| /* | 
 |  * PXA2xx SPI DMA engine support. | 
 |  * | 
 |  * Copyright (C) 2013, Intel Corporation | 
 |  * Author: Mika Westerberg <mika.westerberg@linux.intel.com> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  */ | 
 |  | 
 | #include <linux/device.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/dmaengine.h> | 
 | #include <linux/pxa2xx_ssp.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/sizes.h> | 
 | #include <linux/spi/spi.h> | 
 | #include <linux/spi/pxa2xx_spi.h> | 
 |  | 
 | #include "spi-pxa2xx.h" | 
 |  | 
 | static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data, | 
 | 					     bool error) | 
 | { | 
 | 	struct spi_message *msg = drv_data->master->cur_msg; | 
 |  | 
 | 	/* | 
 | 	 * It is possible that one CPU is handling ROR interrupt and other | 
 | 	 * just gets DMA completion. Calling pump_transfers() twice for the | 
 | 	 * same transfer leads to problems thus we prevent concurrent calls | 
 | 	 * by using ->dma_running. | 
 | 	 */ | 
 | 	if (atomic_dec_and_test(&drv_data->dma_running)) { | 
 | 		/* | 
 | 		 * If the other CPU is still handling the ROR interrupt we | 
 | 		 * might not know about the error yet. So we re-check the | 
 | 		 * ROR bit here before we clear the status register. | 
 | 		 */ | 
 | 		if (!error) { | 
 | 			u32 status = pxa2xx_spi_read(drv_data, SSSR) | 
 | 				     & drv_data->mask_sr; | 
 | 			error = status & SSSR_ROR; | 
 | 		} | 
 |  | 
 | 		/* Clear status & disable interrupts */ | 
 | 		pxa2xx_spi_write(drv_data, SSCR1, | 
 | 				 pxa2xx_spi_read(drv_data, SSCR1) | 
 | 				 & ~drv_data->dma_cr1); | 
 | 		write_SSSR_CS(drv_data, drv_data->clear_sr); | 
 | 		if (!pxa25x_ssp_comp(drv_data)) | 
 | 			pxa2xx_spi_write(drv_data, SSTO, 0); | 
 |  | 
 | 		if (!error) { | 
 | 			msg->actual_length += drv_data->len; | 
 | 			msg->state = pxa2xx_spi_next_transfer(drv_data); | 
 | 		} else { | 
 | 			/* In case we got an error we disable the SSP now */ | 
 | 			pxa2xx_spi_write(drv_data, SSCR0, | 
 | 					 pxa2xx_spi_read(drv_data, SSCR0) | 
 | 					 & ~SSCR0_SSE); | 
 |  | 
 | 			msg->state = ERROR_STATE; | 
 | 		} | 
 |  | 
 | 		tasklet_schedule(&drv_data->pump_transfers); | 
 | 	} | 
 | } | 
 |  | 
 | static void pxa2xx_spi_dma_callback(void *data) | 
 | { | 
 | 	pxa2xx_spi_dma_transfer_complete(data, false); | 
 | } | 
 |  | 
 | static struct dma_async_tx_descriptor * | 
 | pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data, | 
 | 			   enum dma_transfer_direction dir) | 
 | { | 
 | 	struct chip_data *chip = | 
 | 		spi_get_ctldata(drv_data->master->cur_msg->spi); | 
 | 	struct spi_transfer *xfer = drv_data->cur_transfer; | 
 | 	enum dma_slave_buswidth width; | 
 | 	struct dma_slave_config cfg; | 
 | 	struct dma_chan *chan; | 
 | 	struct sg_table *sgt; | 
 | 	int ret; | 
 |  | 
 | 	switch (drv_data->n_bytes) { | 
 | 	case 1: | 
 | 		width = DMA_SLAVE_BUSWIDTH_1_BYTE; | 
 | 		break; | 
 | 	case 2: | 
 | 		width = DMA_SLAVE_BUSWIDTH_2_BYTES; | 
 | 		break; | 
 | 	default: | 
 | 		width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	memset(&cfg, 0, sizeof(cfg)); | 
 | 	cfg.direction = dir; | 
 |  | 
 | 	if (dir == DMA_MEM_TO_DEV) { | 
 | 		cfg.dst_addr = drv_data->ssdr_physical; | 
 | 		cfg.dst_addr_width = width; | 
 | 		cfg.dst_maxburst = chip->dma_burst_size; | 
 |  | 
 | 		sgt = &xfer->tx_sg; | 
 | 		chan = drv_data->master->dma_tx; | 
 | 	} else { | 
 | 		cfg.src_addr = drv_data->ssdr_physical; | 
 | 		cfg.src_addr_width = width; | 
 | 		cfg.src_maxburst = chip->dma_burst_size; | 
 |  | 
 | 		sgt = &xfer->rx_sg; | 
 | 		chan = drv_data->master->dma_rx; | 
 | 	} | 
 |  | 
 | 	ret = dmaengine_slave_config(chan, &cfg); | 
 | 	if (ret) { | 
 | 		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir, | 
 | 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
 | } | 
 |  | 
 | irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) | 
 | { | 
 | 	u32 status; | 
 |  | 
 | 	status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr; | 
 | 	if (status & SSSR_ROR) { | 
 | 		dev_err(&drv_data->pdev->dev, "FIFO overrun\n"); | 
 |  | 
 | 		dmaengine_terminate_async(drv_data->master->dma_rx); | 
 | 		dmaengine_terminate_async(drv_data->master->dma_tx); | 
 |  | 
 | 		pxa2xx_spi_dma_transfer_complete(drv_data, true); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	return IRQ_NONE; | 
 | } | 
 |  | 
 | int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst) | 
 | { | 
 | 	struct dma_async_tx_descriptor *tx_desc, *rx_desc; | 
 | 	int err; | 
 |  | 
 | 	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV); | 
 | 	if (!tx_desc) { | 
 | 		dev_err(&drv_data->pdev->dev, | 
 | 			"failed to get DMA TX descriptor\n"); | 
 | 		err = -EBUSY; | 
 | 		goto err_tx; | 
 | 	} | 
 |  | 
 | 	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM); | 
 | 	if (!rx_desc) { | 
 | 		dev_err(&drv_data->pdev->dev, | 
 | 			"failed to get DMA RX descriptor\n"); | 
 | 		err = -EBUSY; | 
 | 		goto err_rx; | 
 | 	} | 
 |  | 
 | 	/* We are ready when RX completes */ | 
 | 	rx_desc->callback = pxa2xx_spi_dma_callback; | 
 | 	rx_desc->callback_param = drv_data; | 
 |  | 
 | 	dmaengine_submit(rx_desc); | 
 | 	dmaengine_submit(tx_desc); | 
 | 	return 0; | 
 |  | 
 | err_rx: | 
 | 	dmaengine_terminate_async(drv_data->master->dma_tx); | 
 | err_tx: | 
 | 	return err; | 
 | } | 
 |  | 
 | void pxa2xx_spi_dma_start(struct driver_data *drv_data) | 
 | { | 
 | 	dma_async_issue_pending(drv_data->master->dma_rx); | 
 | 	dma_async_issue_pending(drv_data->master->dma_tx); | 
 |  | 
 | 	atomic_set(&drv_data->dma_running, 1); | 
 | } | 
 |  | 
 | int pxa2xx_spi_dma_setup(struct driver_data *drv_data) | 
 | { | 
 | 	struct pxa2xx_spi_master *pdata = drv_data->master_info; | 
 | 	struct device *dev = &drv_data->pdev->dev; | 
 | 	struct spi_master *master = drv_data->master; | 
 | 	dma_cap_mask_t mask; | 
 |  | 
 | 	dma_cap_zero(mask); | 
 | 	dma_cap_set(DMA_SLAVE, mask); | 
 |  | 
 | 	master->dma_tx = dma_request_slave_channel_compat(mask, | 
 | 				pdata->dma_filter, pdata->tx_param, dev, "tx"); | 
 | 	if (!master->dma_tx) | 
 | 		return -ENODEV; | 
 |  | 
 | 	master->dma_rx = dma_request_slave_channel_compat(mask, | 
 | 				pdata->dma_filter, pdata->rx_param, dev, "rx"); | 
 | 	if (!master->dma_rx) { | 
 | 		dma_release_channel(master->dma_tx); | 
 | 		master->dma_tx = NULL; | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void pxa2xx_spi_dma_release(struct driver_data *drv_data) | 
 | { | 
 | 	struct spi_master *master = drv_data->master; | 
 |  | 
 | 	if (master->dma_rx) { | 
 | 		dmaengine_terminate_sync(master->dma_rx); | 
 | 		dma_release_channel(master->dma_rx); | 
 | 		master->dma_rx = NULL; | 
 | 	} | 
 | 	if (master->dma_tx) { | 
 | 		dmaengine_terminate_sync(master->dma_tx); | 
 | 		dma_release_channel(master->dma_tx); | 
 | 		master->dma_tx = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip, | 
 | 					   struct spi_device *spi, | 
 | 					   u8 bits_per_word, u32 *burst_code, | 
 | 					   u32 *threshold) | 
 | { | 
 | 	struct pxa2xx_spi_chip *chip_info = spi->controller_data; | 
 |  | 
 | 	/* | 
 | 	 * If the DMA burst size is given in chip_info we use that, | 
 | 	 * otherwise we use the default. Also we use the default FIFO | 
 | 	 * thresholds for now. | 
 | 	 */ | 
 | 	*burst_code = chip_info ? chip_info->dma_burst_size : 1; | 
 | 	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT) | 
 | 		   | SSCR1_TxTresh(TX_THRESH_DFLT); | 
 |  | 
 | 	return 0; | 
 | } |