|  | /* | 
|  | * mm/percpu-vm.c - vmalloc area based chunk allocation | 
|  | * | 
|  | * Copyright (C) 2010		SUSE Linux Products GmbH | 
|  | * Copyright (C) 2010		Tejun Heo <tj@kernel.org> | 
|  | * | 
|  | * This file is released under the GPLv2. | 
|  | * | 
|  | * Chunks are mapped into vmalloc areas and populated page by page. | 
|  | * This is the default chunk allocator. | 
|  | */ | 
|  |  | 
|  | static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, | 
|  | unsigned int cpu, int page_idx) | 
|  | { | 
|  | /* must not be used on pre-mapped chunk */ | 
|  | WARN_ON(chunk->immutable); | 
|  |  | 
|  | return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_get_pages - get temp pages array | 
|  | * | 
|  | * Returns pointer to array of pointers to struct page which can be indexed | 
|  | * with pcpu_page_idx().  Note that there is only one array and accesses | 
|  | * should be serialized by pcpu_alloc_mutex. | 
|  | * | 
|  | * RETURNS: | 
|  | * Pointer to temp pages array on success. | 
|  | */ | 
|  | static struct page **pcpu_get_pages(void) | 
|  | { | 
|  | static struct page **pages; | 
|  | size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); | 
|  |  | 
|  | lockdep_assert_held(&pcpu_alloc_mutex); | 
|  |  | 
|  | if (!pages) | 
|  | pages = pcpu_mem_zalloc(pages_size, 0); | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_free_pages - free pages which were allocated for @chunk | 
|  | * @chunk: chunk pages were allocated for | 
|  | * @pages: array of pages to be freed, indexed by pcpu_page_idx() | 
|  | * @page_start: page index of the first page to be freed | 
|  | * @page_end: page index of the last page to be freed + 1 | 
|  | * | 
|  | * Free pages [@page_start and @page_end) in @pages for all units. | 
|  | * The pages were allocated for @chunk. | 
|  | */ | 
|  | static void pcpu_free_pages(struct pcpu_chunk *chunk, | 
|  | struct page **pages, int page_start, int page_end) | 
|  | { | 
|  | unsigned int cpu; | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | for (i = page_start; i < page_end; i++) { | 
|  | struct page *page = pages[pcpu_page_idx(cpu, i)]; | 
|  |  | 
|  | if (page) | 
|  | __free_page(page); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_alloc_pages - allocates pages for @chunk | 
|  | * @chunk: target chunk | 
|  | * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() | 
|  | * @page_start: page index of the first page to be allocated | 
|  | * @page_end: page index of the last page to be allocated + 1 | 
|  | * @gfp: allocation flags passed to the underlying allocator | 
|  | * | 
|  | * Allocate pages [@page_start,@page_end) into @pages for all units. | 
|  | * The allocation is for @chunk.  Percpu core doesn't care about the | 
|  | * content of @pages and will pass it verbatim to pcpu_map_pages(). | 
|  | */ | 
|  | static int pcpu_alloc_pages(struct pcpu_chunk *chunk, | 
|  | struct page **pages, int page_start, int page_end, | 
|  | gfp_t gfp) | 
|  | { | 
|  | unsigned int cpu, tcpu; | 
|  | int i; | 
|  |  | 
|  | gfp |= GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | for (i = page_start; i < page_end; i++) { | 
|  | struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; | 
|  |  | 
|  | *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); | 
|  | if (!*pagep) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | while (--i >= page_start) | 
|  | __free_page(pages[pcpu_page_idx(cpu, i)]); | 
|  |  | 
|  | for_each_possible_cpu(tcpu) { | 
|  | if (tcpu == cpu) | 
|  | break; | 
|  | for (i = page_start; i < page_end; i++) | 
|  | __free_page(pages[pcpu_page_idx(tcpu, i)]); | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_pre_unmap_flush - flush cache prior to unmapping | 
|  | * @chunk: chunk the regions to be flushed belongs to | 
|  | * @page_start: page index of the first page to be flushed | 
|  | * @page_end: page index of the last page to be flushed + 1 | 
|  | * | 
|  | * Pages in [@page_start,@page_end) of @chunk are about to be | 
|  | * unmapped.  Flush cache.  As each flushing trial can be very | 
|  | * expensive, issue flush on the whole region at once rather than | 
|  | * doing it for each cpu.  This could be an overkill but is more | 
|  | * scalable. | 
|  | */ | 
|  | static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, | 
|  | int page_start, int page_end) | 
|  | { | 
|  | flush_cache_vunmap( | 
|  | pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start), | 
|  | pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end)); | 
|  | } | 
|  |  | 
|  | static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) | 
|  | { | 
|  | unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_unmap_pages - unmap pages out of a pcpu_chunk | 
|  | * @chunk: chunk of interest | 
|  | * @pages: pages array which can be used to pass information to free | 
|  | * @page_start: page index of the first page to unmap | 
|  | * @page_end: page index of the last page to unmap + 1 | 
|  | * | 
|  | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | 
|  | * Corresponding elements in @pages were cleared by the caller and can | 
|  | * be used to carry information to pcpu_free_pages() which will be | 
|  | * called after all unmaps are finished.  The caller should call | 
|  | * proper pre/post flush functions. | 
|  | */ | 
|  | static void pcpu_unmap_pages(struct pcpu_chunk *chunk, | 
|  | struct page **pages, int page_start, int page_end) | 
|  | { | 
|  | unsigned int cpu; | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | for (i = page_start; i < page_end; i++) { | 
|  | struct page *page; | 
|  |  | 
|  | page = pcpu_chunk_page(chunk, cpu, i); | 
|  | WARN_ON(!page); | 
|  | pages[pcpu_page_idx(cpu, i)] = page; | 
|  | } | 
|  | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), | 
|  | page_end - page_start); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_post_unmap_tlb_flush - flush TLB after unmapping | 
|  | * @chunk: pcpu_chunk the regions to be flushed belong to | 
|  | * @page_start: page index of the first page to be flushed | 
|  | * @page_end: page index of the last page to be flushed + 1 | 
|  | * | 
|  | * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush | 
|  | * TLB for the regions.  This can be skipped if the area is to be | 
|  | * returned to vmalloc as vmalloc will handle TLB flushing lazily. | 
|  | * | 
|  | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | 
|  | * for the whole region. | 
|  | */ | 
|  | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, | 
|  | int page_start, int page_end) | 
|  | { | 
|  | flush_tlb_kernel_range( | 
|  | pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start), | 
|  | pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end)); | 
|  | } | 
|  |  | 
|  | static int __pcpu_map_pages(unsigned long addr, struct page **pages, | 
|  | int nr_pages) | 
|  | { | 
|  | return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, | 
|  | PAGE_KERNEL, pages); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_map_pages - map pages into a pcpu_chunk | 
|  | * @chunk: chunk of interest | 
|  | * @pages: pages array containing pages to be mapped | 
|  | * @page_start: page index of the first page to map | 
|  | * @page_end: page index of the last page to map + 1 | 
|  | * | 
|  | * For each cpu, map pages [@page_start,@page_end) into @chunk.  The | 
|  | * caller is responsible for calling pcpu_post_map_flush() after all | 
|  | * mappings are complete. | 
|  | * | 
|  | * This function is responsible for setting up whatever is necessary for | 
|  | * reverse lookup (addr -> chunk). | 
|  | */ | 
|  | static int pcpu_map_pages(struct pcpu_chunk *chunk, | 
|  | struct page **pages, int page_start, int page_end) | 
|  | { | 
|  | unsigned int cpu, tcpu; | 
|  | int i, err; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), | 
|  | &pages[pcpu_page_idx(cpu, page_start)], | 
|  | page_end - page_start); | 
|  | if (err < 0) | 
|  | goto err; | 
|  |  | 
|  | for (i = page_start; i < page_end; i++) | 
|  | pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], | 
|  | chunk); | 
|  | } | 
|  | return 0; | 
|  | err: | 
|  | for_each_possible_cpu(tcpu) { | 
|  | if (tcpu == cpu) | 
|  | break; | 
|  | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), | 
|  | page_end - page_start); | 
|  | } | 
|  | pcpu_post_unmap_tlb_flush(chunk, page_start, page_end); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_post_map_flush - flush cache after mapping | 
|  | * @chunk: pcpu_chunk the regions to be flushed belong to | 
|  | * @page_start: page index of the first page to be flushed | 
|  | * @page_end: page index of the last page to be flushed + 1 | 
|  | * | 
|  | * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush | 
|  | * cache. | 
|  | * | 
|  | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | 
|  | * for the whole region. | 
|  | */ | 
|  | static void pcpu_post_map_flush(struct pcpu_chunk *chunk, | 
|  | int page_start, int page_end) | 
|  | { | 
|  | flush_cache_vmap( | 
|  | pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start), | 
|  | pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | 
|  | * @chunk: chunk of interest | 
|  | * @page_start: the start page | 
|  | * @page_end: the end page | 
|  | * @gfp: allocation flags passed to the underlying memory allocator | 
|  | * | 
|  | * For each cpu, populate and map pages [@page_start,@page_end) into | 
|  | * @chunk. | 
|  | * | 
|  | * CONTEXT: | 
|  | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | 
|  | */ | 
|  | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, | 
|  | int page_start, int page_end, gfp_t gfp) | 
|  | { | 
|  | struct page **pages; | 
|  |  | 
|  | pages = pcpu_get_pages(); | 
|  | if (!pages) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (pcpu_alloc_pages(chunk, pages, page_start, page_end, gfp)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (pcpu_map_pages(chunk, pages, page_start, page_end)) { | 
|  | pcpu_free_pages(chunk, pages, page_start, page_end); | 
|  | return -ENOMEM; | 
|  | } | 
|  | pcpu_post_map_flush(chunk, page_start, page_end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | 
|  | * @chunk: chunk to depopulate | 
|  | * @page_start: the start page | 
|  | * @page_end: the end page | 
|  | * | 
|  | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | 
|  | * from @chunk. | 
|  | * | 
|  | * CONTEXT: | 
|  | * pcpu_alloc_mutex. | 
|  | */ | 
|  | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, | 
|  | int page_start, int page_end) | 
|  | { | 
|  | struct page **pages; | 
|  |  | 
|  | /* | 
|  | * If control reaches here, there must have been at least one | 
|  | * successful population attempt so the temp pages array must | 
|  | * be available now. | 
|  | */ | 
|  | pages = pcpu_get_pages(); | 
|  | BUG_ON(!pages); | 
|  |  | 
|  | /* unmap and free */ | 
|  | pcpu_pre_unmap_flush(chunk, page_start, page_end); | 
|  |  | 
|  | pcpu_unmap_pages(chunk, pages, page_start, page_end); | 
|  |  | 
|  | /* no need to flush tlb, vmalloc will handle it lazily */ | 
|  |  | 
|  | pcpu_free_pages(chunk, pages, page_start, page_end); | 
|  | } | 
|  |  | 
|  | static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp) | 
|  | { | 
|  | struct pcpu_chunk *chunk; | 
|  | struct vm_struct **vms; | 
|  |  | 
|  | chunk = pcpu_alloc_chunk(gfp); | 
|  | if (!chunk) | 
|  | return NULL; | 
|  |  | 
|  | vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, | 
|  | pcpu_nr_groups, pcpu_atom_size); | 
|  | if (!vms) { | 
|  | pcpu_free_chunk(chunk); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | chunk->data = vms; | 
|  | chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0]; | 
|  |  | 
|  | pcpu_stats_chunk_alloc(); | 
|  | trace_percpu_create_chunk(chunk->base_addr); | 
|  |  | 
|  | return chunk; | 
|  | } | 
|  |  | 
|  | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk) | 
|  | { | 
|  | if (!chunk) | 
|  | return; | 
|  |  | 
|  | pcpu_stats_chunk_dealloc(); | 
|  | trace_percpu_destroy_chunk(chunk->base_addr); | 
|  |  | 
|  | if (chunk->data) | 
|  | pcpu_free_vm_areas(chunk->data, pcpu_nr_groups); | 
|  | pcpu_free_chunk(chunk); | 
|  | } | 
|  |  | 
|  | static struct page *pcpu_addr_to_page(void *addr) | 
|  | { | 
|  | return vmalloc_to_page(addr); | 
|  | } | 
|  |  | 
|  | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai) | 
|  | { | 
|  | /* no extra restriction */ | 
|  | return 0; | 
|  | } |