znode(c, znode, nn); | 
 | 			if (IS_ERR(znode)) | 
 | 				return PTR_ERR(znode); | 
 | 			while (znode->level != 0) { | 
 | 				znode = get_znode(c, znode, 0); | 
 | 				if (IS_ERR(znode)) | 
 | 					return PTR_ERR(znode); | 
 | 			} | 
 | 			nn = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	*zn = znode; | 
 | 	*n = nn; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * tnc_prev - find previous TNC entry. | 
 |  * @c: UBIFS file-system description object | 
 |  * @zn: znode is returned here | 
 |  * @n: znode branch slot number is passed and returned here | 
 |  * | 
 |  * This function returns %0 if the previous TNC entry is found, %-ENOENT if | 
 |  * there is no next entry, or a negative error code otherwise. | 
 |  */ | 
 | static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) | 
 | { | 
 | 	struct ubifs_znode *znode = *zn; | 
 | 	int nn = *n; | 
 |  | 
 | 	if (nn > 0) { | 
 | 		*n = nn - 1; | 
 | 		return 0; | 
 | 	} | 
 | 	while (1) { | 
 | 		struct ubifs_znode *zp; | 
 |  | 
 | 		zp = znode->parent; | 
 | 		if (!zp) | 
 | 			return -ENOENT; | 
 | 		nn = znode->iip - 1; | 
 | 		znode = zp; | 
 | 		if (nn >= 0) { | 
 | 			znode = get_znode(c, znode, nn); | 
 | 			if (IS_ERR(znode)) | 
 | 				return PTR_ERR(znode); | 
 | 			while (znode->level != 0) { | 
 | 				nn = znode->child_cnt - 1; | 
 | 				znode = get_znode(c, znode, nn); | 
 | 				if (IS_ERR(znode)) | 
 | 					return PTR_ERR(znode); | 
 | 			} | 
 | 			nn = znode->child_cnt - 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	*zn = znode; | 
 | 	*n = nn; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * resolve_collision - resolve a collision. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: key of a directory or extended attribute entry | 
 |  * @zn: znode is returned here | 
 |  * @n: zbranch number is passed and returned here | 
 |  * @nm: name of the entry | 
 |  * | 
 |  * This function is called for "hashed" keys to make sure that the found key | 
 |  * really corresponds to the looked up node (directory or extended attribute | 
 |  * entry). It returns %1 and sets @zn and @n if the collision is resolved. | 
 |  * %0 is returned if @nm is not found and @zn and @n are set to the previous | 
 |  * entry, i.e. to the entry after which @nm could follow if it were in TNC. | 
 |  * This means that @n may be set to %-1 if the leftmost key in @zn is the | 
 |  * previous one. A negative error code is returned on failures. | 
 |  */ | 
 | static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, | 
 | 			     struct ubifs_znode **zn, int *n, | 
 | 			     const struct fscrypt_name *nm) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = matches_name(c, &(*zn)->zbranch[*n], nm); | 
 | 	if (unlikely(err < 0)) | 
 | 		return err; | 
 | 	if (err == NAME_MATCHES) | 
 | 		return 1; | 
 |  | 
 | 	if (err == NAME_GREATER) { | 
 | 		/* Look left */ | 
 | 		while (1) { | 
 | 			err = tnc_prev(c, zn, n); | 
 | 			if (err == -ENOENT) { | 
 | 				ubifs_assert(*n == 0); | 
 | 				*n = -1; | 
 | 				return 0; | 
 | 			} | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { | 
 | 				/* | 
 | 				 * We have found the branch after which we would | 
 | 				 * like to insert, but inserting in this znode | 
 | 				 * may still be wrong. Consider the following 3 | 
 | 				 * znodes, in the case where we are resolving a | 
 | 				 * collision with Key2. | 
 | 				 * | 
 | 				 *                  znode zp | 
 | 				 *            ---------------------- | 
 | 				 * level 1     |  Key0  |  Key1  | | 
 | 				 *            ----------------------- | 
 | 				 *                 |            | | 
 | 				 *       znode za  |            |  znode zb | 
 | 				 *          ------------      ------------ | 
 | 				 * level 0  |  Key0  |        |  Key2  | | 
 | 				 *          ------------      ------------ | 
 | 				 * | 
 | 				 * The lookup finds Key2 in znode zb. Lets say | 
 | 				 * there is no match and the name is greater so | 
 | 				 * we look left. When we find Key0, we end up | 
 | 				 * here. If we return now, we will insert into | 
 | 				 * znode za at slot n = 1.  But that is invalid | 
 | 				 * according to the parent's keys.  Key2 must | 
 | 				 * be inserted into znode zb. | 
 | 				 * | 
 | 				 * Note, this problem is not relevant for the | 
 | 				 * case when we go right, because | 
 | 				 * 'tnc_insert()' would correct the parent key. | 
 | 				 */ | 
 | 				if (*n == (*zn)->child_cnt - 1) { | 
 | 					err = tnc_next(c, zn, n); | 
 | 					if (err) { | 
 | 						/* Should be impossible */ | 
 | 						ubifs_assert(0); | 
 | 						if (err == -ENOENT) | 
 | 							err = -EINVAL; | 
 | 						return err; | 
 | 					} | 
 | 					ubifs_assert(*n == 0); | 
 | 					*n = -1; | 
 | 				} | 
 | 				return 0; | 
 | 			} | 
 | 			err = matches_name(c, &(*zn)->zbranch[*n], nm); | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 			if (err == NAME_LESS) | 
 | 				return 0; | 
 | 			if (err == NAME_MATCHES) | 
 | 				return 1; | 
 | 			ubifs_assert(err == NAME_GREATER); | 
 | 		} | 
 | 	} else { | 
 | 		int nn = *n; | 
 | 		struct ubifs_znode *znode = *zn; | 
 |  | 
 | 		/* Look right */ | 
 | 		while (1) { | 
 | 			err = tnc_next(c, &znode, &nn); | 
 | 			if (err == -ENOENT) | 
 | 				return 0; | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 			if (keys_cmp(c, &znode->zbranch[nn].key, key)) | 
 | 				return 0; | 
 | 			err = matches_name(c, &znode->zbranch[nn], nm); | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 			if (err == NAME_GREATER) | 
 | 				return 0; | 
 | 			*zn = znode; | 
 | 			*n = nn; | 
 | 			if (err == NAME_MATCHES) | 
 | 				return 1; | 
 | 			ubifs_assert(err == NAME_LESS); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * fallible_matches_name - determine if a dent matches a given name. | 
 |  * @c: UBIFS file-system description object | 
 |  * @zbr: zbranch of dent | 
 |  * @nm: name to match | 
 |  * | 
 |  * This is a "fallible" version of 'matches_name()' function which does not | 
 |  * panic if the direntry/xentry referred by @zbr does not exist on the media. | 
 |  * | 
 |  * This function checks if xentry/direntry referred by zbranch @zbr matches name | 
 |  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr | 
 |  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA | 
 |  * if xentry/direntry referred by @zbr does not exist on the media. A negative | 
 |  * error code is returned in case of failure. | 
 |  */ | 
 | static int fallible_matches_name(struct ubifs_info *c, | 
 | 				 struct ubifs_zbranch *zbr, | 
 | 				 const struct fscrypt_name *nm) | 
 | { | 
 | 	struct ubifs_dent_node *dent; | 
 | 	int nlen, err; | 
 |  | 
 | 	/* If possible, match against the dent in the leaf node cache */ | 
 | 	if (!zbr->leaf) { | 
 | 		dent = kmalloc(zbr->len, GFP_NOFS); | 
 | 		if (!dent) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		err = fallible_read_node(c, &zbr->key, zbr, dent); | 
 | 		if (err < 0) | 
 | 			goto out_free; | 
 | 		if (err == 0) { | 
 | 			/* The node was not present */ | 
 | 			err = NOT_ON_MEDIA; | 
 | 			goto out_free; | 
 | 		} | 
 | 		ubifs_assert(err == 1); | 
 |  | 
 | 		err = lnc_add_directly(c, zbr, dent); | 
 | 		if (err) | 
 | 			goto out_free; | 
 | 	} else | 
 | 		dent = zbr->leaf; | 
 |  | 
 | 	nlen = le16_to_cpu(dent->nlen); | 
 | 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); | 
 | 	if (err == 0) { | 
 | 		if (nlen == fname_len(nm)) | 
 | 			return NAME_MATCHES; | 
 | 		else if (nlen < fname_len(nm)) | 
 | 			return NAME_LESS; | 
 | 		else | 
 | 			return NAME_GREATER; | 
 | 	} else if (err < 0) | 
 | 		return NAME_LESS; | 
 | 	else | 
 | 		return NAME_GREATER; | 
 |  | 
 | out_free: | 
 | 	kfree(dent); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * fallible_resolve_collision - resolve a collision even if nodes are missing. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: key | 
 |  * @zn: znode is returned here | 
 |  * @n: branch number is passed and returned here | 
 |  * @nm: name of directory entry | 
 |  * @adding: indicates caller is adding a key to the TNC | 
 |  * | 
 |  * This is a "fallible" version of the 'resolve_collision()' function which | 
 |  * does not panic if one of the nodes referred to by TNC does not exist on the | 
 |  * media. This may happen when replaying the journal if a deleted node was | 
 |  * Garbage-collected and the commit was not done. A branch that refers to a node | 
 |  * that is not present is called a dangling branch. The following are the return | 
 |  * codes for this function: | 
 |  *  o if @nm was found, %1 is returned and @zn and @n are set to the found | 
 |  *    branch; | 
 |  *  o if we are @adding and @nm was not found, %0 is returned; | 
 |  *  o if we are not @adding and @nm was not found, but a dangling branch was | 
 |  *    found, then %1 is returned and @zn and @n are set to the dangling branch; | 
 |  *  o a negative error code is returned in case of failure. | 
 |  */ | 
 | static int fallible_resolve_collision(struct ubifs_info *c, | 
 | 				      const union ubifs_key *key, | 
 | 				      struct ubifs_znode **zn, int *n, | 
 | 				      const struct fscrypt_name *nm, | 
 | 				      int adding) | 
 | { | 
 | 	struct ubifs_znode *o_znode = NULL, *znode = *zn; | 
 | 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; | 
 |  | 
 | 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); | 
 | 	if (unlikely(cmp < 0)) | 
 | 		return cmp; | 
 | 	if (cmp == NAME_MATCHES) | 
 | 		return 1; | 
 | 	if (cmp == NOT_ON_MEDIA) { | 
 | 		o_znode = znode; | 
 | 		o_n = nn; | 
 | 		/* | 
 | 		 * We are unlucky and hit a dangling branch straight away. | 
 | 		 * Now we do not really know where to go to find the needed | 
 | 		 * branch - to the left or to the right. Well, let's try left. | 
 | 		 */ | 
 | 		unsure = 1; | 
 | 	} else if (!adding) | 
 | 		unsure = 1; /* Remove a dangling branch wherever it is */ | 
 |  | 
 | 	if (cmp == NAME_GREATER || unsure) { | 
 | 		/* Look left */ | 
 | 		while (1) { | 
 | 			err = tnc_prev(c, zn, n); | 
 | 			if (err == -ENOENT) { | 
 | 				ubifs_assert(*n == 0); | 
 | 				*n = -1; | 
 | 				break; | 
 | 			} | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { | 
 | 				/* See comments in 'resolve_collision()' */ | 
 | 				if (*n == (*zn)->child_cnt - 1) { | 
 | 					err = tnc_next(c, zn, n); | 
 | 					if (err) { | 
 | 						/* Should be impossible */ | 
 | 						ubifs_assert(0); | 
 | 						if (err == -ENOENT) | 
 | 							err = -EINVAL; | 
 | 						return err; | 
 | 					} | 
 | 					ubifs_assert(*n == 0); | 
 | 					*n = -1; | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 			if (err == NAME_MATCHES) | 
 | 				return 1; | 
 | 			if (err == NOT_ON_MEDIA) { | 
 | 				o_znode = *zn; | 
 | 				o_n = *n; | 
 | 				continue; | 
 | 			} | 
 | 			if (!adding) | 
 | 				continue; | 
 | 			if (err == NAME_LESS) | 
 | 				break; | 
 | 			else | 
 | 				unsure = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (cmp == NAME_LESS || unsure) { | 
 | 		/* Look right */ | 
 | 		*zn = znode; | 
 | 		*n = nn; | 
 | 		while (1) { | 
 | 			err = tnc_next(c, &znode, &nn); | 
 | 			if (err == -ENOENT) | 
 | 				break; | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 			if (keys_cmp(c, &znode->zbranch[nn].key, key)) | 
 | 				break; | 
 | 			err = fallible_matches_name(c, &znode->zbranch[nn], nm); | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 			if (err == NAME_GREATER) | 
 | 				break; | 
 | 			*zn = znode; | 
 | 			*n = nn; | 
 | 			if (err == NAME_MATCHES) | 
 | 				return 1; | 
 | 			if (err == NOT_ON_MEDIA) { | 
 | 				o_znode = znode; | 
 | 				o_n = nn; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Never match a dangling branch when adding */ | 
 | 	if (adding || !o_znode) | 
 | 		return 0; | 
 |  | 
 | 	dbg_mntk(key, "dangling match LEB %d:%d len %d key ", | 
 | 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, | 
 | 		o_znode->zbranch[o_n].len); | 
 | 	*zn = o_znode; | 
 | 	*n = o_n; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * matches_position - determine if a zbranch matches a given position. | 
 |  * @zbr: zbranch of dent | 
 |  * @lnum: LEB number of dent to match | 
 |  * @offs: offset of dent to match | 
 |  * | 
 |  * This function returns %1 if @lnum:@offs matches, and %0 otherwise. | 
 |  */ | 
 | static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) | 
 | { | 
 | 	if (zbr->lnum == lnum && zbr->offs == offs) | 
 | 		return 1; | 
 | 	else | 
 | 		return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * resolve_collision_directly - resolve a collision directly. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: key of directory entry | 
 |  * @zn: znode is passed and returned here | 
 |  * @n: zbranch number is passed and returned here | 
 |  * @lnum: LEB number of dent node to match | 
 |  * @offs: offset of dent node to match | 
 |  * | 
 |  * This function is used for "hashed" keys to make sure the found directory or | 
 |  * extended attribute entry node is what was looked for. It is used when the | 
 |  * flash address of the right node is known (@lnum:@offs) which makes it much | 
 |  * easier to resolve collisions (no need to read entries and match full | 
 |  * names). This function returns %1 and sets @zn and @n if the collision is | 
 |  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the | 
 |  * previous directory entry. Otherwise a negative error code is returned. | 
 |  */ | 
 | static int resolve_collision_directly(struct ubifs_info *c, | 
 | 				      const union ubifs_key *key, | 
 | 				      struct ubifs_znode **zn, int *n, | 
 | 				      int lnum, int offs) | 
 | { | 
 | 	struct ubifs_znode *znode; | 
 | 	int nn, err; | 
 |  | 
 | 	znode = *zn; | 
 | 	nn = *n; | 
 | 	if (matches_position(&znode->zbranch[nn], lnum, offs)) | 
 | 		return 1; | 
 |  | 
 | 	/* Look left */ | 
 | 	while (1) { | 
 | 		err = tnc_prev(c, &znode, &nn); | 
 | 		if (err == -ENOENT) | 
 | 			break; | 
 | 		if (err < 0) | 
 | 			return err; | 
 | 		if (keys_cmp(c, &znode->zbranch[nn].key, key)) | 
 | 			break; | 
 | 		if (matches_position(&znode->zbranch[nn], lnum, offs)) { | 
 | 			*zn = znode; | 
 | 			*n = nn; | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Look right */ | 
 | 	znode = *zn; | 
 | 	nn = *n; | 
 | 	while (1) { | 
 | 		err = tnc_next(c, &znode, &nn); | 
 | 		if (err == -ENOENT) | 
 | 			return 0; | 
 | 		if (err < 0) | 
 | 			return err; | 
 | 		if (keys_cmp(c, &znode->zbranch[nn].key, key)) | 
 | 			return 0; | 
 | 		*zn = znode; | 
 | 		*n = nn; | 
 | 		if (matches_position(&znode->zbranch[nn], lnum, offs)) | 
 | 			return 1; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * dirty_cow_bottom_up - dirty a znode and its ancestors. | 
 |  * @c: UBIFS file-system description object | 
 |  * @znode: znode to dirty | 
 |  * | 
 |  * If we do not have a unique key that resides in a znode, then we cannot | 
 |  * dirty that znode from the top down (i.e. by using lookup_level0_dirty) | 
 |  * This function records the path back to the last dirty ancestor, and then | 
 |  * dirties the znodes on that path. | 
 |  */ | 
 | static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, | 
 | 					       struct ubifs_znode *znode) | 
 | { | 
 | 	struct ubifs_znode *zp; | 
 | 	int *path = c->bottom_up_buf, p = 0; | 
 |  | 
 | 	ubifs_assert(c->zroot.znode); | 
 | 	ubifs_assert(znode); | 
 | 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { | 
 | 		kfree(c->bottom_up_buf); | 
 | 		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int), | 
 | 					   GFP_NOFS); | 
 | 		if (!c->bottom_up_buf) | 
 | 			return ERR_PTR(-ENOMEM); | 
 | 		path = c->bottom_up_buf; | 
 | 	} | 
 | 	if (c->zroot.znode->level) { | 
 | 		/* Go up until parent is dirty */ | 
 | 		while (1) { | 
 | 			int n; | 
 |  | 
 | 			zp = znode->parent; | 
 | 			if (!zp) | 
 | 				break; | 
 | 			n = znode->iip; | 
 | 			ubifs_assert(p < c->zroot.znode->level); | 
 | 			path[p++] = n; | 
 | 			if (!zp->cnext && ubifs_zn_dirty(znode)) | 
 | 				break; | 
 | 			znode = zp; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Come back down, dirtying as we go */ | 
 | 	while (1) { | 
 | 		struct ubifs_zbranch *zbr; | 
 |  | 
 | 		zp = znode->parent; | 
 | 		if (zp) { | 
 | 			ubifs_assert(path[p - 1] >= 0); | 
 | 			ubifs_assert(path[p - 1] < zp->child_cnt); | 
 | 			zbr = &zp->zbranch[path[--p]]; | 
 | 			znode = dirty_cow_znode(c, zbr); | 
 | 		} else { | 
 | 			ubifs_assert(znode == c->zroot.znode); | 
 | 			znode = dirty_cow_znode(c, &c->zroot); | 
 | 		} | 
 | 		if (IS_ERR(znode) || !p) | 
 | 			break; | 
 | 		ubifs_assert(path[p - 1] >= 0); | 
 | 		ubifs_assert(path[p - 1] < znode->child_cnt); | 
 | 		znode = znode->zbranch[path[p - 1]].znode; | 
 | 	} | 
 |  | 
 | 	return znode; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_lookup_level0 - search for zero-level znode. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key:  key to lookup | 
 |  * @zn: znode is returned here | 
 |  * @n: znode branch slot number is returned here | 
 |  * | 
 |  * This function looks up the TNC tree and search for zero-level znode which | 
 |  * refers key @key. The found zero-level znode is returned in @zn. There are 3 | 
 |  * cases: | 
 |  *   o exact match, i.e. the found zero-level znode contains key @key, then %1 | 
 |  *     is returned and slot number of the matched branch is stored in @n; | 
 |  *   o not exact match, which means that zero-level znode does not contain | 
 |  *     @key, then %0 is returned and slot number of the closest branch or %-1 | 
 |  *     is stored in @n; In this case calling tnc_next() is mandatory. | 
 |  *   o @key is so small that it is even less than the lowest key of the | 
 |  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n. | 
 |  * | 
 |  * Note, when the TNC tree is traversed, some znodes may be absent, then this | 
 |  * function reads corresponding indexing nodes and inserts them to TNC. In | 
 |  * case of failure, a negative error code is returned. | 
 |  */ | 
 | int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, | 
 | 			struct ubifs_znode **zn, int *n) | 
 | { | 
 | 	int err, exact; | 
 | 	struct ubifs_znode *znode; | 
 | 	unsigned long time = get_seconds(); | 
 |  | 
 | 	dbg_tnck(key, "search key "); | 
 | 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); | 
 |  | 
 | 	znode = c->zroot.znode; | 
 | 	if (unlikely(!znode)) { | 
 | 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0); | 
 | 		if (IS_ERR(znode)) | 
 | 			return PTR_ERR(znode); | 
 | 	} | 
 |  | 
 | 	znode->time = time; | 
 |  | 
 | 	while (1) { | 
 | 		struct ubifs_zbranch *zbr; | 
 |  | 
 | 		exact = ubifs_search_zbranch(c, znode, key, n); | 
 |  | 
 | 		if (znode->level == 0) | 
 | 			break; | 
 |  | 
 | 		if (*n < 0) | 
 | 			*n = 0; | 
 | 		zbr = &znode->zbranch[*n]; | 
 |  | 
 | 		if (zbr->znode) { | 
 | 			znode->time = time; | 
 | 			znode = zbr->znode; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* znode is not in TNC cache, load it from the media */ | 
 | 		znode = ubifs_load_znode(c, zbr, znode, *n); | 
 | 		if (IS_ERR(znode)) | 
 | 			return PTR_ERR(znode); | 
 | 	} | 
 |  | 
 | 	*zn = znode; | 
 | 	if (exact || !is_hash_key(c, key) || *n != -1) { | 
 | 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); | 
 | 		return exact; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Here is a tricky place. We have not found the key and this is a | 
 | 	 * "hashed" key, which may collide. The rest of the code deals with | 
 | 	 * situations like this: | 
 | 	 * | 
 | 	 *                  | 3 | 5 | | 
 | 	 *                  /       \ | 
 | 	 *          | 3 | 5 |      | 6 | 7 | (x) | 
 | 	 * | 
 | 	 * Or more a complex example: | 
 | 	 * | 
 | 	 *                | 1 | 5 | | 
 | 	 *                /       \ | 
 | 	 *       | 1 | 3 |         | 5 | 8 | | 
 | 	 *              \           / | 
 | 	 *          | 5 | 5 |   | 6 | 7 | (x) | 
 | 	 * | 
 | 	 * In the examples, if we are looking for key "5", we may reach nodes | 
 | 	 * marked with "(x)". In this case what we have do is to look at the | 
 | 	 * left and see if there is "5" key there. If there is, we have to | 
 | 	 * return it. | 
 | 	 * | 
 | 	 * Note, this whole situation is possible because we allow to have | 
 | 	 * elements which are equivalent to the next key in the parent in the | 
 | 	 * children of current znode. For example, this happens if we split a | 
 | 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something | 
 | 	 * like this: | 
 | 	 *                      | 3 | 5 | | 
 | 	 *                       /     \ | 
 | 	 *                | 3 | 5 |   | 5 | 6 | 7 | | 
 | 	 *                              ^ | 
 | 	 * And this becomes what is at the first "picture" after key "5" marked | 
 | 	 * with "^" is removed. What could be done is we could prohibit | 
 | 	 * splitting in the middle of the colliding sequence. Also, when | 
 | 	 * removing the leftmost key, we would have to correct the key of the | 
 | 	 * parent node, which would introduce additional complications. Namely, | 
 | 	 * if we changed the leftmost key of the parent znode, the garbage | 
 | 	 * collector would be unable to find it (GC is doing this when GC'ing | 
 | 	 * indexing LEBs). Although we already have an additional RB-tree where | 
 | 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until | 
 | 	 * after the commit. But anyway, this does not look easy to implement | 
 | 	 * so we did not try this. | 
 | 	 */ | 
 | 	err = tnc_prev(c, &znode, n); | 
 | 	if (err == -ENOENT) { | 
 | 		dbg_tnc("found 0, lvl %d, n -1", znode->level); | 
 | 		*n = -1; | 
 | 		return 0; | 
 | 	} | 
 | 	if (unlikely(err < 0)) | 
 | 		return err; | 
 | 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) { | 
 | 		dbg_tnc("found 0, lvl %d, n -1", znode->level); | 
 | 		*n = -1; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); | 
 | 	*zn = znode; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * lookup_level0_dirty - search for zero-level znode dirtying. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key:  key to lookup | 
 |  * @zn: znode is returned here | 
 |  * @n: znode branch slot number is returned here | 
 |  * | 
 |  * This function looks up the TNC tree and search for zero-level znode which | 
 |  * refers key @key. The found zero-level znode is returned in @zn. There are 3 | 
 |  * cases: | 
 |  *   o exact match, i.e. the found zero-level znode contains key @key, then %1 | 
 |  *     is returned and slot number of the matched branch is stored in @n; | 
 |  *   o not exact match, which means that zero-level znode does not contain @key | 
 |  *     then %0 is returned and slot number of the closed branch is stored in | 
 |  *     @n; | 
 |  *   o @key is so small that it is even less than the lowest key of the | 
 |  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n. | 
 |  * | 
 |  * Additionally all znodes in the path from the root to the located zero-level | 
 |  * znode are marked as dirty. | 
 |  * | 
 |  * Note, when the TNC tree is traversed, some znodes may be absent, then this | 
 |  * function reads corresponding indexing nodes and inserts them to TNC. In | 
 |  * case of failure, a negative error code is returned. | 
 |  */ | 
 | static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, | 
 | 			       struct ubifs_znode **zn, int *n) | 
 | { | 
 | 	int err, exact; | 
 | 	struct ubifs_znode *znode; | 
 | 	unsigned long time = get_seconds(); | 
 |  | 
 | 	dbg_tnck(key, "search and dirty key "); | 
 |  | 
 | 	znode = c->zroot.znode; | 
 | 	if (unlikely(!znode)) { | 
 | 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0); | 
 | 		if (IS_ERR(znode)) | 
 | 			return PTR_ERR(znode); | 
 | 	} | 
 |  | 
 | 	znode = dirty_cow_znode(c, &c->zroot); | 
 | 	if (IS_ERR(znode)) | 
 | 		return PTR_ERR(znode); | 
 |  | 
 | 	znode->time = time; | 
 |  | 
 | 	while (1) { | 
 | 		struct ubifs_zbranch *zbr; | 
 |  | 
 | 		exact = ubifs_search_zbranch(c, znode, key, n); | 
 |  | 
 | 		if (znode->level == 0) | 
 | 			break; | 
 |  | 
 | 		if (*n < 0) | 
 | 			*n = 0; | 
 | 		zbr = &znode->zbranch[*n]; | 
 |  | 
 | 		if (zbr->znode) { | 
 | 			znode->time = time; | 
 | 			znode = dirty_cow_znode(c, zbr); | 
 | 			if (IS_ERR(znode)) | 
 | 				return PTR_ERR(znode); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* znode is not in TNC cache, load it from the media */ | 
 | 		znode = ubifs_load_znode(c, zbr, znode, *n); | 
 | 		if (IS_ERR(znode)) | 
 | 			return PTR_ERR(znode); | 
 | 		znode = dirty_cow_znode(c, zbr); | 
 | 		if (IS_ERR(znode)) | 
 | 			return PTR_ERR(znode); | 
 | 	} | 
 |  | 
 | 	*zn = znode; | 
 | 	if (exact || !is_hash_key(c, key) || *n != -1) { | 
 | 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); | 
 | 		return exact; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the | 
 | 	 * code. | 
 | 	 */ | 
 | 	err = tnc_prev(c, &znode, n); | 
 | 	if (err == -ENOENT) { | 
 | 		*n = -1; | 
 | 		dbg_tnc("found 0, lvl %d, n -1", znode->level); | 
 | 		return 0; | 
 | 	} | 
 | 	if (unlikely(err < 0)) | 
 | 		return err; | 
 | 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) { | 
 | 		*n = -1; | 
 | 		dbg_tnc("found 0, lvl %d, n -1", znode->level); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (znode->cnext || !ubifs_zn_dirty(znode)) { | 
 | 		znode = dirty_cow_bottom_up(c, znode); | 
 | 		if (IS_ERR(znode)) | 
 | 			return PTR_ERR(znode); | 
 | 	} | 
 |  | 
 | 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); | 
 | 	*zn = znode; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * maybe_leb_gced - determine if a LEB may have been garbage collected. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: LEB number | 
 |  * @gc_seq1: garbage collection sequence number | 
 |  * | 
 |  * This function determines if @lnum may have been garbage collected since | 
 |  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise | 
 |  * %0 is returned. | 
 |  */ | 
 | static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) | 
 | { | 
 | 	int gc_seq2, gced_lnum; | 
 |  | 
 | 	gced_lnum = c->gced_lnum; | 
 | 	smp_rmb(); | 
 | 	gc_seq2 = c->gc_seq; | 
 | 	/* Same seq means no GC */ | 
 | 	if (gc_seq1 == gc_seq2) | 
 | 		return 0; | 
 | 	/* Different by more than 1 means we don't know */ | 
 | 	if (gc_seq1 + 1 != gc_seq2) | 
 | 		return 1; | 
 | 	/* | 
 | 	 * We have seen the sequence number has increased by 1. Now we need to | 
 | 	 * be sure we read the right LEB number, so read it again. | 
 | 	 */ | 
 | 	smp_rmb(); | 
 | 	if (gced_lnum != c->gced_lnum) | 
 | 		return 1; | 
 | 	/* Finally we can check lnum */ | 
 | 	if (gced_lnum == lnum) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_locate - look up a file-system node and return it and its location. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: node key to lookup | 
 |  * @node: the node is returned here | 
 |  * @lnum: LEB number is returned here | 
 |  * @offs: offset is returned here | 
 |  * | 
 |  * This function looks up and reads node with key @key. The caller has to make | 
 |  * sure the @node buffer is large enough to fit the node. Returns zero in case | 
 |  * of success, %-ENOENT if the node was not found, and a negative error code in | 
 |  * case of failure. The node location can be returned in @lnum and @offs. | 
 |  */ | 
 | int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, | 
 | 		     void *node, int *lnum, int *offs) | 
 | { | 
 | 	int found, n, err, safely = 0, gc_seq1; | 
 | 	struct ubifs_znode *znode; | 
 | 	struct ubifs_zbranch zbr, *zt; | 
 |  | 
 | again: | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	found = ubifs_lookup_level0(c, key, &znode, &n); | 
 | 	if (!found) { | 
 | 		err = -ENOENT; | 
 | 		goto out; | 
 | 	} else if (found < 0) { | 
 | 		err = found; | 
 | 		goto out; | 
 | 	} | 
 | 	zt = &znode->zbranch[n]; | 
 | 	if (lnum) { | 
 | 		*lnum = zt->lnum; | 
 | 		*offs = zt->offs; | 
 | 	} | 
 | 	if (is_hash_key(c, key)) { | 
 | 		/* | 
 | 		 * In this case the leaf node cache gets used, so we pass the | 
 | 		 * address of the zbranch and keep the mutex locked | 
 | 		 */ | 
 | 		err = tnc_read_hashed_node(c, zt, node); | 
 | 		goto out; | 
 | 	} | 
 | 	if (safely) { | 
 | 		err = ubifs_tnc_read_node(c, zt, node); | 
 | 		goto out; | 
 | 	} | 
 | 	/* Drop the TNC mutex prematurely and race with garbage collection */ | 
 | 	zbr = znode->zbranch[n]; | 
 | 	gc_seq1 = c->gc_seq; | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 |  | 
 | 	if (ubifs_get_wbuf(c, zbr.lnum)) { | 
 | 		/* We do not GC journal heads */ | 
 | 		err = ubifs_tnc_read_node(c, &zbr, node); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	err = fallible_read_node(c, key, &zbr, node); | 
 | 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { | 
 | 		/* | 
 | 		 * The node may have been GC'ed out from under us so try again | 
 | 		 * while keeping the TNC mutex locked. | 
 | 		 */ | 
 | 		safely = 1; | 
 | 		goto again; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. | 
 |  * @c: UBIFS file-system description object | 
 |  * @bu: bulk-read parameters and results | 
 |  * | 
 |  * Lookup consecutive data node keys for the same inode that reside | 
 |  * consecutively in the same LEB. This function returns zero in case of success | 
 |  * and a negative error code in case of failure. | 
 |  * | 
 |  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function | 
 |  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares | 
 |  * maximum possible amount of nodes for bulk-read. | 
 |  */ | 
 | int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) | 
 | { | 
 | 	int n, err = 0, lnum = -1, uninitialized_var(offs); | 
 | 	int uninitialized_var(len); | 
 | 	unsigned int block = key_block(c, &bu->key); | 
 | 	struct ubifs_znode *znode; | 
 |  | 
 | 	bu->cnt = 0; | 
 | 	bu->blk_cnt = 0; | 
 | 	bu->eof = 0; | 
 |  | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	/* Find first key */ | 
 | 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n); | 
 | 	if (err < 0) | 
 | 		goto out; | 
 | 	if (err) { | 
 | 		/* Key found */ | 
 | 		len = znode->zbranch[n].len; | 
 | 		/* The buffer must be big enough for at least 1 node */ | 
 | 		if (len > bu->buf_len) { | 
 | 			err = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 		/* Add this key */ | 
 | 		bu->zbranch[bu->cnt++] = znode->zbranch[n]; | 
 | 		bu->blk_cnt += 1; | 
 | 		lnum = znode->zbranch[n].lnum; | 
 | 		offs = ALIGN(znode->zbranch[n].offs + len, 8); | 
 | 	} | 
 | 	while (1) { | 
 | 		struct ubifs_zbranch *zbr; | 
 | 		union ubifs_key *key; | 
 | 		unsigned int next_block; | 
 |  | 
 | 		/* Find next key */ | 
 | 		err = tnc_next(c, &znode, &n); | 
 | 		if (err) | 
 | 			goto out; | 
 | 		zbr = &znode->zbranch[n]; | 
 | 		key = &zbr->key; | 
 | 		/* See if there is another data key for this file */ | 
 | 		if (key_inum(c, key) != key_inum(c, &bu->key) || | 
 | 		    key_type(c, key) != UBIFS_DATA_KEY) { | 
 | 			err = -ENOENT; | 
 | 			goto out; | 
 | 		} | 
 | 		if (lnum < 0) { | 
 | 			/* First key found */ | 
 | 			lnum = zbr->lnum; | 
 | 			offs = ALIGN(zbr->offs + zbr->len, 8); | 
 | 			len = zbr->len; | 
 | 			if (len > bu->buf_len) { | 
 | 				err = -EINVAL; | 
 | 				goto out; | 
 | 			} | 
 | 		} else { | 
 | 			/* | 
 | 			 * The data nodes must be in consecutive positions in | 
 | 			 * the same LEB. | 
 | 			 */ | 
 | 			if (zbr->lnum != lnum || zbr->offs != offs) | 
 | 				goto out; | 
 | 			offs += ALIGN(zbr->len, 8); | 
 | 			len = ALIGN(len, 8) + zbr->len; | 
 | 			/* Must not exceed buffer length */ | 
 | 			if (len > bu->buf_len) | 
 | 				goto out; | 
 | 		} | 
 | 		/* Allow for holes */ | 
 | 		next_block = key_block(c, key); | 
 | 		bu->blk_cnt += (next_block - block - 1); | 
 | 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) | 
 | 			goto out; | 
 | 		block = next_block; | 
 | 		/* Add this key */ | 
 | 		bu->zbranch[bu->cnt++] = *zbr; | 
 | 		bu->blk_cnt += 1; | 
 | 		/* See if we have room for more */ | 
 | 		if (bu->cnt >= UBIFS_MAX_BULK_READ) | 
 | 			goto out; | 
 | 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) | 
 | 			goto out; | 
 | 	} | 
 | out: | 
 | 	if (err == -ENOENT) { | 
 | 		bu->eof = 1; | 
 | 		err = 0; | 
 | 	} | 
 | 	bu->gc_seq = c->gc_seq; | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	if (err) | 
 | 		return err; | 
 | 	/* | 
 | 	 * An enormous hole could cause bulk-read to encompass too many | 
 | 	 * page cache pages, so limit the number here. | 
 | 	 */ | 
 | 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ) | 
 | 		bu->blk_cnt = UBIFS_MAX_BULK_READ; | 
 | 	/* | 
 | 	 * Ensure that bulk-read covers a whole number of page cache | 
 | 	 * pages. | 
 | 	 */ | 
 | 	if (UBIFS_BLOCKS_PER_PAGE == 1 || | 
 | 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) | 
 | 		return 0; | 
 | 	if (bu->eof) { | 
 | 		/* At the end of file we can round up */ | 
 | 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; | 
 | 		return 0; | 
 | 	} | 
 | 	/* Exclude data nodes that do not make up a whole page cache page */ | 
 | 	block = key_block(c, &bu->key) + bu->blk_cnt; | 
 | 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); | 
 | 	while (bu->cnt) { | 
 | 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) | 
 | 			break; | 
 | 		bu->cnt -= 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * read_wbuf - bulk-read from a LEB with a wbuf. | 
 |  * @wbuf: wbuf that may overlap the read | 
 |  * @buf: buffer into which to read | 
 |  * @len: read length | 
 |  * @lnum: LEB number from which to read | 
 |  * @offs: offset from which to read | 
 |  * | 
 |  * This functions returns %0 on success or a negative error code on failure. | 
 |  */ | 
 | static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, | 
 | 		     int offs) | 
 | { | 
 | 	const struct ubifs_info *c = wbuf->c; | 
 | 	int rlen, overlap; | 
 |  | 
 | 	dbg_io("LEB %d:%d, length %d", lnum, offs, len); | 
 | 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | 
 | 	ubifs_assert(!(offs & 7) && offs < c->leb_size); | 
 | 	ubifs_assert(offs + len <= c->leb_size); | 
 |  | 
 | 	spin_lock(&wbuf->lock); | 
 | 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); | 
 | 	if (!overlap) { | 
 | 		/* We may safely unlock the write-buffer and read the data */ | 
 | 		spin_unlock(&wbuf->lock); | 
 | 		return ubifs_leb_read(c, lnum, buf, offs, len, 0); | 
 | 	} | 
 |  | 
 | 	/* Don't read under wbuf */ | 
 | 	rlen = wbuf->offs - offs; | 
 | 	if (rlen < 0) | 
 | 		rlen = 0; | 
 |  | 
 | 	/* Copy the rest from the write-buffer */ | 
 | 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); | 
 | 	spin_unlock(&wbuf->lock); | 
 |  | 
 | 	if (rlen > 0) | 
 | 		/* Read everything that goes before write-buffer */ | 
 | 		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * validate_data_node - validate data nodes for bulk-read. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer containing data node to validate | 
 |  * @zbr: zbranch of data node to validate | 
 |  * | 
 |  * This functions returns %0 on success or a negative error code on failure. | 
 |  */ | 
 | static int validate_data_node(struct ubifs_info *c, void *buf, | 
 | 			      struct ubifs_zbranch *zbr) | 
 | { | 
 | 	union ubifs_key key1; | 
 | 	struct ubifs_ch *ch = buf; | 
 | 	int err, len; | 
 |  | 
 | 	if (ch->node_type != UBIFS_DATA_NODE) { | 
 | 		ubifs_err(c, "bad node type (%d but expected %d)", | 
 | 			  ch->node_type, UBIFS_DATA_NODE); | 
 | 		goto out_err; | 
 | 	} | 
 |  | 
 | 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); | 
 | 	if (err) { | 
 | 		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	len = le32_to_cpu(ch->len); | 
 | 	if (len != zbr->len) { | 
 | 		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len); | 
 | 		goto out_err; | 
 | 	} | 
 |  | 
 | 	/* Make sure the key of the read node is correct */ | 
 | 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1); | 
 | 	if (!keys_eq(c, &zbr->key, &key1)) { | 
 | 		ubifs_err(c, "bad key in node at LEB %d:%d", | 
 | 			  zbr->lnum, zbr->offs); | 
 | 		dbg_tnck(&zbr->key, "looked for key "); | 
 | 		dbg_tnck(&key1, "found node's key "); | 
 | 		goto out_err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_err: | 
 | 	err = -EINVAL; | 
 | out: | 
 | 	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs); | 
 | 	ubifs_dump_node(c, buf); | 
 | 	dump_stack(); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_bulk_read - read a number of data nodes in one go. | 
 |  * @c: UBIFS file-system description object | 
 |  * @bu: bulk-read parameters and results | 
 |  * | 
 |  * This functions reads and validates the data nodes that were identified by the | 
 |  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, | 
 |  * -EAGAIN to indicate a race with GC, or another negative error code on | 
 |  * failure. | 
 |  */ | 
 | int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) | 
 | { | 
 | 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; | 
 | 	struct ubifs_wbuf *wbuf; | 
 | 	void *buf; | 
 |  | 
 | 	len = bu->zbranch[bu->cnt - 1].offs; | 
 | 	len += bu->zbranch[bu->cnt - 1].len - offs; | 
 | 	if (len > bu->buf_len) { | 
 | 		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Do the read */ | 
 | 	wbuf = ubifs_get_wbuf(c, lnum); | 
 | 	if (wbuf) | 
 | 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs); | 
 | 	else | 
 | 		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); | 
 |  | 
 | 	/* Check for a race with GC */ | 
 | 	if (maybe_leb_gced(c, lnum, bu->gc_seq)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	if (err && err != -EBADMSG) { | 
 | 		ubifs_err(c, "failed to read from LEB %d:%d, error %d", | 
 | 			  lnum, offs, err); | 
 | 		dump_stack(); | 
 | 		dbg_tnck(&bu->key, "key "); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* Validate the nodes read */ | 
 | 	buf = bu->buf; | 
 | 	for (i = 0; i < bu->cnt; i++) { | 
 | 		err = validate_data_node(c, buf, &bu->zbranch[i]); | 
 | 		if (err) | 
 | 			return err; | 
 | 		buf = buf + ALIGN(bu->zbranch[i].len, 8); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * do_lookup_nm- look up a "hashed" node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: node key to lookup | 
 |  * @node: the node is returned here | 
 |  * @nm: node name | 
 |  * | 
 |  * This function looks up and reads a node which contains name hash in the key. | 
 |  * Since the hash may have collisions, there may be many nodes with the same | 
 |  * key, so we have to sequentially look to all of them until the needed one is | 
 |  * found. This function returns zero in case of success, %-ENOENT if the node | 
 |  * was not found, and a negative error code in case of failure. | 
 |  */ | 
 | static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, | 
 | 			void *node, const struct fscrypt_name *nm) | 
 | { | 
 | 	int found, n, err; | 
 | 	struct ubifs_znode *znode; | 
 |  | 
 | 	dbg_tnck(key, "key "); | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	found = ubifs_lookup_level0(c, key, &znode, &n); | 
 | 	if (!found) { | 
 | 		err = -ENOENT; | 
 | 		goto out_unlock; | 
 | 	} else if (found < 0) { | 
 | 		err = found; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	ubifs_assert(n >= 0); | 
 |  | 
 | 	err = resolve_collision(c, key, &znode, &n, nm); | 
 | 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); | 
 | 	if (unlikely(err < 0)) | 
 | 		goto out_unlock; | 
 | 	if (err == 0) { | 
 | 		err = -ENOENT; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	err = tnc_read_hashed_node(c, &znode->zbranch[n], node); | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_lookup_nm - look up a "hashed" node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: node key to lookup | 
 |  * @node: the node is returned here | 
 |  * @nm: node name | 
 |  * | 
 |  * This function looks up and reads a node which contains name hash in the key. | 
 |  * Since the hash may have collisions, there may be many nodes with the same | 
 |  * key, so we have to sequentially look to all of them until the needed one is | 
 |  * found. This function returns zero in case of success, %-ENOENT if the node | 
 |  * was not found, and a negative error code in case of failure. | 
 |  */ | 
 | int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, | 
 | 			void *node, const struct fscrypt_name *nm) | 
 | { | 
 | 	int err, len; | 
 | 	const struct ubifs_dent_node *dent = node; | 
 |  | 
 | 	/* | 
 | 	 * We assume that in most of the cases there are no name collisions and | 
 | 	 * 'ubifs_tnc_lookup()' returns us the right direntry. | 
 | 	 */ | 
 | 	err = ubifs_tnc_lookup(c, key, node); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	len = le16_to_cpu(dent->nlen); | 
 | 	if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Unluckily, there are hash collisions and we have to iterate over | 
 | 	 * them look at each direntry with colliding name hash sequentially. | 
 | 	 */ | 
 |  | 
 | 	return do_lookup_nm(c, key, node, nm); | 
 | } | 
 |  | 
 | static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key, | 
 | 			    struct ubifs_dent_node *dent, uint32_t cookie, | 
 | 			    struct ubifs_znode **zn, int *n, int exact) | 
 | { | 
 | 	int err; | 
 | 	struct ubifs_znode *znode = *zn; | 
 | 	struct ubifs_zbranch *zbr; | 
 | 	union ubifs_key *dkey; | 
 |  | 
 | 	if (!exact) { | 
 | 		err = tnc_next(c, &znode, n); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	for (;;) { | 
 | 		zbr = &znode->zbranch[*n]; | 
 | 		dkey = &zbr->key; | 
 |  | 
 | 		if (key_inum(c, dkey) != key_inum(c, key) || | 
 | 		    key_type(c, dkey) != key_type(c, key)) { | 
 | 			return -ENOENT; | 
 | 		} | 
 |  | 
 | 		err = tnc_read_hashed_node(c, zbr, dent); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		if (key_hash(c, key) == key_hash(c, dkey) && | 
 | 		    le32_to_cpu(dent->cookie) == cookie) { | 
 | 			*zn = znode; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		err = tnc_next(c, &znode, n); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 | } | 
 |  | 
 | static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, | 
 | 			struct ubifs_dent_node *dent, uint32_t cookie) | 
 | { | 
 | 	int n, err; | 
 | 	struct ubifs_znode *znode; | 
 | 	union ubifs_key start_key; | 
 |  | 
 | 	ubifs_assert(is_hash_key(c, key)); | 
 |  | 
 | 	lowest_dent_key(c, &start_key, key_inum(c, key)); | 
 |  | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	err = ubifs_lookup_level0(c, &start_key, &znode, &n); | 
 | 	if (unlikely(err < 0)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err); | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_lookup_dh - look up a "double hashed" node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: node key to lookup | 
 |  * @node: the node is returned here | 
 |  * @cookie: node cookie for collision resolution | 
 |  * | 
 |  * This function looks up and reads a node which contains name hash in the key. | 
 |  * Since the hash may have collisions, there may be many nodes with the same | 
 |  * key, so we have to sequentially look to all of them until the needed one | 
 |  * with the same cookie value is found. | 
 |  * This function returns zero in case of success, %-ENOENT if the node | 
 |  * was not found, and a negative error code in case of failure. | 
 |  */ | 
 | int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, | 
 | 			void *node, uint32_t cookie) | 
 | { | 
 | 	int err; | 
 | 	const struct ubifs_dent_node *dent = node; | 
 |  | 
 | 	if (!c->double_hash) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	/* | 
 | 	 * We assume that in most of the cases there are no name collisions and | 
 | 	 * 'ubifs_tnc_lookup()' returns us the right direntry. | 
 | 	 */ | 
 | 	err = ubifs_tnc_lookup(c, key, node); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (le32_to_cpu(dent->cookie) == cookie) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Unluckily, there are hash collisions and we have to iterate over | 
 | 	 * them look at each direntry with colliding name hash sequentially. | 
 | 	 */ | 
 | 	return do_lookup_dh(c, key, node, cookie); | 
 | } | 
 |  | 
 | /** | 
 |  * correct_parent_keys - correct parent znodes' keys. | 
 |  * @c: UBIFS file-system description object | 
 |  * @znode: znode to correct parent znodes for | 
 |  * | 
 |  * This is a helper function for 'tnc_insert()'. When the key of the leftmost | 
 |  * zbranch changes, keys of parent znodes have to be corrected. This helper | 
 |  * function is called in such situations and corrects the keys if needed. | 
 |  */ | 
 | static void correct_parent_keys(const struct ubifs_info *c, | 
 | 				struct ubifs_znode *znode) | 
 | { | 
 | 	union ubifs_key *key, *key1; | 
 |  | 
 | 	ubifs_assert(znode->parent); | 
 | 	ubifs_assert(znode->iip == 0); | 
 |  | 
 | 	key = &znode->zbranch[0].key; | 
 | 	key1 = &znode->parent->zbranch[0].key; | 
 |  | 
 | 	while (keys_cmp(c, key, key1) < 0) { | 
 | 		key_copy(c, key, key1); | 
 | 		znode = znode->parent; | 
 | 		znode->alt = 1; | 
 | 		if (!znode->parent || znode->iip) | 
 | 			break; | 
 | 		key1 = &znode->parent->zbranch[0].key; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * insert_zbranch - insert a zbranch into a znode. | 
 |  * @znode: znode into which to insert | 
 |  * @zbr: zbranch to insert | 
 |  * @n: slot number to insert to | 
 |  * | 
 |  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in | 
 |  * znode's array of zbranches and keeps zbranches consolidated, so when a new | 
 |  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th | 
 |  * slot, zbranches starting from @n have to be moved right. | 
 |  */ | 
 | static void insert_zbranch(struct ubifs_znode *znode, | 
 | 			   const struct ubifs_zbranch *zbr, int n) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	ubifs_assert(ubifs_zn_dirty(znode)); | 
 |  | 
 | 	if (znode->level) { | 
 | 		for (i = znode->child_cnt; i > n; i--) { | 
 | 			znode->zbranch[i] = znode->zbranch[i - 1]; | 
 | 			if (znode->zbranch[i].znode) | 
 | 				znode->zbranch[i].znode->iip = i; | 
 | 		} | 
 | 		if (zbr->znode) | 
 | 			zbr->znode->iip = n; | 
 | 	} else | 
 | 		for (i = znode->child_cnt; i > n; i--) | 
 | 			znode->zbranch[i] = znode->zbranch[i - 1]; | 
 |  | 
 | 	znode->zbranch[n] = *zbr; | 
 | 	znode->child_cnt += 1; | 
 |  | 
 | 	/* | 
 | 	 * After inserting at slot zero, the lower bound of the key range of | 
 | 	 * this znode may have changed. If this znode is subsequently split | 
 | 	 * then the upper bound of the key range may change, and furthermore | 
 | 	 * it could change to be lower than the original lower bound. If that | 
 | 	 * happens, then it will no longer be possible to find this znode in the | 
 | 	 * TNC using the key from the index node on flash. That is bad because | 
 | 	 * if it is not found, we will assume it is obsolete and may overwrite | 
 | 	 * it. Then if there is an unclean unmount, we will start using the | 
 | 	 * old index which will be broken. | 
 | 	 * | 
 | 	 * So we first mark znodes that have insertions at slot zero, and then | 
 | 	 * if they are split we add their lnum/offs to the old_idx tree. | 
 | 	 */ | 
 | 	if (n == 0) | 
 | 		znode->alt = 1; | 
 | } | 
 |  | 
 | /** | 
 |  * tnc_insert - insert a node into TNC. | 
 |  * @c: UBIFS file-system description object | 
 |  * @znode: znode to insert into | 
 |  * @zbr: branch to insert | 
 |  * @n: slot number to insert new zbranch to | 
 |  * | 
 |  * This function inserts a new node described by @zbr into znode @znode. If | 
 |  * znode does not have a free slot for new zbranch, it is split. Parent znodes | 
 |  * are splat as well if needed. Returns zero in case of success or a negative | 
 |  * error code in case of failure. | 
 |  */ | 
 | static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, | 
 | 		      struct ubifs_zbranch *zbr, int n) | 
 | { | 
 | 	struct ubifs_znode *zn, *zi, *zp; | 
 | 	int i, keep, move, appending = 0; | 
 | 	union ubifs_key *key = &zbr->key, *key1; | 
 |  | 
 | 	ubifs_assert(n >= 0 && n <= c->fanout); | 
 |  | 
 | 	/* Implement naive insert for now */ | 
 | again: | 
 | 	zp = znode->parent; | 
 | 	if (znode->child_cnt < c->fanout) { | 
 | 		ubifs_assert(n != c->fanout); | 
 | 		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); | 
 |  | 
 | 		insert_zbranch(znode, zbr, n); | 
 |  | 
 | 		/* Ensure parent's key is correct */ | 
 | 		if (n == 0 && zp && znode->iip == 0) | 
 | 			correct_parent_keys(c, znode); | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Unfortunately, @znode does not have more empty slots and we have to | 
 | 	 * split it. | 
 | 	 */ | 
 | 	dbg_tnck(key, "splitting level %d, key ", znode->level); | 
 |  | 
 | 	if (znode->alt) | 
 | 		/* | 
 | 		 * We can no longer be sure of finding this znode by key, so we | 
 | 		 * record it in the old_idx tree. | 
 | 		 */ | 
 | 		ins_clr_old_idx_znode(c, znode); | 
 |  | 
 | 	zn = kzalloc(c->max_znode_sz, GFP_NOFS); | 
 | 	if (!zn) | 
 | 		return -ENOMEM; | 
 | 	zn->parent = zp; | 
 | 	zn->level = znode->level; | 
 |  | 
 | 	/* Decide where to split */ | 
 | 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { | 
 | 		/* Try not to split consecutive data keys */ | 
 | 		if (n == c->fanout) { | 
 | 			key1 = &znode->zbranch[n - 1].key; | 
 | 			if (key_inum(c, key1) == key_inum(c, key) && | 
 | 			    key_type(c, key1) == UBIFS_DATA_KEY) | 
 | 				appending = 1; | 
 | 		} else | 
 | 			goto check_split; | 
 | 	} else if (appending && n != c->fanout) { | 
 | 		/* Try not to split consecutive data keys */ | 
 | 		appending = 0; | 
 | check_split: | 
 | 		if (n >= (c->fanout + 1) / 2) { | 
 | 			key1 = &znode->zbranch[0].key; | 
 | 			if (key_inum(c, key1) == key_inum(c, key) && | 
 | 			    key_type(c, key1) == UBIFS_DATA_KEY) { | 
 | 				key1 = &znode->zbranch[n].key; | 
 | 				if (key_inum(c, key1) != key_inum(c, key) || | 
 | 				    key_type(c, key1) != UBIFS_DATA_KEY) { | 
 | 					keep = n; | 
 | 					move = c->fanout - keep; | 
 | 					zi = znode; | 
 | 					goto do_split; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (appending) { | 
 | 		keep = c->fanout; | 
 | 		move = 0; | 
 | 	} else { | 
 | 		keep = (c->fanout + 1) / 2; | 
 | 		move = c->fanout - keep; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Although we don't at present, we could look at the neighbors and see | 
 | 	 * if we can move some zbranches there. | 
 | 	 */ | 
 |  | 
 | 	if (n < keep) { | 
 | 		/* Insert into existing znode */ | 
 | 		zi = znode; | 
 | 		move += 1; | 
 | 		keep -= 1; | 
 | 	} else { | 
 | 		/* Insert into new znode */ | 
 | 		zi = zn; | 
 | 		n -= keep; | 
 | 		/* Re-parent */ | 
 | 		if (zn->level != 0) | 
 | 			zbr->znode->parent = zn; | 
 | 	} | 
 |  | 
 | do_split: | 
 |  | 
 | 	__set_bit(DIRTY_ZNODE, &zn->flags); | 
 | 	atomic_long_inc(&c->dirty_zn_cnt); | 
 |  | 
 | 	zn->child_cnt = move; | 
 | 	znode->child_cnt = keep; | 
 |  | 
 | 	dbg_tnc("moving %d, keeping %d", move, keep); | 
 |  | 
 | 	/* Move zbranch */ | 
 | 	for (i = 0; i < move; i++) { | 
 | 		zn->zbranch[i] = znode->zbranch[keep + i]; | 
 | 		/* Re-parent */ | 
 | 		if (zn->level != 0) | 
 | 			if (zn->zbranch[i].znode) { | 
 | 				zn->zbranch[i].znode->parent = zn; | 
 | 				zn->zbranch[i].znode->iip = i; | 
 | 			} | 
 | 	} | 
 |  | 
 | 	/* Insert new key and branch */ | 
 | 	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); | 
 |  | 
 | 	insert_zbranch(zi, zbr, n); | 
 |  | 
 | 	/* Insert new znode (produced by spitting) into the parent */ | 
 | 	if (zp) { | 
 | 		if (n == 0 && zi == znode && znode->iip == 0) | 
 | 			correct_parent_keys(c, znode); | 
 |  | 
 | 		/* Locate insertion point */ | 
 | 		n = znode->iip + 1; | 
 |  | 
 | 		/* Tail recursion */ | 
 | 		zbr->key = zn->zbranch[0].key; | 
 | 		zbr->znode = zn; | 
 | 		zbr->lnum = 0; | 
 | 		zbr->offs = 0; | 
 | 		zbr->len = 0; | 
 | 		znode = zp; | 
 |  | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	/* We have to split root znode */ | 
 | 	dbg_tnc("creating new zroot at level %d", znode->level + 1); | 
 |  | 
 | 	zi = kzalloc(c->max_znode_sz, GFP_NOFS); | 
 | 	if (!zi) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	zi->child_cnt = 2; | 
 | 	zi->level = znode->level + 1; | 
 |  | 
 | 	__set_bit(DIRTY_ZNODE, &zi->flags); | 
 | 	atomic_long_inc(&c->dirty_zn_cnt); | 
 |  | 
 | 	zi->zbranch[0].key = znode->zbranch[0].key; | 
 | 	zi->zbranch[0].znode = znode; | 
 | 	zi->zbranch[0].lnum = c->zroot.lnum; | 
 | 	zi->zbranch[0].offs = c->zroot.offs; | 
 | 	zi->zbranch[0].len = c->zroot.len; | 
 | 	zi->zbranch[1].key = zn->zbranch[0].key; | 
 | 	zi->zbranch[1].znode = zn; | 
 |  | 
 | 	c->zroot.lnum = 0; | 
 | 	c->zroot.offs = 0; | 
 | 	c->zroot.len = 0; | 
 | 	c->zroot.znode = zi; | 
 |  | 
 | 	zn->parent = zi; | 
 | 	zn->iip = 1; | 
 | 	znode->parent = zi; | 
 | 	znode->iip = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_add - add a node to TNC. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: key to add | 
 |  * @lnum: LEB number of node | 
 |  * @offs: node offset | 
 |  * @len: node length | 
 |  * | 
 |  * This function adds a node with key @key to TNC. The node may be new or it may | 
 |  * obsolete some existing one. Returns %0 on success or negative error code on | 
 |  * failure. | 
 |  */ | 
 | int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, | 
 | 		  int offs, int len) | 
 | { | 
 | 	int found, n, err = 0; | 
 | 	struct ubifs_znode *znode; | 
 |  | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len); | 
 | 	found = lookup_level0_dirty(c, key, &znode, &n); | 
 | 	if (!found) { | 
 | 		struct ubifs_zbranch zbr; | 
 |  | 
 | 		zbr.znode = NULL; | 
 | 		zbr.lnum = lnum; | 
 | 		zbr.offs = offs; | 
 | 		zbr.len = len; | 
 | 		key_copy(c, key, &zbr.key); | 
 | 		err = tnc_insert(c, znode, &zbr, n + 1); | 
 | 	} else if (found == 1) { | 
 | 		struct ubifs_zbranch *zbr = &znode->zbranch[n]; | 
 |  | 
 | 		lnc_free(zbr); | 
 | 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len); | 
 | 		zbr->lnum = lnum; | 
 | 		zbr->offs = offs; | 
 | 		zbr->len = len; | 
 | 	} else | 
 | 		err = found; | 
 | 	if (!err) | 
 | 		err = dbg_check_tnc(c, 0); | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: key to add | 
 |  * @old_lnum: LEB number of old node | 
 |  * @old_offs: old node offset | 
 |  * @lnum: LEB number of node | 
 |  * @offs: node offset | 
 |  * @len: node length | 
 |  * | 
 |  * This function replaces a node with key @key in the TNC only if the old node | 
 |  * is found.  This function is called by garbage collection when node are moved. | 
 |  * Returns %0 on success or negative error code on failure. | 
 |  */ | 
 | int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, | 
 | 		      int old_lnum, int old_offs, int lnum, int offs, int len) | 
 | { | 
 | 	int found, n, err = 0; | 
 | 	struct ubifs_znode *znode; | 
 |  | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum, | 
 | 		 old_offs, lnum, offs, len); | 
 | 	found = lookup_level0_dirty(c, key, &znode, &n); | 
 | 	if (found < 0) { | 
 | 		err = found; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	if (found == 1) { | 
 | 		struct ubifs_zbranch *zbr = &znode->zbranch[n]; | 
 |  | 
 | 		found = 0; | 
 | 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) { | 
 | 			lnc_free(zbr); | 
 | 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len); | 
 | 			if (err) | 
 | 				goto out_unlock; | 
 | 			zbr->lnum = lnum; | 
 | 			zbr->offs = offs; | 
 | 			zbr->len = len; | 
 | 			found = 1; | 
 | 		} else if (is_hash_key(c, key)) { | 
 | 			found = resolve_collision_directly(c, key, &znode, &n, | 
 | 							   old_lnum, old_offs); | 
 | 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", | 
 | 				found, znode, n, old_lnum, old_offs); | 
 | 			if (found < 0) { | 
 | 				err = found; | 
 | 				goto out_unlock; | 
 | 			} | 
 |  | 
 | 			if (found) { | 
 | 				/* Ensure the znode is dirtied */ | 
 | 				if (znode->cnext || !ubifs_zn_dirty(znode)) { | 
 | 					znode = dirty_cow_bottom_up(c, znode); | 
 | 					if (IS_ERR(znode)) { | 
 | 						err = PTR_ERR(znode); | 
 | 						goto out_unlock; | 
 | 					} | 
 | 				} | 
 | 				zbr = &znode->zbranch[n]; | 
 | 				lnc_free(zbr); | 
 | 				err = ubifs_add_dirt(c, zbr->lnum, | 
 | 						     zbr->len); | 
 | 				if (err) | 
 | 					goto out_unlock; | 
 | 				zbr->lnum = lnum; | 
 | 				zbr->offs = offs; | 
 | 				zbr->len = len; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!found) | 
 | 		err = ubifs_add_dirt(c, lnum, len); | 
 |  | 
 | 	if (!err) | 
 | 		err = dbg_check_tnc(c, 0); | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_add_nm - add a "hashed" node to TNC. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: key to add | 
 |  * @lnum: LEB number of node | 
 |  * @offs: node offset | 
 |  * @len: node length | 
 |  * @nm: node name | 
 |  * | 
 |  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which | 
 |  * may have collisions, like directory entry keys. | 
 |  */ | 
 | int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, | 
 | 		     int lnum, int offs, int len, | 
 | 		     const struct fscrypt_name *nm) | 
 | { | 
 | 	int found, n, err = 0; | 
 | 	struct ubifs_znode *znode; | 
 |  | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	dbg_tnck(key, "LEB %d:%d, key ", lnum, offs); | 
 | 	found = lookup_level0_dirty(c, key, &znode, &n); | 
 | 	if (found < 0) { | 
 | 		err = found; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	if (found == 1) { | 
 | 		if (c->replaying) | 
 | 			found = fallible_resolve_collision(c, key, &znode, &n, | 
 | 							   nm, 1); | 
 | 		else | 
 | 			found = resolve_collision(c, key, &znode, &n, nm); | 
 | 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); | 
 | 		if (found < 0) { | 
 | 			err = found; | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		/* Ensure the znode is dirtied */ | 
 | 		if (znode->cnext || !ubifs_zn_dirty(znode)) { | 
 | 			znode = dirty_cow_bottom_up(c, znode); | 
 | 			if (IS_ERR(znode)) { | 
 | 				err = PTR_ERR(znode); | 
 | 				goto out_unlock; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (found == 1) { | 
 | 			struct ubifs_zbranch *zbr = &znode->zbranch[n]; | 
 |  | 
 | 			lnc_free(zbr); | 
 | 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len); | 
 | 			zbr->lnum = lnum; | 
 | 			zbr->offs = offs; | 
 | 			zbr->len = len; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!found) { | 
 | 		struct ubifs_zbranch zbr; | 
 |  | 
 | 		zbr.znode = NULL; | 
 | 		zbr.lnum = lnum; | 
 | 		zbr.offs = offs; | 
 | 		zbr.len = len; | 
 | 		key_copy(c, key, &zbr.key); | 
 | 		err = tnc_insert(c, znode, &zbr, n + 1); | 
 | 		if (err) | 
 | 			goto out_unlock; | 
 | 		if (c->replaying) { | 
 | 			/* | 
 | 			 * We did not find it in the index so there may be a | 
 | 			 * dangling branch still in the index. So we remove it | 
 | 			 * by passing 'ubifs_tnc_remove_nm()' the same key but | 
 | 			 * an unmatchable name. | 
 | 			 */ | 
 | 			struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } }; | 
 |  | 
 | 			err = dbg_check_tnc(c, 0); | 
 | 			mutex_unlock(&c->tnc_mutex); | 
 | 			if (err) | 
 | 				return err; | 
 | 			return ubifs_tnc_remove_nm(c, key, &noname); | 
 | 		} | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	if (!err) | 
 | 		err = dbg_check_tnc(c, 0); | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * tnc_delete - delete a znode form TNC. | 
 |  * @c: UBIFS file-system description object | 
 |  * @znode: znode to delete from | 
 |  * @n: zbranch slot number to delete | 
 |  * | 
 |  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in | 
 |  * case of success and a negative error code in case of failure. | 
 |  */ | 
 | static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) | 
 | { | 
 | 	struct ubifs_zbranch *zbr; | 
 | 	struct ubifs_znode *zp; | 
 | 	int i, err; | 
 |  | 
 | 	/* Delete without merge for now */ | 
 | 	ubifs_assert(znode->level == 0); | 
 | 	ubifs_assert(n >= 0 && n < c->fanout); | 
 | 	dbg_tnck(&znode->zbranch[n].key, "deleting key "); | 
 |  | 
 | 	zbr = &znode->zbranch[n]; | 
 | 	lnc_free(zbr); | 
 |  | 
 | 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len); | 
 | 	if (err) { | 
 | 		ubifs_dump_znode(c, znode); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* We do not "gap" zbranch slots */ | 
 | 	for (i = n; i < znode->child_cnt - 1; i++) | 
 | 		znode->zbranch[i] = znode->zbranch[i + 1]; | 
 | 	znode->child_cnt -= 1; | 
 |  | 
 | 	if (znode->child_cnt > 0) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * This was the last zbranch, we have to delete this znode from the | 
 | 	 * parent. | 
 | 	 */ | 
 |  | 
 | 	do { | 
 | 		ubifs_assert(!ubifs_zn_obsolete(znode)); | 
 | 		ubifs_assert(ubifs_zn_dirty(znode)); | 
 |  | 
 | 		zp = znode->parent; | 
 | 		n = znode->iip; | 
 |  | 
 | 		atomic_long_dec(&c->dirty_zn_cnt); | 
 |  | 
 | 		err = insert_old_idx_znode(c, znode); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		if (znode->cnext) { | 
 | 			__set_bit(OBSOLETE_ZNODE, &znode->flags); | 
 | 			atomic_long_inc(&c->clean_zn_cnt); | 
 | 			atomic_long_inc(&ubifs_clean_zn_cnt); | 
 | 		} else | 
 | 			kfree(znode); | 
 | 		znode = zp; | 
 | 	} while (znode->child_cnt == 1); /* while removing last child */ | 
 |  | 
 | 	/* Remove from znode, entry n - 1 */ | 
 | 	znode->child_cnt -= 1; | 
 | 	ubifs_assert(znode->level != 0); | 
 | 	for (i = n; i < znode->child_cnt; i++) { | 
 | 		znode->zbranch[i] = znode->zbranch[i + 1]; | 
 | 		if (znode->zbranch[i].znode) | 
 | 			znode->zbranch[i].znode->iip = i; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this is the root and it has only 1 child then | 
 | 	 * collapse the tree. | 
 | 	 */ | 
 | 	if (!znode->parent) { | 
 | 		while (znode->child_cnt == 1 && znode->level != 0) { | 
 | 			zp = znode; | 
 | 			zbr = &znode->zbranch[0]; | 
 | 			znode = get_znode(c, znode, 0); | 
 | 			if (IS_ERR(znode)) | 
 | 				return PTR_ERR(znode); | 
 | 			znode = dirty_cow_znode(c, zbr); | 
 | 			if (IS_ERR(znode)) | 
 | 				return PTR_ERR(znode); | 
 | 			znode->parent = NULL; | 
 | 			znode->iip = 0; | 
 | 			if (c->zroot.len) { | 
 | 				err = insert_old_idx(c, c->zroot.lnum, | 
 | 						     c->zroot.offs); | 
 | 				if (err) | 
 | 					return err; | 
 | 			} | 
 | 			c->zroot.lnum = zbr->lnum; | 
 | 			c->zroot.offs = zbr->offs; | 
 | 			c->zroot.len = zbr->len; | 
 | 			c->zroot.znode = znode; | 
 | 			ubifs_assert(!ubifs_zn_obsolete(zp)); | 
 | 			ubifs_assert(ubifs_zn_dirty(zp)); | 
 | 			atomic_long_dec(&c->dirty_zn_cnt); | 
 |  | 
 | 			if (zp->cnext) { | 
 | 				__set_bit(OBSOLETE_ZNODE, &zp->flags); | 
 | 				atomic_long_inc(&c->clean_zn_cnt); | 
 | 				atomic_long_inc(&ubifs_clean_zn_cnt); | 
 | 			} else | 
 | 				kfree(zp); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_remove - remove an index entry of a node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: key of node | 
 |  * | 
 |  * Returns %0 on success or negative error code on failure. | 
 |  */ | 
 | int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) | 
 | { | 
 | 	int found, n, err = 0; | 
 | 	struct ubifs_znode *znode; | 
 |  | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	dbg_tnck(key, "key "); | 
 | 	found = lookup_level0_dirty(c, key, &znode, &n); | 
 | 	if (found < 0) { | 
 | 		err = found; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	if (found == 1) | 
 | 		err = tnc_delete(c, znode, n); | 
 | 	if (!err) | 
 | 		err = dbg_check_tnc(c, 0); | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: key of node | 
 |  * @nm: directory entry name | 
 |  * | 
 |  * Returns %0 on success or negative error code on failure. | 
 |  */ | 
 | int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, | 
 | 			const struct fscrypt_name *nm) | 
 | { | 
 | 	int n, err; | 
 | 	struct ubifs_znode *znode; | 
 |  | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	dbg_tnck(key, "key "); | 
 | 	err = lookup_level0_dirty(c, key, &znode, &n); | 
 | 	if (err < 0) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (err) { | 
 | 		if (c->replaying) | 
 | 			err = fallible_resolve_collision(c, key, &znode, &n, | 
 | 							 nm, 0); | 
 | 		else | 
 | 			err = resolve_collision(c, key, &znode, &n, nm); | 
 | 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); | 
 | 		if (err < 0) | 
 | 			goto out_unlock; | 
 | 		if (err) { | 
 | 			/* Ensure the znode is dirtied */ | 
 | 			if (znode->cnext || !ubifs_zn_dirty(znode)) { | 
 | 				znode = dirty_cow_bottom_up(c, znode); | 
 | 				if (IS_ERR(znode)) { | 
 | 					err = PTR_ERR(znode); | 
 | 					goto out_unlock; | 
 | 				} | 
 | 			} | 
 | 			err = tnc_delete(c, znode, n); | 
 | 		} | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	if (!err) | 
 | 		err = dbg_check_tnc(c, 0); | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: key of node | 
 |  * @cookie: node cookie for collision resolution | 
 |  * | 
 |  * Returns %0 on success or negative error code on failure. | 
 |  */ | 
 | int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key, | 
 | 			uint32_t cookie) | 
 | { | 
 | 	int n, err; | 
 | 	struct ubifs_znode *znode; | 
 | 	struct ubifs_dent_node *dent; | 
 | 	struct ubifs_zbranch *zbr; | 
 |  | 
 | 	if (!c->double_hash) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	err = lookup_level0_dirty(c, key, &znode, &n); | 
 | 	if (err <= 0) | 
 | 		goto out_unlock; | 
 |  | 
 | 	zbr = &znode->zbranch[n]; | 
 | 	dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); | 
 | 	if (!dent) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	err = tnc_read_hashed_node(c, zbr, dent); | 
 | 	if (err) | 
 | 		goto out_free; | 
 |  | 
 | 	/* If the cookie does not match, we're facing a hash collision. */ | 
 | 	if (le32_to_cpu(dent->cookie) != cookie) { | 
 | 		union ubifs_key start_key; | 
 |  | 
 | 		lowest_dent_key(c, &start_key, key_inum(c, key)); | 
 |  | 
 | 		err = ubifs_lookup_level0(c, &start_key, &znode, &n); | 
 | 		if (unlikely(err < 0)) | 
 | 			goto out_free; | 
 |  | 
 | 		err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err); | 
 | 		if (err) | 
 | 			goto out_free; | 
 | 	} | 
 |  | 
 | 	if (znode->cnext || !ubifs_zn_dirty(znode)) { | 
 | 		znode = dirty_cow_bottom_up(c, znode); | 
 | 		if (IS_ERR(znode)) { | 
 | 			err = PTR_ERR(znode); | 
 | 			goto out_free; | 
 | 		} | 
 | 	} | 
 | 	err = tnc_delete(c, znode, n); | 
 |  | 
 | out_free: | 
 | 	kfree(dent); | 
 | out_unlock: | 
 | 	if (!err) | 
 | 		err = dbg_check_tnc(c, 0); | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * key_in_range - determine if a key falls within a range of keys. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: key to check | 
 |  * @from_key: lowest key in range | 
 |  * @to_key: highest key in range | 
 |  * | 
 |  * This function returns %1 if the key is in range and %0 otherwise. | 
 |  */ | 
 | static int key_in_range(struct ubifs_info *c, union ubifs_key *key, | 
 | 			union ubifs_key *from_key, union ubifs_key *to_key) | 
 | { | 
 | 	if (keys_cmp(c, key, from_key) < 0) | 
 | 		return 0; | 
 | 	if (keys_cmp(c, key, to_key) > 0) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_remove_range - remove index entries in range. | 
 |  * @c: UBIFS file-system description object | 
 |  * @from_key: lowest key to remove | 
 |  * @to_key: highest key to remove | 
 |  * | 
 |  * This function removes index entries starting at @from_key and ending at | 
 |  * @to_key.  This function returns zero in case of success and a negative error | 
 |  * code in case of failure. | 
 |  */ | 
 | int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, | 
 | 			   union ubifs_key *to_key) | 
 | { | 
 | 	int i, n, k, err = 0; | 
 | 	struct ubifs_znode *znode; | 
 | 	union ubifs_key *key; | 
 |  | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	while (1) { | 
 | 		/* Find first level 0 znode that contains keys to remove */ | 
 | 		err = ubifs_lookup_level0(c, from_key, &znode, &n); | 
 | 		if (err < 0) | 
 | 			goto out_unlock; | 
 |  | 
 | 		if (err) | 
 | 			key = from_key; | 
 | 		else { | 
 | 			err = tnc_next(c, &znode, &n); | 
 | 			if (err == -ENOENT) { | 
 | 				err = 0; | 
 | 				goto out_unlock; | 
 | 			} | 
 | 			if (err < 0) | 
 | 				goto out_unlock; | 
 | 			key = &znode->zbranch[n].key; | 
 | 			if (!key_in_range(c, key, from_key, to_key)) { | 
 | 				err = 0; | 
 | 				goto out_unlock; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Ensure the znode is dirtied */ | 
 | 		if (znode->cnext || !ubifs_zn_dirty(znode)) { | 
 | 			znode = dirty_cow_bottom_up(c, znode); | 
 | 			if (IS_ERR(znode)) { | 
 | 				err = PTR_ERR(znode); | 
 | 				goto out_unlock; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Remove all keys in range except the first */ | 
 | 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { | 
 | 			key = &znode->zbranch[i].key; | 
 | 			if (!key_in_range(c, key, from_key, to_key)) | 
 | 				break; | 
 | 			lnc_free(&znode->zbranch[i]); | 
 | 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum, | 
 | 					     znode->zbranch[i].len); | 
 | 			if (err) { | 
 | 				ubifs_dump_znode(c, znode); | 
 | 				goto out_unlock; | 
 | 			} | 
 | 			dbg_tnck(key, "removing key "); | 
 | 		} | 
 | 		if (k) { | 
 | 			for (i = n + 1 + k; i < znode->child_cnt; i++) | 
 | 				znode->zbranch[i - k] = znode->zbranch[i]; | 
 | 			znode->child_cnt -= k; | 
 | 		} | 
 |  | 
 | 		/* Now delete the first */ | 
 | 		err = tnc_delete(c, znode, n); | 
 | 		if (err) | 
 | 			goto out_unlock; | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	if (!err) | 
 | 		err = dbg_check_tnc(c, 0); | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_remove_ino - remove an inode from TNC. | 
 |  * @c: UBIFS file-system description object | 
 |  * @inum: inode number to remove | 
 |  * | 
 |  * This function remove inode @inum and all the extended attributes associated | 
 |  * with the anode from TNC and returns zero in case of success or a negative | 
 |  * error code in case of failure. | 
 |  */ | 
 | int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) | 
 | { | 
 | 	union ubifs_key key1, key2; | 
 | 	struct ubifs_dent_node *xent, *pxent = NULL; | 
 | 	struct fscrypt_name nm = {0}; | 
 |  | 
 | 	dbg_tnc("ino %lu", (unsigned long)inum); | 
 |  | 
 | 	/* | 
 | 	 * Walk all extended attribute entries and remove them together with | 
 | 	 * corresponding extended attribute inodes. | 
 | 	 */ | 
 | 	lowest_xent_key(c, &key1, inum); | 
 | 	while (1) { | 
 | 		ino_t xattr_inum; | 
 | 		int err; | 
 |  | 
 | 		xent = ubifs_tnc_next_ent(c, &key1, &nm); | 
 | 		if (IS_ERR(xent)) { | 
 | 			err = PTR_ERR(xent); | 
 | 			if (err == -ENOENT) | 
 | 				break; | 
 | 			return err; | 
 | 		} | 
 |  | 
 | 		xattr_inum = le64_to_cpu(xent->inum); | 
 | 		dbg_tnc("xent '%s', ino %lu", xent->name, | 
 | 			(unsigned long)xattr_inum); | 
 |  | 
 | 		ubifs_evict_xattr_inode(c, xattr_inum); | 
 |  | 
 | 		fname_name(&nm) = xent->name; | 
 | 		fname_len(&nm) = le16_to_cpu(xent->nlen); | 
 | 		err = ubifs_tnc_remove_nm(c, &key1, &nm); | 
 | 		if (err) { | 
 | 			kfree(xent); | 
 | 			return err; | 
 | 		} | 
 |  | 
 | 		lowest_ino_key(c, &key1, xattr_inum); | 
 | 		highest_ino_key(c, &key2, xattr_inum); | 
 | 		err = ubifs_tnc_remove_range(c, &key1, &key2); | 
 | 		if (err) { | 
 | 			kfree(xent); | 
 | 			return err; | 
 | 		} | 
 |  | 
 | 		kfree(pxent); | 
 | 		pxent = xent; | 
 | 		key_read(c, &xent->key, &key1); | 
 | 	} | 
 |  | 
 | 	kfree(pxent); | 
 | 	lowest_ino_key(c, &key1, inum); | 
 | 	highest_ino_key(c, &key2, inum); | 
 |  | 
 | 	return ubifs_tnc_remove_range(c, &key1, &key2); | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_next_ent - walk directory or extended attribute entries. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: key of last entry | 
 |  * @nm: name of last entry found or %NULL | 
 |  * | 
 |  * This function finds and reads the next directory or extended attribute entry | 
 |  * after the given key (@key) if there is one. @nm is used to resolve | 
 |  * collisions. | 
 |  * | 
 |  * If the name of the current entry is not known and only the key is known, | 
 |  * @nm->name has to be %NULL. In this case the semantics of this function is a | 
 |  * little bit different and it returns the entry corresponding to this key, not | 
 |  * the next one. If the key was not found, the closest "right" entry is | 
 |  * returned. | 
 |  * | 
 |  * If the fist entry has to be found, @key has to contain the lowest possible | 
 |  * key value for this inode and @name has to be %NULL. | 
 |  * | 
 |  * This function returns the found directory or extended attribute entry node | 
 |  * in case of success, %-ENOENT is returned if no entry was found, and a | 
 |  * negative error code is returned in case of failure. | 
 |  */ | 
 | struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, | 
 | 					   union ubifs_key *key, | 
 | 					   const struct fscrypt_name *nm) | 
 | { | 
 | 	int n, err, type = key_type(c, key); | 
 | 	struct ubifs_znode *znode; | 
 | 	struct ubifs_dent_node *dent; | 
 | 	struct ubifs_zbranch *zbr; | 
 | 	union ubifs_key *dkey; | 
 |  | 
 | 	dbg_tnck(key, "key "); | 
 | 	ubifs_assert(is_hash_key(c, key)); | 
 |  | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	err = ubifs_lookup_level0(c, key, &znode, &n); | 
 | 	if (unlikely(err < 0)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (fname_len(nm) > 0) { | 
 | 		if (err) { | 
 | 			/* Handle collisions */ | 
 | 			if (c->replaying) | 
 | 				err = fallible_resolve_collision(c, key, &znode, &n, | 
 | 							 nm, 0); | 
 | 			else | 
 | 				err = resolve_collision(c, key, &znode, &n, nm); | 
 | 			dbg_tnc("rc returned %d, znode %p, n %d", | 
 | 				err, znode, n); | 
 | 			if (unlikely(err < 0)) | 
 | 				goto out_unlock; | 
 | 		} | 
 |  | 
 | 		/* Now find next entry */ | 
 | 		err = tnc_next(c, &znode, &n); | 
 | 		if (unlikely(err)) | 
 | 			goto out_unlock; | 
 | 	} else { | 
 | 		/* | 
 | 		 * The full name of the entry was not given, in which case the | 
 | 		 * behavior of this function is a little different and it | 
 | 		 * returns current entry, not the next one. | 
 | 		 */ | 
 | 		if (!err) { | 
 | 			/* | 
 | 			 * However, the given key does not exist in the TNC | 
 | 			 * tree and @znode/@n variables contain the closest | 
 | 			 * "preceding" element. Switch to the next one. | 
 | 			 */ | 
 | 			err = tnc_next(c, &znode, &n); | 
 | 			if (err) | 
 | 				goto out_unlock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	zbr = &znode->zbranch[n]; | 
 | 	dent = kmalloc(zbr->len, GFP_NOFS); | 
 | 	if (unlikely(!dent)) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The above 'tnc_next()' call could lead us to the next inode, check | 
 | 	 * this. | 
 | 	 */ | 
 | 	dkey = &zbr->key; | 
 | 	if (key_inum(c, dkey) != key_inum(c, key) || | 
 | 	    key_type(c, dkey) != type) { | 
 | 		err = -ENOENT; | 
 | 		goto out_free; | 
 | 	} | 
 |  | 
 | 	err = tnc_read_hashed_node(c, zbr, dent); | 
 | 	if (unlikely(err)) | 
 | 		goto out_free; | 
 |  | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return dent; | 
 |  | 
 | out_free: | 
 | 	kfree(dent); | 
 | out_unlock: | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | /** | 
 |  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * Destroy left-over obsolete znodes from a failed commit. | 
 |  */ | 
 | static void tnc_destroy_cnext(struct ubifs_info *c) | 
 | { | 
 | 	struct ubifs_znode *cnext; | 
 |  | 
 | 	if (!c->cnext) | 
 | 		return; | 
 | 	ubifs_assert(c->cmt_state == COMMIT_BROKEN); | 
 | 	cnext = c->cnext; | 
 | 	do { | 
 | 		struct ubifs_znode *znode = cnext; | 
 |  | 
 | 		cnext = cnext->cnext; | 
 | 		if (ubifs_zn_obsolete(znode)) | 
 | 			kfree(znode); | 
 | 	} while (cnext && cnext != c->cnext); | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_close - close TNC subsystem and free all related resources. | 
 |  * @c: UBIFS file-system description object | 
 |  */ | 
 | void ubifs_tnc_close(struct ubifs_info *c) | 
 | { | 
 | 	tnc_destroy_cnext(c); | 
 | 	if (c->zroot.znode) { | 
 | 		long n, freed; | 
 |  | 
 | 		n = atomic_long_read(&c->clean_zn_cnt); | 
 | 		freed = ubifs_destroy_tnc_subtree(c->zroot.znode); | 
 | 		ubifs_assert(freed == n); | 
 | 		atomic_long_sub(n, &ubifs_clean_zn_cnt); | 
 | 	} | 
 | 	kfree(c->gap_lebs); | 
 | 	kfree(c->ilebs); | 
 | 	destroy_old_idx(c); | 
 | } | 
 |  | 
 | /** | 
 |  * left_znode - get the znode to the left. | 
 |  * @c: UBIFS file-system description object | 
 |  * @znode: znode | 
 |  * | 
 |  * This function returns a pointer to the znode to the left of @znode or NULL if | 
 |  * there is not one. A negative error code is returned on failure. | 
 |  */ | 
 | static struct ubifs_znode *left_znode(struct ubifs_info *c, | 
 | 				      struct ubifs_znode *znode) | 
 | { | 
 | 	int level = znode->level; | 
 |  | 
 | 	while (1) { | 
 | 		int n = znode->iip - 1; | 
 |  | 
 | 		/* Go up until we can go left */ | 
 | 		znode = znode->parent; | 
 | 		if (!znode) | 
 | 			return NULL; | 
 | 		if (n >= 0) { | 
 | 			/* Now go down the rightmost branch to 'level' */ | 
 | 			znode = get_znode(c, znode, n); | 
 | 			if (IS_ERR(znode)) | 
 | 				return znode; | 
 | 			while (znode->level != level) { | 
 | 				n = znode->child_cnt - 1; | 
 | 				znode = get_znode(c, znode, n); | 
 | 				if (IS_ERR(znode)) | 
 | 					return znode; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return znode; | 
 | } | 
 |  | 
 | /** | 
 |  * right_znode - get the znode to the right. | 
 |  * @c: UBIFS file-system description object | 
 |  * @znode: znode | 
 |  * | 
 |  * This function returns a pointer to the znode to the right of @znode or NULL | 
 |  * if there is not one. A negative error code is returned on failure. | 
 |  */ | 
 | static struct ubifs_znode *right_znode(struct ubifs_info *c, | 
 | 				       struct ubifs_znode *znode) | 
 | { | 
 | 	int level = znode->level; | 
 |  | 
 | 	while (1) { | 
 | 		int n = znode->iip + 1; | 
 |  | 
 | 		/* Go up until we can go right */ | 
 | 		znode = znode->parent; | 
 | 		if (!znode) | 
 | 			return NULL; | 
 | 		if (n < znode->child_cnt) { | 
 | 			/* Now go down the leftmost branch to 'level' */ | 
 | 			znode = get_znode(c, znode, n); | 
 | 			if (IS_ERR(znode)) | 
 | 				return znode; | 
 | 			while (znode->level != level) { | 
 | 				znode = get_znode(c, znode, 0); | 
 | 				if (IS_ERR(znode)) | 
 | 					return znode; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return znode; | 
 | } | 
 |  | 
 | /** | 
 |  * lookup_znode - find a particular indexing node from TNC. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: index node key to lookup | 
 |  * @level: index node level | 
 |  * @lnum: index node LEB number | 
 |  * @offs: index node offset | 
 |  * | 
 |  * This function searches an indexing node by its first key @key and its | 
 |  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing | 
 |  * nodes it traverses to TNC. This function is called for indexing nodes which | 
 |  * were found on the media by scanning, for example when garbage-collecting or | 
 |  * when doing in-the-gaps commit. This means that the indexing node which is | 
 |  * looked for does not have to have exactly the same leftmost key @key, because | 
 |  * the leftmost key may have been changed, in which case TNC will contain a | 
 |  * dirty znode which still refers the same @lnum:@offs. This function is clever | 
 |  * enough to recognize such indexing nodes. | 
 |  * | 
 |  * Note, if a znode was deleted or changed too much, then this function will | 
 |  * not find it. For situations like this UBIFS has the old index RB-tree | 
 |  * (indexed by @lnum:@offs). | 
 |  * | 
 |  * This function returns a pointer to the znode found or %NULL if it is not | 
 |  * found. A negative error code is returned on failure. | 
 |  */ | 
 | static struct ubifs_znode *lookup_znode(struct ubifs_info *c, | 
 | 					union ubifs_key *key, int level, | 
 | 					int lnum, int offs) | 
 | { | 
 | 	struct ubifs_znode *znode, *zn; | 
 | 	int n, nn; | 
 |  | 
 | 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); | 
 |  | 
 | 	/* | 
 | 	 * The arguments have probably been read off flash, so don't assume | 
 | 	 * they are valid. | 
 | 	 */ | 
 | 	if (level < 0) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	/* Get the root znode */ | 
 | 	znode = c->zroot.znode; | 
 | 	if (!znode) { | 
 | 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0); | 
 | 		if (IS_ERR(znode)) | 
 | 			return znode; | 
 | 	} | 
 | 	/* Check if it is the one we are looking for */ | 
 | 	if (c->zroot.lnum == lnum && c->zroot.offs == offs) | 
 | 		return znode; | 
 | 	/* Descend to the parent level i.e. (level + 1) */ | 
 | 	if (level >= znode->level) | 
 | 		return NULL; | 
 | 	while (1) { | 
 | 		ubifs_search_zbranch(c, znode, key, &n); | 
 | 		if (n < 0) { | 
 | 			/* | 
 | 			 * We reached a znode where the leftmost key is greater | 
 | 			 * than the key we are searching for. This is the same | 
 | 			 * situation as the one described in a huge comment at | 
 | 			 * the end of the 'ubifs_lookup_level0()' function. And | 
 | 			 * for exactly the same reasons we have to try to look | 
 | 			 * left before giving up. | 
 | 			 */ | 
 | 			znode = left_znode(c, znode); | 
 | 			if (!znode) | 
 | 				return NULL; | 
 | 			if (IS_ERR(znode)) | 
 | 				return znode; | 
 | 			ubifs_search_zbranch(c, znode, key, &n); | 
 | 			ubifs_assert(n >= 0); | 
 | 		} | 
 | 		if (znode->level == level + 1) | 
 | 			break; | 
 | 		znode = get_znode(c, znode, n); | 
 | 		if (IS_ERR(znode)) | 
 | 			return znode; | 
 | 	} | 
 | 	/* Check if the child is the one we are looking for */ | 
 | 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) | 
 | 		return get_znode(c, znode, n); | 
 | 	/* If the key is unique, there is nowhere else to look */ | 
 | 	if (!is_hash_key(c, key)) | 
 | 		return NULL; | 
 | 	/* | 
 | 	 * The key is not unique and so may be also in the znodes to either | 
 | 	 * side. | 
 | 	 */ | 
 | 	zn = znode; | 
 | 	nn = n; | 
 | 	/* Look left */ | 
 | 	while (1) { | 
 | 		/* Move one branch to the left */ | 
 | 		if (n) | 
 | 			n -= 1; | 
 | 		else { | 
 | 			znode = left_znode(c, znode); | 
 | 			if (!znode) | 
 | 				break; | 
 | 			if (IS_ERR(znode)) | 
 | 				return znode; | 
 | 			n = znode->child_cnt - 1; | 
 | 		} | 
 | 		/* Check it */ | 
 | 		if (znode->zbranch[n].lnum == lnum && | 
 | 		    znode->zbranch[n].offs == offs) | 
 | 			return get_znode(c, znode, n); | 
 | 		/* Stop if the key is less than the one we are looking for */ | 
 | 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) | 
 | 			break; | 
 | 	} | 
 | 	/* Back to the middle */ | 
 | 	znode = zn; | 
 | 	n = nn; | 
 | 	/* Look right */ | 
 | 	while (1) { | 
 | 		/* Move one branch to the right */ | 
 | 		if (++n >= znode->child_cnt) { | 
 | 			znode = right_znode(c, znode); | 
 | 			if (!znode) | 
 | 				break; | 
 | 			if (IS_ERR(znode)) | 
 | 				return znode; | 
 | 			n = 0; | 
 | 		} | 
 | 		/* Check it */ | 
 | 		if (znode->zbranch[n].lnum == lnum && | 
 | 		    znode->zbranch[n].offs == offs) | 
 | 			return get_znode(c, znode, n); | 
 | 		/* Stop if the key is greater than the one we are looking for */ | 
 | 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) | 
 | 			break; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * is_idx_node_in_tnc - determine if an index node is in the TNC. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: key of index node | 
 |  * @level: index node level | 
 |  * @lnum: LEB number of index node | 
 |  * @offs: offset of index node | 
 |  * | 
 |  * This function returns %0 if the index node is not referred to in the TNC, %1 | 
 |  * if the index node is referred to in the TNC and the corresponding znode is | 
 |  * dirty, %2 if an index node is referred to in the TNC and the corresponding | 
 |  * znode is clean, and a negative error code in case of failure. | 
 |  * | 
 |  * Note, the @key argument has to be the key of the first child. Also note, | 
 |  * this function relies on the fact that 0:0 is never a valid LEB number and | 
 |  * offset for a main-area node. | 
 |  */ | 
 | int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, | 
 | 		       int lnum, int offs) | 
 | { | 
 | 	struct ubifs_znode *znode; | 
 |  | 
 | 	znode = lookup_znode(c, key, level, lnum, offs); | 
 | 	if (!znode) | 
 | 		return 0; | 
 | 	if (IS_ERR(znode)) | 
 | 		return PTR_ERR(znode); | 
 |  | 
 | 	return ubifs_zn_dirty(znode) ? 1 : 2; | 
 | } | 
 |  | 
 | /** | 
 |  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: node key | 
 |  * @lnum: node LEB number | 
 |  * @offs: node offset | 
 |  * | 
 |  * This function returns %1 if the node is referred to in the TNC, %0 if it is | 
 |  * not, and a negative error code in case of failure. | 
 |  * | 
 |  * Note, this function relies on the fact that 0:0 is never a valid LEB number | 
 |  * and offset for a main-area node. | 
 |  */ | 
 | static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, | 
 | 			       int lnum, int offs) | 
 | { | 
 | 	struct ubifs_zbranch *zbr; | 
 | 	struct ubifs_znode *znode, *zn; | 
 | 	int n, found, err, nn; | 
 | 	const int unique = !is_hash_key(c, key); | 
 |  | 
 | 	found = ubifs_lookup_level0(c, key, &znode, &n); | 
 | 	if (found < 0) | 
 | 		return found; /* Error code */ | 
 | 	if (!found) | 
 | 		return 0; | 
 | 	zbr = &znode->zbranch[n]; | 
 | 	if (lnum == zbr->lnum && offs == zbr->offs) | 
 | 		return 1; /* Found it */ | 
 | 	if (unique) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * Because the key is not unique, we have to look left | 
 | 	 * and right as well | 
 | 	 */ | 
 | 	zn = znode; | 
 | 	nn = n; | 
 | 	/* Look left */ | 
 | 	while (1) { | 
 | 		err = tnc_prev(c, &znode, &n); | 
 | 		if (err == -ENOENT) | 
 | 			break; | 
 | 		if (err) | 
 | 			return err; | 
 | 		if (keys_cmp(c, key, &znode->zbranch[n].key)) | 
 | 			break; | 
 | 		zbr = &znode->zbranch[n]; | 
 | 		if (lnum == zbr->lnum && offs == zbr->offs) | 
 | 			return 1; /* Found it */ | 
 | 	} | 
 | 	/* Look right */ | 
 | 	znode = zn; | 
 | 	n = nn; | 
 | 	while (1) { | 
 | 		err = tnc_next(c, &znode, &n); | 
 | 		if (err) { | 
 | 			if (err == -ENOENT) | 
 | 				return 0; | 
 | 			return err; | 
 | 		} | 
 | 		if (keys_cmp(c, key, &znode->zbranch[n].key)) | 
 | 			break; | 
 | 		zbr = &znode->zbranch[n]; | 
 | 		if (lnum == zbr->lnum && offs == zbr->offs) | 
 | 			return 1; /* Found it */ | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_tnc_has_node - determine whether a node is in the TNC. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: node key | 
 |  * @level: index node level (if it is an index node) | 
 |  * @lnum: node LEB number | 
 |  * @offs: node offset | 
 |  * @is_idx: non-zero if the node is an index node | 
 |  * | 
 |  * This function returns %1 if the node is in the TNC, %0 if it is not, and a | 
 |  * negative error code in case of failure. For index nodes, @key has to be the | 
 |  * key of the first child. An index node is considered to be in the TNC only if | 
 |  * the corresponding znode is clean or has not been loaded. | 
 |  */ | 
 | int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, | 
 | 		       int lnum, int offs, int is_idx) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	if (is_idx) { | 
 | 		err = is_idx_node_in_tnc(c, key, level, lnum, offs); | 
 | 		if (err < 0) | 
 | 			goto out_unlock; | 
 | 		if (err == 1) | 
 | 			/* The index node was found but it was dirty */ | 
 | 			err = 0; | 
 | 		else if (err == 2) | 
 | 			/* The index node was found and it was clean */ | 
 | 			err = 1; | 
 | 		else | 
 | 			BUG_ON(err != 0); | 
 | 	} else | 
 | 		err = is_leaf_node_in_tnc(c, key, lnum, offs); | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_dirty_idx_node - dirty an index node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: index node key | 
 |  * @level: index node level | 
 |  * @lnum: index node LEB number | 
 |  * @offs: index node offset | 
 |  * | 
 |  * This function loads and dirties an index node so that it can be garbage | 
 |  * collected. The @key argument has to be the key of the first child. This | 
 |  * function relies on the fact that 0:0 is never a valid LEB number and offset | 
 |  * for a main-area node. Returns %0 on success and a negative error code on | 
 |  * failure. | 
 |  */ | 
 | int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, | 
 | 			 int lnum, int offs) | 
 | { | 
 | 	struct ubifs_znode *znode; | 
 | 	int err = 0; | 
 |  | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	znode = lookup_znode(c, key, level, lnum, offs); | 
 | 	if (!znode) | 
 | 		goto out_unlock; | 
 | 	if (IS_ERR(znode)) { | 
 | 		err = PTR_ERR(znode); | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	znode = dirty_cow_bottom_up(c, znode); | 
 | 	if (IS_ERR(znode)) { | 
 | 		err = PTR_ERR(znode); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_check_inode_size - check if inode size is correct. | 
 |  * @c: UBIFS file-system description object | 
 |  * @inum: inode number | 
 |  * @size: inode size | 
 |  * | 
 |  * This function makes sure that the inode size (@size) is correct and it does | 
 |  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL | 
 |  * if it has a data page beyond @size, and other negative error code in case of | 
 |  * other errors. | 
 |  */ | 
 | int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, | 
 | 			 loff_t size) | 
 | { | 
 | 	int err, n; | 
 | 	union ubifs_key from_key, to_key, *key; | 
 | 	struct ubifs_znode *znode; | 
 | 	unsigned int block; | 
 |  | 
 | 	if (!S_ISREG(inode->i_mode)) | 
 | 		return 0; | 
 | 	if (!dbg_is_chk_gen(c)) | 
 | 		return 0; | 
 |  | 
 | 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; | 
 | 	data_key_init(c, &from_key, inode->i_ino, block); | 
 | 	highest_data_key(c, &to_key, inode->i_ino); | 
 |  | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	err = ubifs_lookup_level0(c, &from_key, &znode, &n); | 
 | 	if (err < 0) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (err) { | 
 | 		key = &from_key; | 
 | 		goto out_dump; | 
 | 	} | 
 |  | 
 | 	err = tnc_next(c, &znode, &n); | 
 | 	if (err == -ENOENT) { | 
 | 		err = 0; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	if (err < 0) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ubifs_assert(err == 0); | 
 | 	key = &znode->zbranch[n].key; | 
 | 	if (!key_in_range(c, key, &from_key, &to_key)) | 
 | 		goto out_unlock; | 
 |  | 
 | out_dump: | 
 | 	block = key_block(c, key); | 
 | 	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld", | 
 | 		  (unsigned long)inode->i_ino, size, | 
 | 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT); | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	ubifs_dump_inode(c, inode); | 
 | 	dump_stack(); | 
 | 	return -EINVAL; | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return err; | 
 | } |