|  | /* | 
|  | * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com> | 
|  | * Copyright © 2004 Micron Technology Inc. | 
|  | * Copyright © 2004 David Brownell | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/gpio/consumer.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/rawnand.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <linux/omap-dma.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_device.h> | 
|  |  | 
|  | #include <linux/mtd/nand_bch.h> | 
|  | #include <linux/platform_data/elm.h> | 
|  |  | 
|  | #include <linux/omap-gpmc.h> | 
|  | #include <linux/platform_data/mtd-nand-omap2.h> | 
|  |  | 
|  | #define	DRIVER_NAME	"omap2-nand" | 
|  | #define	OMAP_NAND_TIMEOUT_MS	5000 | 
|  |  | 
|  | #define NAND_Ecc_P1e		(1 << 0) | 
|  | #define NAND_Ecc_P2e		(1 << 1) | 
|  | #define NAND_Ecc_P4e		(1 << 2) | 
|  | #define NAND_Ecc_P8e		(1 << 3) | 
|  | #define NAND_Ecc_P16e		(1 << 4) | 
|  | #define NAND_Ecc_P32e		(1 << 5) | 
|  | #define NAND_Ecc_P64e		(1 << 6) | 
|  | #define NAND_Ecc_P128e		(1 << 7) | 
|  | #define NAND_Ecc_P256e		(1 << 8) | 
|  | #define NAND_Ecc_P512e		(1 << 9) | 
|  | #define NAND_Ecc_P1024e		(1 << 10) | 
|  | #define NAND_Ecc_P2048e		(1 << 11) | 
|  |  | 
|  | #define NAND_Ecc_P1o		(1 << 16) | 
|  | #define NAND_Ecc_P2o		(1 << 17) | 
|  | #define NAND_Ecc_P4o		(1 << 18) | 
|  | #define NAND_Ecc_P8o		(1 << 19) | 
|  | #define NAND_Ecc_P16o		(1 << 20) | 
|  | #define NAND_Ecc_P32o		(1 << 21) | 
|  | #define NAND_Ecc_P64o		(1 << 22) | 
|  | #define NAND_Ecc_P128o		(1 << 23) | 
|  | #define NAND_Ecc_P256o		(1 << 24) | 
|  | #define NAND_Ecc_P512o		(1 << 25) | 
|  | #define NAND_Ecc_P1024o		(1 << 26) | 
|  | #define NAND_Ecc_P2048o		(1 << 27) | 
|  |  | 
|  | #define TF(value)	(value ? 1 : 0) | 
|  |  | 
|  | #define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0) | 
|  | #define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1) | 
|  | #define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2) | 
|  | #define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3) | 
|  | #define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4) | 
|  | #define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5) | 
|  | #define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6) | 
|  | #define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7) | 
|  |  | 
|  | #define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0) | 
|  | #define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1) | 
|  | #define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2) | 
|  | #define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3) | 
|  | #define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4) | 
|  | #define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5) | 
|  | #define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6) | 
|  | #define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7) | 
|  |  | 
|  | #define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0) | 
|  | #define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1) | 
|  | #define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2) | 
|  | #define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3) | 
|  | #define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4) | 
|  | #define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5) | 
|  | #define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6) | 
|  | #define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7) | 
|  |  | 
|  | #define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0) | 
|  | #define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1) | 
|  | #define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2) | 
|  | #define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3) | 
|  | #define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4) | 
|  | #define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5) | 
|  | #define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6) | 
|  | #define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7) | 
|  |  | 
|  | #define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0) | 
|  | #define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1) | 
|  |  | 
|  | #define	PREFETCH_CONFIG1_CS_SHIFT	24 | 
|  | #define	ECC_CONFIG_CS_SHIFT		1 | 
|  | #define	CS_MASK				0x7 | 
|  | #define	ENABLE_PREFETCH			(0x1 << 7) | 
|  | #define	DMA_MPU_MODE_SHIFT		2 | 
|  | #define	ECCSIZE0_SHIFT			12 | 
|  | #define	ECCSIZE1_SHIFT			22 | 
|  | #define	ECC1RESULTSIZE			0x1 | 
|  | #define	ECCCLEAR			0x100 | 
|  | #define	ECC1				0x1 | 
|  | #define	PREFETCH_FIFOTHRESHOLD_MAX	0x40 | 
|  | #define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8) | 
|  | #define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff) | 
|  | #define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F) | 
|  | #define	STATUS_BUFF_EMPTY		0x00000001 | 
|  |  | 
|  | #define SECTOR_BYTES		512 | 
|  | /* 4 bit padding to make byte aligned, 56 = 52 + 4 */ | 
|  | #define BCH4_BIT_PAD		4 | 
|  |  | 
|  | /* GPMC ecc engine settings for read */ | 
|  | #define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */ | 
|  | #define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */ | 
|  | #define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */ | 
|  | #define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */ | 
|  | #define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */ | 
|  |  | 
|  | /* GPMC ecc engine settings for write */ | 
|  | #define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */ | 
|  | #define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */ | 
|  | #define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */ | 
|  |  | 
|  | #define BADBLOCK_MARKER_LENGTH		2 | 
|  |  | 
|  | static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55, | 
|  | 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78, | 
|  | 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93, | 
|  | 0x07, 0x0e}; | 
|  | static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc, | 
|  | 0xac, 0x6b, 0xff, 0x99, 0x7b}; | 
|  | static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10}; | 
|  |  | 
|  | /* Shared among all NAND instances to synchronize access to the ECC Engine */ | 
|  | static struct nand_hw_control omap_gpmc_controller = { | 
|  | .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock), | 
|  | .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq), | 
|  | }; | 
|  |  | 
|  | struct omap_nand_info { | 
|  | struct nand_chip		nand; | 
|  | struct platform_device		*pdev; | 
|  |  | 
|  | int				gpmc_cs; | 
|  | bool				dev_ready; | 
|  | enum nand_io			xfer_type; | 
|  | int				devsize; | 
|  | enum omap_ecc			ecc_opt; | 
|  | struct device_node		*elm_of_node; | 
|  |  | 
|  | unsigned long			phys_base; | 
|  | struct completion		comp; | 
|  | struct dma_chan			*dma; | 
|  | int				gpmc_irq_fifo; | 
|  | int				gpmc_irq_count; | 
|  | enum { | 
|  | OMAP_NAND_IO_READ = 0,	/* read */ | 
|  | OMAP_NAND_IO_WRITE,	/* write */ | 
|  | } iomode; | 
|  | u_char				*buf; | 
|  | int					buf_len; | 
|  | /* Interface to GPMC */ | 
|  | struct gpmc_nand_regs		reg; | 
|  | struct gpmc_nand_ops		*ops; | 
|  | bool				flash_bbt; | 
|  | /* fields specific for BCHx_HW ECC scheme */ | 
|  | struct device			*elm_dev; | 
|  | /* NAND ready gpio */ | 
|  | struct gpio_desc		*ready_gpiod; | 
|  | }; | 
|  |  | 
|  | static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd) | 
|  | { | 
|  | return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_prefetch_enable - configures and starts prefetch transfer | 
|  | * @cs: cs (chip select) number | 
|  | * @fifo_th: fifo threshold to be used for read/ write | 
|  | * @dma_mode: dma mode enable (1) or disable (0) | 
|  | * @u32_count: number of bytes to be transferred | 
|  | * @is_write: prefetch read(0) or write post(1) mode | 
|  | */ | 
|  | static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode, | 
|  | unsigned int u32_count, int is_write, struct omap_nand_info *info) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) | 
|  | return -1; | 
|  |  | 
|  | if (readl(info->reg.gpmc_prefetch_control)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Set the amount of bytes to be prefetched */ | 
|  | writel(u32_count, info->reg.gpmc_prefetch_config2); | 
|  |  | 
|  | /* Set dma/mpu mode, the prefetch read / post write and | 
|  | * enable the engine. Set which cs is has requested for. | 
|  | */ | 
|  | val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) | | 
|  | PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH | | 
|  | (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1)); | 
|  | writel(val, info->reg.gpmc_prefetch_config1); | 
|  |  | 
|  | /*  Start the prefetch engine */ | 
|  | writel(0x1, info->reg.gpmc_prefetch_control); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_prefetch_reset - disables and stops the prefetch engine | 
|  | */ | 
|  | static int omap_prefetch_reset(int cs, struct omap_nand_info *info) | 
|  | { | 
|  | u32 config1; | 
|  |  | 
|  | /* check if the same module/cs is trying to reset */ | 
|  | config1 = readl(info->reg.gpmc_prefetch_config1); | 
|  | if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Stop the PFPW engine */ | 
|  | writel(0x0, info->reg.gpmc_prefetch_control); | 
|  |  | 
|  | /* Reset/disable the PFPW engine */ | 
|  | writel(0x0, info->reg.gpmc_prefetch_config1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_hwcontrol - hardware specific access to control-lines | 
|  | * @mtd: MTD device structure | 
|  | * @cmd: command to device | 
|  | * @ctrl: | 
|  | * NAND_NCE: bit 0 -> don't care | 
|  | * NAND_CLE: bit 1 -> Command Latch | 
|  | * NAND_ALE: bit 2 -> Address Latch | 
|  | * | 
|  | * NOTE: boards may use different bits for these!! | 
|  | */ | 
|  | static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  |  | 
|  | if (cmd != NAND_CMD_NONE) { | 
|  | if (ctrl & NAND_CLE) | 
|  | writeb(cmd, info->reg.gpmc_nand_command); | 
|  |  | 
|  | else if (ctrl & NAND_ALE) | 
|  | writeb(cmd, info->reg.gpmc_nand_address); | 
|  |  | 
|  | else /* NAND_NCE */ | 
|  | writeb(cmd, info->reg.gpmc_nand_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_read_buf8 - read data from NAND controller into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | */ | 
|  | static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct nand_chip *nand = mtd_to_nand(mtd); | 
|  |  | 
|  | ioread8_rep(nand->IO_ADDR_R, buf, len); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_write_buf8 - write buffer to NAND controller | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | */ | 
|  | static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | u_char *p = (u_char *)buf; | 
|  | bool status; | 
|  |  | 
|  | while (len--) { | 
|  | iowrite8(*p++, info->nand.IO_ADDR_W); | 
|  | /* wait until buffer is available for write */ | 
|  | do { | 
|  | status = info->ops->nand_writebuffer_empty(); | 
|  | } while (!status); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_read_buf16 - read data from NAND controller into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | */ | 
|  | static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct nand_chip *nand = mtd_to_nand(mtd); | 
|  |  | 
|  | ioread16_rep(nand->IO_ADDR_R, buf, len / 2); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_write_buf16 - write buffer to NAND controller | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | */ | 
|  | static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | u16 *p = (u16 *) buf; | 
|  | bool status; | 
|  | /* FIXME try bursts of writesw() or DMA ... */ | 
|  | len >>= 1; | 
|  |  | 
|  | while (len--) { | 
|  | iowrite16(*p++, info->nand.IO_ADDR_W); | 
|  | /* wait until buffer is available for write */ | 
|  | do { | 
|  | status = info->ops->nand_writebuffer_empty(); | 
|  | } while (!status); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_read_buf_pref - read data from NAND controller into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | */ | 
|  | static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | uint32_t r_count = 0; | 
|  | int ret = 0; | 
|  | u32 *p = (u32 *)buf; | 
|  |  | 
|  | /* take care of subpage reads */ | 
|  | if (len % 4) { | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | omap_read_buf16(mtd, buf, len % 4); | 
|  | else | 
|  | omap_read_buf8(mtd, buf, len % 4); | 
|  | p = (u32 *) (buf + len % 4); | 
|  | len -= len % 4; | 
|  | } | 
|  |  | 
|  | /* configure and start prefetch transfer */ | 
|  | ret = omap_prefetch_enable(info->gpmc_cs, | 
|  | PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info); | 
|  | if (ret) { | 
|  | /* PFPW engine is busy, use cpu copy method */ | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | omap_read_buf16(mtd, (u_char *)p, len); | 
|  | else | 
|  | omap_read_buf8(mtd, (u_char *)p, len); | 
|  | } else { | 
|  | do { | 
|  | r_count = readl(info->reg.gpmc_prefetch_status); | 
|  | r_count = PREFETCH_STATUS_FIFO_CNT(r_count); | 
|  | r_count = r_count >> 2; | 
|  | ioread32_rep(info->nand.IO_ADDR_R, p, r_count); | 
|  | p += r_count; | 
|  | len -= r_count << 2; | 
|  | } while (len); | 
|  | /* disable and stop the PFPW engine */ | 
|  | omap_prefetch_reset(info->gpmc_cs, info); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_write_buf_pref - write buffer to NAND controller | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | */ | 
|  | static void omap_write_buf_pref(struct mtd_info *mtd, | 
|  | const u_char *buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | uint32_t w_count = 0; | 
|  | int i = 0, ret = 0; | 
|  | u16 *p = (u16 *)buf; | 
|  | unsigned long tim, limit; | 
|  | u32 val; | 
|  |  | 
|  | /* take care of subpage writes */ | 
|  | if (len % 2 != 0) { | 
|  | writeb(*buf, info->nand.IO_ADDR_W); | 
|  | p = (u16 *)(buf + 1); | 
|  | len--; | 
|  | } | 
|  |  | 
|  | /*  configure and start prefetch transfer */ | 
|  | ret = omap_prefetch_enable(info->gpmc_cs, | 
|  | PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info); | 
|  | if (ret) { | 
|  | /* PFPW engine is busy, use cpu copy method */ | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | omap_write_buf16(mtd, (u_char *)p, len); | 
|  | else | 
|  | omap_write_buf8(mtd, (u_char *)p, len); | 
|  | } else { | 
|  | while (len) { | 
|  | w_count = readl(info->reg.gpmc_prefetch_status); | 
|  | w_count = PREFETCH_STATUS_FIFO_CNT(w_count); | 
|  | w_count = w_count >> 1; | 
|  | for (i = 0; (i < w_count) && len; i++, len -= 2) | 
|  | iowrite16(*p++, info->nand.IO_ADDR_W); | 
|  | } | 
|  | /* wait for data to flushed-out before reset the prefetch */ | 
|  | tim = 0; | 
|  | limit = (loops_per_jiffy * | 
|  | msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); | 
|  | do { | 
|  | cpu_relax(); | 
|  | val = readl(info->reg.gpmc_prefetch_status); | 
|  | val = PREFETCH_STATUS_COUNT(val); | 
|  | } while (val && (tim++ < limit)); | 
|  |  | 
|  | /* disable and stop the PFPW engine */ | 
|  | omap_prefetch_reset(info->gpmc_cs, info); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * omap_nand_dma_callback: callback on the completion of dma transfer | 
|  | * @data: pointer to completion data structure | 
|  | */ | 
|  | static void omap_nand_dma_callback(void *data) | 
|  | { | 
|  | complete((struct completion *) data); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * omap_nand_dma_transfer: configure and start dma transfer | 
|  | * @mtd: MTD device structure | 
|  | * @addr: virtual address in RAM of source/destination | 
|  | * @len: number of data bytes to be transferred | 
|  | * @is_write: flag for read/write operation | 
|  | */ | 
|  | static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, | 
|  | unsigned int len, int is_write) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | struct dma_async_tx_descriptor *tx; | 
|  | enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : | 
|  | DMA_FROM_DEVICE; | 
|  | struct scatterlist sg; | 
|  | unsigned long tim, limit; | 
|  | unsigned n; | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | if (!virt_addr_valid(addr)) | 
|  | goto out_copy; | 
|  |  | 
|  | sg_init_one(&sg, addr, len); | 
|  | n = dma_map_sg(info->dma->device->dev, &sg, 1, dir); | 
|  | if (n == 0) { | 
|  | dev_err(&info->pdev->dev, | 
|  | "Couldn't DMA map a %d byte buffer\n", len); | 
|  | goto out_copy; | 
|  | } | 
|  |  | 
|  | tx = dmaengine_prep_slave_sg(info->dma, &sg, n, | 
|  | is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, | 
|  | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
|  | if (!tx) | 
|  | goto out_copy_unmap; | 
|  |  | 
|  | tx->callback = omap_nand_dma_callback; | 
|  | tx->callback_param = &info->comp; | 
|  | dmaengine_submit(tx); | 
|  |  | 
|  | init_completion(&info->comp); | 
|  |  | 
|  | /* setup and start DMA using dma_addr */ | 
|  | dma_async_issue_pending(info->dma); | 
|  |  | 
|  | /*  configure and start prefetch transfer */ | 
|  | ret = omap_prefetch_enable(info->gpmc_cs, | 
|  | PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info); | 
|  | if (ret) | 
|  | /* PFPW engine is busy, use cpu copy method */ | 
|  | goto out_copy_unmap; | 
|  |  | 
|  | wait_for_completion(&info->comp); | 
|  | tim = 0; | 
|  | limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); | 
|  |  | 
|  | do { | 
|  | cpu_relax(); | 
|  | val = readl(info->reg.gpmc_prefetch_status); | 
|  | val = PREFETCH_STATUS_COUNT(val); | 
|  | } while (val && (tim++ < limit)); | 
|  |  | 
|  | /* disable and stop the PFPW engine */ | 
|  | omap_prefetch_reset(info->gpmc_cs, info); | 
|  |  | 
|  | dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); | 
|  | return 0; | 
|  |  | 
|  | out_copy_unmap: | 
|  | dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); | 
|  | out_copy: | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) | 
|  | : omap_write_buf16(mtd, (u_char *) addr, len); | 
|  | else | 
|  | is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len) | 
|  | : omap_write_buf8(mtd, (u_char *) addr, len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_read_buf_dma_pref - read data from NAND controller into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | */ | 
|  | static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | if (len <= mtd->oobsize) | 
|  | omap_read_buf_pref(mtd, buf, len); | 
|  | else | 
|  | /* start transfer in DMA mode */ | 
|  | omap_nand_dma_transfer(mtd, buf, len, 0x0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_write_buf_dma_pref - write buffer to NAND controller | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | */ | 
|  | static void omap_write_buf_dma_pref(struct mtd_info *mtd, | 
|  | const u_char *buf, int len) | 
|  | { | 
|  | if (len <= mtd->oobsize) | 
|  | omap_write_buf_pref(mtd, buf, len); | 
|  | else | 
|  | /* start transfer in DMA mode */ | 
|  | omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * omap_nand_irq - GPMC irq handler | 
|  | * @this_irq: gpmc irq number | 
|  | * @dev: omap_nand_info structure pointer is passed here | 
|  | */ | 
|  | static irqreturn_t omap_nand_irq(int this_irq, void *dev) | 
|  | { | 
|  | struct omap_nand_info *info = (struct omap_nand_info *) dev; | 
|  | u32 bytes; | 
|  |  | 
|  | bytes = readl(info->reg.gpmc_prefetch_status); | 
|  | bytes = PREFETCH_STATUS_FIFO_CNT(bytes); | 
|  | bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */ | 
|  | if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */ | 
|  | if (this_irq == info->gpmc_irq_count) | 
|  | goto done; | 
|  |  | 
|  | if (info->buf_len && (info->buf_len < bytes)) | 
|  | bytes = info->buf_len; | 
|  | else if (!info->buf_len) | 
|  | bytes = 0; | 
|  | iowrite32_rep(info->nand.IO_ADDR_W, | 
|  | (u32 *)info->buf, bytes >> 2); | 
|  | info->buf = info->buf + bytes; | 
|  | info->buf_len -= bytes; | 
|  |  | 
|  | } else { | 
|  | ioread32_rep(info->nand.IO_ADDR_R, | 
|  | (u32 *)info->buf, bytes >> 2); | 
|  | info->buf = info->buf + bytes; | 
|  |  | 
|  | if (this_irq == info->gpmc_irq_count) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  |  | 
|  | done: | 
|  | complete(&info->comp); | 
|  |  | 
|  | disable_irq_nosync(info->gpmc_irq_fifo); | 
|  | disable_irq_nosync(info->gpmc_irq_count); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * omap_read_buf_irq_pref - read data from NAND controller into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | */ | 
|  | static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | int ret = 0; | 
|  |  | 
|  | if (len <= mtd->oobsize) { | 
|  | omap_read_buf_pref(mtd, buf, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | info->iomode = OMAP_NAND_IO_READ; | 
|  | info->buf = buf; | 
|  | init_completion(&info->comp); | 
|  |  | 
|  | /*  configure and start prefetch transfer */ | 
|  | ret = omap_prefetch_enable(info->gpmc_cs, | 
|  | PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info); | 
|  | if (ret) | 
|  | /* PFPW engine is busy, use cpu copy method */ | 
|  | goto out_copy; | 
|  |  | 
|  | info->buf_len = len; | 
|  |  | 
|  | enable_irq(info->gpmc_irq_count); | 
|  | enable_irq(info->gpmc_irq_fifo); | 
|  |  | 
|  | /* waiting for read to complete */ | 
|  | wait_for_completion(&info->comp); | 
|  |  | 
|  | /* disable and stop the PFPW engine */ | 
|  | omap_prefetch_reset(info->gpmc_cs, info); | 
|  | return; | 
|  |  | 
|  | out_copy: | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | omap_read_buf16(mtd, buf, len); | 
|  | else | 
|  | omap_read_buf8(mtd, buf, len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * omap_write_buf_irq_pref - write buffer to NAND controller | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | */ | 
|  | static void omap_write_buf_irq_pref(struct mtd_info *mtd, | 
|  | const u_char *buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | int ret = 0; | 
|  | unsigned long tim, limit; | 
|  | u32 val; | 
|  |  | 
|  | if (len <= mtd->oobsize) { | 
|  | omap_write_buf_pref(mtd, buf, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | info->iomode = OMAP_NAND_IO_WRITE; | 
|  | info->buf = (u_char *) buf; | 
|  | init_completion(&info->comp); | 
|  |  | 
|  | /* configure and start prefetch transfer : size=24 */ | 
|  | ret = omap_prefetch_enable(info->gpmc_cs, | 
|  | (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info); | 
|  | if (ret) | 
|  | /* PFPW engine is busy, use cpu copy method */ | 
|  | goto out_copy; | 
|  |  | 
|  | info->buf_len = len; | 
|  |  | 
|  | enable_irq(info->gpmc_irq_count); | 
|  | enable_irq(info->gpmc_irq_fifo); | 
|  |  | 
|  | /* waiting for write to complete */ | 
|  | wait_for_completion(&info->comp); | 
|  |  | 
|  | /* wait for data to flushed-out before reset the prefetch */ | 
|  | tim = 0; | 
|  | limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); | 
|  | do { | 
|  | val = readl(info->reg.gpmc_prefetch_status); | 
|  | val = PREFETCH_STATUS_COUNT(val); | 
|  | cpu_relax(); | 
|  | } while (val && (tim++ < limit)); | 
|  |  | 
|  | /* disable and stop the PFPW engine */ | 
|  | omap_prefetch_reset(info->gpmc_cs, info); | 
|  | return; | 
|  |  | 
|  | out_copy: | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | omap_write_buf16(mtd, buf, len); | 
|  | else | 
|  | omap_write_buf8(mtd, buf, len); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * gen_true_ecc - This function will generate true ECC value | 
|  | * @ecc_buf: buffer to store ecc code | 
|  | * | 
|  | * This generated true ECC value can be used when correcting | 
|  | * data read from NAND flash memory core | 
|  | */ | 
|  | static void gen_true_ecc(u8 *ecc_buf) | 
|  | { | 
|  | u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | | 
|  | ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); | 
|  |  | 
|  | ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | | 
|  | P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); | 
|  | ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | | 
|  | P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); | 
|  | ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | | 
|  | P1e(tmp) | P2048o(tmp) | P2048e(tmp)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data | 
|  | * @ecc_data1:  ecc code from nand spare area | 
|  | * @ecc_data2:  ecc code from hardware register obtained from hardware ecc | 
|  | * @page_data:  page data | 
|  | * | 
|  | * This function compares two ECC's and indicates if there is an error. | 
|  | * If the error can be corrected it will be corrected to the buffer. | 
|  | * If there is no error, %0 is returned. If there is an error but it | 
|  | * was corrected, %1 is returned. Otherwise, %-1 is returned. | 
|  | */ | 
|  | static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */ | 
|  | u8 *ecc_data2,	/* read from register */ | 
|  | u8 *page_data) | 
|  | { | 
|  | uint	i; | 
|  | u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; | 
|  | u8	comp0_bit[8], comp1_bit[8], comp2_bit[8]; | 
|  | u8	ecc_bit[24]; | 
|  | u8	ecc_sum = 0; | 
|  | u8	find_bit = 0; | 
|  | uint	find_byte = 0; | 
|  | int	isEccFF; | 
|  |  | 
|  | isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); | 
|  |  | 
|  | gen_true_ecc(ecc_data1); | 
|  | gen_true_ecc(ecc_data2); | 
|  |  | 
|  | for (i = 0; i <= 2; i++) { | 
|  | *(ecc_data1 + i) = ~(*(ecc_data1 + i)); | 
|  | *(ecc_data2 + i) = ~(*(ecc_data2 + i)); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | tmp0_bit[i]     = *ecc_data1 % 2; | 
|  | *ecc_data1	= *ecc_data1 / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | tmp1_bit[i]	 = *(ecc_data1 + 1) % 2; | 
|  | *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | tmp2_bit[i]	 = *(ecc_data1 + 2) % 2; | 
|  | *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | comp0_bit[i]     = *ecc_data2 % 2; | 
|  | *ecc_data2       = *ecc_data2 / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | comp1_bit[i]     = *(ecc_data2 + 1) % 2; | 
|  | *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | comp2_bit[i]     = *(ecc_data2 + 2) % 2; | 
|  | *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 6; i++) | 
|  | ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; | 
|  |  | 
|  | for (i = 0; i < 8; i++) | 
|  | ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; | 
|  |  | 
|  | for (i = 0; i < 8; i++) | 
|  | ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; | 
|  |  | 
|  | ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; | 
|  | ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; | 
|  |  | 
|  | for (i = 0; i < 24; i++) | 
|  | ecc_sum += ecc_bit[i]; | 
|  |  | 
|  | switch (ecc_sum) { | 
|  | case 0: | 
|  | /* Not reached because this function is not called if | 
|  | *  ECC values are equal | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | case 1: | 
|  | /* Uncorrectable error */ | 
|  | pr_debug("ECC UNCORRECTED_ERROR 1\n"); | 
|  | return -EBADMSG; | 
|  |  | 
|  | case 11: | 
|  | /* UN-Correctable error */ | 
|  | pr_debug("ECC UNCORRECTED_ERROR B\n"); | 
|  | return -EBADMSG; | 
|  |  | 
|  | case 12: | 
|  | /* Correctable error */ | 
|  | find_byte = (ecc_bit[23] << 8) + | 
|  | (ecc_bit[21] << 7) + | 
|  | (ecc_bit[19] << 6) + | 
|  | (ecc_bit[17] << 5) + | 
|  | (ecc_bit[15] << 4) + | 
|  | (ecc_bit[13] << 3) + | 
|  | (ecc_bit[11] << 2) + | 
|  | (ecc_bit[9]  << 1) + | 
|  | ecc_bit[7]; | 
|  |  | 
|  | find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; | 
|  |  | 
|  | pr_debug("Correcting single bit ECC error at offset: " | 
|  | "%d, bit: %d\n", find_byte, find_bit); | 
|  |  | 
|  | page_data[find_byte] ^= (1 << find_bit); | 
|  |  | 
|  | return 1; | 
|  | default: | 
|  | if (isEccFF) { | 
|  | if (ecc_data2[0] == 0 && | 
|  | ecc_data2[1] == 0 && | 
|  | ecc_data2[2] == 0) | 
|  | return 0; | 
|  | } | 
|  | pr_debug("UNCORRECTED_ERROR default\n"); | 
|  | return -EBADMSG; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_correct_data - Compares the ECC read with HW generated ECC | 
|  | * @mtd: MTD device structure | 
|  | * @dat: page data | 
|  | * @read_ecc: ecc read from nand flash | 
|  | * @calc_ecc: ecc read from HW ECC registers | 
|  | * | 
|  | * Compares the ecc read from nand spare area with ECC registers values | 
|  | * and if ECC's mismatched, it will call 'omap_compare_ecc' for error | 
|  | * detection and correction. If there are no errors, %0 is returned. If | 
|  | * there were errors and all of the errors were corrected, the number of | 
|  | * corrected errors is returned. If uncorrectable errors exist, %-1 is | 
|  | * returned. | 
|  | */ | 
|  | static int omap_correct_data(struct mtd_info *mtd, u_char *dat, | 
|  | u_char *read_ecc, u_char *calc_ecc) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | int blockCnt = 0, i = 0, ret = 0; | 
|  | int stat = 0; | 
|  |  | 
|  | /* Ex NAND_ECC_HW12_2048 */ | 
|  | if ((info->nand.ecc.mode == NAND_ECC_HW) && | 
|  | (info->nand.ecc.size  == 2048)) | 
|  | blockCnt = 4; | 
|  | else | 
|  | blockCnt = 1; | 
|  |  | 
|  | for (i = 0; i < blockCnt; i++) { | 
|  | if (memcmp(read_ecc, calc_ecc, 3) != 0) { | 
|  | ret = omap_compare_ecc(read_ecc, calc_ecc, dat); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | /* keep track of the number of corrected errors */ | 
|  | stat += ret; | 
|  | } | 
|  | read_ecc += 3; | 
|  | calc_ecc += 3; | 
|  | dat      += 512; | 
|  | } | 
|  | return stat; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_calcuate_ecc - Generate non-inverted ECC bytes. | 
|  | * @mtd: MTD device structure | 
|  | * @dat: The pointer to data on which ecc is computed | 
|  | * @ecc_code: The ecc_code buffer | 
|  | * | 
|  | * Using noninverted ECC can be considered ugly since writing a blank | 
|  | * page ie. padding will clear the ECC bytes. This is no problem as long | 
|  | * nobody is trying to write data on the seemingly unused page. Reading | 
|  | * an erased page will produce an ECC mismatch between generated and read | 
|  | * ECC bytes that has to be dealt with separately. | 
|  | */ | 
|  | static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, | 
|  | u_char *ecc_code) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | u32 val; | 
|  |  | 
|  | val = readl(info->reg.gpmc_ecc_config); | 
|  | if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* read ecc result */ | 
|  | val = readl(info->reg.gpmc_ecc1_result); | 
|  | *ecc_code++ = val;          /* P128e, ..., P1e */ | 
|  | *ecc_code++ = val >> 16;    /* P128o, ..., P1o */ | 
|  | /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ | 
|  | *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_enable_hwecc - This function enables the hardware ecc functionality | 
|  | * @mtd: MTD device structure | 
|  | * @mode: Read/Write mode | 
|  | */ | 
|  | static void omap_enable_hwecc(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  | unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; | 
|  | u32 val; | 
|  |  | 
|  | /* clear ecc and enable bits */ | 
|  | val = ECCCLEAR | ECC1; | 
|  | writel(val, info->reg.gpmc_ecc_control); | 
|  |  | 
|  | /* program ecc and result sizes */ | 
|  | val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) | | 
|  | ECC1RESULTSIZE); | 
|  | writel(val, info->reg.gpmc_ecc_size_config); | 
|  |  | 
|  | switch (mode) { | 
|  | case NAND_ECC_READ: | 
|  | case NAND_ECC_WRITE: | 
|  | writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); | 
|  | break; | 
|  | case NAND_ECC_READSYN: | 
|  | writel(ECCCLEAR, info->reg.gpmc_ecc_control); | 
|  | break; | 
|  | default: | 
|  | dev_info(&info->pdev->dev, | 
|  | "error: unrecognized Mode[%d]!\n", mode); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */ | 
|  | val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); | 
|  | writel(val, info->reg.gpmc_ecc_config); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_wait - wait until the command is done | 
|  | * @mtd: MTD device structure | 
|  | * @chip: NAND Chip structure | 
|  | * | 
|  | * Wait function is called during Program and erase operations and | 
|  | * the way it is called from MTD layer, we should wait till the NAND | 
|  | * chip is ready after the programming/erase operation has completed. | 
|  | * | 
|  | * Erase can take up to 400ms and program up to 20ms according to | 
|  | * general NAND and SmartMedia specs | 
|  | */ | 
|  | static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) | 
|  | { | 
|  | struct nand_chip *this = mtd_to_nand(mtd); | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | unsigned long timeo = jiffies; | 
|  | int status, state = this->state; | 
|  |  | 
|  | if (state == FL_ERASING) | 
|  | timeo += msecs_to_jiffies(400); | 
|  | else | 
|  | timeo += msecs_to_jiffies(20); | 
|  |  | 
|  | writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command); | 
|  | while (time_before(jiffies, timeo)) { | 
|  | status = readb(info->reg.gpmc_nand_data); | 
|  | if (status & NAND_STATUS_READY) | 
|  | break; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | status = readb(info->reg.gpmc_nand_data); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_dev_ready - checks the NAND Ready GPIO line | 
|  | * @mtd: MTD device structure | 
|  | * | 
|  | * Returns true if ready and false if busy. | 
|  | */ | 
|  | static int omap_dev_ready(struct mtd_info *mtd) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  |  | 
|  | return gpiod_get_value(info->ready_gpiod); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation | 
|  | * @mtd: MTD device structure | 
|  | * @mode: Read/Write mode | 
|  | * | 
|  | * When using BCH with SW correction (i.e. no ELM), sector size is set | 
|  | * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode | 
|  | * for both reading and writing with: | 
|  | * eccsize0 = 0  (no additional protected byte in spare area) | 
|  | * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area) | 
|  | */ | 
|  | static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | unsigned int bch_type; | 
|  | unsigned int dev_width, nsectors; | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | enum omap_ecc ecc_opt = info->ecc_opt; | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  | u32 val, wr_mode; | 
|  | unsigned int ecc_size1, ecc_size0; | 
|  |  | 
|  | /* GPMC configurations for calculating ECC */ | 
|  | switch (ecc_opt) { | 
|  | case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: | 
|  | bch_type = 0; | 
|  | nsectors = 1; | 
|  | wr_mode	  = BCH_WRAPMODE_6; | 
|  | ecc_size0 = BCH_ECC_SIZE0; | 
|  | ecc_size1 = BCH_ECC_SIZE1; | 
|  | break; | 
|  | case OMAP_ECC_BCH4_CODE_HW: | 
|  | bch_type = 0; | 
|  | nsectors = chip->ecc.steps; | 
|  | if (mode == NAND_ECC_READ) { | 
|  | wr_mode	  = BCH_WRAPMODE_1; | 
|  | ecc_size0 = BCH4R_ECC_SIZE0; | 
|  | ecc_size1 = BCH4R_ECC_SIZE1; | 
|  | } else { | 
|  | wr_mode   = BCH_WRAPMODE_6; | 
|  | ecc_size0 = BCH_ECC_SIZE0; | 
|  | ecc_size1 = BCH_ECC_SIZE1; | 
|  | } | 
|  | break; | 
|  | case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: | 
|  | bch_type = 1; | 
|  | nsectors = 1; | 
|  | wr_mode	  = BCH_WRAPMODE_6; | 
|  | ecc_size0 = BCH_ECC_SIZE0; | 
|  | ecc_size1 = BCH_ECC_SIZE1; | 
|  | break; | 
|  | case OMAP_ECC_BCH8_CODE_HW: | 
|  | bch_type = 1; | 
|  | nsectors = chip->ecc.steps; | 
|  | if (mode == NAND_ECC_READ) { | 
|  | wr_mode	  = BCH_WRAPMODE_1; | 
|  | ecc_size0 = BCH8R_ECC_SIZE0; | 
|  | ecc_size1 = BCH8R_ECC_SIZE1; | 
|  | } else { | 
|  | wr_mode   = BCH_WRAPMODE_6; | 
|  | ecc_size0 = BCH_ECC_SIZE0; | 
|  | ecc_size1 = BCH_ECC_SIZE1; | 
|  | } | 
|  | break; | 
|  | case OMAP_ECC_BCH16_CODE_HW: | 
|  | bch_type = 0x2; | 
|  | nsectors = chip->ecc.steps; | 
|  | if (mode == NAND_ECC_READ) { | 
|  | wr_mode	  = 0x01; | 
|  | ecc_size0 = 52; /* ECC bits in nibbles per sector */ | 
|  | ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */ | 
|  | } else { | 
|  | wr_mode	  = 0x01; | 
|  | ecc_size0 = 0;  /* extra bits in nibbles per sector */ | 
|  | ecc_size1 = 52; /* OOB bits in nibbles per sector */ | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  |  | 
|  | writel(ECC1, info->reg.gpmc_ecc_control); | 
|  |  | 
|  | /* Configure ecc size for BCH */ | 
|  | val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT); | 
|  | writel(val, info->reg.gpmc_ecc_size_config); | 
|  |  | 
|  | dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; | 
|  |  | 
|  | /* BCH configuration */ | 
|  | val = ((1                        << 16) | /* enable BCH */ | 
|  | (bch_type		 << 12) | /* BCH4/BCH8/BCH16 */ | 
|  | (wr_mode                  <<  8) | /* wrap mode */ | 
|  | (dev_width                <<  7) | /* bus width */ | 
|  | (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */ | 
|  | (info->gpmc_cs            <<  1) | /* ECC CS */ | 
|  | (0x1));                            /* enable ECC */ | 
|  |  | 
|  | writel(val, info->reg.gpmc_ecc_config); | 
|  |  | 
|  | /* Clear ecc and enable bits */ | 
|  | writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); | 
|  | } | 
|  |  | 
|  | static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f}; | 
|  | static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2, | 
|  | 0x97, 0x79, 0xe5, 0x24, 0xb5}; | 
|  |  | 
|  | /** | 
|  | * _omap_calculate_ecc_bch - Generate ECC bytes for one sector | 
|  | * @mtd:	MTD device structure | 
|  | * @dat:	The pointer to data on which ecc is computed | 
|  | * @ecc_code:	The ecc_code buffer | 
|  | * @i:		The sector number (for a multi sector page) | 
|  | * | 
|  | * Support calculating of BCH4/8/16 ECC vectors for one sector | 
|  | * within a page. Sector number is in @i. | 
|  | */ | 
|  | static int _omap_calculate_ecc_bch(struct mtd_info *mtd, | 
|  | const u_char *dat, u_char *ecc_calc, int i) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | int eccbytes	= info->nand.ecc.bytes; | 
|  | struct gpmc_nand_regs	*gpmc_regs = &info->reg; | 
|  | u8 *ecc_code; | 
|  | unsigned long bch_val1, bch_val2, bch_val3, bch_val4; | 
|  | u32 val; | 
|  | int j; | 
|  |  | 
|  | ecc_code = ecc_calc; | 
|  | switch (info->ecc_opt) { | 
|  | case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: | 
|  | case OMAP_ECC_BCH8_CODE_HW: | 
|  | bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); | 
|  | bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); | 
|  | bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]); | 
|  | bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]); | 
|  | *ecc_code++ = (bch_val4 & 0xFF); | 
|  | *ecc_code++ = ((bch_val3 >> 24) & 0xFF); | 
|  | *ecc_code++ = ((bch_val3 >> 16) & 0xFF); | 
|  | *ecc_code++ = ((bch_val3 >> 8) & 0xFF); | 
|  | *ecc_code++ = (bch_val3 & 0xFF); | 
|  | *ecc_code++ = ((bch_val2 >> 24) & 0xFF); | 
|  | *ecc_code++ = ((bch_val2 >> 16) & 0xFF); | 
|  | *ecc_code++ = ((bch_val2 >> 8) & 0xFF); | 
|  | *ecc_code++ = (bch_val2 & 0xFF); | 
|  | *ecc_code++ = ((bch_val1 >> 24) & 0xFF); | 
|  | *ecc_code++ = ((bch_val1 >> 16) & 0xFF); | 
|  | *ecc_code++ = ((bch_val1 >> 8) & 0xFF); | 
|  | *ecc_code++ = (bch_val1 & 0xFF); | 
|  | break; | 
|  | case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: | 
|  | case OMAP_ECC_BCH4_CODE_HW: | 
|  | bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); | 
|  | bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); | 
|  | *ecc_code++ = ((bch_val2 >> 12) & 0xFF); | 
|  | *ecc_code++ = ((bch_val2 >> 4) & 0xFF); | 
|  | *ecc_code++ = ((bch_val2 & 0xF) << 4) | | 
|  | ((bch_val1 >> 28) & 0xF); | 
|  | *ecc_code++ = ((bch_val1 >> 20) & 0xFF); | 
|  | *ecc_code++ = ((bch_val1 >> 12) & 0xFF); | 
|  | *ecc_code++ = ((bch_val1 >> 4) & 0xFF); | 
|  | *ecc_code++ = ((bch_val1 & 0xF) << 4); | 
|  | break; | 
|  | case OMAP_ECC_BCH16_CODE_HW: | 
|  | val = readl(gpmc_regs->gpmc_bch_result6[i]); | 
|  | ecc_code[0]  = ((val >>  8) & 0xFF); | 
|  | ecc_code[1]  = ((val >>  0) & 0xFF); | 
|  | val = readl(gpmc_regs->gpmc_bch_result5[i]); | 
|  | ecc_code[2]  = ((val >> 24) & 0xFF); | 
|  | ecc_code[3]  = ((val >> 16) & 0xFF); | 
|  | ecc_code[4]  = ((val >>  8) & 0xFF); | 
|  | ecc_code[5]  = ((val >>  0) & 0xFF); | 
|  | val = readl(gpmc_regs->gpmc_bch_result4[i]); | 
|  | ecc_code[6]  = ((val >> 24) & 0xFF); | 
|  | ecc_code[7]  = ((val >> 16) & 0xFF); | 
|  | ecc_code[8]  = ((val >>  8) & 0xFF); | 
|  | ecc_code[9]  = ((val >>  0) & 0xFF); | 
|  | val = readl(gpmc_regs->gpmc_bch_result3[i]); | 
|  | ecc_code[10] = ((val >> 24) & 0xFF); | 
|  | ecc_code[11] = ((val >> 16) & 0xFF); | 
|  | ecc_code[12] = ((val >>  8) & 0xFF); | 
|  | ecc_code[13] = ((val >>  0) & 0xFF); | 
|  | val = readl(gpmc_regs->gpmc_bch_result2[i]); | 
|  | ecc_code[14] = ((val >> 24) & 0xFF); | 
|  | ecc_code[15] = ((val >> 16) & 0xFF); | 
|  | ecc_code[16] = ((val >>  8) & 0xFF); | 
|  | ecc_code[17] = ((val >>  0) & 0xFF); | 
|  | val = readl(gpmc_regs->gpmc_bch_result1[i]); | 
|  | ecc_code[18] = ((val >> 24) & 0xFF); | 
|  | ecc_code[19] = ((val >> 16) & 0xFF); | 
|  | ecc_code[20] = ((val >>  8) & 0xFF); | 
|  | ecc_code[21] = ((val >>  0) & 0xFF); | 
|  | val = readl(gpmc_regs->gpmc_bch_result0[i]); | 
|  | ecc_code[22] = ((val >> 24) & 0xFF); | 
|  | ecc_code[23] = ((val >> 16) & 0xFF); | 
|  | ecc_code[24] = ((val >>  8) & 0xFF); | 
|  | ecc_code[25] = ((val >>  0) & 0xFF); | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* ECC scheme specific syndrome customizations */ | 
|  | switch (info->ecc_opt) { | 
|  | case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: | 
|  | /* Add constant polynomial to remainder, so that | 
|  | * ECC of blank pages results in 0x0 on reading back | 
|  | */ | 
|  | for (j = 0; j < eccbytes; j++) | 
|  | ecc_calc[j] ^= bch4_polynomial[j]; | 
|  | break; | 
|  | case OMAP_ECC_BCH4_CODE_HW: | 
|  | /* Set  8th ECC byte as 0x0 for ROM compatibility */ | 
|  | ecc_calc[eccbytes - 1] = 0x0; | 
|  | break; | 
|  | case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: | 
|  | /* Add constant polynomial to remainder, so that | 
|  | * ECC of blank pages results in 0x0 on reading back | 
|  | */ | 
|  | for (j = 0; j < eccbytes; j++) | 
|  | ecc_calc[j] ^= bch8_polynomial[j]; | 
|  | break; | 
|  | case OMAP_ECC_BCH8_CODE_HW: | 
|  | /* Set 14th ECC byte as 0x0 for ROM compatibility */ | 
|  | ecc_calc[eccbytes - 1] = 0x0; | 
|  | break; | 
|  | case OMAP_ECC_BCH16_CODE_HW: | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction | 
|  | * @mtd:	MTD device structure | 
|  | * @dat:	The pointer to data on which ecc is computed | 
|  | * @ecc_code:	The ecc_code buffer | 
|  | * | 
|  | * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used | 
|  | * when SW based correction is required as ECC is required for one sector | 
|  | * at a time. | 
|  | */ | 
|  | static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd, | 
|  | const u_char *dat, u_char *ecc_calc) | 
|  | { | 
|  | return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors | 
|  | * @mtd:	MTD device structure | 
|  | * @dat:	The pointer to data on which ecc is computed | 
|  | * @ecc_code:	The ecc_code buffer | 
|  | * | 
|  | * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go. | 
|  | */ | 
|  | static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd, | 
|  | const u_char *dat, u_char *ecc_calc) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | int eccbytes = info->nand.ecc.bytes; | 
|  | unsigned long nsectors; | 
|  | int i, ret; | 
|  |  | 
|  | nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; | 
|  | for (i = 0; i < nsectors; i++) { | 
|  | ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ecc_calc += eccbytes; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * erased_sector_bitflips - count bit flips | 
|  | * @data:	data sector buffer | 
|  | * @oob:	oob buffer | 
|  | * @info:	omap_nand_info | 
|  | * | 
|  | * Check the bit flips in erased page falls below correctable level. | 
|  | * If falls below, report the page as erased with correctable bit | 
|  | * flip, else report as uncorrectable page. | 
|  | */ | 
|  | static int erased_sector_bitflips(u_char *data, u_char *oob, | 
|  | struct omap_nand_info *info) | 
|  | { | 
|  | int flip_bits = 0, i; | 
|  |  | 
|  | for (i = 0; i < info->nand.ecc.size; i++) { | 
|  | flip_bits += hweight8(~data[i]); | 
|  | if (flip_bits > info->nand.ecc.strength) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < info->nand.ecc.bytes - 1; i++) { | 
|  | flip_bits += hweight8(~oob[i]); | 
|  | if (flip_bits > info->nand.ecc.strength) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bit flips falls in correctable level. | 
|  | * Fill data area with 0xFF | 
|  | */ | 
|  | if (flip_bits) { | 
|  | memset(data, 0xFF, info->nand.ecc.size); | 
|  | memset(oob, 0xFF, info->nand.ecc.bytes); | 
|  | } | 
|  |  | 
|  | return flip_bits; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_elm_correct_data - corrects page data area in case error reported | 
|  | * @mtd:	MTD device structure | 
|  | * @data:	page data | 
|  | * @read_ecc:	ecc read from nand flash | 
|  | * @calc_ecc:	ecc read from HW ECC registers | 
|  | * | 
|  | * Calculated ecc vector reported as zero in case of non-error pages. | 
|  | * In case of non-zero ecc vector, first filter out erased-pages, and | 
|  | * then process data via ELM to detect bit-flips. | 
|  | */ | 
|  | static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data, | 
|  | u_char *read_ecc, u_char *calc_ecc) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | struct nand_ecc_ctrl *ecc = &info->nand.ecc; | 
|  | int eccsteps = info->nand.ecc.steps; | 
|  | int i , j, stat = 0; | 
|  | int eccflag, actual_eccbytes; | 
|  | struct elm_errorvec err_vec[ERROR_VECTOR_MAX]; | 
|  | u_char *ecc_vec = calc_ecc; | 
|  | u_char *spare_ecc = read_ecc; | 
|  | u_char *erased_ecc_vec; | 
|  | u_char *buf; | 
|  | int bitflip_count; | 
|  | bool is_error_reported = false; | 
|  | u32 bit_pos, byte_pos, error_max, pos; | 
|  | int err; | 
|  |  | 
|  | switch (info->ecc_opt) { | 
|  | case OMAP_ECC_BCH4_CODE_HW: | 
|  | /* omit  7th ECC byte reserved for ROM code compatibility */ | 
|  | actual_eccbytes = ecc->bytes - 1; | 
|  | erased_ecc_vec = bch4_vector; | 
|  | break; | 
|  | case OMAP_ECC_BCH8_CODE_HW: | 
|  | /* omit 14th ECC byte reserved for ROM code compatibility */ | 
|  | actual_eccbytes = ecc->bytes - 1; | 
|  | erased_ecc_vec = bch8_vector; | 
|  | break; | 
|  | case OMAP_ECC_BCH16_CODE_HW: | 
|  | actual_eccbytes = ecc->bytes; | 
|  | erased_ecc_vec = bch16_vector; | 
|  | break; | 
|  | default: | 
|  | dev_err(&info->pdev->dev, "invalid driver configuration\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Initialize elm error vector to zero */ | 
|  | memset(err_vec, 0, sizeof(err_vec)); | 
|  |  | 
|  | for (i = 0; i < eccsteps ; i++) { | 
|  | eccflag = 0;	/* initialize eccflag */ | 
|  |  | 
|  | /* | 
|  | * Check any error reported, | 
|  | * In case of error, non zero ecc reported. | 
|  | */ | 
|  | for (j = 0; j < actual_eccbytes; j++) { | 
|  | if (calc_ecc[j] != 0) { | 
|  | eccflag = 1; /* non zero ecc, error present */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (eccflag == 1) { | 
|  | if (memcmp(calc_ecc, erased_ecc_vec, | 
|  | actual_eccbytes) == 0) { | 
|  | /* | 
|  | * calc_ecc[] matches pattern for ECC(all 0xff) | 
|  | * so this is definitely an erased-page | 
|  | */ | 
|  | } else { | 
|  | buf = &data[info->nand.ecc.size * i]; | 
|  | /* | 
|  | * count number of 0-bits in read_buf. | 
|  | * This check can be removed once a similar | 
|  | * check is introduced in generic NAND driver | 
|  | */ | 
|  | bitflip_count = erased_sector_bitflips( | 
|  | buf, read_ecc, info); | 
|  | if (bitflip_count) { | 
|  | /* | 
|  | * number of 0-bits within ECC limits | 
|  | * So this may be an erased-page | 
|  | */ | 
|  | stat += bitflip_count; | 
|  | } else { | 
|  | /* | 
|  | * Too many 0-bits. It may be a | 
|  | * - programmed-page, OR | 
|  | * - erased-page with many bit-flips | 
|  | * So this page requires check by ELM | 
|  | */ | 
|  | err_vec[i].error_reported = true; | 
|  | is_error_reported = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Update the ecc vector */ | 
|  | calc_ecc += ecc->bytes; | 
|  | read_ecc += ecc->bytes; | 
|  | } | 
|  |  | 
|  | /* Check if any error reported */ | 
|  | if (!is_error_reported) | 
|  | return stat; | 
|  |  | 
|  | /* Decode BCH error using ELM module */ | 
|  | elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec); | 
|  |  | 
|  | err = 0; | 
|  | for (i = 0; i < eccsteps; i++) { | 
|  | if (err_vec[i].error_uncorrectable) { | 
|  | dev_err(&info->pdev->dev, | 
|  | "uncorrectable bit-flips found\n"); | 
|  | err = -EBADMSG; | 
|  | } else if (err_vec[i].error_reported) { | 
|  | for (j = 0; j < err_vec[i].error_count; j++) { | 
|  | switch (info->ecc_opt) { | 
|  | case OMAP_ECC_BCH4_CODE_HW: | 
|  | /* Add 4 bits to take care of padding */ | 
|  | pos = err_vec[i].error_loc[j] + | 
|  | BCH4_BIT_PAD; | 
|  | break; | 
|  | case OMAP_ECC_BCH8_CODE_HW: | 
|  | case OMAP_ECC_BCH16_CODE_HW: | 
|  | pos = err_vec[i].error_loc[j]; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | error_max = (ecc->size + actual_eccbytes) * 8; | 
|  | /* Calculate bit position of error */ | 
|  | bit_pos = pos % 8; | 
|  |  | 
|  | /* Calculate byte position of error */ | 
|  | byte_pos = (error_max - pos - 1) / 8; | 
|  |  | 
|  | if (pos < error_max) { | 
|  | if (byte_pos < 512) { | 
|  | pr_debug("bitflip@dat[%d]=%x\n", | 
|  | byte_pos, data[byte_pos]); | 
|  | data[byte_pos] ^= 1 << bit_pos; | 
|  | } else { | 
|  | pr_debug("bitflip@oob[%d]=%x\n", | 
|  | (byte_pos - 512), | 
|  | spare_ecc[byte_pos - 512]); | 
|  | spare_ecc[byte_pos - 512] ^= | 
|  | 1 << bit_pos; | 
|  | } | 
|  | } else { | 
|  | dev_err(&info->pdev->dev, | 
|  | "invalid bit-flip @ %d:%d\n", | 
|  | byte_pos, bit_pos); | 
|  | err = -EBADMSG; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Update number of correctable errors */ | 
|  | stat += err_vec[i].error_count; | 
|  |  | 
|  | /* Update page data with sector size */ | 
|  | data += ecc->size; | 
|  | spare_ecc += ecc->bytes; | 
|  | } | 
|  |  | 
|  | return (err) ? err : stat; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_write_page_bch - BCH ecc based write page function for entire page | 
|  | * @mtd:		mtd info structure | 
|  | * @chip:		nand chip info structure | 
|  | * @buf:		data buffer | 
|  | * @oob_required:	must write chip->oob_poi to OOB | 
|  | * @page:		page | 
|  | * | 
|  | * Custom write page method evolved to support multi sector writing in one shot | 
|  | */ | 
|  | static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | const uint8_t *buf, int oob_required, int page) | 
|  | { | 
|  | int ret; | 
|  | uint8_t *ecc_calc = chip->buffers->ecccalc; | 
|  |  | 
|  | /* Enable GPMC ecc engine */ | 
|  | chip->ecc.hwctl(mtd, NAND_ECC_WRITE); | 
|  |  | 
|  | /* Write data */ | 
|  | chip->write_buf(mtd, buf, mtd->writesize); | 
|  |  | 
|  | /* Update ecc vector from GPMC result registers */ | 
|  | omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]); | 
|  |  | 
|  | ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, | 
|  | chip->ecc.total); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Write ecc vector to OOB area */ | 
|  | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_write_subpage_bch - BCH hardware ECC based subpage write | 
|  | * @mtd:	mtd info structure | 
|  | * @chip:	nand chip info structure | 
|  | * @offset:	column address of subpage within the page | 
|  | * @data_len:	data length | 
|  | * @buf:	data buffer | 
|  | * @oob_required: must write chip->oob_poi to OOB | 
|  | * @page: page number to write | 
|  | * | 
|  | * OMAP optimized subpage write method. | 
|  | */ | 
|  | static int omap_write_subpage_bch(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, u32 offset, | 
|  | u32 data_len, const u8 *buf, | 
|  | int oob_required, int page) | 
|  | { | 
|  | u8 *ecc_calc = chip->buffers->ecccalc; | 
|  | int ecc_size      = chip->ecc.size; | 
|  | int ecc_bytes     = chip->ecc.bytes; | 
|  | int ecc_steps     = chip->ecc.steps; | 
|  | u32 start_step = offset / ecc_size; | 
|  | u32 end_step   = (offset + data_len - 1) / ecc_size; | 
|  | int step, ret = 0; | 
|  |  | 
|  | /* | 
|  | * Write entire page at one go as it would be optimal | 
|  | * as ECC is calculated by hardware. | 
|  | * ECC is calculated for all subpages but we choose | 
|  | * only what we want. | 
|  | */ | 
|  |  | 
|  | /* Enable GPMC ECC engine */ | 
|  | chip->ecc.hwctl(mtd, NAND_ECC_WRITE); | 
|  |  | 
|  | /* Write data */ | 
|  | chip->write_buf(mtd, buf, mtd->writesize); | 
|  |  | 
|  | for (step = 0; step < ecc_steps; step++) { | 
|  | /* mask ECC of un-touched subpages by padding 0xFF */ | 
|  | if (step < start_step || step > end_step) | 
|  | memset(ecc_calc, 0xff, ecc_bytes); | 
|  | else | 
|  | ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | buf += ecc_size; | 
|  | ecc_calc += ecc_bytes; | 
|  | } | 
|  |  | 
|  | /* copy calculated ECC for whole page to chip->buffer->oob */ | 
|  | /* this include masked-value(0xFF) for unwritten subpages */ | 
|  | ecc_calc = chip->buffers->ecccalc; | 
|  | ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, | 
|  | chip->ecc.total); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* write OOB buffer to NAND device */ | 
|  | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_read_page_bch - BCH ecc based page read function for entire page | 
|  | * @mtd:		mtd info structure | 
|  | * @chip:		nand chip info structure | 
|  | * @buf:		buffer to store read data | 
|  | * @oob_required:	caller requires OOB data read to chip->oob_poi | 
|  | * @page:		page number to read | 
|  | * | 
|  | * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module | 
|  | * used for error correction. | 
|  | * Custom method evolved to support ELM error correction & multi sector | 
|  | * reading. On reading page data area is read along with OOB data with | 
|  | * ecc engine enabled. ecc vector updated after read of OOB data. | 
|  | * For non error pages ecc vector reported as zero. | 
|  | */ | 
|  | static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | uint8_t *buf, int oob_required, int page) | 
|  | { | 
|  | uint8_t *ecc_calc = chip->buffers->ecccalc; | 
|  | uint8_t *ecc_code = chip->buffers->ecccode; | 
|  | int stat, ret; | 
|  | unsigned int max_bitflips = 0; | 
|  |  | 
|  | /* Enable GPMC ecc engine */ | 
|  | chip->ecc.hwctl(mtd, NAND_ECC_READ); | 
|  |  | 
|  | /* Read data */ | 
|  | chip->read_buf(mtd, buf, mtd->writesize); | 
|  |  | 
|  | /* Read oob bytes */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_RNDOUT, | 
|  | mtd->writesize + BADBLOCK_MARKER_LENGTH, -1); | 
|  | chip->read_buf(mtd, chip->oob_poi + BADBLOCK_MARKER_LENGTH, | 
|  | chip->ecc.total); | 
|  |  | 
|  | /* Calculate ecc bytes */ | 
|  | omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc); | 
|  |  | 
|  | ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, | 
|  | chip->ecc.total); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc); | 
|  |  | 
|  | if (stat < 0) { | 
|  | mtd->ecc_stats.failed++; | 
|  | } else { | 
|  | mtd->ecc_stats.corrected += stat; | 
|  | max_bitflips = max_t(unsigned int, max_bitflips, stat); | 
|  | } | 
|  |  | 
|  | return max_bitflips; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * is_elm_present - checks for presence of ELM module by scanning DT nodes | 
|  | * @omap_nand_info: NAND device structure containing platform data | 
|  | */ | 
|  | static bool is_elm_present(struct omap_nand_info *info, | 
|  | struct device_node *elm_node) | 
|  | { | 
|  | struct platform_device *pdev; | 
|  |  | 
|  | /* check whether elm-id is passed via DT */ | 
|  | if (!elm_node) { | 
|  | dev_err(&info->pdev->dev, "ELM devicetree node not found\n"); | 
|  | return false; | 
|  | } | 
|  | pdev = of_find_device_by_node(elm_node); | 
|  | /* check whether ELM device is registered */ | 
|  | if (!pdev) { | 
|  | dev_err(&info->pdev->dev, "ELM device not found\n"); | 
|  | return false; | 
|  | } | 
|  | /* ELM module available, now configure it */ | 
|  | info->elm_dev = &pdev->dev; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool omap2_nand_ecc_check(struct omap_nand_info *info, | 
|  | struct omap_nand_platform_data	*pdata) | 
|  | { | 
|  | bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm; | 
|  |  | 
|  | switch (info->ecc_opt) { | 
|  | case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: | 
|  | case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: | 
|  | ecc_needs_omap_bch = false; | 
|  | ecc_needs_bch = true; | 
|  | ecc_needs_elm = false; | 
|  | break; | 
|  | case OMAP_ECC_BCH4_CODE_HW: | 
|  | case OMAP_ECC_BCH8_CODE_HW: | 
|  | case OMAP_ECC_BCH16_CODE_HW: | 
|  | ecc_needs_omap_bch = true; | 
|  | ecc_needs_bch = false; | 
|  | ecc_needs_elm = true; | 
|  | break; | 
|  | default: | 
|  | ecc_needs_omap_bch = false; | 
|  | ecc_needs_bch = false; | 
|  | ecc_needs_elm = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) { | 
|  | dev_err(&info->pdev->dev, | 
|  | "CONFIG_MTD_NAND_ECC_BCH not enabled\n"); | 
|  | return false; | 
|  | } | 
|  | if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) { | 
|  | dev_err(&info->pdev->dev, | 
|  | "CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); | 
|  | return false; | 
|  | } | 
|  | if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) { | 
|  | dev_err(&info->pdev->dev, "ELM not available\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const char * const nand_xfer_types[] = { | 
|  | [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled", | 
|  | [NAND_OMAP_POLLED] = "polled", | 
|  | [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma", | 
|  | [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq", | 
|  | }; | 
|  |  | 
|  | static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info) | 
|  | { | 
|  | struct device_node *child = dev->of_node; | 
|  | int i; | 
|  | const char *s; | 
|  | u32 cs; | 
|  |  | 
|  | if (of_property_read_u32(child, "reg", &cs) < 0) { | 
|  | dev_err(dev, "reg not found in DT\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | info->gpmc_cs = cs; | 
|  |  | 
|  | /* detect availability of ELM module. Won't be present pre-OMAP4 */ | 
|  | info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0); | 
|  | if (!info->elm_of_node) { | 
|  | info->elm_of_node = of_parse_phandle(child, "elm_id", 0); | 
|  | if (!info->elm_of_node) | 
|  | dev_dbg(dev, "ti,elm-id not in DT\n"); | 
|  | } | 
|  |  | 
|  | /* select ecc-scheme for NAND */ | 
|  | if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) { | 
|  | dev_err(dev, "ti,nand-ecc-opt not found\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!strcmp(s, "sw")) { | 
|  | info->ecc_opt = OMAP_ECC_HAM1_CODE_SW; | 
|  | } else if (!strcmp(s, "ham1") || | 
|  | !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) { | 
|  | info->ecc_opt =	OMAP_ECC_HAM1_CODE_HW; | 
|  | } else if (!strcmp(s, "bch4")) { | 
|  | if (info->elm_of_node) | 
|  | info->ecc_opt = OMAP_ECC_BCH4_CODE_HW; | 
|  | else | 
|  | info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW; | 
|  | } else if (!strcmp(s, "bch8")) { | 
|  | if (info->elm_of_node) | 
|  | info->ecc_opt = OMAP_ECC_BCH8_CODE_HW; | 
|  | else | 
|  | info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW; | 
|  | } else if (!strcmp(s, "bch16")) { | 
|  | info->ecc_opt =	OMAP_ECC_BCH16_CODE_HW; | 
|  | } else { | 
|  | dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* select data transfer mode */ | 
|  | if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) { | 
|  | for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) { | 
|  | if (!strcasecmp(s, nand_xfer_types[i])) { | 
|  | info->xfer_type = i; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | dev_err(dev, "unrecognized value for ti,nand-xfer-type\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int omap_ooblayout_ecc(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | struct nand_chip *chip = &info->nand; | 
|  | int off = BADBLOCK_MARKER_LENGTH; | 
|  |  | 
|  | if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && | 
|  | !(chip->options & NAND_BUSWIDTH_16)) | 
|  | off = 1; | 
|  |  | 
|  | if (section) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = off; | 
|  | oobregion->length = chip->ecc.total; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int omap_ooblayout_free(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | struct nand_chip *chip = &info->nand; | 
|  | int off = BADBLOCK_MARKER_LENGTH; | 
|  |  | 
|  | if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && | 
|  | !(chip->options & NAND_BUSWIDTH_16)) | 
|  | off = 1; | 
|  |  | 
|  | if (section) | 
|  | return -ERANGE; | 
|  |  | 
|  | off += chip->ecc.total; | 
|  | if (off >= mtd->oobsize) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = off; | 
|  | oobregion->length = mtd->oobsize - off; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct mtd_ooblayout_ops omap_ooblayout_ops = { | 
|  | .ecc = omap_ooblayout_ecc, | 
|  | .free = omap_ooblayout_free, | 
|  | }; | 
|  |  | 
|  | static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  | int off = BADBLOCK_MARKER_LENGTH; | 
|  |  | 
|  | if (section >= chip->ecc.steps) | 
|  | return -ERANGE; | 
|  |  | 
|  | /* | 
|  | * When SW correction is employed, one OMAP specific marker byte is | 
|  | * reserved after each ECC step. | 
|  | */ | 
|  | oobregion->offset = off + (section * (chip->ecc.bytes + 1)); | 
|  | oobregion->length = chip->ecc.bytes; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  | int off = BADBLOCK_MARKER_LENGTH; | 
|  |  | 
|  | if (section) | 
|  | return -ERANGE; | 
|  |  | 
|  | /* | 
|  | * When SW correction is employed, one OMAP specific marker byte is | 
|  | * reserved after each ECC step. | 
|  | */ | 
|  | off += ((chip->ecc.bytes + 1) * chip->ecc.steps); | 
|  | if (off >= mtd->oobsize) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = off; | 
|  | oobregion->length = mtd->oobsize - off; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = { | 
|  | .ecc = omap_sw_ooblayout_ecc, | 
|  | .free = omap_sw_ooblayout_free, | 
|  | }; | 
|  |  | 
|  | static int omap_nand_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct omap_nand_info		*info; | 
|  | struct omap_nand_platform_data	*pdata = NULL; | 
|  | struct mtd_info			*mtd; | 
|  | struct nand_chip		*nand_chip; | 
|  | int				err; | 
|  | dma_cap_mask_t			mask; | 
|  | struct resource			*res; | 
|  | struct device			*dev = &pdev->dev; | 
|  | int				min_oobbytes = BADBLOCK_MARKER_LENGTH; | 
|  | int				oobbytes_per_step; | 
|  |  | 
|  | info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info), | 
|  | GFP_KERNEL); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | info->pdev = pdev; | 
|  |  | 
|  | if (dev->of_node) { | 
|  | if (omap_get_dt_info(dev, info)) | 
|  | return -EINVAL; | 
|  | } else { | 
|  | pdata = dev_get_platdata(&pdev->dev); | 
|  | if (!pdata) { | 
|  | dev_err(&pdev->dev, "platform data missing\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | info->gpmc_cs = pdata->cs; | 
|  | info->reg = pdata->reg; | 
|  | info->ecc_opt = pdata->ecc_opt; | 
|  | if (pdata->dev_ready) | 
|  | dev_info(&pdev->dev, "pdata->dev_ready is deprecated\n"); | 
|  |  | 
|  | info->xfer_type = pdata->xfer_type; | 
|  | info->devsize = pdata->devsize; | 
|  | info->elm_of_node = pdata->elm_of_node; | 
|  | info->flash_bbt = pdata->flash_bbt; | 
|  | } | 
|  |  | 
|  | platform_set_drvdata(pdev, info); | 
|  | info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs); | 
|  | if (!info->ops) { | 
|  | dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | nand_chip		= &info->nand; | 
|  | mtd			= nand_to_mtd(nand_chip); | 
|  | mtd->dev.parent		= &pdev->dev; | 
|  | nand_chip->ecc.priv	= NULL; | 
|  | nand_set_flash_node(nand_chip, dev->of_node); | 
|  |  | 
|  | if (!mtd->name) { | 
|  | mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, | 
|  | "omap2-nand.%d", info->gpmc_cs); | 
|  | if (!mtd->name) { | 
|  | dev_err(&pdev->dev, "Failed to set MTD name\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res); | 
|  | if (IS_ERR(nand_chip->IO_ADDR_R)) | 
|  | return PTR_ERR(nand_chip->IO_ADDR_R); | 
|  |  | 
|  | info->phys_base = res->start; | 
|  |  | 
|  | nand_chip->controller = &omap_gpmc_controller; | 
|  |  | 
|  | nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R; | 
|  | nand_chip->cmd_ctrl  = omap_hwcontrol; | 
|  |  | 
|  | info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb", | 
|  | GPIOD_IN); | 
|  | if (IS_ERR(info->ready_gpiod)) { | 
|  | dev_err(dev, "failed to get ready gpio\n"); | 
|  | return PTR_ERR(info->ready_gpiod); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If RDY/BSY line is connected to OMAP then use the omap ready | 
|  | * function and the generic nand_wait function which reads the status | 
|  | * register after monitoring the RDY/BSY line. Otherwise use a standard | 
|  | * chip delay which is slightly more than tR (AC Timing) of the NAND | 
|  | * device and read status register until you get a failure or success | 
|  | */ | 
|  | if (info->ready_gpiod) { | 
|  | nand_chip->dev_ready = omap_dev_ready; | 
|  | nand_chip->chip_delay = 0; | 
|  | } else { | 
|  | nand_chip->waitfunc = omap_wait; | 
|  | nand_chip->chip_delay = 50; | 
|  | } | 
|  |  | 
|  | if (info->flash_bbt) | 
|  | nand_chip->bbt_options |= NAND_BBT_USE_FLASH; | 
|  |  | 
|  | /* scan NAND device connected to chip controller */ | 
|  | nand_chip->options |= info->devsize & NAND_BUSWIDTH_16; | 
|  | err = nand_scan_ident(mtd, 1, NULL); | 
|  | if (err) { | 
|  | dev_err(&info->pdev->dev, | 
|  | "scan failed, may be bus-width mismatch\n"); | 
|  | goto return_error; | 
|  | } | 
|  |  | 
|  | if (nand_chip->bbt_options & NAND_BBT_USE_FLASH) | 
|  | nand_chip->bbt_options |= NAND_BBT_NO_OOB; | 
|  | else | 
|  | nand_chip->options |= NAND_SKIP_BBTSCAN; | 
|  |  | 
|  | /* re-populate low-level callbacks based on xfer modes */ | 
|  | switch (info->xfer_type) { | 
|  | case NAND_OMAP_PREFETCH_POLLED: | 
|  | nand_chip->read_buf   = omap_read_buf_pref; | 
|  | nand_chip->write_buf  = omap_write_buf_pref; | 
|  | break; | 
|  |  | 
|  | case NAND_OMAP_POLLED: | 
|  | /* Use nand_base defaults for {read,write}_buf */ | 
|  | break; | 
|  |  | 
|  | case NAND_OMAP_PREFETCH_DMA: | 
|  | dma_cap_zero(mask); | 
|  | dma_cap_set(DMA_SLAVE, mask); | 
|  | info->dma = dma_request_chan(pdev->dev.parent, "rxtx"); | 
|  |  | 
|  | if (IS_ERR(info->dma)) { | 
|  | dev_err(&pdev->dev, "DMA engine request failed\n"); | 
|  | err = PTR_ERR(info->dma); | 
|  | goto return_error; | 
|  | } else { | 
|  | struct dma_slave_config cfg; | 
|  |  | 
|  | memset(&cfg, 0, sizeof(cfg)); | 
|  | cfg.src_addr = info->phys_base; | 
|  | cfg.dst_addr = info->phys_base; | 
|  | cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | cfg.src_maxburst = 16; | 
|  | cfg.dst_maxburst = 16; | 
|  | err = dmaengine_slave_config(info->dma, &cfg); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, "DMA engine slave config failed: %d\n", | 
|  | err); | 
|  | goto return_error; | 
|  | } | 
|  | nand_chip->read_buf   = omap_read_buf_dma_pref; | 
|  | nand_chip->write_buf  = omap_write_buf_dma_pref; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case NAND_OMAP_PREFETCH_IRQ: | 
|  | info->gpmc_irq_fifo = platform_get_irq(pdev, 0); | 
|  | if (info->gpmc_irq_fifo <= 0) { | 
|  | dev_err(&pdev->dev, "error getting fifo irq\n"); | 
|  | err = -ENODEV; | 
|  | goto return_error; | 
|  | } | 
|  | err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo, | 
|  | omap_nand_irq, IRQF_SHARED, | 
|  | "gpmc-nand-fifo", info); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, "requesting irq(%d) error:%d", | 
|  | info->gpmc_irq_fifo, err); | 
|  | info->gpmc_irq_fifo = 0; | 
|  | goto return_error; | 
|  | } | 
|  |  | 
|  | info->gpmc_irq_count = platform_get_irq(pdev, 1); | 
|  | if (info->gpmc_irq_count <= 0) { | 
|  | dev_err(&pdev->dev, "error getting count irq\n"); | 
|  | err = -ENODEV; | 
|  | goto return_error; | 
|  | } | 
|  | err = devm_request_irq(&pdev->dev, info->gpmc_irq_count, | 
|  | omap_nand_irq, IRQF_SHARED, | 
|  | "gpmc-nand-count", info); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, "requesting irq(%d) error:%d", | 
|  | info->gpmc_irq_count, err); | 
|  | info->gpmc_irq_count = 0; | 
|  | goto return_error; | 
|  | } | 
|  |  | 
|  | nand_chip->read_buf  = omap_read_buf_irq_pref; | 
|  | nand_chip->write_buf = omap_write_buf_irq_pref; | 
|  |  | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_err(&pdev->dev, | 
|  | "xfer_type(%d) not supported!\n", info->xfer_type); | 
|  | err = -EINVAL; | 
|  | goto return_error; | 
|  | } | 
|  |  | 
|  | if (!omap2_nand_ecc_check(info, pdata)) { | 
|  | err = -EINVAL; | 
|  | goto return_error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bail out earlier to let NAND_ECC_SOFT code create its own | 
|  | * ooblayout instead of using ours. | 
|  | */ | 
|  | if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) { | 
|  | nand_chip->ecc.mode = NAND_ECC_SOFT; | 
|  | nand_chip->ecc.algo = NAND_ECC_HAMMING; | 
|  | goto scan_tail; | 
|  | } | 
|  |  | 
|  | /* populate MTD interface based on ECC scheme */ | 
|  | switch (info->ecc_opt) { | 
|  | case OMAP_ECC_HAM1_CODE_HW: | 
|  | pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n"); | 
|  | nand_chip->ecc.mode             = NAND_ECC_HW; | 
|  | nand_chip->ecc.bytes            = 3; | 
|  | nand_chip->ecc.size             = 512; | 
|  | nand_chip->ecc.strength         = 1; | 
|  | nand_chip->ecc.calculate        = omap_calculate_ecc; | 
|  | nand_chip->ecc.hwctl            = omap_enable_hwecc; | 
|  | nand_chip->ecc.correct          = omap_correct_data; | 
|  | mtd_set_ooblayout(mtd, &omap_ooblayout_ops); | 
|  | oobbytes_per_step		= nand_chip->ecc.bytes; | 
|  |  | 
|  | if (!(nand_chip->options & NAND_BUSWIDTH_16)) | 
|  | min_oobbytes		= 1; | 
|  |  | 
|  | break; | 
|  |  | 
|  | case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: | 
|  | pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n"); | 
|  | nand_chip->ecc.mode		= NAND_ECC_HW; | 
|  | nand_chip->ecc.size		= 512; | 
|  | nand_chip->ecc.bytes		= 7; | 
|  | nand_chip->ecc.strength		= 4; | 
|  | nand_chip->ecc.hwctl		= omap_enable_hwecc_bch; | 
|  | nand_chip->ecc.correct		= nand_bch_correct_data; | 
|  | nand_chip->ecc.calculate	= omap_calculate_ecc_bch_sw; | 
|  | mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); | 
|  | /* Reserve one byte for the OMAP marker */ | 
|  | oobbytes_per_step		= nand_chip->ecc.bytes + 1; | 
|  | /* software bch library is used for locating errors */ | 
|  | nand_chip->ecc.priv		= nand_bch_init(mtd); | 
|  | if (!nand_chip->ecc.priv) { | 
|  | dev_err(&info->pdev->dev, "unable to use BCH library\n"); | 
|  | err = -EINVAL; | 
|  | goto return_error; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OMAP_ECC_BCH4_CODE_HW: | 
|  | pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n"); | 
|  | nand_chip->ecc.mode		= NAND_ECC_HW; | 
|  | nand_chip->ecc.size		= 512; | 
|  | /* 14th bit is kept reserved for ROM-code compatibility */ | 
|  | nand_chip->ecc.bytes		= 7 + 1; | 
|  | nand_chip->ecc.strength		= 4; | 
|  | nand_chip->ecc.hwctl		= omap_enable_hwecc_bch; | 
|  | nand_chip->ecc.correct		= omap_elm_correct_data; | 
|  | nand_chip->ecc.read_page	= omap_read_page_bch; | 
|  | nand_chip->ecc.write_page	= omap_write_page_bch; | 
|  | nand_chip->ecc.write_subpage	= omap_write_subpage_bch; | 
|  | mtd_set_ooblayout(mtd, &omap_ooblayout_ops); | 
|  | oobbytes_per_step		= nand_chip->ecc.bytes; | 
|  |  | 
|  | err = elm_config(info->elm_dev, BCH4_ECC, | 
|  | mtd->writesize / nand_chip->ecc.size, | 
|  | nand_chip->ecc.size, nand_chip->ecc.bytes); | 
|  | if (err < 0) | 
|  | goto return_error; | 
|  | break; | 
|  |  | 
|  | case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: | 
|  | pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n"); | 
|  | nand_chip->ecc.mode		= NAND_ECC_HW; | 
|  | nand_chip->ecc.size		= 512; | 
|  | nand_chip->ecc.bytes		= 13; | 
|  | nand_chip->ecc.strength		= 8; | 
|  | nand_chip->ecc.hwctl		= omap_enable_hwecc_bch; | 
|  | nand_chip->ecc.correct		= nand_bch_correct_data; | 
|  | nand_chip->ecc.calculate	= omap_calculate_ecc_bch_sw; | 
|  | mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); | 
|  | /* Reserve one byte for the OMAP marker */ | 
|  | oobbytes_per_step		= nand_chip->ecc.bytes + 1; | 
|  | /* software bch library is used for locating errors */ | 
|  | nand_chip->ecc.priv		= nand_bch_init(mtd); | 
|  | if (!nand_chip->ecc.priv) { | 
|  | dev_err(&info->pdev->dev, "unable to use BCH library\n"); | 
|  | err = -EINVAL; | 
|  | goto return_error; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OMAP_ECC_BCH8_CODE_HW: | 
|  | pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n"); | 
|  | nand_chip->ecc.mode		= NAND_ECC_HW; | 
|  | nand_chip->ecc.size		= 512; | 
|  | /* 14th bit is kept reserved for ROM-code compatibility */ | 
|  | nand_chip->ecc.bytes		= 13 + 1; | 
|  | nand_chip->ecc.strength		= 8; | 
|  | nand_chip->ecc.hwctl		= omap_enable_hwecc_bch; | 
|  | nand_chip->ecc.correct		= omap_elm_correct_data; | 
|  | nand_chip->ecc.read_page	= omap_read_page_bch; | 
|  | nand_chip->ecc.write_page	= omap_write_page_bch; | 
|  | nand_chip->ecc.write_subpage	= omap_write_subpage_bch; | 
|  | mtd_set_ooblayout(mtd, &omap_ooblayout_ops); | 
|  | oobbytes_per_step		= nand_chip->ecc.bytes; | 
|  |  | 
|  | err = elm_config(info->elm_dev, BCH8_ECC, | 
|  | mtd->writesize / nand_chip->ecc.size, | 
|  | nand_chip->ecc.size, nand_chip->ecc.bytes); | 
|  | if (err < 0) | 
|  | goto return_error; | 
|  |  | 
|  | break; | 
|  |  | 
|  | case OMAP_ECC_BCH16_CODE_HW: | 
|  | pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n"); | 
|  | nand_chip->ecc.mode		= NAND_ECC_HW; | 
|  | nand_chip->ecc.size		= 512; | 
|  | nand_chip->ecc.bytes		= 26; | 
|  | nand_chip->ecc.strength		= 16; | 
|  | nand_chip->ecc.hwctl		= omap_enable_hwecc_bch; | 
|  | nand_chip->ecc.correct		= omap_elm_correct_data; | 
|  | nand_chip->ecc.read_page	= omap_read_page_bch; | 
|  | nand_chip->ecc.write_page	= omap_write_page_bch; | 
|  | nand_chip->ecc.write_subpage	= omap_write_subpage_bch; | 
|  | mtd_set_ooblayout(mtd, &omap_ooblayout_ops); | 
|  | oobbytes_per_step		= nand_chip->ecc.bytes; | 
|  |  | 
|  | err = elm_config(info->elm_dev, BCH16_ECC, | 
|  | mtd->writesize / nand_chip->ecc.size, | 
|  | nand_chip->ecc.size, nand_chip->ecc.bytes); | 
|  | if (err < 0) | 
|  | goto return_error; | 
|  |  | 
|  | break; | 
|  | default: | 
|  | dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n"); | 
|  | err = -EINVAL; | 
|  | goto return_error; | 
|  | } | 
|  |  | 
|  | /* check if NAND device's OOB is enough to store ECC signatures */ | 
|  | min_oobbytes += (oobbytes_per_step * | 
|  | (mtd->writesize / nand_chip->ecc.size)); | 
|  | if (mtd->oobsize < min_oobbytes) { | 
|  | dev_err(&info->pdev->dev, | 
|  | "not enough OOB bytes required = %d, available=%d\n", | 
|  | min_oobbytes, mtd->oobsize); | 
|  | err = -EINVAL; | 
|  | goto return_error; | 
|  | } | 
|  |  | 
|  | scan_tail: | 
|  | /* second phase scan */ | 
|  | err = nand_scan_tail(mtd); | 
|  | if (err) | 
|  | goto return_error; | 
|  |  | 
|  | if (dev->of_node) | 
|  | mtd_device_register(mtd, NULL, 0); | 
|  | else | 
|  | mtd_device_register(mtd, pdata->parts, pdata->nr_parts); | 
|  |  | 
|  | platform_set_drvdata(pdev, mtd); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | return_error: | 
|  | if (!IS_ERR_OR_NULL(info->dma)) | 
|  | dma_release_channel(info->dma); | 
|  | if (nand_chip->ecc.priv) { | 
|  | nand_bch_free(nand_chip->ecc.priv); | 
|  | nand_chip->ecc.priv = NULL; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int omap_nand_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct mtd_info *mtd = platform_get_drvdata(pdev); | 
|  | struct nand_chip *nand_chip = mtd_to_nand(mtd); | 
|  | struct omap_nand_info *info = mtd_to_omap(mtd); | 
|  | if (nand_chip->ecc.priv) { | 
|  | nand_bch_free(nand_chip->ecc.priv); | 
|  | nand_chip->ecc.priv = NULL; | 
|  | } | 
|  | if (info->dma) | 
|  | dma_release_channel(info->dma); | 
|  | nand_release(nand_chip); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct of_device_id omap_nand_ids[] = { | 
|  | { .compatible = "ti,omap2-nand", }, | 
|  | {}, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, omap_nand_ids); | 
|  |  | 
|  | static struct platform_driver omap_nand_driver = { | 
|  | .probe		= omap_nand_probe, | 
|  | .remove		= omap_nand_remove, | 
|  | .driver		= { | 
|  | .name	= DRIVER_NAME, | 
|  | .of_match_table = of_match_ptr(omap_nand_ids), | 
|  | }, | 
|  | }; | 
|  |  | 
|  | module_platform_driver(omap_nand_driver); | 
|  |  | 
|  | MODULE_ALIAS("platform:" DRIVER_NAME); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); |