| /* | 
 |  * mm/percpu.c - percpu memory allocator | 
 |  * | 
 |  * Copyright (C) 2009		SUSE Linux Products GmbH | 
 |  * Copyright (C) 2009		Tejun Heo <tj@kernel.org> | 
 |  * | 
 |  * Copyright (C) 2017		Facebook Inc. | 
 |  * Copyright (C) 2017		Dennis Zhou <dennisszhou@gmail.com> | 
 |  * | 
 |  * This file is released under the GPLv2 license. | 
 |  * | 
 |  * The percpu allocator handles both static and dynamic areas.  Percpu | 
 |  * areas are allocated in chunks which are divided into units.  There is | 
 |  * a 1-to-1 mapping for units to possible cpus.  These units are grouped | 
 |  * based on NUMA properties of the machine. | 
 |  * | 
 |  *  c0                           c1                         c2 | 
 |  *  -------------------          -------------------        ------------ | 
 |  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u | 
 |  *  -------------------  ......  -------------------  ....  ------------ | 
 |  * | 
 |  * Allocation is done by offsets into a unit's address space.  Ie., an | 
 |  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, | 
 |  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear | 
 |  * and even sparse.  Access is handled by configuring percpu base | 
 |  * registers according to the cpu to unit mappings and offsetting the | 
 |  * base address using pcpu_unit_size. | 
 |  * | 
 |  * There is special consideration for the first chunk which must handle | 
 |  * the static percpu variables in the kernel image as allocation services | 
 |  * are not online yet.  In short, the first chunk is structured like so: | 
 |  * | 
 |  *                  <Static | [Reserved] | Dynamic> | 
 |  * | 
 |  * The static data is copied from the original section managed by the | 
 |  * linker.  The reserved section, if non-zero, primarily manages static | 
 |  * percpu variables from kernel modules.  Finally, the dynamic section | 
 |  * takes care of normal allocations. | 
 |  * | 
 |  * The allocator organizes chunks into lists according to free size and | 
 |  * tries to allocate from the fullest chunk first.  Each chunk is managed | 
 |  * by a bitmap with metadata blocks.  The allocation map is updated on | 
 |  * every allocation and free to reflect the current state while the boundary | 
 |  * map is only updated on allocation.  Each metadata block contains | 
 |  * information to help mitigate the need to iterate over large portions | 
 |  * of the bitmap.  The reverse mapping from page to chunk is stored in | 
 |  * the page's index.  Lastly, units are lazily backed and grow in unison. | 
 |  * | 
 |  * There is a unique conversion that goes on here between bytes and bits. | 
 |  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk | 
 |  * tracks the number of pages it is responsible for in nr_pages.  Helper | 
 |  * functions are used to convert from between the bytes, bits, and blocks. | 
 |  * All hints are managed in bits unless explicitly stated. | 
 |  * | 
 |  * To use this allocator, arch code should do the following: | 
 |  * | 
 |  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate | 
 |  *   regular address to percpu pointer and back if they need to be | 
 |  *   different from the default | 
 |  * | 
 |  * - use pcpu_setup_first_chunk() during percpu area initialization to | 
 |  *   setup the first chunk containing the kernel static percpu area | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/bitmap.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/err.h> | 
 | #include <linux/lcm.h> | 
 | #include <linux/list.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/kmemleak.h> | 
 | #include <linux/sched.h> | 
 |  | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/io.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/percpu.h> | 
 |  | 
 | #include "percpu-internal.h" | 
 |  | 
 | /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */ | 
 | #define PCPU_SLOT_BASE_SHIFT		5 | 
 |  | 
 | #define PCPU_EMPTY_POP_PAGES_LOW	2 | 
 | #define PCPU_EMPTY_POP_PAGES_HIGH	4 | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ | 
 | #ifndef __addr_to_pcpu_ptr | 
 | #define __addr_to_pcpu_ptr(addr)					\ | 
 | 	(void __percpu *)((unsigned long)(addr) -			\ | 
 | 			  (unsigned long)pcpu_base_addr	+		\ | 
 | 			  (unsigned long)__per_cpu_start) | 
 | #endif | 
 | #ifndef __pcpu_ptr_to_addr | 
 | #define __pcpu_ptr_to_addr(ptr)						\ | 
 | 	(void __force *)((unsigned long)(ptr) +				\ | 
 | 			 (unsigned long)pcpu_base_addr -		\ | 
 | 			 (unsigned long)__per_cpu_start) | 
 | #endif | 
 | #else	/* CONFIG_SMP */ | 
 | /* on UP, it's always identity mapped */ | 
 | #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr) | 
 | #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr) | 
 | #endif	/* CONFIG_SMP */ | 
 |  | 
 | static int pcpu_unit_pages __ro_after_init; | 
 | static int pcpu_unit_size __ro_after_init; | 
 | static int pcpu_nr_units __ro_after_init; | 
 | static int pcpu_atom_size __ro_after_init; | 
 | int pcpu_nr_slots __ro_after_init; | 
 | static size_t pcpu_chunk_struct_size __ro_after_init; | 
 |  | 
 | /* cpus with the lowest and highest unit addresses */ | 
 | static unsigned int pcpu_low_unit_cpu __ro_after_init; | 
 | static unsigned int pcpu_high_unit_cpu __ro_after_init; | 
 |  | 
 | /* the address of the first chunk which starts with the kernel static area */ | 
 | void *pcpu_base_addr __ro_after_init; | 
 | EXPORT_SYMBOL_GPL(pcpu_base_addr); | 
 |  | 
 | static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */ | 
 | const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */ | 
 |  | 
 | /* group information, used for vm allocation */ | 
 | static int pcpu_nr_groups __ro_after_init; | 
 | static const unsigned long *pcpu_group_offsets __ro_after_init; | 
 | static const size_t *pcpu_group_sizes __ro_after_init; | 
 |  | 
 | /* | 
 |  * The first chunk which always exists.  Note that unlike other | 
 |  * chunks, this one can be allocated and mapped in several different | 
 |  * ways and thus often doesn't live in the vmalloc area. | 
 |  */ | 
 | struct pcpu_chunk *pcpu_first_chunk __ro_after_init; | 
 |  | 
 | /* | 
 |  * Optional reserved chunk.  This chunk reserves part of the first | 
 |  * chunk and serves it for reserved allocations.  When the reserved | 
 |  * region doesn't exist, the following variable is NULL. | 
 |  */ | 
 | struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; | 
 |  | 
 | DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */ | 
 | static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */ | 
 |  | 
 | struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */ | 
 |  | 
 | /* chunks which need their map areas extended, protected by pcpu_lock */ | 
 | static LIST_HEAD(pcpu_map_extend_chunks); | 
 |  | 
 | /* | 
 |  * The number of empty populated pages, protected by pcpu_lock.  The | 
 |  * reserved chunk doesn't contribute to the count. | 
 |  */ | 
 | int pcpu_nr_empty_pop_pages; | 
 |  | 
 | /* | 
 |  * Balance work is used to populate or destroy chunks asynchronously.  We | 
 |  * try to keep the number of populated free pages between | 
 |  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one | 
 |  * empty chunk. | 
 |  */ | 
 | static void pcpu_balance_workfn(struct work_struct *work); | 
 | static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); | 
 | static bool pcpu_async_enabled __read_mostly; | 
 | static bool pcpu_atomic_alloc_failed; | 
 |  | 
 | static void pcpu_schedule_balance_work(void) | 
 | { | 
 | 	if (pcpu_async_enabled) | 
 | 		schedule_work(&pcpu_balance_work); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_addr_in_chunk - check if the address is served from this chunk | 
 |  * @chunk: chunk of interest | 
 |  * @addr: percpu address | 
 |  * | 
 |  * RETURNS: | 
 |  * True if the address is served from this chunk. | 
 |  */ | 
 | static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) | 
 | { | 
 | 	void *start_addr, *end_addr; | 
 |  | 
 | 	if (!chunk) | 
 | 		return false; | 
 |  | 
 | 	start_addr = chunk->base_addr + chunk->start_offset; | 
 | 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - | 
 | 		   chunk->end_offset; | 
 |  | 
 | 	return addr >= start_addr && addr < end_addr; | 
 | } | 
 |  | 
 | static int __pcpu_size_to_slot(int size) | 
 | { | 
 | 	int highbit = fls(size);	/* size is in bytes */ | 
 | 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); | 
 | } | 
 |  | 
 | static int pcpu_size_to_slot(int size) | 
 | { | 
 | 	if (size == pcpu_unit_size) | 
 | 		return pcpu_nr_slots - 1; | 
 | 	return __pcpu_size_to_slot(size); | 
 | } | 
 |  | 
 | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) | 
 | { | 
 | 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0) | 
 | 		return 0; | 
 |  | 
 | 	return pcpu_size_to_slot(chunk->free_bytes); | 
 | } | 
 |  | 
 | /* set the pointer to a chunk in a page struct */ | 
 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) | 
 | { | 
 | 	page->index = (unsigned long)pcpu; | 
 | } | 
 |  | 
 | /* obtain pointer to a chunk from a page struct */ | 
 | static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | 
 | { | 
 | 	return (struct pcpu_chunk *)page->index; | 
 | } | 
 |  | 
 | static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) | 
 | { | 
 | 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; | 
 | } | 
 |  | 
 | static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) | 
 | { | 
 | 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); | 
 | } | 
 |  | 
 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | 
 | 				     unsigned int cpu, int page_idx) | 
 | { | 
 | 	return (unsigned long)chunk->base_addr + | 
 | 	       pcpu_unit_page_offset(cpu, page_idx); | 
 | } | 
 |  | 
 | static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end) | 
 | { | 
 | 	*rs = find_next_zero_bit(bitmap, end, *rs); | 
 | 	*re = find_next_bit(bitmap, end, *rs + 1); | 
 | } | 
 |  | 
 | static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end) | 
 | { | 
 | 	*rs = find_next_bit(bitmap, end, *rs); | 
 | 	*re = find_next_zero_bit(bitmap, end, *rs + 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Bitmap region iterators.  Iterates over the bitmap between | 
 |  * [@start, @end) in @chunk.  @rs and @re should be integer variables | 
 |  * and will be set to start and end index of the current free region. | 
 |  */ | 
 | #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)		     \ | 
 | 	for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \ | 
 | 	     (rs) < (re);						     \ | 
 | 	     (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end))) | 
 |  | 
 | #define pcpu_for_each_pop_region(bitmap, rs, re, start, end)		     \ | 
 | 	for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \ | 
 | 	     (rs) < (re);						     \ | 
 | 	     (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end))) | 
 |  | 
 | /* | 
 |  * The following are helper functions to help access bitmaps and convert | 
 |  * between bitmap offsets to address offsets. | 
 |  */ | 
 | static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) | 
 | { | 
 | 	return chunk->alloc_map + | 
 | 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); | 
 | } | 
 |  | 
 | static unsigned long pcpu_off_to_block_index(int off) | 
 | { | 
 | 	return off / PCPU_BITMAP_BLOCK_BITS; | 
 | } | 
 |  | 
 | static unsigned long pcpu_off_to_block_off(int off) | 
 | { | 
 | 	return off & (PCPU_BITMAP_BLOCK_BITS - 1); | 
 | } | 
 |  | 
 | static unsigned long pcpu_block_off_to_off(int index, int off) | 
 | { | 
 | 	return index * PCPU_BITMAP_BLOCK_BITS + off; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_next_md_free_region - finds the next hint free area | 
 |  * @chunk: chunk of interest | 
 |  * @bit_off: chunk offset | 
 |  * @bits: size of free area | 
 |  * | 
 |  * Helper function for pcpu_for_each_md_free_region.  It checks | 
 |  * block->contig_hint and performs aggregation across blocks to find the | 
 |  * next hint.  It modifies bit_off and bits in-place to be consumed in the | 
 |  * loop. | 
 |  */ | 
 | static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, | 
 | 				     int *bits) | 
 | { | 
 | 	int i = pcpu_off_to_block_index(*bit_off); | 
 | 	int block_off = pcpu_off_to_block_off(*bit_off); | 
 | 	struct pcpu_block_md *block; | 
 |  | 
 | 	*bits = 0; | 
 | 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); | 
 | 	     block++, i++) { | 
 | 		/* handles contig area across blocks */ | 
 | 		if (*bits) { | 
 | 			*bits += block->left_free; | 
 | 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS) | 
 | 				continue; | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * This checks three things.  First is there a contig_hint to | 
 | 		 * check.  Second, have we checked this hint before by | 
 | 		 * comparing the block_off.  Third, is this the same as the | 
 | 		 * right contig hint.  In the last case, it spills over into | 
 | 		 * the next block and should be handled by the contig area | 
 | 		 * across blocks code. | 
 | 		 */ | 
 | 		*bits = block->contig_hint; | 
 | 		if (*bits && block->contig_hint_start >= block_off && | 
 | 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { | 
 | 			*bit_off = pcpu_block_off_to_off(i, | 
 | 					block->contig_hint_start); | 
 | 			return; | 
 | 		} | 
 | 		/* reset to satisfy the second predicate above */ | 
 | 		block_off = 0; | 
 |  | 
 | 		*bits = block->right_free; | 
 | 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_next_fit_region - finds fit areas for a given allocation request | 
 |  * @chunk: chunk of interest | 
 |  * @alloc_bits: size of allocation | 
 |  * @align: alignment of area (max PAGE_SIZE) | 
 |  * @bit_off: chunk offset | 
 |  * @bits: size of free area | 
 |  * | 
 |  * Finds the next free region that is viable for use with a given size and | 
 |  * alignment.  This only returns if there is a valid area to be used for this | 
 |  * allocation.  block->first_free is returned if the allocation request fits | 
 |  * within the block to see if the request can be fulfilled prior to the contig | 
 |  * hint. | 
 |  */ | 
 | static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, | 
 | 				 int align, int *bit_off, int *bits) | 
 | { | 
 | 	int i = pcpu_off_to_block_index(*bit_off); | 
 | 	int block_off = pcpu_off_to_block_off(*bit_off); | 
 | 	struct pcpu_block_md *block; | 
 |  | 
 | 	*bits = 0; | 
 | 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); | 
 | 	     block++, i++) { | 
 | 		/* handles contig area across blocks */ | 
 | 		if (*bits) { | 
 | 			*bits += block->left_free; | 
 | 			if (*bits >= alloc_bits) | 
 | 				return; | 
 | 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS) | 
 | 				continue; | 
 | 		} | 
 |  | 
 | 		/* check block->contig_hint */ | 
 | 		*bits = ALIGN(block->contig_hint_start, align) - | 
 | 			block->contig_hint_start; | 
 | 		/* | 
 | 		 * This uses the block offset to determine if this has been | 
 | 		 * checked in the prior iteration. | 
 | 		 */ | 
 | 		if (block->contig_hint && | 
 | 		    block->contig_hint_start >= block_off && | 
 | 		    block->contig_hint >= *bits + alloc_bits) { | 
 | 			*bits += alloc_bits + block->contig_hint_start - | 
 | 				 block->first_free; | 
 | 			*bit_off = pcpu_block_off_to_off(i, block->first_free); | 
 | 			return; | 
 | 		} | 
 | 		/* reset to satisfy the second predicate above */ | 
 | 		block_off = 0; | 
 |  | 
 | 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, | 
 | 				 align); | 
 | 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; | 
 | 		*bit_off = pcpu_block_off_to_off(i, *bit_off); | 
 | 		if (*bits >= alloc_bits) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	/* no valid offsets were found - fail condition */ | 
 | 	*bit_off = pcpu_chunk_map_bits(chunk); | 
 | } | 
 |  | 
 | /* | 
 |  * Metadata free area iterators.  These perform aggregation of free areas | 
 |  * based on the metadata blocks and return the offset @bit_off and size in | 
 |  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when | 
 |  * a fit is found for the allocation request. | 
 |  */ | 
 | #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\ | 
 | 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\ | 
 | 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\ | 
 | 	     (bit_off) += (bits) + 1,					\ | 
 | 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) | 
 |  | 
 | #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \ | 
 | 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ | 
 | 				  &(bits));				      \ | 
 | 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \ | 
 | 	     (bit_off) += (bits),					      \ | 
 | 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ | 
 | 				  &(bits))) | 
 |  | 
 | /** | 
 |  * pcpu_mem_zalloc - allocate memory | 
 |  * @size: bytes to allocate | 
 |  * @gfp: allocation flags | 
 |  * | 
 |  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE, | 
 |  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. | 
 |  * This is to facilitate passing through whitelisted flags.  The | 
 |  * returned memory is always zeroed. | 
 |  * | 
 |  * CONTEXT: | 
 |  * Does GFP_KERNEL allocation. | 
 |  * | 
 |  * RETURNS: | 
 |  * Pointer to the allocated area on success, NULL on failure. | 
 |  */ | 
 | static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) | 
 | { | 
 | 	if (WARN_ON_ONCE(!slab_is_available())) | 
 | 		return NULL; | 
 |  | 
 | 	if (size <= PAGE_SIZE) | 
 | 		return kzalloc(size, gfp | GFP_KERNEL); | 
 | 	else | 
 | 		return __vmalloc(size, gfp | GFP_KERNEL | __GFP_ZERO, | 
 | 				 PAGE_KERNEL); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_mem_free - free memory | 
 |  * @ptr: memory to free | 
 |  * | 
 |  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc(). | 
 |  */ | 
 | static void pcpu_mem_free(void *ptr) | 
 | { | 
 | 	kvfree(ptr); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | 
 |  * @chunk: chunk of interest | 
 |  * @oslot: the previous slot it was on | 
 |  * | 
 |  * This function is called after an allocation or free changed @chunk. | 
 |  * New slot according to the changed state is determined and @chunk is | 
 |  * moved to the slot.  Note that the reserved chunk is never put on | 
 |  * chunk slots. | 
 |  * | 
 |  * CONTEXT: | 
 |  * pcpu_lock. | 
 |  */ | 
 | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | 
 | { | 
 | 	int nslot = pcpu_chunk_slot(chunk); | 
 |  | 
 | 	if (chunk != pcpu_reserved_chunk && oslot != nslot) { | 
 | 		if (oslot < nslot) | 
 | 			list_move(&chunk->list, &pcpu_slot[nslot]); | 
 | 		else | 
 | 			list_move_tail(&chunk->list, &pcpu_slot[nslot]); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_cnt_pop_pages- counts populated backing pages in range | 
 |  * @chunk: chunk of interest | 
 |  * @bit_off: start offset | 
 |  * @bits: size of area to check | 
 |  * | 
 |  * Calculates the number of populated pages in the region | 
 |  * [page_start, page_end).  This keeps track of how many empty populated | 
 |  * pages are available and decide if async work should be scheduled. | 
 |  * | 
 |  * RETURNS: | 
 |  * The nr of populated pages. | 
 |  */ | 
 | static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off, | 
 | 				     int bits) | 
 | { | 
 | 	int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE); | 
 | 	int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); | 
 |  | 
 | 	if (page_start >= page_end) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * bitmap_weight counts the number of bits set in a bitmap up to | 
 | 	 * the specified number of bits.  This is counting the populated | 
 | 	 * pages up to page_end and then subtracting the populated pages | 
 | 	 * up to page_start to count the populated pages in | 
 | 	 * [page_start, page_end). | 
 | 	 */ | 
 | 	return bitmap_weight(chunk->populated, page_end) - | 
 | 	       bitmap_weight(chunk->populated, page_start); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_chunk_update - updates the chunk metadata given a free area | 
 |  * @chunk: chunk of interest | 
 |  * @bit_off: chunk offset | 
 |  * @bits: size of free area | 
 |  * | 
 |  * This updates the chunk's contig hint and starting offset given a free area. | 
 |  * Choose the best starting offset if the contig hint is equal. | 
 |  */ | 
 | static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits) | 
 | { | 
 | 	if (bits > chunk->contig_bits) { | 
 | 		chunk->contig_bits_start = bit_off; | 
 | 		chunk->contig_bits = bits; | 
 | 	} else if (bits == chunk->contig_bits && chunk->contig_bits_start && | 
 | 		   (!bit_off || | 
 | 		    __ffs(bit_off) > __ffs(chunk->contig_bits_start))) { | 
 | 		/* use the start with the best alignment */ | 
 | 		chunk->contig_bits_start = bit_off; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_chunk_refresh_hint - updates metadata about a chunk | 
 |  * @chunk: chunk of interest | 
 |  * | 
 |  * Iterates over the metadata blocks to find the largest contig area. | 
 |  * It also counts the populated pages and uses the delta to update the | 
 |  * global count. | 
 |  * | 
 |  * Updates: | 
 |  *      chunk->contig_bits | 
 |  *      chunk->contig_bits_start | 
 |  *      nr_empty_pop_pages (chunk and global) | 
 |  */ | 
 | static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk) | 
 | { | 
 | 	int bit_off, bits, nr_empty_pop_pages; | 
 |  | 
 | 	/* clear metadata */ | 
 | 	chunk->contig_bits = 0; | 
 |  | 
 | 	bit_off = chunk->first_bit; | 
 | 	bits = nr_empty_pop_pages = 0; | 
 | 	pcpu_for_each_md_free_region(chunk, bit_off, bits) { | 
 | 		pcpu_chunk_update(chunk, bit_off, bits); | 
 |  | 
 | 		nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Keep track of nr_empty_pop_pages. | 
 | 	 * | 
 | 	 * The chunk maintains the previous number of free pages it held, | 
 | 	 * so the delta is used to update the global counter.  The reserved | 
 | 	 * chunk is not part of the free page count as they are populated | 
 | 	 * at init and are special to serving reserved allocations. | 
 | 	 */ | 
 | 	if (chunk != pcpu_reserved_chunk) | 
 | 		pcpu_nr_empty_pop_pages += | 
 | 			(nr_empty_pop_pages - chunk->nr_empty_pop_pages); | 
 |  | 
 | 	chunk->nr_empty_pop_pages = nr_empty_pop_pages; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_block_update - updates a block given a free area | 
 |  * @block: block of interest | 
 |  * @start: start offset in block | 
 |  * @end: end offset in block | 
 |  * | 
 |  * Updates a block given a known free area.  The region [start, end) is | 
 |  * expected to be the entirety of the free area within a block.  Chooses | 
 |  * the best starting offset if the contig hints are equal. | 
 |  */ | 
 | static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) | 
 | { | 
 | 	int contig = end - start; | 
 |  | 
 | 	block->first_free = min(block->first_free, start); | 
 | 	if (start == 0) | 
 | 		block->left_free = contig; | 
 |  | 
 | 	if (end == PCPU_BITMAP_BLOCK_BITS) | 
 | 		block->right_free = contig; | 
 |  | 
 | 	if (contig > block->contig_hint) { | 
 | 		block->contig_hint_start = start; | 
 | 		block->contig_hint = contig; | 
 | 	} else if (block->contig_hint_start && contig == block->contig_hint && | 
 | 		   (!start || __ffs(start) > __ffs(block->contig_hint_start))) { | 
 | 		/* use the start with the best alignment */ | 
 | 		block->contig_hint_start = start; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_block_refresh_hint | 
 |  * @chunk: chunk of interest | 
 |  * @index: index of the metadata block | 
 |  * | 
 |  * Scans over the block beginning at first_free and updates the block | 
 |  * metadata accordingly. | 
 |  */ | 
 | static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) | 
 | { | 
 | 	struct pcpu_block_md *block = chunk->md_blocks + index; | 
 | 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); | 
 | 	int rs, re;	/* region start, region end */ | 
 |  | 
 | 	/* clear hints */ | 
 | 	block->contig_hint = 0; | 
 | 	block->left_free = block->right_free = 0; | 
 |  | 
 | 	/* iterate over free areas and update the contig hints */ | 
 | 	pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free, | 
 | 				   PCPU_BITMAP_BLOCK_BITS) { | 
 | 		pcpu_block_update(block, rs, re); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_block_update_hint_alloc - update hint on allocation path | 
 |  * @chunk: chunk of interest | 
 |  * @bit_off: chunk offset | 
 |  * @bits: size of request | 
 |  * | 
 |  * Updates metadata for the allocation path.  The metadata only has to be | 
 |  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level | 
 |  * scans are required if the block's contig hint is broken. | 
 |  */ | 
 | static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, | 
 | 					 int bits) | 
 | { | 
 | 	struct pcpu_block_md *s_block, *e_block, *block; | 
 | 	int s_index, e_index;	/* block indexes of the freed allocation */ | 
 | 	int s_off, e_off;	/* block offsets of the freed allocation */ | 
 |  | 
 | 	/* | 
 | 	 * Calculate per block offsets. | 
 | 	 * The calculation uses an inclusive range, but the resulting offsets | 
 | 	 * are [start, end).  e_index always points to the last block in the | 
 | 	 * range. | 
 | 	 */ | 
 | 	s_index = pcpu_off_to_block_index(bit_off); | 
 | 	e_index = pcpu_off_to_block_index(bit_off + bits - 1); | 
 | 	s_off = pcpu_off_to_block_off(bit_off); | 
 | 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; | 
 |  | 
 | 	s_block = chunk->md_blocks + s_index; | 
 | 	e_block = chunk->md_blocks + e_index; | 
 |  | 
 | 	/* | 
 | 	 * Update s_block. | 
 | 	 * block->first_free must be updated if the allocation takes its place. | 
 | 	 * If the allocation breaks the contig_hint, a scan is required to | 
 | 	 * restore this hint. | 
 | 	 */ | 
 | 	if (s_off == s_block->first_free) | 
 | 		s_block->first_free = find_next_zero_bit( | 
 | 					pcpu_index_alloc_map(chunk, s_index), | 
 | 					PCPU_BITMAP_BLOCK_BITS, | 
 | 					s_off + bits); | 
 |  | 
 | 	if (s_off >= s_block->contig_hint_start && | 
 | 	    s_off < s_block->contig_hint_start + s_block->contig_hint) { | 
 | 		/* block contig hint is broken - scan to fix it */ | 
 | 		pcpu_block_refresh_hint(chunk, s_index); | 
 | 	} else { | 
 | 		/* update left and right contig manually */ | 
 | 		s_block->left_free = min(s_block->left_free, s_off); | 
 | 		if (s_index == e_index) | 
 | 			s_block->right_free = min_t(int, s_block->right_free, | 
 | 					PCPU_BITMAP_BLOCK_BITS - e_off); | 
 | 		else | 
 | 			s_block->right_free = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Update e_block. | 
 | 	 */ | 
 | 	if (s_index != e_index) { | 
 | 		/* | 
 | 		 * When the allocation is across blocks, the end is along | 
 | 		 * the left part of the e_block. | 
 | 		 */ | 
 | 		e_block->first_free = find_next_zero_bit( | 
 | 				pcpu_index_alloc_map(chunk, e_index), | 
 | 				PCPU_BITMAP_BLOCK_BITS, e_off); | 
 |  | 
 | 		if (e_off == PCPU_BITMAP_BLOCK_BITS) { | 
 | 			/* reset the block */ | 
 | 			e_block++; | 
 | 		} else { | 
 | 			if (e_off > e_block->contig_hint_start) { | 
 | 				/* contig hint is broken - scan to fix it */ | 
 | 				pcpu_block_refresh_hint(chunk, e_index); | 
 | 			} else { | 
 | 				e_block->left_free = 0; | 
 | 				e_block->right_free = | 
 | 					min_t(int, e_block->right_free, | 
 | 					      PCPU_BITMAP_BLOCK_BITS - e_off); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* update in-between md_blocks */ | 
 | 		for (block = s_block + 1; block < e_block; block++) { | 
 | 			block->contig_hint = 0; | 
 | 			block->left_free = 0; | 
 | 			block->right_free = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The only time a full chunk scan is required is if the chunk | 
 | 	 * contig hint is broken.  Otherwise, it means a smaller space | 
 | 	 * was used and therefore the chunk contig hint is still correct. | 
 | 	 */ | 
 | 	if (bit_off >= chunk->contig_bits_start  && | 
 | 	    bit_off < chunk->contig_bits_start + chunk->contig_bits) | 
 | 		pcpu_chunk_refresh_hint(chunk); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_block_update_hint_free - updates the block hints on the free path | 
 |  * @chunk: chunk of interest | 
 |  * @bit_off: chunk offset | 
 |  * @bits: size of request | 
 |  * | 
 |  * Updates metadata for the allocation path.  This avoids a blind block | 
 |  * refresh by making use of the block contig hints.  If this fails, it scans | 
 |  * forward and backward to determine the extent of the free area.  This is | 
 |  * capped at the boundary of blocks. | 
 |  * | 
 |  * A chunk update is triggered if a page becomes free, a block becomes free, | 
 |  * or the free spans across blocks.  This tradeoff is to minimize iterating | 
 |  * over the block metadata to update chunk->contig_bits.  chunk->contig_bits | 
 |  * may be off by up to a page, but it will never be more than the available | 
 |  * space.  If the contig hint is contained in one block, it will be accurate. | 
 |  */ | 
 | static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, | 
 | 					int bits) | 
 | { | 
 | 	struct pcpu_block_md *s_block, *e_block, *block; | 
 | 	int s_index, e_index;	/* block indexes of the freed allocation */ | 
 | 	int s_off, e_off;	/* block offsets of the freed allocation */ | 
 | 	int start, end;		/* start and end of the whole free area */ | 
 |  | 
 | 	/* | 
 | 	 * Calculate per block offsets. | 
 | 	 * The calculation uses an inclusive range, but the resulting offsets | 
 | 	 * are [start, end).  e_index always points to the last block in the | 
 | 	 * range. | 
 | 	 */ | 
 | 	s_index = pcpu_off_to_block_index(bit_off); | 
 | 	e_index = pcpu_off_to_block_index(bit_off + bits - 1); | 
 | 	s_off = pcpu_off_to_block_off(bit_off); | 
 | 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; | 
 |  | 
 | 	s_block = chunk->md_blocks + s_index; | 
 | 	e_block = chunk->md_blocks + e_index; | 
 |  | 
 | 	/* | 
 | 	 * Check if the freed area aligns with the block->contig_hint. | 
 | 	 * If it does, then the scan to find the beginning/end of the | 
 | 	 * larger free area can be avoided. | 
 | 	 * | 
 | 	 * start and end refer to beginning and end of the free area | 
 | 	 * within each their respective blocks.  This is not necessarily | 
 | 	 * the entire free area as it may span blocks past the beginning | 
 | 	 * or end of the block. | 
 | 	 */ | 
 | 	start = s_off; | 
 | 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) { | 
 | 		start = s_block->contig_hint_start; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Scan backwards to find the extent of the free area. | 
 | 		 * find_last_bit returns the starting bit, so if the start bit | 
 | 		 * is returned, that means there was no last bit and the | 
 | 		 * remainder of the chunk is free. | 
 | 		 */ | 
 | 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), | 
 | 					  start); | 
 | 		start = (start == l_bit) ? 0 : l_bit + 1; | 
 | 	} | 
 |  | 
 | 	end = e_off; | 
 | 	if (e_off == e_block->contig_hint_start) | 
 | 		end = e_block->contig_hint_start + e_block->contig_hint; | 
 | 	else | 
 | 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), | 
 | 				    PCPU_BITMAP_BLOCK_BITS, end); | 
 |  | 
 | 	/* update s_block */ | 
 | 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; | 
 | 	pcpu_block_update(s_block, start, e_off); | 
 |  | 
 | 	/* freeing in the same block */ | 
 | 	if (s_index != e_index) { | 
 | 		/* update e_block */ | 
 | 		pcpu_block_update(e_block, 0, end); | 
 |  | 
 | 		/* reset md_blocks in the middle */ | 
 | 		for (block = s_block + 1; block < e_block; block++) { | 
 | 			block->first_free = 0; | 
 | 			block->contig_hint_start = 0; | 
 | 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS; | 
 | 			block->left_free = PCPU_BITMAP_BLOCK_BITS; | 
 | 			block->right_free = PCPU_BITMAP_BLOCK_BITS; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Refresh chunk metadata when the free makes a page free, a block | 
 | 	 * free, or spans across blocks.  The contig hint may be off by up to | 
 | 	 * a page, but if the hint is contained in a block, it will be accurate | 
 | 	 * with the else condition below. | 
 | 	 */ | 
 | 	if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) > | 
 | 	     ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) || | 
 | 	    s_index != e_index) | 
 | 		pcpu_chunk_refresh_hint(chunk); | 
 | 	else | 
 | 		pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start), | 
 | 				  s_block->contig_hint); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_is_populated - determines if the region is populated | 
 |  * @chunk: chunk of interest | 
 |  * @bit_off: chunk offset | 
 |  * @bits: size of area | 
 |  * @next_off: return value for the next offset to start searching | 
 |  * | 
 |  * For atomic allocations, check if the backing pages are populated. | 
 |  * | 
 |  * RETURNS: | 
 |  * Bool if the backing pages are populated. | 
 |  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. | 
 |  */ | 
 | static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, | 
 | 			      int *next_off) | 
 | { | 
 | 	int page_start, page_end, rs, re; | 
 |  | 
 | 	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); | 
 | 	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); | 
 |  | 
 | 	rs = page_start; | 
 | 	pcpu_next_unpop(chunk->populated, &rs, &re, page_end); | 
 | 	if (rs >= page_end) | 
 | 		return true; | 
 |  | 
 | 	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_find_block_fit - finds the block index to start searching | 
 |  * @chunk: chunk of interest | 
 |  * @alloc_bits: size of request in allocation units | 
 |  * @align: alignment of area (max PAGE_SIZE bytes) | 
 |  * @pop_only: use populated regions only | 
 |  * | 
 |  * Given a chunk and an allocation spec, find the offset to begin searching | 
 |  * for a free region.  This iterates over the bitmap metadata blocks to | 
 |  * find an offset that will be guaranteed to fit the requirements.  It is | 
 |  * not quite first fit as if the allocation does not fit in the contig hint | 
 |  * of a block or chunk, it is skipped.  This errs on the side of caution | 
 |  * to prevent excess iteration.  Poor alignment can cause the allocator to | 
 |  * skip over blocks and chunks that have valid free areas. | 
 |  * | 
 |  * RETURNS: | 
 |  * The offset in the bitmap to begin searching. | 
 |  * -1 if no offset is found. | 
 |  */ | 
 | static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, | 
 | 			       size_t align, bool pop_only) | 
 | { | 
 | 	int bit_off, bits, next_off; | 
 |  | 
 | 	/* | 
 | 	 * Check to see if the allocation can fit in the chunk's contig hint. | 
 | 	 * This is an optimization to prevent scanning by assuming if it | 
 | 	 * cannot fit in the global hint, there is memory pressure and creating | 
 | 	 * a new chunk would happen soon. | 
 | 	 */ | 
 | 	bit_off = ALIGN(chunk->contig_bits_start, align) - | 
 | 		  chunk->contig_bits_start; | 
 | 	if (bit_off + alloc_bits > chunk->contig_bits) | 
 | 		return -1; | 
 |  | 
 | 	bit_off = chunk->first_bit; | 
 | 	bits = 0; | 
 | 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { | 
 | 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, | 
 | 						   &next_off)) | 
 | 			break; | 
 |  | 
 | 		bit_off = next_off; | 
 | 		bits = 0; | 
 | 	} | 
 |  | 
 | 	if (bit_off == pcpu_chunk_map_bits(chunk)) | 
 | 		return -1; | 
 |  | 
 | 	return bit_off; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_alloc_area - allocates an area from a pcpu_chunk | 
 |  * @chunk: chunk of interest | 
 |  * @alloc_bits: size of request in allocation units | 
 |  * @align: alignment of area (max PAGE_SIZE) | 
 |  * @start: bit_off to start searching | 
 |  * | 
 |  * This function takes in a @start offset to begin searching to fit an | 
 |  * allocation of @alloc_bits with alignment @align.  It needs to scan | 
 |  * the allocation map because if it fits within the block's contig hint, | 
 |  * @start will be block->first_free. This is an attempt to fill the | 
 |  * allocation prior to breaking the contig hint.  The allocation and | 
 |  * boundary maps are updated accordingly if it confirms a valid | 
 |  * free area. | 
 |  * | 
 |  * RETURNS: | 
 |  * Allocated addr offset in @chunk on success. | 
 |  * -1 if no matching area is found. | 
 |  */ | 
 | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, | 
 | 			   size_t align, int start) | 
 | { | 
 | 	size_t align_mask = (align) ? (align - 1) : 0; | 
 | 	int bit_off, end, oslot; | 
 |  | 
 | 	lockdep_assert_held(&pcpu_lock); | 
 |  | 
 | 	oslot = pcpu_chunk_slot(chunk); | 
 |  | 
 | 	/* | 
 | 	 * Search to find a fit. | 
 | 	 */ | 
 | 	end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS, | 
 | 		    pcpu_chunk_map_bits(chunk)); | 
 | 	bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start, | 
 | 					     alloc_bits, align_mask); | 
 | 	if (bit_off >= end) | 
 | 		return -1; | 
 |  | 
 | 	/* update alloc map */ | 
 | 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits); | 
 |  | 
 | 	/* update boundary map */ | 
 | 	set_bit(bit_off, chunk->bound_map); | 
 | 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); | 
 | 	set_bit(bit_off + alloc_bits, chunk->bound_map); | 
 |  | 
 | 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; | 
 |  | 
 | 	/* update first free bit */ | 
 | 	if (bit_off == chunk->first_bit) | 
 | 		chunk->first_bit = find_next_zero_bit( | 
 | 					chunk->alloc_map, | 
 | 					pcpu_chunk_map_bits(chunk), | 
 | 					bit_off + alloc_bits); | 
 |  | 
 | 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); | 
 |  | 
 | 	pcpu_chunk_relocate(chunk, oslot); | 
 |  | 
 | 	return bit_off * PCPU_MIN_ALLOC_SIZE; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_free_area - frees the corresponding offset | 
 |  * @chunk: chunk of interest | 
 |  * @off: addr offset into chunk | 
 |  * | 
 |  * This function determines the size of an allocation to free using | 
 |  * the boundary bitmap and clears the allocation map. | 
 |  */ | 
 | static void pcpu_free_area(struct pcpu_chunk *chunk, int off) | 
 | { | 
 | 	int bit_off, bits, end, oslot; | 
 |  | 
 | 	lockdep_assert_held(&pcpu_lock); | 
 | 	pcpu_stats_area_dealloc(chunk); | 
 |  | 
 | 	oslot = pcpu_chunk_slot(chunk); | 
 |  | 
 | 	bit_off = off / PCPU_MIN_ALLOC_SIZE; | 
 |  | 
 | 	/* find end index */ | 
 | 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), | 
 | 			    bit_off + 1); | 
 | 	bits = end - bit_off; | 
 | 	bitmap_clear(chunk->alloc_map, bit_off, bits); | 
 |  | 
 | 	/* update metadata */ | 
 | 	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE; | 
 |  | 
 | 	/* update first free bit */ | 
 | 	chunk->first_bit = min(chunk->first_bit, bit_off); | 
 |  | 
 | 	pcpu_block_update_hint_free(chunk, bit_off, bits); | 
 |  | 
 | 	pcpu_chunk_relocate(chunk, oslot); | 
 | } | 
 |  | 
 | static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) | 
 | { | 
 | 	struct pcpu_block_md *md_block; | 
 |  | 
 | 	for (md_block = chunk->md_blocks; | 
 | 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); | 
 | 	     md_block++) { | 
 | 		md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS; | 
 | 		md_block->left_free = PCPU_BITMAP_BLOCK_BITS; | 
 | 		md_block->right_free = PCPU_BITMAP_BLOCK_BITS; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk | 
 |  * @tmp_addr: the start of the region served | 
 |  * @map_size: size of the region served | 
 |  * | 
 |  * This is responsible for creating the chunks that serve the first chunk.  The | 
 |  * base_addr is page aligned down of @tmp_addr while the region end is page | 
 |  * aligned up.  Offsets are kept track of to determine the region served. All | 
 |  * this is done to appease the bitmap allocator in avoiding partial blocks. | 
 |  * | 
 |  * RETURNS: | 
 |  * Chunk serving the region at @tmp_addr of @map_size. | 
 |  */ | 
 | static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, | 
 | 							 int map_size) | 
 | { | 
 | 	struct pcpu_chunk *chunk; | 
 | 	unsigned long aligned_addr, lcm_align; | 
 | 	int start_offset, offset_bits, region_size, region_bits; | 
 |  | 
 | 	/* region calculations */ | 
 | 	aligned_addr = tmp_addr & PAGE_MASK; | 
 |  | 
 | 	start_offset = tmp_addr - aligned_addr; | 
 |  | 
 | 	/* | 
 | 	 * Align the end of the region with the LCM of PAGE_SIZE and | 
 | 	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of | 
 | 	 * the other. | 
 | 	 */ | 
 | 	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); | 
 | 	region_size = ALIGN(start_offset + map_size, lcm_align); | 
 |  | 
 | 	/* allocate chunk */ | 
 | 	chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) + | 
 | 				    BITS_TO_LONGS(region_size >> PAGE_SHIFT) * sizeof(unsigned long), | 
 | 				    0); | 
 |  | 
 | 	INIT_LIST_HEAD(&chunk->list); | 
 |  | 
 | 	chunk->base_addr = (void *)aligned_addr; | 
 | 	chunk->start_offset = start_offset; | 
 | 	chunk->end_offset = region_size - chunk->start_offset - map_size; | 
 |  | 
 | 	chunk->nr_pages = region_size >> PAGE_SHIFT; | 
 | 	region_bits = pcpu_chunk_map_bits(chunk); | 
 |  | 
 | 	chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) * | 
 | 					       sizeof(chunk->alloc_map[0]), 0); | 
 | 	chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) * | 
 | 					       sizeof(chunk->bound_map[0]), 0); | 
 | 	chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) * | 
 | 					       sizeof(chunk->md_blocks[0]), 0); | 
 | 	pcpu_init_md_blocks(chunk); | 
 |  | 
 | 	/* manage populated page bitmap */ | 
 | 	chunk->immutable = true; | 
 | 	bitmap_fill(chunk->populated, chunk->nr_pages); | 
 | 	chunk->nr_populated = chunk->nr_pages; | 
 | 	chunk->nr_empty_pop_pages = | 
 | 		pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE, | 
 | 				   map_size / PCPU_MIN_ALLOC_SIZE); | 
 |  | 
 | 	chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE; | 
 | 	chunk->free_bytes = map_size; | 
 |  | 
 | 	if (chunk->start_offset) { | 
 | 		/* hide the beginning of the bitmap */ | 
 | 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; | 
 | 		bitmap_set(chunk->alloc_map, 0, offset_bits); | 
 | 		set_bit(0, chunk->bound_map); | 
 | 		set_bit(offset_bits, chunk->bound_map); | 
 |  | 
 | 		chunk->first_bit = offset_bits; | 
 |  | 
 | 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits); | 
 | 	} | 
 |  | 
 | 	if (chunk->end_offset) { | 
 | 		/* hide the end of the bitmap */ | 
 | 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; | 
 | 		bitmap_set(chunk->alloc_map, | 
 | 			   pcpu_chunk_map_bits(chunk) - offset_bits, | 
 | 			   offset_bits); | 
 | 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, | 
 | 			chunk->bound_map); | 
 | 		set_bit(region_bits, chunk->bound_map); | 
 |  | 
 | 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) | 
 | 					     - offset_bits, offset_bits); | 
 | 	} | 
 |  | 
 | 	return chunk; | 
 | } | 
 |  | 
 | static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) | 
 | { | 
 | 	struct pcpu_chunk *chunk; | 
 | 	int region_bits; | 
 |  | 
 | 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); | 
 | 	if (!chunk) | 
 | 		return NULL; | 
 |  | 
 | 	INIT_LIST_HEAD(&chunk->list); | 
 | 	chunk->nr_pages = pcpu_unit_pages; | 
 | 	region_bits = pcpu_chunk_map_bits(chunk); | 
 |  | 
 | 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * | 
 | 					   sizeof(chunk->alloc_map[0]), gfp); | 
 | 	if (!chunk->alloc_map) | 
 | 		goto alloc_map_fail; | 
 |  | 
 | 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * | 
 | 					   sizeof(chunk->bound_map[0]), gfp); | 
 | 	if (!chunk->bound_map) | 
 | 		goto bound_map_fail; | 
 |  | 
 | 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * | 
 | 					   sizeof(chunk->md_blocks[0]), gfp); | 
 | 	if (!chunk->md_blocks) | 
 | 		goto md_blocks_fail; | 
 |  | 
 | 	pcpu_init_md_blocks(chunk); | 
 |  | 
 | 	/* init metadata */ | 
 | 	chunk->contig_bits = region_bits; | 
 | 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; | 
 |  | 
 | 	return chunk; | 
 |  | 
 | md_blocks_fail: | 
 | 	pcpu_mem_free(chunk->bound_map); | 
 | bound_map_fail: | 
 | 	pcpu_mem_free(chunk->alloc_map); | 
 | alloc_map_fail: | 
 | 	pcpu_mem_free(chunk); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void pcpu_free_chunk(struct pcpu_chunk *chunk) | 
 | { | 
 | 	if (!chunk) | 
 | 		return; | 
 | 	pcpu_mem_free(chunk->md_blocks); | 
 | 	pcpu_mem_free(chunk->bound_map); | 
 | 	pcpu_mem_free(chunk->alloc_map); | 
 | 	pcpu_mem_free(chunk); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_chunk_populated - post-population bookkeeping | 
 |  * @chunk: pcpu_chunk which got populated | 
 |  * @page_start: the start page | 
 |  * @page_end: the end page | 
 |  * @for_alloc: if this is to populate for allocation | 
 |  * | 
 |  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update | 
 |  * the bookkeeping information accordingly.  Must be called after each | 
 |  * successful population. | 
 |  * | 
 |  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it | 
 |  * is to serve an allocation in that area. | 
 |  */ | 
 | static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, | 
 | 				 int page_end, bool for_alloc) | 
 | { | 
 | 	int nr = page_end - page_start; | 
 |  | 
 | 	lockdep_assert_held(&pcpu_lock); | 
 |  | 
 | 	bitmap_set(chunk->populated, page_start, nr); | 
 | 	chunk->nr_populated += nr; | 
 |  | 
 | 	if (!for_alloc) { | 
 | 		chunk->nr_empty_pop_pages += nr; | 
 | 		pcpu_nr_empty_pop_pages += nr; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_chunk_depopulated - post-depopulation bookkeeping | 
 |  * @chunk: pcpu_chunk which got depopulated | 
 |  * @page_start: the start page | 
 |  * @page_end: the end page | 
 |  * | 
 |  * Pages in [@page_start,@page_end) have been depopulated from @chunk. | 
 |  * Update the bookkeeping information accordingly.  Must be called after | 
 |  * each successful depopulation. | 
 |  */ | 
 | static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, | 
 | 				   int page_start, int page_end) | 
 | { | 
 | 	int nr = page_end - page_start; | 
 |  | 
 | 	lockdep_assert_held(&pcpu_lock); | 
 |  | 
 | 	bitmap_clear(chunk->populated, page_start, nr); | 
 | 	chunk->nr_populated -= nr; | 
 | 	chunk->nr_empty_pop_pages -= nr; | 
 | 	pcpu_nr_empty_pop_pages -= nr; | 
 | } | 
 |  | 
 | /* | 
 |  * Chunk management implementation. | 
 |  * | 
 |  * To allow different implementations, chunk alloc/free and | 
 |  * [de]population are implemented in a separate file which is pulled | 
 |  * into this file and compiled together.  The following functions | 
 |  * should be implemented. | 
 |  * | 
 |  * pcpu_populate_chunk		- populate the specified range of a chunk | 
 |  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk | 
 |  * pcpu_create_chunk		- create a new chunk | 
 |  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop | 
 |  * pcpu_addr_to_page		- translate address to physical address | 
 |  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init | 
 |  */ | 
 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size, | 
 | 			       gfp_t gfp); | 
 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); | 
 | static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); | 
 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); | 
 | static struct page *pcpu_addr_to_page(void *addr); | 
 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); | 
 |  | 
 | #ifdef CONFIG_NEED_PER_CPU_KM | 
 | #include "percpu-km.c" | 
 | #else | 
 | #include "percpu-vm.c" | 
 | #endif | 
 |  | 
 | /** | 
 |  * pcpu_chunk_addr_search - determine chunk containing specified address | 
 |  * @addr: address for which the chunk needs to be determined. | 
 |  * | 
 |  * This is an internal function that handles all but static allocations. | 
 |  * Static percpu address values should never be passed into the allocator. | 
 |  * | 
 |  * RETURNS: | 
 |  * The address of the found chunk. | 
 |  */ | 
 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | 
 | { | 
 | 	/* is it in the dynamic region (first chunk)? */ | 
 | 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) | 
 | 		return pcpu_first_chunk; | 
 |  | 
 | 	/* is it in the reserved region? */ | 
 | 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) | 
 | 		return pcpu_reserved_chunk; | 
 |  | 
 | 	/* | 
 | 	 * The address is relative to unit0 which might be unused and | 
 | 	 * thus unmapped.  Offset the address to the unit space of the | 
 | 	 * current processor before looking it up in the vmalloc | 
 | 	 * space.  Note that any possible cpu id can be used here, so | 
 | 	 * there's no need to worry about preemption or cpu hotplug. | 
 | 	 */ | 
 | 	addr += pcpu_unit_offsets[raw_smp_processor_id()]; | 
 | 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_alloc - the percpu allocator | 
 |  * @size: size of area to allocate in bytes | 
 |  * @align: alignment of area (max PAGE_SIZE) | 
 |  * @reserved: allocate from the reserved chunk if available | 
 |  * @gfp: allocation flags | 
 |  * | 
 |  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't | 
 |  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN | 
 |  * then no warning will be triggered on invalid or failed allocation | 
 |  * requests. | 
 |  * | 
 |  * RETURNS: | 
 |  * Percpu pointer to the allocated area on success, NULL on failure. | 
 |  */ | 
 | static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, | 
 | 				 gfp_t gfp) | 
 | { | 
 | 	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; | 
 | 	bool do_warn = !(gfp & __GFP_NOWARN); | 
 | 	static int warn_limit = 10; | 
 | 	struct pcpu_chunk *chunk; | 
 | 	const char *err; | 
 | 	int slot, off, cpu, ret; | 
 | 	unsigned long flags; | 
 | 	void __percpu *ptr; | 
 | 	size_t bits, bit_align; | 
 |  | 
 | 	/* | 
 | 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, | 
 | 	 * therefore alignment must be a minimum of that many bytes. | 
 | 	 * An allocation may have internal fragmentation from rounding up | 
 | 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. | 
 | 	 */ | 
 | 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) | 
 | 		align = PCPU_MIN_ALLOC_SIZE; | 
 |  | 
 | 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); | 
 | 	bits = size >> PCPU_MIN_ALLOC_SHIFT; | 
 | 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT; | 
 |  | 
 | 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || | 
 | 		     !is_power_of_2(align))) { | 
 | 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", | 
 | 		     size, align); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (!is_atomic) | 
 | 		mutex_lock(&pcpu_alloc_mutex); | 
 |  | 
 | 	spin_lock_irqsave(&pcpu_lock, flags); | 
 |  | 
 | 	/* serve reserved allocations from the reserved chunk if available */ | 
 | 	if (reserved && pcpu_reserved_chunk) { | 
 | 		chunk = pcpu_reserved_chunk; | 
 |  | 
 | 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); | 
 | 		if (off < 0) { | 
 | 			err = "alloc from reserved chunk failed"; | 
 | 			goto fail_unlock; | 
 | 		} | 
 |  | 
 | 		off = pcpu_alloc_area(chunk, bits, bit_align, off); | 
 | 		if (off >= 0) | 
 | 			goto area_found; | 
 |  | 
 | 		err = "alloc from reserved chunk failed"; | 
 | 		goto fail_unlock; | 
 | 	} | 
 |  | 
 | restart: | 
 | 	/* search through normal chunks */ | 
 | 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { | 
 | 		list_for_each_entry(chunk, &pcpu_slot[slot], list) { | 
 | 			off = pcpu_find_block_fit(chunk, bits, bit_align, | 
 | 						  is_atomic); | 
 | 			if (off < 0) | 
 | 				continue; | 
 |  | 
 | 			off = pcpu_alloc_area(chunk, bits, bit_align, off); | 
 | 			if (off >= 0) | 
 | 				goto area_found; | 
 |  | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&pcpu_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * No space left.  Create a new chunk.  We don't want multiple | 
 | 	 * tasks to create chunks simultaneously.  Serialize and create iff | 
 | 	 * there's still no empty chunk after grabbing the mutex. | 
 | 	 */ | 
 | 	if (is_atomic) { | 
 | 		err = "atomic alloc failed, no space left"; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { | 
 | 		chunk = pcpu_create_chunk(0); | 
 | 		if (!chunk) { | 
 | 			err = "failed to allocate new chunk"; | 
 | 			goto fail; | 
 | 		} | 
 |  | 
 | 		spin_lock_irqsave(&pcpu_lock, flags); | 
 | 		pcpu_chunk_relocate(chunk, -1); | 
 | 	} else { | 
 | 		spin_lock_irqsave(&pcpu_lock, flags); | 
 | 	} | 
 |  | 
 | 	goto restart; | 
 |  | 
 | area_found: | 
 | 	pcpu_stats_area_alloc(chunk, size); | 
 | 	spin_unlock_irqrestore(&pcpu_lock, flags); | 
 |  | 
 | 	/* populate if not all pages are already there */ | 
 | 	if (!is_atomic) { | 
 | 		int page_start, page_end, rs, re; | 
 |  | 
 | 		page_start = PFN_DOWN(off); | 
 | 		page_end = PFN_UP(off + size); | 
 |  | 
 | 		pcpu_for_each_unpop_region(chunk->populated, rs, re, | 
 | 					   page_start, page_end) { | 
 | 			WARN_ON(chunk->immutable); | 
 |  | 
 | 			ret = pcpu_populate_chunk(chunk, rs, re, 0); | 
 |  | 
 | 			spin_lock_irqsave(&pcpu_lock, flags); | 
 | 			if (ret) { | 
 | 				pcpu_free_area(chunk, off); | 
 | 				err = "failed to populate"; | 
 | 				goto fail_unlock; | 
 | 			} | 
 | 			pcpu_chunk_populated(chunk, rs, re, true); | 
 | 			spin_unlock_irqrestore(&pcpu_lock, flags); | 
 | 		} | 
 |  | 
 | 		mutex_unlock(&pcpu_alloc_mutex); | 
 | 	} | 
 |  | 
 | 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) | 
 | 		pcpu_schedule_balance_work(); | 
 |  | 
 | 	/* clear the areas and return address relative to base address */ | 
 | 	for_each_possible_cpu(cpu) | 
 | 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | 
 |  | 
 | 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); | 
 | 	kmemleak_alloc_percpu(ptr, size, gfp); | 
 |  | 
 | 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align, | 
 | 			chunk->base_addr, off, ptr); | 
 |  | 
 | 	return ptr; | 
 |  | 
 | fail_unlock: | 
 | 	spin_unlock_irqrestore(&pcpu_lock, flags); | 
 | fail: | 
 | 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); | 
 |  | 
 | 	if (!is_atomic && do_warn && warn_limit) { | 
 | 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", | 
 | 			size, align, is_atomic, err); | 
 | 		dump_stack(); | 
 | 		if (!--warn_limit) | 
 | 			pr_info("limit reached, disable warning\n"); | 
 | 	} | 
 | 	if (is_atomic) { | 
 | 		/* see the flag handling in pcpu_blance_workfn() */ | 
 | 		pcpu_atomic_alloc_failed = true; | 
 | 		pcpu_schedule_balance_work(); | 
 | 	} else { | 
 | 		mutex_unlock(&pcpu_alloc_mutex); | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * __alloc_percpu_gfp - allocate dynamic percpu area | 
 |  * @size: size of area to allocate in bytes | 
 |  * @align: alignment of area (max PAGE_SIZE) | 
 |  * @gfp: allocation flags | 
 |  * | 
 |  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If | 
 |  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can | 
 |  * be called from any context but is a lot more likely to fail. If @gfp | 
 |  * has __GFP_NOWARN then no warning will be triggered on invalid or failed | 
 |  * allocation requests. | 
 |  * | 
 |  * RETURNS: | 
 |  * Percpu pointer to the allocated area on success, NULL on failure. | 
 |  */ | 
 | void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) | 
 | { | 
 | 	return pcpu_alloc(size, align, false, gfp); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); | 
 |  | 
 | /** | 
 |  * __alloc_percpu - allocate dynamic percpu area | 
 |  * @size: size of area to allocate in bytes | 
 |  * @align: alignment of area (max PAGE_SIZE) | 
 |  * | 
 |  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). | 
 |  */ | 
 | void __percpu *__alloc_percpu(size_t size, size_t align) | 
 | { | 
 | 	return pcpu_alloc(size, align, false, GFP_KERNEL); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__alloc_percpu); | 
 |  | 
 | /** | 
 |  * __alloc_reserved_percpu - allocate reserved percpu area | 
 |  * @size: size of area to allocate in bytes | 
 |  * @align: alignment of area (max PAGE_SIZE) | 
 |  * | 
 |  * Allocate zero-filled percpu area of @size bytes aligned at @align | 
 |  * from reserved percpu area if arch has set it up; otherwise, | 
 |  * allocation is served from the same dynamic area.  Might sleep. | 
 |  * Might trigger writeouts. | 
 |  * | 
 |  * CONTEXT: | 
 |  * Does GFP_KERNEL allocation. | 
 |  * | 
 |  * RETURNS: | 
 |  * Percpu pointer to the allocated area on success, NULL on failure. | 
 |  */ | 
 | void __percpu *__alloc_reserved_percpu(size_t size, size_t align) | 
 | { | 
 | 	return pcpu_alloc(size, align, true, GFP_KERNEL); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_balance_workfn - manage the amount of free chunks and populated pages | 
 |  * @work: unused | 
 |  * | 
 |  * Reclaim all fully free chunks except for the first one.  This is also | 
 |  * responsible for maintaining the pool of empty populated pages.  However, | 
 |  * it is possible that this is called when physical memory is scarce causing | 
 |  * OOM killer to be triggered.  We should avoid doing so until an actual | 
 |  * allocation causes the failure as it is possible that requests can be | 
 |  * serviced from already backed regions. | 
 |  */ | 
 | static void pcpu_balance_workfn(struct work_struct *work) | 
 | { | 
 | 	/* gfp flags passed to underlying allocators */ | 
 | 	const gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN; | 
 | 	LIST_HEAD(to_free); | 
 | 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; | 
 | 	struct pcpu_chunk *chunk, *next; | 
 | 	int slot, nr_to_pop, ret; | 
 |  | 
 | 	/* | 
 | 	 * There's no reason to keep around multiple unused chunks and VM | 
 | 	 * areas can be scarce.  Destroy all free chunks except for one. | 
 | 	 */ | 
 | 	mutex_lock(&pcpu_alloc_mutex); | 
 | 	spin_lock_irq(&pcpu_lock); | 
 |  | 
 | 	list_for_each_entry_safe(chunk, next, free_head, list) { | 
 | 		WARN_ON(chunk->immutable); | 
 |  | 
 | 		/* spare the first one */ | 
 | 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) | 
 | 			continue; | 
 |  | 
 | 		list_move(&chunk->list, &to_free); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irq(&pcpu_lock); | 
 |  | 
 | 	list_for_each_entry_safe(chunk, next, &to_free, list) { | 
 | 		int rs, re; | 
 |  | 
 | 		pcpu_for_each_pop_region(chunk->populated, rs, re, 0, | 
 | 					 chunk->nr_pages) { | 
 | 			pcpu_depopulate_chunk(chunk, rs, re); | 
 | 			spin_lock_irq(&pcpu_lock); | 
 | 			pcpu_chunk_depopulated(chunk, rs, re); | 
 | 			spin_unlock_irq(&pcpu_lock); | 
 | 		} | 
 | 		pcpu_destroy_chunk(chunk); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ensure there are certain number of free populated pages for | 
 | 	 * atomic allocs.  Fill up from the most packed so that atomic | 
 | 	 * allocs don't increase fragmentation.  If atomic allocation | 
 | 	 * failed previously, always populate the maximum amount.  This | 
 | 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping | 
 | 	 * failing indefinitely; however, large atomic allocs are not | 
 | 	 * something we support properly and can be highly unreliable and | 
 | 	 * inefficient. | 
 | 	 */ | 
 | retry_pop: | 
 | 	if (pcpu_atomic_alloc_failed) { | 
 | 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; | 
 | 		/* best effort anyway, don't worry about synchronization */ | 
 | 		pcpu_atomic_alloc_failed = false; | 
 | 	} else { | 
 | 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - | 
 | 				  pcpu_nr_empty_pop_pages, | 
 | 				  0, PCPU_EMPTY_POP_PAGES_HIGH); | 
 | 	} | 
 |  | 
 | 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { | 
 | 		int nr_unpop = 0, rs, re; | 
 |  | 
 | 		if (!nr_to_pop) | 
 | 			break; | 
 |  | 
 | 		spin_lock_irq(&pcpu_lock); | 
 | 		list_for_each_entry(chunk, &pcpu_slot[slot], list) { | 
 | 			nr_unpop = chunk->nr_pages - chunk->nr_populated; | 
 | 			if (nr_unpop) | 
 | 				break; | 
 | 		} | 
 | 		spin_unlock_irq(&pcpu_lock); | 
 |  | 
 | 		if (!nr_unpop) | 
 | 			continue; | 
 |  | 
 | 		/* @chunk can't go away while pcpu_alloc_mutex is held */ | 
 | 		pcpu_for_each_unpop_region(chunk->populated, rs, re, 0, | 
 | 					   chunk->nr_pages) { | 
 | 			int nr = min(re - rs, nr_to_pop); | 
 |  | 
 | 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); | 
 | 			if (!ret) { | 
 | 				nr_to_pop -= nr; | 
 | 				spin_lock_irq(&pcpu_lock); | 
 | 				pcpu_chunk_populated(chunk, rs, rs + nr, false); | 
 | 				spin_unlock_irq(&pcpu_lock); | 
 | 			} else { | 
 | 				nr_to_pop = 0; | 
 | 			} | 
 |  | 
 | 			if (!nr_to_pop) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (nr_to_pop) { | 
 | 		/* ran out of chunks to populate, create a new one and retry */ | 
 | 		chunk = pcpu_create_chunk(gfp); | 
 | 		if (chunk) { | 
 | 			spin_lock_irq(&pcpu_lock); | 
 | 			pcpu_chunk_relocate(chunk, -1); | 
 | 			spin_unlock_irq(&pcpu_lock); | 
 | 			goto retry_pop; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&pcpu_alloc_mutex); | 
 | } | 
 |  | 
 | /** | 
 |  * free_percpu - free percpu area | 
 |  * @ptr: pointer to area to free | 
 |  * | 
 |  * Free percpu area @ptr. | 
 |  * | 
 |  * CONTEXT: | 
 |  * Can be called from atomic context. | 
 |  */ | 
 | void free_percpu(void __percpu *ptr) | 
 | { | 
 | 	void *addr; | 
 | 	struct pcpu_chunk *chunk; | 
 | 	unsigned long flags; | 
 | 	int off; | 
 | 	bool need_balance = false; | 
 |  | 
 | 	if (!ptr) | 
 | 		return; | 
 |  | 
 | 	kmemleak_free_percpu(ptr); | 
 |  | 
 | 	addr = __pcpu_ptr_to_addr(ptr); | 
 |  | 
 | 	spin_lock_irqsave(&pcpu_lock, flags); | 
 |  | 
 | 	chunk = pcpu_chunk_addr_search(addr); | 
 | 	off = addr - chunk->base_addr; | 
 |  | 
 | 	pcpu_free_area(chunk, off); | 
 |  | 
 | 	/* if there are more than one fully free chunks, wake up grim reaper */ | 
 | 	if (chunk->free_bytes == pcpu_unit_size) { | 
 | 		struct pcpu_chunk *pos; | 
 |  | 
 | 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) | 
 | 			if (pos != chunk) { | 
 | 				need_balance = true; | 
 | 				break; | 
 | 			} | 
 | 	} | 
 |  | 
 | 	trace_percpu_free_percpu(chunk->base_addr, off, ptr); | 
 |  | 
 | 	spin_unlock_irqrestore(&pcpu_lock, flags); | 
 |  | 
 | 	if (need_balance) | 
 | 		pcpu_schedule_balance_work(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(free_percpu); | 
 |  | 
 | bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	const size_t static_size = __per_cpu_end - __per_cpu_start; | 
 | 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); | 
 | 	unsigned int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		void *start = per_cpu_ptr(base, cpu); | 
 | 		void *va = (void *)addr; | 
 |  | 
 | 		if (va >= start && va < start + static_size) { | 
 | 			if (can_addr) { | 
 | 				*can_addr = (unsigned long) (va - start); | 
 | 				*can_addr += (unsigned long) | 
 | 					per_cpu_ptr(base, get_boot_cpu_id()); | 
 | 			} | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	/* on UP, can't distinguish from other static vars, always false */ | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * is_kernel_percpu_address - test whether address is from static percpu area | 
 |  * @addr: address to test | 
 |  * | 
 |  * Test whether @addr belongs to in-kernel static percpu area.  Module | 
 |  * static percpu areas are not considered.  For those, use | 
 |  * is_module_percpu_address(). | 
 |  * | 
 |  * RETURNS: | 
 |  * %true if @addr is from in-kernel static percpu area, %false otherwise. | 
 |  */ | 
 | bool is_kernel_percpu_address(unsigned long addr) | 
 | { | 
 | 	return __is_kernel_percpu_address(addr, NULL); | 
 | } | 
 |  | 
 | /** | 
 |  * per_cpu_ptr_to_phys - convert translated percpu address to physical address | 
 |  * @addr: the address to be converted to physical address | 
 |  * | 
 |  * Given @addr which is dereferenceable address obtained via one of | 
 |  * percpu access macros, this function translates it into its physical | 
 |  * address.  The caller is responsible for ensuring @addr stays valid | 
 |  * until this function finishes. | 
 |  * | 
 |  * percpu allocator has special setup for the first chunk, which currently | 
 |  * supports either embedding in linear address space or vmalloc mapping, | 
 |  * and, from the second one, the backing allocator (currently either vm or | 
 |  * km) provides translation. | 
 |  * | 
 |  * The addr can be translated simply without checking if it falls into the | 
 |  * first chunk. But the current code reflects better how percpu allocator | 
 |  * actually works, and the verification can discover both bugs in percpu | 
 |  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current | 
 |  * code. | 
 |  * | 
 |  * RETURNS: | 
 |  * The physical address for @addr. | 
 |  */ | 
 | phys_addr_t per_cpu_ptr_to_phys(void *addr) | 
 | { | 
 | 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); | 
 | 	bool in_first_chunk = false; | 
 | 	unsigned long first_low, first_high; | 
 | 	unsigned int cpu; | 
 |  | 
 | 	/* | 
 | 	 * The following test on unit_low/high isn't strictly | 
 | 	 * necessary but will speed up lookups of addresses which | 
 | 	 * aren't in the first chunk. | 
 | 	 * | 
 | 	 * The address check is against full chunk sizes.  pcpu_base_addr | 
 | 	 * points to the beginning of the first chunk including the | 
 | 	 * static region.  Assumes good intent as the first chunk may | 
 | 	 * not be full (ie. < pcpu_unit_pages in size). | 
 | 	 */ | 
 | 	first_low = (unsigned long)pcpu_base_addr + | 
 | 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); | 
 | 	first_high = (unsigned long)pcpu_base_addr + | 
 | 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); | 
 | 	if ((unsigned long)addr >= first_low && | 
 | 	    (unsigned long)addr < first_high) { | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			void *start = per_cpu_ptr(base, cpu); | 
 |  | 
 | 			if (addr >= start && addr < start + pcpu_unit_size) { | 
 | 				in_first_chunk = true; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (in_first_chunk) { | 
 | 		if (!is_vmalloc_addr(addr)) | 
 | 			return __pa(addr); | 
 | 		else | 
 | 			return page_to_phys(vmalloc_to_page(addr)) + | 
 | 			       offset_in_page(addr); | 
 | 	} else | 
 | 		return page_to_phys(pcpu_addr_to_page(addr)) + | 
 | 		       offset_in_page(addr); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_alloc_alloc_info - allocate percpu allocation info | 
 |  * @nr_groups: the number of groups | 
 |  * @nr_units: the number of units | 
 |  * | 
 |  * Allocate ai which is large enough for @nr_groups groups containing | 
 |  * @nr_units units.  The returned ai's groups[0].cpu_map points to the | 
 |  * cpu_map array which is long enough for @nr_units and filled with | 
 |  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map | 
 |  * pointer of other groups. | 
 |  * | 
 |  * RETURNS: | 
 |  * Pointer to the allocated pcpu_alloc_info on success, NULL on | 
 |  * failure. | 
 |  */ | 
 | struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, | 
 | 						      int nr_units) | 
 | { | 
 | 	struct pcpu_alloc_info *ai; | 
 | 	size_t base_size, ai_size; | 
 | 	void *ptr; | 
 | 	int unit; | 
 |  | 
 | 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), | 
 | 			  __alignof__(ai->groups[0].cpu_map[0])); | 
 | 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); | 
 |  | 
 | 	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0); | 
 | 	if (!ptr) | 
 | 		return NULL; | 
 | 	ai = ptr; | 
 | 	ptr += base_size; | 
 |  | 
 | 	ai->groups[0].cpu_map = ptr; | 
 |  | 
 | 	for (unit = 0; unit < nr_units; unit++) | 
 | 		ai->groups[0].cpu_map[unit] = NR_CPUS; | 
 |  | 
 | 	ai->nr_groups = nr_groups; | 
 | 	ai->__ai_size = PFN_ALIGN(ai_size); | 
 |  | 
 | 	return ai; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_free_alloc_info - free percpu allocation info | 
 |  * @ai: pcpu_alloc_info to free | 
 |  * | 
 |  * Free @ai which was allocated by pcpu_alloc_alloc_info(). | 
 |  */ | 
 | void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) | 
 | { | 
 | 	memblock_free_early(__pa(ai), ai->__ai_size); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info | 
 |  * @lvl: loglevel | 
 |  * @ai: allocation info to dump | 
 |  * | 
 |  * Print out information about @ai using loglevel @lvl. | 
 |  */ | 
 | static void pcpu_dump_alloc_info(const char *lvl, | 
 | 				 const struct pcpu_alloc_info *ai) | 
 | { | 
 | 	int group_width = 1, cpu_width = 1, width; | 
 | 	char empty_str[] = "--------"; | 
 | 	int alloc = 0, alloc_end = 0; | 
 | 	int group, v; | 
 | 	int upa, apl;	/* units per alloc, allocs per line */ | 
 |  | 
 | 	v = ai->nr_groups; | 
 | 	while (v /= 10) | 
 | 		group_width++; | 
 |  | 
 | 	v = num_possible_cpus(); | 
 | 	while (v /= 10) | 
 | 		cpu_width++; | 
 | 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; | 
 |  | 
 | 	upa = ai->alloc_size / ai->unit_size; | 
 | 	width = upa * (cpu_width + 1) + group_width + 3; | 
 | 	apl = rounddown_pow_of_two(max(60 / width, 1)); | 
 |  | 
 | 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", | 
 | 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size, | 
 | 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); | 
 |  | 
 | 	for (group = 0; group < ai->nr_groups; group++) { | 
 | 		const struct pcpu_group_info *gi = &ai->groups[group]; | 
 | 		int unit = 0, unit_end = 0; | 
 |  | 
 | 		BUG_ON(gi->nr_units % upa); | 
 | 		for (alloc_end += gi->nr_units / upa; | 
 | 		     alloc < alloc_end; alloc++) { | 
 | 			if (!(alloc % apl)) { | 
 | 				pr_cont("\n"); | 
 | 				printk("%spcpu-alloc: ", lvl); | 
 | 			} | 
 | 			pr_cont("[%0*d] ", group_width, group); | 
 |  | 
 | 			for (unit_end += upa; unit < unit_end; unit++) | 
 | 				if (gi->cpu_map[unit] != NR_CPUS) | 
 | 					pr_cont("%0*d ", | 
 | 						cpu_width, gi->cpu_map[unit]); | 
 | 				else | 
 | 					pr_cont("%s ", empty_str); | 
 | 		} | 
 | 	} | 
 | 	pr_cont("\n"); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_setup_first_chunk - initialize the first percpu chunk | 
 |  * @ai: pcpu_alloc_info describing how to percpu area is shaped | 
 |  * @base_addr: mapped address | 
 |  * | 
 |  * Initialize the first percpu chunk which contains the kernel static | 
 |  * perpcu area.  This function is to be called from arch percpu area | 
 |  * setup path. | 
 |  * | 
 |  * @ai contains all information necessary to initialize the first | 
 |  * chunk and prime the dynamic percpu allocator. | 
 |  * | 
 |  * @ai->static_size is the size of static percpu area. | 
 |  * | 
 |  * @ai->reserved_size, if non-zero, specifies the amount of bytes to | 
 |  * reserve after the static area in the first chunk.  This reserves | 
 |  * the first chunk such that it's available only through reserved | 
 |  * percpu allocation.  This is primarily used to serve module percpu | 
 |  * static areas on architectures where the addressing model has | 
 |  * limited offset range for symbol relocations to guarantee module | 
 |  * percpu symbols fall inside the relocatable range. | 
 |  * | 
 |  * @ai->dyn_size determines the number of bytes available for dynamic | 
 |  * allocation in the first chunk.  The area between @ai->static_size + | 
 |  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. | 
 |  * | 
 |  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE | 
 |  * and equal to or larger than @ai->static_size + @ai->reserved_size + | 
 |  * @ai->dyn_size. | 
 |  * | 
 |  * @ai->atom_size is the allocation atom size and used as alignment | 
 |  * for vm areas. | 
 |  * | 
 |  * @ai->alloc_size is the allocation size and always multiple of | 
 |  * @ai->atom_size.  This is larger than @ai->atom_size if | 
 |  * @ai->unit_size is larger than @ai->atom_size. | 
 |  * | 
 |  * @ai->nr_groups and @ai->groups describe virtual memory layout of | 
 |  * percpu areas.  Units which should be colocated are put into the | 
 |  * same group.  Dynamic VM areas will be allocated according to these | 
 |  * groupings.  If @ai->nr_groups is zero, a single group containing | 
 |  * all units is assumed. | 
 |  * | 
 |  * The caller should have mapped the first chunk at @base_addr and | 
 |  * copied static data to each unit. | 
 |  * | 
 |  * The first chunk will always contain a static and a dynamic region. | 
 |  * However, the static region is not managed by any chunk.  If the first | 
 |  * chunk also contains a reserved region, it is served by two chunks - | 
 |  * one for the reserved region and one for the dynamic region.  They | 
 |  * share the same vm, but use offset regions in the area allocation map. | 
 |  * The chunk serving the dynamic region is circulated in the chunk slots | 
 |  * and available for dynamic allocation like any other chunk. | 
 |  * | 
 |  * RETURNS: | 
 |  * 0 on success, -errno on failure. | 
 |  */ | 
 | int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, | 
 | 				  void *base_addr) | 
 | { | 
 | 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; | 
 | 	size_t static_size, dyn_size; | 
 | 	struct pcpu_chunk *chunk; | 
 | 	unsigned long *group_offsets; | 
 | 	size_t *group_sizes; | 
 | 	unsigned long *unit_off; | 
 | 	unsigned int cpu; | 
 | 	int *unit_map; | 
 | 	int group, unit, i; | 
 | 	int map_size; | 
 | 	unsigned long tmp_addr; | 
 |  | 
 | #define PCPU_SETUP_BUG_ON(cond)	do {					\ | 
 | 	if (unlikely(cond)) {						\ | 
 | 		pr_emerg("failed to initialize, %s\n", #cond);		\ | 
 | 		pr_emerg("cpu_possible_mask=%*pb\n",			\ | 
 | 			 cpumask_pr_args(cpu_possible_mask));		\ | 
 | 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\ | 
 | 		BUG();							\ | 
 | 	}								\ | 
 | } while (0) | 
 |  | 
 | 	/* sanity checks */ | 
 | 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); | 
 | #ifdef CONFIG_SMP | 
 | 	PCPU_SETUP_BUG_ON(!ai->static_size); | 
 | 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); | 
 | #endif | 
 | 	PCPU_SETUP_BUG_ON(!base_addr); | 
 | 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); | 
 | 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); | 
 | 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); | 
 | 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); | 
 | 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); | 
 | 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); | 
 | 	PCPU_SETUP_BUG_ON(!ai->dyn_size); | 
 | 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); | 
 | 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || | 
 | 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); | 
 | 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); | 
 |  | 
 | 	/* process group information and build config tables accordingly */ | 
 | 	group_offsets = memblock_virt_alloc(ai->nr_groups * | 
 | 					     sizeof(group_offsets[0]), 0); | 
 | 	group_sizes = memblock_virt_alloc(ai->nr_groups * | 
 | 					   sizeof(group_sizes[0]), 0); | 
 | 	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0); | 
 | 	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0); | 
 |  | 
 | 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) | 
 | 		unit_map[cpu] = UINT_MAX; | 
 |  | 
 | 	pcpu_low_unit_cpu = NR_CPUS; | 
 | 	pcpu_high_unit_cpu = NR_CPUS; | 
 |  | 
 | 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { | 
 | 		const struct pcpu_group_info *gi = &ai->groups[group]; | 
 |  | 
 | 		group_offsets[group] = gi->base_offset; | 
 | 		group_sizes[group] = gi->nr_units * ai->unit_size; | 
 |  | 
 | 		for (i = 0; i < gi->nr_units; i++) { | 
 | 			cpu = gi->cpu_map[i]; | 
 | 			if (cpu == NR_CPUS) | 
 | 				continue; | 
 |  | 
 | 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); | 
 | 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); | 
 | 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); | 
 |  | 
 | 			unit_map[cpu] = unit + i; | 
 | 			unit_off[cpu] = gi->base_offset + i * ai->unit_size; | 
 |  | 
 | 			/* determine low/high unit_cpu */ | 
 | 			if (pcpu_low_unit_cpu == NR_CPUS || | 
 | 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) | 
 | 				pcpu_low_unit_cpu = cpu; | 
 | 			if (pcpu_high_unit_cpu == NR_CPUS || | 
 | 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) | 
 | 				pcpu_high_unit_cpu = cpu; | 
 | 		} | 
 | 	} | 
 | 	pcpu_nr_units = unit; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); | 
 |  | 
 | 	/* we're done parsing the input, undefine BUG macro and dump config */ | 
 | #undef PCPU_SETUP_BUG_ON | 
 | 	pcpu_dump_alloc_info(KERN_DEBUG, ai); | 
 |  | 
 | 	pcpu_nr_groups = ai->nr_groups; | 
 | 	pcpu_group_offsets = group_offsets; | 
 | 	pcpu_group_sizes = group_sizes; | 
 | 	pcpu_unit_map = unit_map; | 
 | 	pcpu_unit_offsets = unit_off; | 
 |  | 
 | 	/* determine basic parameters */ | 
 | 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; | 
 | 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; | 
 | 	pcpu_atom_size = ai->atom_size; | 
 | 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + | 
 | 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); | 
 |  | 
 | 	pcpu_stats_save_ai(ai); | 
 |  | 
 | 	/* | 
 | 	 * Allocate chunk slots.  The additional last slot is for | 
 | 	 * empty chunks. | 
 | 	 */ | 
 | 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; | 
 | 	pcpu_slot = memblock_virt_alloc( | 
 | 			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0); | 
 | 	for (i = 0; i < pcpu_nr_slots; i++) | 
 | 		INIT_LIST_HEAD(&pcpu_slot[i]); | 
 |  | 
 | 	/* | 
 | 	 * The end of the static region needs to be aligned with the | 
 | 	 * minimum allocation size as this offsets the reserved and | 
 | 	 * dynamic region.  The first chunk ends page aligned by | 
 | 	 * expanding the dynamic region, therefore the dynamic region | 
 | 	 * can be shrunk to compensate while still staying above the | 
 | 	 * configured sizes. | 
 | 	 */ | 
 | 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); | 
 | 	dyn_size = ai->dyn_size - (static_size - ai->static_size); | 
 |  | 
 | 	/* | 
 | 	 * Initialize first chunk. | 
 | 	 * If the reserved_size is non-zero, this initializes the reserved | 
 | 	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL | 
 | 	 * and the dynamic region is initialized here.  The first chunk, | 
 | 	 * pcpu_first_chunk, will always point to the chunk that serves | 
 | 	 * the dynamic region. | 
 | 	 */ | 
 | 	tmp_addr = (unsigned long)base_addr + static_size; | 
 | 	map_size = ai->reserved_size ?: dyn_size; | 
 | 	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); | 
 |  | 
 | 	/* init dynamic chunk if necessary */ | 
 | 	if (ai->reserved_size) { | 
 | 		pcpu_reserved_chunk = chunk; | 
 |  | 
 | 		tmp_addr = (unsigned long)base_addr + static_size + | 
 | 			   ai->reserved_size; | 
 | 		map_size = dyn_size; | 
 | 		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); | 
 | 	} | 
 |  | 
 | 	/* link the first chunk in */ | 
 | 	pcpu_first_chunk = chunk; | 
 | 	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; | 
 | 	pcpu_chunk_relocate(pcpu_first_chunk, -1); | 
 |  | 
 | 	pcpu_stats_chunk_alloc(); | 
 | 	trace_percpu_create_chunk(base_addr); | 
 |  | 
 | 	/* we're done */ | 
 | 	pcpu_base_addr = base_addr; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { | 
 | 	[PCPU_FC_AUTO]	= "auto", | 
 | 	[PCPU_FC_EMBED]	= "embed", | 
 | 	[PCPU_FC_PAGE]	= "page", | 
 | }; | 
 |  | 
 | enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; | 
 |  | 
 | static int __init percpu_alloc_setup(char *str) | 
 | { | 
 | 	if (!str) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (0) | 
 | 		/* nada */; | 
 | #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK | 
 | 	else if (!strcmp(str, "embed")) | 
 | 		pcpu_chosen_fc = PCPU_FC_EMBED; | 
 | #endif | 
 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | 
 | 	else if (!strcmp(str, "page")) | 
 | 		pcpu_chosen_fc = PCPU_FC_PAGE; | 
 | #endif | 
 | 	else | 
 | 		pr_warn("unknown allocator %s specified\n", str); | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("percpu_alloc", percpu_alloc_setup); | 
 |  | 
 | /* | 
 |  * pcpu_embed_first_chunk() is used by the generic percpu setup. | 
 |  * Build it if needed by the arch config or the generic setup is going | 
 |  * to be used. | 
 |  */ | 
 | #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ | 
 | 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) | 
 | #define BUILD_EMBED_FIRST_CHUNK | 
 | #endif | 
 |  | 
 | /* build pcpu_page_first_chunk() iff needed by the arch config */ | 
 | #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) | 
 | #define BUILD_PAGE_FIRST_CHUNK | 
 | #endif | 
 |  | 
 | /* pcpu_build_alloc_info() is used by both embed and page first chunk */ | 
 | #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) | 
 | /** | 
 |  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs | 
 |  * @reserved_size: the size of reserved percpu area in bytes | 
 |  * @dyn_size: minimum free size for dynamic allocation in bytes | 
 |  * @atom_size: allocation atom size | 
 |  * @cpu_distance_fn: callback to determine distance between cpus, optional | 
 |  * | 
 |  * This function determines grouping of units, their mappings to cpus | 
 |  * and other parameters considering needed percpu size, allocation | 
 |  * atom size and distances between CPUs. | 
 |  * | 
 |  * Groups are always multiples of atom size and CPUs which are of | 
 |  * LOCAL_DISTANCE both ways are grouped together and share space for | 
 |  * units in the same group.  The returned configuration is guaranteed | 
 |  * to have CPUs on different nodes on different groups and >=75% usage | 
 |  * of allocated virtual address space. | 
 |  * | 
 |  * RETURNS: | 
 |  * On success, pointer to the new allocation_info is returned.  On | 
 |  * failure, ERR_PTR value is returned. | 
 |  */ | 
 | static struct pcpu_alloc_info * __init pcpu_build_alloc_info( | 
 | 				size_t reserved_size, size_t dyn_size, | 
 | 				size_t atom_size, | 
 | 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn) | 
 | { | 
 | 	static int group_map[NR_CPUS] __initdata; | 
 | 	static int group_cnt[NR_CPUS] __initdata; | 
 | 	const size_t static_size = __per_cpu_end - __per_cpu_start; | 
 | 	int nr_groups = 1, nr_units = 0; | 
 | 	size_t size_sum, min_unit_size, alloc_size; | 
 | 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */ | 
 | 	int last_allocs, group, unit; | 
 | 	unsigned int cpu, tcpu; | 
 | 	struct pcpu_alloc_info *ai; | 
 | 	unsigned int *cpu_map; | 
 |  | 
 | 	/* this function may be called multiple times */ | 
 | 	memset(group_map, 0, sizeof(group_map)); | 
 | 	memset(group_cnt, 0, sizeof(group_cnt)); | 
 |  | 
 | 	/* calculate size_sum and ensure dyn_size is enough for early alloc */ | 
 | 	size_sum = PFN_ALIGN(static_size + reserved_size + | 
 | 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); | 
 | 	dyn_size = size_sum - static_size - reserved_size; | 
 |  | 
 | 	/* | 
 | 	 * Determine min_unit_size, alloc_size and max_upa such that | 
 | 	 * alloc_size is multiple of atom_size and is the smallest | 
 | 	 * which can accommodate 4k aligned segments which are equal to | 
 | 	 * or larger than min_unit_size. | 
 | 	 */ | 
 | 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); | 
 |  | 
 | 	/* determine the maximum # of units that can fit in an allocation */ | 
 | 	alloc_size = roundup(min_unit_size, atom_size); | 
 | 	upa = alloc_size / min_unit_size; | 
 | 	while (alloc_size % upa || (offset_in_page(alloc_size / upa))) | 
 | 		upa--; | 
 | 	max_upa = upa; | 
 |  | 
 | 	/* group cpus according to their proximity */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		group = 0; | 
 | 	next_group: | 
 | 		for_each_possible_cpu(tcpu) { | 
 | 			if (cpu == tcpu) | 
 | 				break; | 
 | 			if (group_map[tcpu] == group && cpu_distance_fn && | 
 | 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || | 
 | 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { | 
 | 				group++; | 
 | 				nr_groups = max(nr_groups, group + 1); | 
 | 				goto next_group; | 
 | 			} | 
 | 		} | 
 | 		group_map[cpu] = group; | 
 | 		group_cnt[group]++; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt. | 
 | 	 * Expand the unit_size until we use >= 75% of the units allocated. | 
 | 	 * Related to atom_size, which could be much larger than the unit_size. | 
 | 	 */ | 
 | 	last_allocs = INT_MAX; | 
 | 	for (upa = max_upa; upa; upa--) { | 
 | 		int allocs = 0, wasted = 0; | 
 |  | 
 | 		if (alloc_size % upa || (offset_in_page(alloc_size / upa))) | 
 | 			continue; | 
 |  | 
 | 		for (group = 0; group < nr_groups; group++) { | 
 | 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); | 
 | 			allocs += this_allocs; | 
 | 			wasted += this_allocs * upa - group_cnt[group]; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Don't accept if wastage is over 1/3.  The | 
 | 		 * greater-than comparison ensures upa==1 always | 
 | 		 * passes the following check. | 
 | 		 */ | 
 | 		if (wasted > num_possible_cpus() / 3) | 
 | 			continue; | 
 |  | 
 | 		/* and then don't consume more memory */ | 
 | 		if (allocs > last_allocs) | 
 | 			break; | 
 | 		last_allocs = allocs; | 
 | 		best_upa = upa; | 
 | 	} | 
 | 	upa = best_upa; | 
 |  | 
 | 	/* allocate and fill alloc_info */ | 
 | 	for (group = 0; group < nr_groups; group++) | 
 | 		nr_units += roundup(group_cnt[group], upa); | 
 |  | 
 | 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units); | 
 | 	if (!ai) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	cpu_map = ai->groups[0].cpu_map; | 
 |  | 
 | 	for (group = 0; group < nr_groups; group++) { | 
 | 		ai->groups[group].cpu_map = cpu_map; | 
 | 		cpu_map += roundup(group_cnt[group], upa); | 
 | 	} | 
 |  | 
 | 	ai->static_size = static_size; | 
 | 	ai->reserved_size = reserved_size; | 
 | 	ai->dyn_size = dyn_size; | 
 | 	ai->unit_size = alloc_size / upa; | 
 | 	ai->atom_size = atom_size; | 
 | 	ai->alloc_size = alloc_size; | 
 |  | 
 | 	for (group = 0, unit = 0; group_cnt[group]; group++) { | 
 | 		struct pcpu_group_info *gi = &ai->groups[group]; | 
 |  | 
 | 		/* | 
 | 		 * Initialize base_offset as if all groups are located | 
 | 		 * back-to-back.  The caller should update this to | 
 | 		 * reflect actual allocation. | 
 | 		 */ | 
 | 		gi->base_offset = unit * ai->unit_size; | 
 |  | 
 | 		for_each_possible_cpu(cpu) | 
 | 			if (group_map[cpu] == group) | 
 | 				gi->cpu_map[gi->nr_units++] = cpu; | 
 | 		gi->nr_units = roundup(gi->nr_units, upa); | 
 | 		unit += gi->nr_units; | 
 | 	} | 
 | 	BUG_ON(unit != nr_units); | 
 |  | 
 | 	return ai; | 
 | } | 
 | #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ | 
 |  | 
 | #if defined(BUILD_EMBED_FIRST_CHUNK) | 
 | /** | 
 |  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | 
 |  * @reserved_size: the size of reserved percpu area in bytes | 
 |  * @dyn_size: minimum free size for dynamic allocation in bytes | 
 |  * @atom_size: allocation atom size | 
 |  * @cpu_distance_fn: callback to determine distance between cpus, optional | 
 |  * @alloc_fn: function to allocate percpu page | 
 |  * @free_fn: function to free percpu page | 
 |  * | 
 |  * This is a helper to ease setting up embedded first percpu chunk and | 
 |  * can be called where pcpu_setup_first_chunk() is expected. | 
 |  * | 
 |  * If this function is used to setup the first chunk, it is allocated | 
 |  * by calling @alloc_fn and used as-is without being mapped into | 
 |  * vmalloc area.  Allocations are always whole multiples of @atom_size | 
 |  * aligned to @atom_size. | 
 |  * | 
 |  * This enables the first chunk to piggy back on the linear physical | 
 |  * mapping which often uses larger page size.  Please note that this | 
 |  * can result in very sparse cpu->unit mapping on NUMA machines thus | 
 |  * requiring large vmalloc address space.  Don't use this allocator if | 
 |  * vmalloc space is not orders of magnitude larger than distances | 
 |  * between node memory addresses (ie. 32bit NUMA machines). | 
 |  * | 
 |  * @dyn_size specifies the minimum dynamic area size. | 
 |  * | 
 |  * If the needed size is smaller than the minimum or specified unit | 
 |  * size, the leftover is returned using @free_fn. | 
 |  * | 
 |  * RETURNS: | 
 |  * 0 on success, -errno on failure. | 
 |  */ | 
 | int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, | 
 | 				  size_t atom_size, | 
 | 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn, | 
 | 				  pcpu_fc_alloc_fn_t alloc_fn, | 
 | 				  pcpu_fc_free_fn_t free_fn) | 
 | { | 
 | 	void *base = (void *)ULONG_MAX; | 
 | 	void **areas = NULL; | 
 | 	struct pcpu_alloc_info *ai; | 
 | 	size_t size_sum, areas_size; | 
 | 	unsigned long max_distance; | 
 | 	int group, i, highest_group, rc; | 
 |  | 
 | 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, | 
 | 				   cpu_distance_fn); | 
 | 	if (IS_ERR(ai)) | 
 | 		return PTR_ERR(ai); | 
 |  | 
 | 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; | 
 | 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); | 
 |  | 
 | 	areas = memblock_virt_alloc_nopanic(areas_size, 0); | 
 | 	if (!areas) { | 
 | 		rc = -ENOMEM; | 
 | 		goto out_free; | 
 | 	} | 
 |  | 
 | 	/* allocate, copy and determine base address & max_distance */ | 
 | 	highest_group = 0; | 
 | 	for (group = 0; group < ai->nr_groups; group++) { | 
 | 		struct pcpu_group_info *gi = &ai->groups[group]; | 
 | 		unsigned int cpu = NR_CPUS; | 
 | 		void *ptr; | 
 |  | 
 | 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) | 
 | 			cpu = gi->cpu_map[i]; | 
 | 		BUG_ON(cpu == NR_CPUS); | 
 |  | 
 | 		/* allocate space for the whole group */ | 
 | 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); | 
 | 		if (!ptr) { | 
 | 			rc = -ENOMEM; | 
 | 			goto out_free_areas; | 
 | 		} | 
 | 		/* kmemleak tracks the percpu allocations separately */ | 
 | 		kmemleak_free(ptr); | 
 | 		areas[group] = ptr; | 
 |  | 
 | 		base = min(ptr, base); | 
 | 		if (ptr > areas[highest_group]) | 
 | 			highest_group = group; | 
 | 	} | 
 | 	max_distance = areas[highest_group] - base; | 
 | 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units; | 
 |  | 
 | 	/* warn if maximum distance is further than 75% of vmalloc space */ | 
 | 	if (max_distance > VMALLOC_TOTAL * 3 / 4) { | 
 | 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", | 
 | 				max_distance, VMALLOC_TOTAL); | 
 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | 
 | 		/* and fail if we have fallback */ | 
 | 		rc = -EINVAL; | 
 | 		goto out_free_areas; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Copy data and free unused parts.  This should happen after all | 
 | 	 * allocations are complete; otherwise, we may end up with | 
 | 	 * overlapping groups. | 
 | 	 */ | 
 | 	for (group = 0; group < ai->nr_groups; group++) { | 
 | 		struct pcpu_group_info *gi = &ai->groups[group]; | 
 | 		void *ptr = areas[group]; | 
 |  | 
 | 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { | 
 | 			if (gi->cpu_map[i] == NR_CPUS) { | 
 | 				/* unused unit, free whole */ | 
 | 				free_fn(ptr, ai->unit_size); | 
 | 				continue; | 
 | 			} | 
 | 			/* copy and return the unused part */ | 
 | 			memcpy(ptr, __per_cpu_load, ai->static_size); | 
 | 			free_fn(ptr + size_sum, ai->unit_size - size_sum); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* base address is now known, determine group base offsets */ | 
 | 	for (group = 0; group < ai->nr_groups; group++) { | 
 | 		ai->groups[group].base_offset = areas[group] - base; | 
 | 	} | 
 |  | 
 | 	pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n", | 
 | 		PFN_DOWN(size_sum), ai->static_size, ai->reserved_size, | 
 | 		ai->dyn_size, ai->unit_size); | 
 |  | 
 | 	rc = pcpu_setup_first_chunk(ai, base); | 
 | 	goto out_free; | 
 |  | 
 | out_free_areas: | 
 | 	for (group = 0; group < ai->nr_groups; group++) | 
 | 		if (areas[group]) | 
 | 			free_fn(areas[group], | 
 | 				ai->groups[group].nr_units * ai->unit_size); | 
 | out_free: | 
 | 	pcpu_free_alloc_info(ai); | 
 | 	if (areas) | 
 | 		memblock_free_early(__pa(areas), areas_size); | 
 | 	return rc; | 
 | } | 
 | #endif /* BUILD_EMBED_FIRST_CHUNK */ | 
 |  | 
 | #ifdef BUILD_PAGE_FIRST_CHUNK | 
 | /** | 
 |  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages | 
 |  * @reserved_size: the size of reserved percpu area in bytes | 
 |  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE | 
 |  * @free_fn: function to free percpu page, always called with PAGE_SIZE | 
 |  * @populate_pte_fn: function to populate pte | 
 |  * | 
 |  * This is a helper to ease setting up page-remapped first percpu | 
 |  * chunk and can be called where pcpu_setup_first_chunk() is expected. | 
 |  * | 
 |  * This is the basic allocator.  Static percpu area is allocated | 
 |  * page-by-page into vmalloc area. | 
 |  * | 
 |  * RETURNS: | 
 |  * 0 on success, -errno on failure. | 
 |  */ | 
 | int __init pcpu_page_first_chunk(size_t reserved_size, | 
 | 				 pcpu_fc_alloc_fn_t alloc_fn, | 
 | 				 pcpu_fc_free_fn_t free_fn, | 
 | 				 pcpu_fc_populate_pte_fn_t populate_pte_fn) | 
 | { | 
 | 	static struct vm_struct vm; | 
 | 	struct pcpu_alloc_info *ai; | 
 | 	char psize_str[16]; | 
 | 	int unit_pages; | 
 | 	size_t pages_size; | 
 | 	struct page **pages; | 
 | 	int unit, i, j, rc; | 
 | 	int upa; | 
 | 	int nr_g0_units; | 
 |  | 
 | 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); | 
 |  | 
 | 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); | 
 | 	if (IS_ERR(ai)) | 
 | 		return PTR_ERR(ai); | 
 | 	BUG_ON(ai->nr_groups != 1); | 
 | 	upa = ai->alloc_size/ai->unit_size; | 
 | 	nr_g0_units = roundup(num_possible_cpus(), upa); | 
 | 	if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) { | 
 | 		pcpu_free_alloc_info(ai); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	unit_pages = ai->unit_size >> PAGE_SHIFT; | 
 |  | 
 | 	/* unaligned allocations can't be freed, round up to page size */ | 
 | 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * | 
 | 			       sizeof(pages[0])); | 
 | 	pages = memblock_virt_alloc(pages_size, 0); | 
 |  | 
 | 	/* allocate pages */ | 
 | 	j = 0; | 
 | 	for (unit = 0; unit < num_possible_cpus(); unit++) { | 
 | 		unsigned int cpu = ai->groups[0].cpu_map[unit]; | 
 | 		for (i = 0; i < unit_pages; i++) { | 
 | 			void *ptr; | 
 |  | 
 | 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); | 
 | 			if (!ptr) { | 
 | 				pr_warn("failed to allocate %s page for cpu%u\n", | 
 | 						psize_str, cpu); | 
 | 				goto enomem; | 
 | 			} | 
 | 			/* kmemleak tracks the percpu allocations separately */ | 
 | 			kmemleak_free(ptr); | 
 | 			pages[j++] = virt_to_page(ptr); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* allocate vm area, map the pages and copy static data */ | 
 | 	vm.flags = VM_ALLOC; | 
 | 	vm.size = num_possible_cpus() * ai->unit_size; | 
 | 	vm_area_register_early(&vm, PAGE_SIZE); | 
 |  | 
 | 	for (unit = 0; unit < num_possible_cpus(); unit++) { | 
 | 		unsigned long unit_addr = | 
 | 			(unsigned long)vm.addr + unit * ai->unit_size; | 
 |  | 
 | 		for (i = 0; i < unit_pages; i++) | 
 | 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); | 
 |  | 
 | 		/* pte already populated, the following shouldn't fail */ | 
 | 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], | 
 | 				      unit_pages); | 
 | 		if (rc < 0) | 
 | 			panic("failed to map percpu area, err=%d\n", rc); | 
 |  | 
 | 		/* | 
 | 		 * FIXME: Archs with virtual cache should flush local | 
 | 		 * cache for the linear mapping here - something | 
 | 		 * equivalent to flush_cache_vmap() on the local cpu. | 
 | 		 * flush_cache_vmap() can't be used as most supporting | 
 | 		 * data structures are not set up yet. | 
 | 		 */ | 
 |  | 
 | 		/* copy static data */ | 
 | 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); | 
 | 	} | 
 |  | 
 | 	/* we're ready, commit */ | 
 | 	pr_info("%d %s pages/cpu s%zu r%zu d%zu\n", | 
 | 		unit_pages, psize_str, ai->static_size, | 
 | 		ai->reserved_size, ai->dyn_size); | 
 |  | 
 | 	rc = pcpu_setup_first_chunk(ai, vm.addr); | 
 | 	goto out_free_ar; | 
 |  | 
 | enomem: | 
 | 	while (--j >= 0) | 
 | 		free_fn(page_address(pages[j]), PAGE_SIZE); | 
 | 	rc = -ENOMEM; | 
 | out_free_ar: | 
 | 	memblock_free_early(__pa(pages), pages_size); | 
 | 	pcpu_free_alloc_info(ai); | 
 | 	return rc; | 
 | } | 
 | #endif /* BUILD_PAGE_FIRST_CHUNK */ | 
 |  | 
 | #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA | 
 | /* | 
 |  * Generic SMP percpu area setup. | 
 |  * | 
 |  * The embedding helper is used because its behavior closely resembles | 
 |  * the original non-dynamic generic percpu area setup.  This is | 
 |  * important because many archs have addressing restrictions and might | 
 |  * fail if the percpu area is located far away from the previous | 
 |  * location.  As an added bonus, in non-NUMA cases, embedding is | 
 |  * generally a good idea TLB-wise because percpu area can piggy back | 
 |  * on the physical linear memory mapping which uses large page | 
 |  * mappings on applicable archs. | 
 |  */ | 
 | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; | 
 | EXPORT_SYMBOL(__per_cpu_offset); | 
 |  | 
 | static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, | 
 | 				       size_t align) | 
 | { | 
 | 	return  memblock_virt_alloc_from_nopanic( | 
 | 			size, align, __pa(MAX_DMA_ADDRESS)); | 
 | } | 
 |  | 
 | static void __init pcpu_dfl_fc_free(void *ptr, size_t size) | 
 | { | 
 | 	memblock_free_early(__pa(ptr), size); | 
 | } | 
 |  | 
 | void __init setup_per_cpu_areas(void) | 
 | { | 
 | 	unsigned long delta; | 
 | 	unsigned int cpu; | 
 | 	int rc; | 
 |  | 
 | 	/* | 
 | 	 * Always reserve area for module percpu variables.  That's | 
 | 	 * what the legacy allocator did. | 
 | 	 */ | 
 | 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, | 
 | 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, | 
 | 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); | 
 | 	if (rc < 0) | 
 | 		panic("Failed to initialize percpu areas."); | 
 |  | 
 | 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; | 
 | 	for_each_possible_cpu(cpu) | 
 | 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; | 
 | } | 
 | #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */ | 
 |  | 
 | #else	/* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * UP percpu area setup. | 
 |  * | 
 |  * UP always uses km-based percpu allocator with identity mapping. | 
 |  * Static percpu variables are indistinguishable from the usual static | 
 |  * variables and don't require any special preparation. | 
 |  */ | 
 | void __init setup_per_cpu_areas(void) | 
 | { | 
 | 	const size_t unit_size = | 
 | 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, | 
 | 					 PERCPU_DYNAMIC_RESERVE)); | 
 | 	struct pcpu_alloc_info *ai; | 
 | 	void *fc; | 
 |  | 
 | 	ai = pcpu_alloc_alloc_info(1, 1); | 
 | 	fc = memblock_virt_alloc_from_nopanic(unit_size, | 
 | 					      PAGE_SIZE, | 
 | 					      __pa(MAX_DMA_ADDRESS)); | 
 | 	if (!ai || !fc) | 
 | 		panic("Failed to allocate memory for percpu areas."); | 
 | 	/* kmemleak tracks the percpu allocations separately */ | 
 | 	kmemleak_free(fc); | 
 |  | 
 | 	ai->dyn_size = unit_size; | 
 | 	ai->unit_size = unit_size; | 
 | 	ai->atom_size = unit_size; | 
 | 	ai->alloc_size = unit_size; | 
 | 	ai->groups[0].nr_units = 1; | 
 | 	ai->groups[0].cpu_map[0] = 0; | 
 |  | 
 | 	if (pcpu_setup_first_chunk(ai, fc) < 0) | 
 | 		panic("Failed to initialize percpu areas."); | 
 | } | 
 |  | 
 | #endif	/* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * Percpu allocator is initialized early during boot when neither slab or | 
 |  * workqueue is available.  Plug async management until everything is up | 
 |  * and running. | 
 |  */ | 
 | static int __init percpu_enable_async(void) | 
 | { | 
 | 	pcpu_async_enabled = true; | 
 | 	return 0; | 
 | } | 
 | subsys_initcall(percpu_enable_async); |