| /* | 
 |  * This file is part of UBIFS. | 
 |  * | 
 |  * Copyright (C) 2006-2008 Nokia Corporation. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License version 2 as published by | 
 |  * the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License along with | 
 |  * this program; if not, write to the Free Software Foundation, Inc., 51 | 
 |  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | 
 |  * | 
 |  * Authors: Adrian Hunter | 
 |  *          Artem Bityutskiy (Битюцкий Артём) | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file contains journal replay code. It runs when the file-system is being | 
 |  * mounted and requires no locking. | 
 |  * | 
 |  * The larger is the journal, the longer it takes to scan it, so the longer it | 
 |  * takes to mount UBIFS. This is why the journal has limited size which may be | 
 |  * changed depending on the system requirements. But a larger journal gives | 
 |  * faster I/O speed because it writes the index less frequently. So this is a | 
 |  * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the | 
 |  * larger is the journal, the more memory its index may consume. | 
 |  */ | 
 |  | 
 | #include "ubifs.h" | 
 | #include <linux/list_sort.h> | 
 |  | 
 | /** | 
 |  * struct replay_entry - replay list entry. | 
 |  * @lnum: logical eraseblock number of the node | 
 |  * @offs: node offset | 
 |  * @len: node length | 
 |  * @deletion: non-zero if this entry corresponds to a node deletion | 
 |  * @sqnum: node sequence number | 
 |  * @list: links the replay list | 
 |  * @key: node key | 
 |  * @nm: directory entry name | 
 |  * @old_size: truncation old size | 
 |  * @new_size: truncation new size | 
 |  * | 
 |  * The replay process first scans all buds and builds the replay list, then | 
 |  * sorts the replay list in nodes sequence number order, and then inserts all | 
 |  * the replay entries to the TNC. | 
 |  */ | 
 | struct replay_entry { | 
 | 	int lnum; | 
 | 	int offs; | 
 | 	int len; | 
 | 	unsigned int deletion:1; | 
 | 	unsigned long long sqnum; | 
 | 	struct list_head list; | 
 | 	union ubifs_key key; | 
 | 	union { | 
 | 		struct fscrypt_name nm; | 
 | 		struct { | 
 | 			loff_t old_size; | 
 | 			loff_t new_size; | 
 | 		}; | 
 | 	}; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct bud_entry - entry in the list of buds to replay. | 
 |  * @list: next bud in the list | 
 |  * @bud: bud description object | 
 |  * @sqnum: reference node sequence number | 
 |  * @free: free bytes in the bud | 
 |  * @dirty: dirty bytes in the bud | 
 |  */ | 
 | struct bud_entry { | 
 | 	struct list_head list; | 
 | 	struct ubifs_bud *bud; | 
 | 	unsigned long long sqnum; | 
 | 	int free; | 
 | 	int dirty; | 
 | }; | 
 |  | 
 | /** | 
 |  * set_bud_lprops - set free and dirty space used by a bud. | 
 |  * @c: UBIFS file-system description object | 
 |  * @b: bud entry which describes the bud | 
 |  * | 
 |  * This function makes sure the LEB properties of bud @b are set correctly | 
 |  * after the replay. Returns zero in case of success and a negative error code | 
 |  * in case of failure. | 
 |  */ | 
 | static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b) | 
 | { | 
 | 	const struct ubifs_lprops *lp; | 
 | 	int err = 0, dirty; | 
 |  | 
 | 	ubifs_get_lprops(c); | 
 |  | 
 | 	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum); | 
 | 	if (IS_ERR(lp)) { | 
 | 		err = PTR_ERR(lp); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	dirty = lp->dirty; | 
 | 	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) { | 
 | 		/* | 
 | 		 * The LEB was added to the journal with a starting offset of | 
 | 		 * zero which means the LEB must have been empty. The LEB | 
 | 		 * property values should be @lp->free == @c->leb_size and | 
 | 		 * @lp->dirty == 0, but that is not the case. The reason is that | 
 | 		 * the LEB had been garbage collected before it became the bud, | 
 | 		 * and there was not commit inbetween. The garbage collector | 
 | 		 * resets the free and dirty space without recording it | 
 | 		 * anywhere except lprops, so if there was no commit then | 
 | 		 * lprops does not have that information. | 
 | 		 * | 
 | 		 * We do not need to adjust free space because the scan has told | 
 | 		 * us the exact value which is recorded in the replay entry as | 
 | 		 * @b->free. | 
 | 		 * | 
 | 		 * However we do need to subtract from the dirty space the | 
 | 		 * amount of space that the garbage collector reclaimed, which | 
 | 		 * is the whole LEB minus the amount of space that was free. | 
 | 		 */ | 
 | 		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, | 
 | 			lp->free, lp->dirty); | 
 | 		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, | 
 | 			lp->free, lp->dirty); | 
 | 		dirty -= c->leb_size - lp->free; | 
 | 		/* | 
 | 		 * If the replay order was perfect the dirty space would now be | 
 | 		 * zero. The order is not perfect because the journal heads | 
 | 		 * race with each other. This is not a problem but is does mean | 
 | 		 * that the dirty space may temporarily exceed c->leb_size | 
 | 		 * during the replay. | 
 | 		 */ | 
 | 		if (dirty != 0) | 
 | 			dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty", | 
 | 				b->bud->lnum, lp->free, lp->dirty, b->free, | 
 | 				b->dirty); | 
 | 	} | 
 | 	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty, | 
 | 			     lp->flags | LPROPS_TAKEN, 0); | 
 | 	if (IS_ERR(lp)) { | 
 | 		err = PTR_ERR(lp); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Make sure the journal head points to the latest bud */ | 
 | 	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf, | 
 | 				     b->bud->lnum, c->leb_size - b->free); | 
 |  | 
 | out: | 
 | 	ubifs_release_lprops(c); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * set_buds_lprops - set free and dirty space for all replayed buds. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function sets LEB properties for all replayed buds. Returns zero in | 
 |  * case of success and a negative error code in case of failure. | 
 |  */ | 
 | static int set_buds_lprops(struct ubifs_info *c) | 
 | { | 
 | 	struct bud_entry *b; | 
 | 	int err; | 
 |  | 
 | 	list_for_each_entry(b, &c->replay_buds, list) { | 
 | 		err = set_bud_lprops(c, b); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * trun_remove_range - apply a replay entry for a truncation to the TNC. | 
 |  * @c: UBIFS file-system description object | 
 |  * @r: replay entry of truncation | 
 |  */ | 
 | static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r) | 
 | { | 
 | 	unsigned min_blk, max_blk; | 
 | 	union ubifs_key min_key, max_key; | 
 | 	ino_t ino; | 
 |  | 
 | 	min_blk = r->new_size / UBIFS_BLOCK_SIZE; | 
 | 	if (r->new_size & (UBIFS_BLOCK_SIZE - 1)) | 
 | 		min_blk += 1; | 
 |  | 
 | 	max_blk = r->old_size / UBIFS_BLOCK_SIZE; | 
 | 	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0) | 
 | 		max_blk -= 1; | 
 |  | 
 | 	ino = key_inum(c, &r->key); | 
 |  | 
 | 	data_key_init(c, &min_key, ino, min_blk); | 
 | 	data_key_init(c, &max_key, ino, max_blk); | 
 |  | 
 | 	return ubifs_tnc_remove_range(c, &min_key, &max_key); | 
 | } | 
 |  | 
 | /** | 
 |  * inode_still_linked - check whether inode in question will be re-linked. | 
 |  * @c: UBIFS file-system description object | 
 |  * @rino: replay entry to test | 
 |  * | 
 |  * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1. | 
 |  * This case needs special care, otherwise all references to the inode will | 
 |  * be removed upon the first replay entry of an inode with link count 0 | 
 |  * is found. | 
 |  */ | 
 | static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino) | 
 | { | 
 | 	struct replay_entry *r; | 
 |  | 
 | 	ubifs_assert(rino->deletion); | 
 | 	ubifs_assert(key_type(c, &rino->key) == UBIFS_INO_KEY); | 
 |  | 
 | 	/* | 
 | 	 * Find the most recent entry for the inode behind @rino and check | 
 | 	 * whether it is a deletion. | 
 | 	 */ | 
 | 	list_for_each_entry_reverse(r, &c->replay_list, list) { | 
 | 		ubifs_assert(r->sqnum >= rino->sqnum); | 
 | 		if (key_inum(c, &r->key) == key_inum(c, &rino->key)) | 
 | 			return r->deletion == 0; | 
 |  | 
 | 	} | 
 |  | 
 | 	ubifs_assert(0); | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * apply_replay_entry - apply a replay entry to the TNC. | 
 |  * @c: UBIFS file-system description object | 
 |  * @r: replay entry to apply | 
 |  * | 
 |  * Apply a replay entry to the TNC. | 
 |  */ | 
 | static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ", | 
 | 		 r->lnum, r->offs, r->len, r->deletion, r->sqnum); | 
 |  | 
 | 	/* Set c->replay_sqnum to help deal with dangling branches. */ | 
 | 	c->replay_sqnum = r->sqnum; | 
 |  | 
 | 	if (is_hash_key(c, &r->key)) { | 
 | 		if (r->deletion) | 
 | 			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm); | 
 | 		else | 
 | 			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs, | 
 | 					       r->len, &r->nm); | 
 | 	} else { | 
 | 		if (r->deletion) | 
 | 			switch (key_type(c, &r->key)) { | 
 | 			case UBIFS_INO_KEY: | 
 | 			{ | 
 | 				ino_t inum = key_inum(c, &r->key); | 
 |  | 
 | 				if (inode_still_linked(c, r)) { | 
 | 					err = 0; | 
 | 					break; | 
 | 				} | 
 |  | 
 | 				err = ubifs_tnc_remove_ino(c, inum); | 
 | 				break; | 
 | 			} | 
 | 			case UBIFS_TRUN_KEY: | 
 | 				err = trun_remove_range(c, r); | 
 | 				break; | 
 | 			default: | 
 | 				err = ubifs_tnc_remove(c, &r->key); | 
 | 				break; | 
 | 			} | 
 | 		else | 
 | 			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs, | 
 | 					    r->len); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		if (c->need_recovery) | 
 | 			err = ubifs_recover_size_accum(c, &r->key, r->deletion, | 
 | 						       r->new_size); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * replay_entries_cmp - compare 2 replay entries. | 
 |  * @priv: UBIFS file-system description object | 
 |  * @a: first replay entry | 
 |  * @b: second replay entry | 
 |  * | 
 |  * This is a comparios function for 'list_sort()' which compares 2 replay | 
 |  * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has | 
 |  * greater sequence number and %-1 otherwise. | 
 |  */ | 
 | static int replay_entries_cmp(void *priv, struct list_head *a, | 
 | 			      struct list_head *b) | 
 | { | 
 | 	struct replay_entry *ra, *rb; | 
 |  | 
 | 	cond_resched(); | 
 | 	if (a == b) | 
 | 		return 0; | 
 |  | 
 | 	ra = list_entry(a, struct replay_entry, list); | 
 | 	rb = list_entry(b, struct replay_entry, list); | 
 | 	ubifs_assert(ra->sqnum != rb->sqnum); | 
 | 	if (ra->sqnum > rb->sqnum) | 
 | 		return 1; | 
 | 	return -1; | 
 | } | 
 |  | 
 | /** | 
 |  * apply_replay_list - apply the replay list to the TNC. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * Apply all entries in the replay list to the TNC. Returns zero in case of | 
 |  * success and a negative error code in case of failure. | 
 |  */ | 
 | static int apply_replay_list(struct ubifs_info *c) | 
 | { | 
 | 	struct replay_entry *r; | 
 | 	int err; | 
 |  | 
 | 	list_sort(c, &c->replay_list, &replay_entries_cmp); | 
 |  | 
 | 	list_for_each_entry(r, &c->replay_list, list) { | 
 | 		cond_resched(); | 
 |  | 
 | 		err = apply_replay_entry(c, r); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * destroy_replay_list - destroy the replay. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * Destroy the replay list. | 
 |  */ | 
 | static void destroy_replay_list(struct ubifs_info *c) | 
 | { | 
 | 	struct replay_entry *r, *tmp; | 
 |  | 
 | 	list_for_each_entry_safe(r, tmp, &c->replay_list, list) { | 
 | 		if (is_hash_key(c, &r->key)) | 
 | 			kfree(fname_name(&r->nm)); | 
 | 		list_del(&r->list); | 
 | 		kfree(r); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * insert_node - insert a node to the replay list | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: node logical eraseblock number | 
 |  * @offs: node offset | 
 |  * @len: node length | 
 |  * @key: node key | 
 |  * @sqnum: sequence number | 
 |  * @deletion: non-zero if this is a deletion | 
 |  * @used: number of bytes in use in a LEB | 
 |  * @old_size: truncation old size | 
 |  * @new_size: truncation new size | 
 |  * | 
 |  * This function inserts a scanned non-direntry node to the replay list. The | 
 |  * replay list contains @struct replay_entry elements, and we sort this list in | 
 |  * sequence number order before applying it. The replay list is applied at the | 
 |  * very end of the replay process. Since the list is sorted in sequence number | 
 |  * order, the older modifications are applied first. This function returns zero | 
 |  * in case of success and a negative error code in case of failure. | 
 |  */ | 
 | static int insert_node(struct ubifs_info *c, int lnum, int offs, int len, | 
 | 		       union ubifs_key *key, unsigned long long sqnum, | 
 | 		       int deletion, int *used, loff_t old_size, | 
 | 		       loff_t new_size) | 
 | { | 
 | 	struct replay_entry *r; | 
 |  | 
 | 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); | 
 |  | 
 | 	if (key_inum(c, key) >= c->highest_inum) | 
 | 		c->highest_inum = key_inum(c, key); | 
 |  | 
 | 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); | 
 | 	if (!r) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (!deletion) | 
 | 		*used += ALIGN(len, 8); | 
 | 	r->lnum = lnum; | 
 | 	r->offs = offs; | 
 | 	r->len = len; | 
 | 	r->deletion = !!deletion; | 
 | 	r->sqnum = sqnum; | 
 | 	key_copy(c, key, &r->key); | 
 | 	r->old_size = old_size; | 
 | 	r->new_size = new_size; | 
 |  | 
 | 	list_add_tail(&r->list, &c->replay_list); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * insert_dent - insert a directory entry node into the replay list. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: node logical eraseblock number | 
 |  * @offs: node offset | 
 |  * @len: node length | 
 |  * @key: node key | 
 |  * @name: directory entry name | 
 |  * @nlen: directory entry name length | 
 |  * @sqnum: sequence number | 
 |  * @deletion: non-zero if this is a deletion | 
 |  * @used: number of bytes in use in a LEB | 
 |  * | 
 |  * This function inserts a scanned directory entry node or an extended | 
 |  * attribute entry to the replay list. Returns zero in case of success and a | 
 |  * negative error code in case of failure. | 
 |  */ | 
 | static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len, | 
 | 		       union ubifs_key *key, const char *name, int nlen, | 
 | 		       unsigned long long sqnum, int deletion, int *used) | 
 | { | 
 | 	struct replay_entry *r; | 
 | 	char *nbuf; | 
 |  | 
 | 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); | 
 | 	if (key_inum(c, key) >= c->highest_inum) | 
 | 		c->highest_inum = key_inum(c, key); | 
 |  | 
 | 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); | 
 | 	if (!r) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	nbuf = kmalloc(nlen + 1, GFP_KERNEL); | 
 | 	if (!nbuf) { | 
 | 		kfree(r); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (!deletion) | 
 | 		*used += ALIGN(len, 8); | 
 | 	r->lnum = lnum; | 
 | 	r->offs = offs; | 
 | 	r->len = len; | 
 | 	r->deletion = !!deletion; | 
 | 	r->sqnum = sqnum; | 
 | 	key_copy(c, key, &r->key); | 
 | 	fname_len(&r->nm) = nlen; | 
 | 	memcpy(nbuf, name, nlen); | 
 | 	nbuf[nlen] = '\0'; | 
 | 	fname_name(&r->nm) = nbuf; | 
 |  | 
 | 	list_add_tail(&r->list, &c->replay_list); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_validate_entry - validate directory or extended attribute entry node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @dent: the node to validate | 
 |  * | 
 |  * This function validates directory or extended attribute entry node @dent. | 
 |  * Returns zero if the node is all right and a %-EINVAL if not. | 
 |  */ | 
 | int ubifs_validate_entry(struct ubifs_info *c, | 
 | 			 const struct ubifs_dent_node *dent) | 
 | { | 
 | 	int key_type = key_type_flash(c, dent->key); | 
 | 	int nlen = le16_to_cpu(dent->nlen); | 
 |  | 
 | 	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 || | 
 | 	    dent->type >= UBIFS_ITYPES_CNT || | 
 | 	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 || | 
 | 	    (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) || | 
 | 	    le64_to_cpu(dent->inum) > MAX_INUM) { | 
 | 		ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ? | 
 | 			  "directory entry" : "extended attribute entry"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) { | 
 | 		ubifs_err(c, "bad key type %d", key_type); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * is_last_bud - check if the bud is the last in the journal head. | 
 |  * @c: UBIFS file-system description object | 
 |  * @bud: bud description object | 
 |  * | 
 |  * This function checks if bud @bud is the last bud in its journal head. This | 
 |  * information is then used by 'replay_bud()' to decide whether the bud can | 
 |  * have corruptions or not. Indeed, only last buds can be corrupted by power | 
 |  * cuts. Returns %1 if this is the last bud, and %0 if not. | 
 |  */ | 
 | static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud) | 
 | { | 
 | 	struct ubifs_jhead *jh = &c->jheads[bud->jhead]; | 
 | 	struct ubifs_bud *next; | 
 | 	uint32_t data; | 
 | 	int err; | 
 |  | 
 | 	if (list_is_last(&bud->list, &jh->buds_list)) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * The following is a quirk to make sure we work correctly with UBIFS | 
 | 	 * images used with older UBIFS. | 
 | 	 * | 
 | 	 * Normally, the last bud will be the last in the journal head's list | 
 | 	 * of bud. However, there is one exception if the UBIFS image belongs | 
 | 	 * to older UBIFS. This is fairly unlikely: one would need to use old | 
 | 	 * UBIFS, then have a power cut exactly at the right point, and then | 
 | 	 * try to mount this image with new UBIFS. | 
 | 	 * | 
 | 	 * The exception is: it is possible to have 2 buds A and B, A goes | 
 | 	 * before B, and B is the last, bud B is contains no data, and bud A is | 
 | 	 * corrupted at the end. The reason is that in older versions when the | 
 | 	 * journal code switched the next bud (from A to B), it first added a | 
 | 	 * log reference node for the new bud (B), and only after this it | 
 | 	 * synchronized the write-buffer of current bud (A). But later this was | 
 | 	 * changed and UBIFS started to always synchronize the write-buffer of | 
 | 	 * the bud (A) before writing the log reference for the new bud (B). | 
 | 	 * | 
 | 	 * But because older UBIFS always synchronized A's write-buffer before | 
 | 	 * writing to B, we can recognize this exceptional situation but | 
 | 	 * checking the contents of bud B - if it is empty, then A can be | 
 | 	 * treated as the last and we can recover it. | 
 | 	 * | 
 | 	 * TODO: remove this piece of code in a couple of years (today it is | 
 | 	 * 16.05.2011). | 
 | 	 */ | 
 | 	next = list_entry(bud->list.next, struct ubifs_bud, list); | 
 | 	if (!list_is_last(&next->list, &jh->buds_list)) | 
 | 		return 0; | 
 |  | 
 | 	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1); | 
 | 	if (err) | 
 | 		return 0; | 
 |  | 
 | 	return data == 0xFFFFFFFF; | 
 | } | 
 |  | 
 | /** | 
 |  * replay_bud - replay a bud logical eraseblock. | 
 |  * @c: UBIFS file-system description object | 
 |  * @b: bud entry which describes the bud | 
 |  * | 
 |  * This function replays bud @bud, recovers it if needed, and adds all nodes | 
 |  * from this bud to the replay list. Returns zero in case of success and a | 
 |  * negative error code in case of failure. | 
 |  */ | 
 | static int replay_bud(struct ubifs_info *c, struct bud_entry *b) | 
 | { | 
 | 	int is_last = is_last_bud(c, b->bud); | 
 | 	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start; | 
 | 	struct ubifs_scan_leb *sleb; | 
 | 	struct ubifs_scan_node *snod; | 
 |  | 
 | 	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d", | 
 | 		lnum, b->bud->jhead, offs, is_last); | 
 |  | 
 | #ifdef CONFIG_UBIFS_SHARE_BUFFER | 
 | 	if (mutex_trylock(&ubifs_sbuf_mutex) == 0) { | 
 | 		atomic_long_inc(&ubifs_sbuf_lock_count); | 
 | 		ubifs_err(c, "trylock fail count %ld\n", READ_LOCK_COUNT); | 
 | 		mutex_lock(&ubifs_sbuf_mutex); | 
 | 		ubifs_err(c, "locked count %ld\n", READ_LOCK_COUNT); | 
 | 	} | 
 | #endif | 
 | 	if (c->need_recovery && is_last) | 
 | 		/* | 
 | 		 * Recover only last LEBs in the journal heads, because power | 
 | 		 * cuts may cause corruptions only in these LEBs, because only | 
 | 		 * these LEBs could possibly be written to at the power cut | 
 | 		 * time. | 
 | 		 */ | 
 | 		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead); | 
 | 	else | 
 | 		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0); | 
 | 	if (IS_ERR(sleb)) { | 
 | #ifdef CONFIG_UBIFS_SHARE_BUFFER | 
 | 		mutex_unlock(&ubifs_sbuf_mutex); | 
 | #endif | 
 | 		return PTR_ERR(sleb); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The bud does not have to start from offset zero - the beginning of | 
 | 	 * the 'lnum' LEB may contain previously committed data. One of the | 
 | 	 * things we have to do in replay is to correctly update lprops with | 
 | 	 * newer information about this LEB. | 
 | 	 * | 
 | 	 * At this point lprops thinks that this LEB has 'c->leb_size - offs' | 
 | 	 * bytes of free space because it only contain information about | 
 | 	 * committed data. | 
 | 	 * | 
 | 	 * But we know that real amount of free space is 'c->leb_size - | 
 | 	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and | 
 | 	 * 'sleb->endpt' is used by bud data. We have to correctly calculate | 
 | 	 * how much of these data are dirty and update lprops with this | 
 | 	 * information. | 
 | 	 * | 
 | 	 * The dirt in that LEB region is comprised of padding nodes, deletion | 
 | 	 * nodes, truncation nodes and nodes which are obsoleted by subsequent | 
 | 	 * nodes in this LEB. So instead of calculating clean space, we | 
 | 	 * calculate used space ('used' variable). | 
 | 	 */ | 
 |  | 
 | 	list_for_each_entry(snod, &sleb->nodes, list) { | 
 | 		int deletion = 0; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		if (snod->sqnum >= SQNUM_WATERMARK) { | 
 | 			ubifs_err(c, "file system's life ended"); | 
 | 			goto out_dump; | 
 | 		} | 
 |  | 
 | 		if (snod->sqnum > c->max_sqnum) | 
 | 			c->max_sqnum = snod->sqnum; | 
 |  | 
 | 		switch (snod->type) { | 
 | 		case UBIFS_INO_NODE: | 
 | 		{ | 
 | 			struct ubifs_ino_node *ino = snod->node; | 
 | 			loff_t new_size = le64_to_cpu(ino->size); | 
 |  | 
 | 			if (le32_to_cpu(ino->nlink) == 0) | 
 | 				deletion = 1; | 
 | 			err = insert_node(c, lnum, snod->offs, snod->len, | 
 | 					  &snod->key, snod->sqnum, deletion, | 
 | 					  &used, 0, new_size); | 
 | 			break; | 
 | 		} | 
 | 		case UBIFS_DATA_NODE: | 
 | 		{ | 
 | 			struct ubifs_data_node *dn = snod->node; | 
 | 			loff_t new_size = le32_to_cpu(dn->size) + | 
 | 					  key_block(c, &snod->key) * | 
 | 					  UBIFS_BLOCK_SIZE; | 
 |  | 
 | 			err = insert_node(c, lnum, snod->offs, snod->len, | 
 | 					  &snod->key, snod->sqnum, deletion, | 
 | 					  &used, 0, new_size); | 
 | 			break; | 
 | 		} | 
 | 		case UBIFS_DENT_NODE: | 
 | 		case UBIFS_XENT_NODE: | 
 | 		{ | 
 | 			struct ubifs_dent_node *dent = snod->node; | 
 |  | 
 | 			err = ubifs_validate_entry(c, dent); | 
 | 			if (err) | 
 | 				goto out_dump; | 
 |  | 
 | 			err = insert_dent(c, lnum, snod->offs, snod->len, | 
 | 					  &snod->key, dent->name, | 
 | 					  le16_to_cpu(dent->nlen), snod->sqnum, | 
 | 					  !le64_to_cpu(dent->inum), &used); | 
 | 			break; | 
 | 		} | 
 | 		case UBIFS_TRUN_NODE: | 
 | 		{ | 
 | 			struct ubifs_trun_node *trun = snod->node; | 
 | 			loff_t old_size = le64_to_cpu(trun->old_size); | 
 | 			loff_t new_size = le64_to_cpu(trun->new_size); | 
 | 			union ubifs_key key; | 
 |  | 
 | 			/* Validate truncation node */ | 
 | 			if (old_size < 0 || old_size > c->max_inode_sz || | 
 | 			    new_size < 0 || new_size > c->max_inode_sz || | 
 | 			    old_size <= new_size) { | 
 | 				ubifs_err(c, "bad truncation node"); | 
 | 				goto out_dump; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Create a fake truncation key just to use the same | 
 | 			 * functions which expect nodes to have keys. | 
 | 			 */ | 
 | 			trun_key_init(c, &key, le32_to_cpu(trun->inum)); | 
 | 			err = insert_node(c, lnum, snod->offs, snod->len, | 
 | 					  &key, snod->sqnum, 1, &used, | 
 | 					  old_size, new_size); | 
 | 			break; | 
 | 		} | 
 | 		default: | 
 | 			ubifs_err(c, "unexpected node type %d in bud LEB %d:%d", | 
 | 				  snod->type, lnum, snod->offs); | 
 | 			err = -EINVAL; | 
 | 			goto out_dump; | 
 | 		} | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	ubifs_assert(ubifs_search_bud(c, lnum)); | 
 | 	ubifs_assert(sleb->endpt - offs >= used); | 
 | 	ubifs_assert(sleb->endpt % c->min_io_size == 0); | 
 |  | 
 | 	b->dirty = sleb->endpt - offs - used; | 
 | 	b->free = c->leb_size - sleb->endpt; | 
 | 	dbg_mnt("bud LEB %d replied: dirty %d, free %d", | 
 | 		lnum, b->dirty, b->free); | 
 |  | 
 | out: | 
 | 	ubifs_scan_destroy(sleb); | 
 | #ifdef CONFIG_UBIFS_SHARE_BUFFER | 
 | 	mutex_unlock(&ubifs_sbuf_mutex); | 
 | #endif | 
 | 	return err; | 
 |  | 
 | out_dump: | 
 | 	ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs); | 
 | 	ubifs_dump_node(c, snod->node); | 
 | 	ubifs_scan_destroy(sleb); | 
 | #ifdef CONFIG_UBIFS_SHARE_BUFFER | 
 | 	mutex_unlock(&ubifs_sbuf_mutex); | 
 | #endif | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /** | 
 |  * replay_buds - replay all buds. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function returns zero in case of success and a negative error code in | 
 |  * case of failure. | 
 |  */ | 
 | static int replay_buds(struct ubifs_info *c) | 
 | { | 
 | 	struct bud_entry *b; | 
 | 	int err; | 
 | 	unsigned long long prev_sqnum = 0; | 
 |  | 
 | 	list_for_each_entry(b, &c->replay_buds, list) { | 
 | 		err = replay_bud(c, b); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		ubifs_assert(b->sqnum > prev_sqnum); | 
 | 		prev_sqnum = b->sqnum; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * destroy_bud_list - destroy the list of buds to replay. | 
 |  * @c: UBIFS file-system description object | 
 |  */ | 
 | static void destroy_bud_list(struct ubifs_info *c) | 
 | { | 
 | 	struct bud_entry *b; | 
 |  | 
 | 	while (!list_empty(&c->replay_buds)) { | 
 | 		b = list_entry(c->replay_buds.next, struct bud_entry, list); | 
 | 		list_del(&b->list); | 
 | 		kfree(b); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * add_replay_bud - add a bud to the list of buds to replay. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: bud logical eraseblock number to replay | 
 |  * @offs: bud start offset | 
 |  * @jhead: journal head to which this bud belongs | 
 |  * @sqnum: reference node sequence number | 
 |  * | 
 |  * This function returns zero in case of success and a negative error code in | 
 |  * case of failure. | 
 |  */ | 
 | static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead, | 
 | 			  unsigned long long sqnum) | 
 | { | 
 | 	struct ubifs_bud *bud; | 
 | 	struct bud_entry *b; | 
 |  | 
 | 	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead); | 
 |  | 
 | 	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL); | 
 | 	if (!bud) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL); | 
 | 	if (!b) { | 
 | 		kfree(bud); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	bud->lnum = lnum; | 
 | 	bud->start = offs; | 
 | 	bud->jhead = jhead; | 
 | 	ubifs_add_bud(c, bud); | 
 |  | 
 | 	b->bud = bud; | 
 | 	b->sqnum = sqnum; | 
 | 	list_add_tail(&b->list, &c->replay_buds); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * validate_ref - validate a reference node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @ref: the reference node to validate | 
 |  * @ref_lnum: LEB number of the reference node | 
 |  * @ref_offs: reference node offset | 
 |  * | 
 |  * This function returns %1 if a bud reference already exists for the LEB. %0 is | 
 |  * returned if the reference node is new, otherwise %-EINVAL is returned if | 
 |  * validation failed. | 
 |  */ | 
 | static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref) | 
 | { | 
 | 	struct ubifs_bud *bud; | 
 | 	int lnum = le32_to_cpu(ref->lnum); | 
 | 	unsigned int offs = le32_to_cpu(ref->offs); | 
 | 	unsigned int jhead = le32_to_cpu(ref->jhead); | 
 |  | 
 | 	/* | 
 | 	 * ref->offs may point to the end of LEB when the journal head points | 
 | 	 * to the end of LEB and we write reference node for it during commit. | 
 | 	 * So this is why we require 'offs > c->leb_size'. | 
 | 	 */ | 
 | 	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt || | 
 | 	    lnum < c->main_first || offs > c->leb_size || | 
 | 	    offs & (c->min_io_size - 1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Make sure we have not already looked at this bud */ | 
 | 	bud = ubifs_search_bud(c, lnum); | 
 | 	if (bud) { | 
 | 		if (bud->jhead == jhead && bud->start <= offs) | 
 | 			return 1; | 
 | 		ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * replay_log_leb - replay a log logical eraseblock. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: log logical eraseblock to replay | 
 |  * @offs: offset to start replaying from | 
 |  * @sbuf: scan buffer | 
 |  * | 
 |  * This function replays a log LEB and returns zero in case of success, %1 if | 
 |  * this is the last LEB in the log, and a negative error code in case of | 
 |  * failure. | 
 |  */ | 
 | static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) | 
 | { | 
 | 	int err; | 
 | 	struct ubifs_scan_leb *sleb; | 
 | 	struct ubifs_scan_node *snod; | 
 | 	const struct ubifs_cs_node *node; | 
 |  | 
 | 	dbg_mnt("replay log LEB %d:%d", lnum, offs); | 
 | 	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery); | 
 | 	if (IS_ERR(sleb)) { | 
 | 		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery) | 
 | 			return PTR_ERR(sleb); | 
 | 		/* | 
 | 		 * Note, the below function will recover this log LEB only if | 
 | 		 * it is the last, because unclean reboots can possibly corrupt | 
 | 		 * only the tail of the log. | 
 | 		 */ | 
 | 		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf); | 
 | 		if (IS_ERR(sleb)) | 
 | 			return PTR_ERR(sleb); | 
 | 	} | 
 |  | 
 | 	if (sleb->nodes_cnt == 0) { | 
 | 		err = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	node = sleb->buf; | 
 | 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); | 
 | 	if (c->cs_sqnum == 0) { | 
 | 		/* | 
 | 		 * This is the first log LEB we are looking at, make sure that | 
 | 		 * the first node is a commit start node. Also record its | 
 | 		 * sequence number so that UBIFS can determine where the log | 
 | 		 * ends, because all nodes which were have higher sequence | 
 | 		 * numbers. | 
 | 		 */ | 
 | 		if (snod->type != UBIFS_CS_NODE) { | 
 | 			ubifs_err(c, "first log node at LEB %d:%d is not CS node", | 
 | 				  lnum, offs); | 
 | 			goto out_dump; | 
 | 		} | 
 | 		if (le64_to_cpu(node->cmt_no) != c->cmt_no) { | 
 | 			ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu", | 
 | 				  lnum, offs, | 
 | 				  (unsigned long long)le64_to_cpu(node->cmt_no), | 
 | 				  c->cmt_no); | 
 | 			goto out_dump; | 
 | 		} | 
 |  | 
 | 		c->cs_sqnum = le64_to_cpu(node->ch.sqnum); | 
 | 		dbg_mnt("commit start sqnum %llu", c->cs_sqnum); | 
 | 	} | 
 |  | 
 | 	if (snod->sqnum < c->cs_sqnum) { | 
 | 		/* | 
 | 		 * This means that we reached end of log and now | 
 | 		 * look to the older log data, which was already | 
 | 		 * committed but the eraseblock was not erased (UBIFS | 
 | 		 * only un-maps it). So this basically means we have to | 
 | 		 * exit with "end of log" code. | 
 | 		 */ | 
 | 		err = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Make sure the first node sits at offset zero of the LEB */ | 
 | 	if (snod->offs != 0) { | 
 | 		ubifs_err(c, "first node is not at zero offset"); | 
 | 		goto out_dump; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(snod, &sleb->nodes, list) { | 
 | 		cond_resched(); | 
 |  | 
 | 		if (snod->sqnum >= SQNUM_WATERMARK) { | 
 | 			ubifs_err(c, "file system's life ended"); | 
 | 			goto out_dump; | 
 | 		} | 
 |  | 
 | 		if (snod->sqnum < c->cs_sqnum) { | 
 | 			ubifs_err(c, "bad sqnum %llu, commit sqnum %llu", | 
 | 				  snod->sqnum, c->cs_sqnum); | 
 | 			goto out_dump; | 
 | 		} | 
 |  | 
 | 		if (snod->sqnum > c->max_sqnum) | 
 | 			c->max_sqnum = snod->sqnum; | 
 |  | 
 | 		switch (snod->type) { | 
 | 		case UBIFS_REF_NODE: { | 
 | 			const struct ubifs_ref_node *ref = snod->node; | 
 |  | 
 | 			err = validate_ref(c, ref); | 
 | 			if (err == 1) | 
 | 				break; /* Already have this bud */ | 
 | 			if (err) | 
 | 				goto out_dump; | 
 |  | 
 | 			err = add_replay_bud(c, le32_to_cpu(ref->lnum), | 
 | 					     le32_to_cpu(ref->offs), | 
 | 					     le32_to_cpu(ref->jhead), | 
 | 					     snod->sqnum); | 
 | 			if (err) | 
 | 				goto out; | 
 |  | 
 | 			break; | 
 | 		} | 
 | 		case UBIFS_CS_NODE: | 
 | 			/* Make sure it sits at the beginning of LEB */ | 
 | 			if (snod->offs != 0) { | 
 | 				ubifs_err(c, "unexpected node in log"); | 
 | 				goto out_dump; | 
 | 			} | 
 | 			break; | 
 | 		default: | 
 | 			ubifs_err(c, "unexpected node in log"); | 
 | 			goto out_dump; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sleb->endpt || c->lhead_offs >= c->leb_size) { | 
 | 		c->lhead_lnum = lnum; | 
 | 		c->lhead_offs = sleb->endpt; | 
 | 	} | 
 |  | 
 | 	err = !sleb->endpt; | 
 | out: | 
 | 	ubifs_scan_destroy(sleb); | 
 | 	return err; | 
 |  | 
 | out_dump: | 
 | 	ubifs_err(c, "log error detected while replaying the log at LEB %d:%d", | 
 | 		  lnum, offs + snod->offs); | 
 | 	ubifs_dump_node(c, snod->node); | 
 | 	ubifs_scan_destroy(sleb); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /** | 
 |  * take_ihead - update the status of the index head in lprops to 'taken'. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function returns the amount of free space in the index head LEB or a | 
 |  * negative error code. | 
 |  */ | 
 | static int take_ihead(struct ubifs_info *c) | 
 | { | 
 | 	const struct ubifs_lprops *lp; | 
 | 	int err, free; | 
 |  | 
 | 	ubifs_get_lprops(c); | 
 |  | 
 | 	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum); | 
 | 	if (IS_ERR(lp)) { | 
 | 		err = PTR_ERR(lp); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	free = lp->free; | 
 |  | 
 | 	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, | 
 | 			     lp->flags | LPROPS_TAKEN, 0); | 
 | 	if (IS_ERR(lp)) { | 
 | 		err = PTR_ERR(lp); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = free; | 
 | out: | 
 | 	ubifs_release_lprops(c); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_replay_journal - replay journal. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function scans the journal, replays and cleans it up. It makes sure all | 
 |  * memory data structures related to uncommitted journal are built (dirty TNC | 
 |  * tree, tree of buds, modified lprops, etc). | 
 |  */ | 
 | int ubifs_replay_journal(struct ubifs_info *c) | 
 | { | 
 | 	int err, lnum, free; | 
 |  | 
 | 	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5); | 
 |  | 
 | 	/* Update the status of the index head in lprops to 'taken' */ | 
 | 	free = take_ihead(c); | 
 | 	if (free < 0) | 
 | 		return free; /* Error code */ | 
 |  | 
 | 	if (c->ihead_offs != c->leb_size - free) { | 
 | 		ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum, | 
 | 			  c->ihead_offs); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	dbg_mnt("start replaying the journal"); | 
 | 	c->replaying = 1; | 
 | 	lnum = c->ltail_lnum = c->lhead_lnum; | 
 |  | 
 | 	do { | 
 | #ifdef CONFIG_UBIFS_SHARE_BUFFER | 
 | 		if (mutex_trylock(&ubifs_sbuf_mutex) == 0) { | 
 | 			atomic_long_inc(&ubifs_sbuf_lock_count); | 
 | 			ubifs_err(c, "trylock fail count %ld\n", | 
 | 					READ_LOCK_COUNT); | 
 | 			mutex_lock(&ubifs_sbuf_mutex); | 
 | 			ubifs_err(c, "locked count %ld\n", READ_LOCK_COUNT); | 
 | 		} | 
 | #endif | 
 |  | 
 | 		err = replay_log_leb(c, lnum, 0, c->sbuf); | 
 | #ifdef CONFIG_UBIFS_SHARE_BUFFER | 
 | 		mutex_unlock(&ubifs_sbuf_mutex); | 
 | #endif | 
 | 		if (err == 1) { | 
 | 			if (lnum != c->lhead_lnum) | 
 | 				/* We hit the end of the log */ | 
 | 				break; | 
 |  | 
 | 			/* | 
 | 			 * The head of the log must always start with the | 
 | 			 * "commit start" node on a properly formatted UBIFS. | 
 | 			 * But we found no nodes at all, which means that | 
 | 			 * someting went wrong and we cannot proceed mounting | 
 | 			 * the file-system. | 
 | 			 */ | 
 | 			ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted", | 
 | 				  lnum, 0); | 
 | 			err = -EINVAL; | 
 | 		} | 
 | 		if (err) | 
 | 			goto out; | 
 | 		lnum = ubifs_next_log_lnum(c, lnum); | 
 | 	} while (lnum != c->ltail_lnum); | 
 |  | 
 | 	err = replay_buds(c); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	err = apply_replay_list(c); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	err = set_buds_lprops(c); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable | 
 | 	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs | 
 | 	 * depend on it. This means we have to initialize it to make sure | 
 | 	 * budgeting works properly. | 
 | 	 */ | 
 | 	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt); | 
 | 	c->bi.uncommitted_idx *= c->max_idx_node_sz; | 
 |  | 
 | 	ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery); | 
 | 	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu", | 
 | 		c->lhead_lnum, c->lhead_offs, c->max_sqnum, | 
 | 		(unsigned long)c->highest_inum); | 
 | out: | 
 | 	destroy_replay_list(c); | 
 | 	destroy_bud_list(c); | 
 | 	c->replaying = 0; | 
 | 	return err; | 
 | } |