| // SPDX-License-Identifier: GPL-2.0 | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/sched/coredump.h> | 
 | #include <linux/mmu_notifier.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/khugepaged.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/hashtable.h> | 
 | #include <linux/userfaultfd_k.h> | 
 | #include <linux/page_idle.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/shmem_fs.h> | 
 |  | 
 | #include <asm/tlb.h> | 
 | #include <asm/pgalloc.h> | 
 | #include "internal.h" | 
 |  | 
 | enum scan_result { | 
 | 	SCAN_FAIL, | 
 | 	SCAN_SUCCEED, | 
 | 	SCAN_PMD_NULL, | 
 | 	SCAN_EXCEED_NONE_PTE, | 
 | 	SCAN_PTE_NON_PRESENT, | 
 | 	SCAN_PAGE_RO, | 
 | 	SCAN_LACK_REFERENCED_PAGE, | 
 | 	SCAN_PAGE_NULL, | 
 | 	SCAN_SCAN_ABORT, | 
 | 	SCAN_PAGE_COUNT, | 
 | 	SCAN_PAGE_LRU, | 
 | 	SCAN_PAGE_LOCK, | 
 | 	SCAN_PAGE_ANON, | 
 | 	SCAN_PAGE_COMPOUND, | 
 | 	SCAN_ANY_PROCESS, | 
 | 	SCAN_VMA_NULL, | 
 | 	SCAN_VMA_CHECK, | 
 | 	SCAN_ADDRESS_RANGE, | 
 | 	SCAN_SWAP_CACHE_PAGE, | 
 | 	SCAN_DEL_PAGE_LRU, | 
 | 	SCAN_ALLOC_HUGE_PAGE_FAIL, | 
 | 	SCAN_CGROUP_CHARGE_FAIL, | 
 | 	SCAN_EXCEED_SWAP_PTE, | 
 | 	SCAN_TRUNCATED, | 
 | }; | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/huge_memory.h> | 
 |  | 
 | /* default scan 8*512 pte (or vmas) every 30 second */ | 
 | static unsigned int khugepaged_pages_to_scan __read_mostly; | 
 | static unsigned int khugepaged_pages_collapsed; | 
 | static unsigned int khugepaged_full_scans; | 
 | static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; | 
 | /* during fragmentation poll the hugepage allocator once every minute */ | 
 | static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; | 
 | static unsigned long khugepaged_sleep_expire; | 
 | static DEFINE_SPINLOCK(khugepaged_mm_lock); | 
 | static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); | 
 | /* | 
 |  * default collapse hugepages if there is at least one pte mapped like | 
 |  * it would have happened if the vma was large enough during page | 
 |  * fault. | 
 |  */ | 
 | static unsigned int khugepaged_max_ptes_none __read_mostly; | 
 | static unsigned int khugepaged_max_ptes_swap __read_mostly; | 
 |  | 
 | #define MM_SLOTS_HASH_BITS 10 | 
 | static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); | 
 |  | 
 | static struct kmem_cache *mm_slot_cache __read_mostly; | 
 |  | 
 | /** | 
 |  * struct mm_slot - hash lookup from mm to mm_slot | 
 |  * @hash: hash collision list | 
 |  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head | 
 |  * @mm: the mm that this information is valid for | 
 |  */ | 
 | struct mm_slot { | 
 | 	struct hlist_node hash; | 
 | 	struct list_head mm_node; | 
 | 	struct mm_struct *mm; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct khugepaged_scan - cursor for scanning | 
 |  * @mm_head: the head of the mm list to scan | 
 |  * @mm_slot: the current mm_slot we are scanning | 
 |  * @address: the next address inside that to be scanned | 
 |  * | 
 |  * There is only the one khugepaged_scan instance of this cursor structure. | 
 |  */ | 
 | struct khugepaged_scan { | 
 | 	struct list_head mm_head; | 
 | 	struct mm_slot *mm_slot; | 
 | 	unsigned long address; | 
 | }; | 
 |  | 
 | static struct khugepaged_scan khugepaged_scan = { | 
 | 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), | 
 | }; | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 | static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, | 
 | 					 struct kobj_attribute *attr, | 
 | 					 char *buf) | 
 | { | 
 | 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); | 
 | } | 
 |  | 
 | static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, | 
 | 					  struct kobj_attribute *attr, | 
 | 					  const char *buf, size_t count) | 
 | { | 
 | 	unsigned long msecs; | 
 | 	int err; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &msecs); | 
 | 	if (err || msecs > UINT_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	khugepaged_scan_sleep_millisecs = msecs; | 
 | 	khugepaged_sleep_expire = 0; | 
 | 	wake_up_interruptible(&khugepaged_wait); | 
 |  | 
 | 	return count; | 
 | } | 
 | static struct kobj_attribute scan_sleep_millisecs_attr = | 
 | 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, | 
 | 	       scan_sleep_millisecs_store); | 
 |  | 
 | static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, | 
 | 					  struct kobj_attribute *attr, | 
 | 					  char *buf) | 
 | { | 
 | 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); | 
 | } | 
 |  | 
 | static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, | 
 | 					   struct kobj_attribute *attr, | 
 | 					   const char *buf, size_t count) | 
 | { | 
 | 	unsigned long msecs; | 
 | 	int err; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &msecs); | 
 | 	if (err || msecs > UINT_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	khugepaged_alloc_sleep_millisecs = msecs; | 
 | 	khugepaged_sleep_expire = 0; | 
 | 	wake_up_interruptible(&khugepaged_wait); | 
 |  | 
 | 	return count; | 
 | } | 
 | static struct kobj_attribute alloc_sleep_millisecs_attr = | 
 | 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, | 
 | 	       alloc_sleep_millisecs_store); | 
 |  | 
 | static ssize_t pages_to_scan_show(struct kobject *kobj, | 
 | 				  struct kobj_attribute *attr, | 
 | 				  char *buf) | 
 | { | 
 | 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan); | 
 | } | 
 | static ssize_t pages_to_scan_store(struct kobject *kobj, | 
 | 				   struct kobj_attribute *attr, | 
 | 				   const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long pages; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &pages); | 
 | 	if (err || !pages || pages > UINT_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	khugepaged_pages_to_scan = pages; | 
 |  | 
 | 	return count; | 
 | } | 
 | static struct kobj_attribute pages_to_scan_attr = | 
 | 	__ATTR(pages_to_scan, 0644, pages_to_scan_show, | 
 | 	       pages_to_scan_store); | 
 |  | 
 | static ssize_t pages_collapsed_show(struct kobject *kobj, | 
 | 				    struct kobj_attribute *attr, | 
 | 				    char *buf) | 
 | { | 
 | 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed); | 
 | } | 
 | static struct kobj_attribute pages_collapsed_attr = | 
 | 	__ATTR_RO(pages_collapsed); | 
 |  | 
 | static ssize_t full_scans_show(struct kobject *kobj, | 
 | 			       struct kobj_attribute *attr, | 
 | 			       char *buf) | 
 | { | 
 | 	return sprintf(buf, "%u\n", khugepaged_full_scans); | 
 | } | 
 | static struct kobj_attribute full_scans_attr = | 
 | 	__ATTR_RO(full_scans); | 
 |  | 
 | static ssize_t khugepaged_defrag_show(struct kobject *kobj, | 
 | 				      struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return single_hugepage_flag_show(kobj, attr, buf, | 
 | 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | 
 | } | 
 | static ssize_t khugepaged_defrag_store(struct kobject *kobj, | 
 | 				       struct kobj_attribute *attr, | 
 | 				       const char *buf, size_t count) | 
 | { | 
 | 	return single_hugepage_flag_store(kobj, attr, buf, count, | 
 | 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | 
 | } | 
 | static struct kobj_attribute khugepaged_defrag_attr = | 
 | 	__ATTR(defrag, 0644, khugepaged_defrag_show, | 
 | 	       khugepaged_defrag_store); | 
 |  | 
 | /* | 
 |  * max_ptes_none controls if khugepaged should collapse hugepages over | 
 |  * any unmapped ptes in turn potentially increasing the memory | 
 |  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not | 
 |  * reduce the available free memory in the system as it | 
 |  * runs. Increasing max_ptes_none will instead potentially reduce the | 
 |  * free memory in the system during the khugepaged scan. | 
 |  */ | 
 | static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, | 
 | 					     struct kobj_attribute *attr, | 
 | 					     char *buf) | 
 | { | 
 | 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none); | 
 | } | 
 | static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, | 
 | 					      struct kobj_attribute *attr, | 
 | 					      const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long max_ptes_none; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &max_ptes_none); | 
 | 	if (err || max_ptes_none > HPAGE_PMD_NR-1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	khugepaged_max_ptes_none = max_ptes_none; | 
 |  | 
 | 	return count; | 
 | } | 
 | static struct kobj_attribute khugepaged_max_ptes_none_attr = | 
 | 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, | 
 | 	       khugepaged_max_ptes_none_store); | 
 |  | 
 | static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj, | 
 | 					     struct kobj_attribute *attr, | 
 | 					     char *buf) | 
 | { | 
 | 	return sprintf(buf, "%u\n", khugepaged_max_ptes_swap); | 
 | } | 
 |  | 
 | static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj, | 
 | 					      struct kobj_attribute *attr, | 
 | 					      const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long max_ptes_swap; | 
 |  | 
 | 	err  = kstrtoul(buf, 10, &max_ptes_swap); | 
 | 	if (err || max_ptes_swap > HPAGE_PMD_NR-1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	khugepaged_max_ptes_swap = max_ptes_swap; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static struct kobj_attribute khugepaged_max_ptes_swap_attr = | 
 | 	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show, | 
 | 	       khugepaged_max_ptes_swap_store); | 
 |  | 
 | static struct attribute *khugepaged_attr[] = { | 
 | 	&khugepaged_defrag_attr.attr, | 
 | 	&khugepaged_max_ptes_none_attr.attr, | 
 | 	&pages_to_scan_attr.attr, | 
 | 	&pages_collapsed_attr.attr, | 
 | 	&full_scans_attr.attr, | 
 | 	&scan_sleep_millisecs_attr.attr, | 
 | 	&alloc_sleep_millisecs_attr.attr, | 
 | 	&khugepaged_max_ptes_swap_attr.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | struct attribute_group khugepaged_attr_group = { | 
 | 	.attrs = khugepaged_attr, | 
 | 	.name = "khugepaged", | 
 | }; | 
 | #endif /* CONFIG_SYSFS */ | 
 |  | 
 | #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) | 
 |  | 
 | int hugepage_madvise(struct vm_area_struct *vma, | 
 | 		     unsigned long *vm_flags, int advice) | 
 | { | 
 | 	switch (advice) { | 
 | 	case MADV_HUGEPAGE: | 
 | #ifdef CONFIG_S390 | 
 | 		/* | 
 | 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 | 
 | 		 * can't handle this properly after s390_enable_sie, so we simply | 
 | 		 * ignore the madvise to prevent qemu from causing a SIGSEGV. | 
 | 		 */ | 
 | 		if (mm_has_pgste(vma->vm_mm)) | 
 | 			return 0; | 
 | #endif | 
 | 		*vm_flags &= ~VM_NOHUGEPAGE; | 
 | 		*vm_flags |= VM_HUGEPAGE; | 
 | 		/* | 
 | 		 * If the vma become good for khugepaged to scan, | 
 | 		 * register it here without waiting a page fault that | 
 | 		 * may not happen any time soon. | 
 | 		 */ | 
 | 		if (!(*vm_flags & VM_NO_KHUGEPAGED) && | 
 | 				khugepaged_enter_vma_merge(vma, *vm_flags)) | 
 | 			return -ENOMEM; | 
 | 		break; | 
 | 	case MADV_NOHUGEPAGE: | 
 | 		*vm_flags &= ~VM_HUGEPAGE; | 
 | 		*vm_flags |= VM_NOHUGEPAGE; | 
 | 		/* | 
 | 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning | 
 | 		 * this vma even if we leave the mm registered in khugepaged if | 
 | 		 * it got registered before VM_NOHUGEPAGE was set. | 
 | 		 */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __init khugepaged_init(void) | 
 | { | 
 | 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", | 
 | 					  sizeof(struct mm_slot), | 
 | 					  __alignof__(struct mm_slot), 0, NULL); | 
 | 	if (!mm_slot_cache) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; | 
 | 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; | 
 | 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __init khugepaged_destroy(void) | 
 | { | 
 | 	kmem_cache_destroy(mm_slot_cache); | 
 | } | 
 |  | 
 | static inline struct mm_slot *alloc_mm_slot(void) | 
 | { | 
 | 	if (!mm_slot_cache)	/* initialization failed */ | 
 | 		return NULL; | 
 | 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); | 
 | } | 
 |  | 
 | static inline void free_mm_slot(struct mm_slot *mm_slot) | 
 | { | 
 | 	kmem_cache_free(mm_slot_cache, mm_slot); | 
 | } | 
 |  | 
 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 |  | 
 | 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) | 
 | 		if (mm == mm_slot->mm) | 
 | 			return mm_slot; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void insert_to_mm_slots_hash(struct mm_struct *mm, | 
 | 				    struct mm_slot *mm_slot) | 
 | { | 
 | 	mm_slot->mm = mm; | 
 | 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); | 
 | } | 
 |  | 
 | static inline int khugepaged_test_exit(struct mm_struct *mm) | 
 | { | 
 | 	return atomic_read(&mm->mm_users) == 0 || !mmget_still_valid(mm); | 
 | } | 
 |  | 
 | int __khugepaged_enter(struct mm_struct *mm) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 | 	int wakeup; | 
 |  | 
 | 	mm_slot = alloc_mm_slot(); | 
 | 	if (!mm_slot) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* __khugepaged_exit() must not run from under us */ | 
 | 	VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm); | 
 | 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { | 
 | 		free_mm_slot(mm_slot); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	spin_lock(&khugepaged_mm_lock); | 
 | 	insert_to_mm_slots_hash(mm, mm_slot); | 
 | 	/* | 
 | 	 * Insert just behind the scanning cursor, to let the area settle | 
 | 	 * down a little. | 
 | 	 */ | 
 | 	wakeup = list_empty(&khugepaged_scan.mm_head); | 
 | 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); | 
 | 	spin_unlock(&khugepaged_mm_lock); | 
 |  | 
 | 	mmgrab(mm); | 
 | 	if (wakeup) | 
 | 		wake_up_interruptible(&khugepaged_wait); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int khugepaged_enter_vma_merge(struct vm_area_struct *vma, | 
 | 			       unsigned long vm_flags) | 
 | { | 
 | 	unsigned long hstart, hend; | 
 | 	if (!vma->anon_vma) | 
 | 		/* | 
 | 		 * Not yet faulted in so we will register later in the | 
 | 		 * page fault if needed. | 
 | 		 */ | 
 | 		return 0; | 
 | 	if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED)) | 
 | 		/* khugepaged not yet working on file or special mappings */ | 
 | 		return 0; | 
 | 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | 
 | 	hend = vma->vm_end & HPAGE_PMD_MASK; | 
 | 	if (hstart < hend) | 
 | 		return khugepaged_enter(vma, vm_flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __khugepaged_exit(struct mm_struct *mm) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 | 	int free = 0; | 
 |  | 
 | 	spin_lock(&khugepaged_mm_lock); | 
 | 	mm_slot = get_mm_slot(mm); | 
 | 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { | 
 | 		hash_del(&mm_slot->hash); | 
 | 		list_del(&mm_slot->mm_node); | 
 | 		free = 1; | 
 | 	} | 
 | 	spin_unlock(&khugepaged_mm_lock); | 
 |  | 
 | 	if (free) { | 
 | 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags); | 
 | 		free_mm_slot(mm_slot); | 
 | 		mmdrop(mm); | 
 | 	} else if (mm_slot) { | 
 | 		/* | 
 | 		 * This is required to serialize against | 
 | 		 * khugepaged_test_exit() (which is guaranteed to run | 
 | 		 * under mmap sem read mode). Stop here (after we | 
 | 		 * return all pagetables will be destroyed) until | 
 | 		 * khugepaged has finished working on the pagetables | 
 | 		 * under the mmap_sem. | 
 | 		 */ | 
 | 		down_write(&mm->mmap_sem); | 
 | 		up_write(&mm->mmap_sem); | 
 | 	} | 
 | } | 
 |  | 
 | static void release_pte_page(struct page *page) | 
 | { | 
 | 	dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page)); | 
 | 	unlock_page(page); | 
 | 	putback_lru_page(page); | 
 | } | 
 |  | 
 | static void release_pte_pages(pte_t *pte, pte_t *_pte) | 
 | { | 
 | 	while (--_pte >= pte) { | 
 | 		pte_t pteval = *_pte; | 
 | 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval))) | 
 | 			release_pte_page(pte_page(pteval)); | 
 | 	} | 
 | } | 
 |  | 
 | static int __collapse_huge_page_isolate(struct vm_area_struct *vma, | 
 | 					unsigned long address, | 
 | 					pte_t *pte) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	pte_t *_pte; | 
 | 	int none_or_zero = 0, result = 0, referenced = 0; | 
 | 	bool writable = false; | 
 |  | 
 | 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; | 
 | 	     _pte++, address += PAGE_SIZE) { | 
 | 		pte_t pteval = *_pte; | 
 | 		if (pte_none(pteval) || (pte_present(pteval) && | 
 | 				is_zero_pfn(pte_pfn(pteval)))) { | 
 | 			if (!userfaultfd_armed(vma) && | 
 | 			    ++none_or_zero <= khugepaged_max_ptes_none) { | 
 | 				continue; | 
 | 			} else { | 
 | 				result = SCAN_EXCEED_NONE_PTE; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		if (!pte_present(pteval)) { | 
 | 			result = SCAN_PTE_NON_PRESENT; | 
 | 			goto out; | 
 | 		} | 
 | 		page = vm_normal_page(vma, address, pteval); | 
 | 		if (unlikely(!page)) { | 
 | 			result = SCAN_PAGE_NULL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* TODO: teach khugepaged to collapse THP mapped with pte */ | 
 | 		if (PageCompound(page)) { | 
 | 			result = SCAN_PAGE_COMPOUND; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		VM_BUG_ON_PAGE(!PageAnon(page), page); | 
 |  | 
 | 		/* | 
 | 		 * We can do it before isolate_lru_page because the | 
 | 		 * page can't be freed from under us. NOTE: PG_lock | 
 | 		 * is needed to serialize against split_huge_page | 
 | 		 * when invoked from the VM. | 
 | 		 */ | 
 | 		if (!trylock_page(page)) { | 
 | 			result = SCAN_PAGE_LOCK; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * cannot use mapcount: can't collapse if there's a gup pin. | 
 | 		 * The page must only be referenced by the scanned process | 
 | 		 * and page swap cache. | 
 | 		 */ | 
 | 		if (page_count(page) != 1 + PageSwapCache(page)) { | 
 | 			unlock_page(page); | 
 | 			result = SCAN_PAGE_COUNT; | 
 | 			goto out; | 
 | 		} | 
 | 		if (pte_write(pteval)) { | 
 | 			writable = true; | 
 | 		} else { | 
 | 			if (PageSwapCache(page) && | 
 | 			    !reuse_swap_page(page, NULL)) { | 
 | 				unlock_page(page); | 
 | 				result = SCAN_SWAP_CACHE_PAGE; | 
 | 				goto out; | 
 | 			} | 
 | 			/* | 
 | 			 * Page is not in the swap cache. It can be collapsed | 
 | 			 * into a THP. | 
 | 			 */ | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Isolate the page to avoid collapsing an hugepage | 
 | 		 * currently in use by the VM. | 
 | 		 */ | 
 | 		if (isolate_lru_page(page)) { | 
 | 			unlock_page(page); | 
 | 			result = SCAN_DEL_PAGE_LRU; | 
 | 			goto out; | 
 | 		} | 
 | 		inc_node_page_state(page, | 
 | 				NR_ISOLATED_ANON + page_is_file_cache(page)); | 
 | 		VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 		VM_BUG_ON_PAGE(PageLRU(page), page); | 
 |  | 
 | 		/* There should be enough young pte to collapse the page */ | 
 | 		if (pte_young(pteval) || | 
 | 		    page_is_young(page) || PageReferenced(page) || | 
 | 		    mmu_notifier_test_young(vma->vm_mm, address)) | 
 | 			referenced++; | 
 | 	} | 
 | 	if (likely(writable)) { | 
 | 		if (likely(referenced)) { | 
 | 			result = SCAN_SUCCEED; | 
 | 			trace_mm_collapse_huge_page_isolate(page, none_or_zero, | 
 | 							    referenced, writable, result); | 
 | 			return 1; | 
 | 		} | 
 | 	} else { | 
 | 		result = SCAN_PAGE_RO; | 
 | 	} | 
 |  | 
 | out: | 
 | 	release_pte_pages(pte, _pte); | 
 | 	trace_mm_collapse_huge_page_isolate(page, none_or_zero, | 
 | 					    referenced, writable, result); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __collapse_huge_page_copy(pte_t *pte, struct page *page, | 
 | 				      struct vm_area_struct *vma, | 
 | 				      unsigned long address, | 
 | 				      spinlock_t *ptl) | 
 | { | 
 | 	pte_t *_pte; | 
 | 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR; | 
 | 				_pte++, page++, address += PAGE_SIZE) { | 
 | 		pte_t pteval = *_pte; | 
 | 		struct page *src_page; | 
 |  | 
 | 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { | 
 | 			clear_user_highpage(page, address); | 
 | 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); | 
 | 			if (is_zero_pfn(pte_pfn(pteval))) { | 
 | 				/* | 
 | 				 * ptl mostly unnecessary. | 
 | 				 */ | 
 | 				spin_lock(ptl); | 
 | 				/* | 
 | 				 * paravirt calls inside pte_clear here are | 
 | 				 * superfluous. | 
 | 				 */ | 
 | 				pte_clear(vma->vm_mm, address, _pte); | 
 | 				spin_unlock(ptl); | 
 | 			} | 
 | 		} else { | 
 | 			src_page = pte_page(pteval); | 
 | 			copy_user_highpage(page, src_page, address, vma); | 
 | 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page); | 
 | 			release_pte_page(src_page); | 
 | 			/* | 
 | 			 * ptl mostly unnecessary, but preempt has to | 
 | 			 * be disabled to update the per-cpu stats | 
 | 			 * inside page_remove_rmap(). | 
 | 			 */ | 
 | 			spin_lock(ptl); | 
 | 			/* | 
 | 			 * paravirt calls inside pte_clear here are | 
 | 			 * superfluous. | 
 | 			 */ | 
 | 			pte_clear(vma->vm_mm, address, _pte); | 
 | 			page_remove_rmap(src_page, false); | 
 | 			spin_unlock(ptl); | 
 | 			free_page_and_swap_cache(src_page); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void khugepaged_alloc_sleep(void) | 
 | { | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	add_wait_queue(&khugepaged_wait, &wait); | 
 | 	freezable_schedule_timeout_interruptible( | 
 | 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); | 
 | 	remove_wait_queue(&khugepaged_wait, &wait); | 
 | } | 
 |  | 
 | static int khugepaged_node_load[MAX_NUMNODES]; | 
 |  | 
 | static bool khugepaged_scan_abort(int nid) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * If node_reclaim_mode is disabled, then no extra effort is made to | 
 | 	 * allocate memory locally. | 
 | 	 */ | 
 | 	if (!node_reclaim_mode) | 
 | 		return false; | 
 |  | 
 | 	/* If there is a count for this node already, it must be acceptable */ | 
 | 	if (khugepaged_node_load[nid]) | 
 | 		return false; | 
 |  | 
 | 	for (i = 0; i < MAX_NUMNODES; i++) { | 
 | 		if (!khugepaged_node_load[i]) | 
 | 			continue; | 
 | 		if (node_distance(nid, i) > RECLAIM_DISTANCE) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ | 
 | static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) | 
 | { | 
 | 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static int khugepaged_find_target_node(void) | 
 | { | 
 | 	static int last_khugepaged_target_node = NUMA_NO_NODE; | 
 | 	int nid, target_node = 0, max_value = 0; | 
 |  | 
 | 	/* find first node with max normal pages hit */ | 
 | 	for (nid = 0; nid < MAX_NUMNODES; nid++) | 
 | 		if (khugepaged_node_load[nid] > max_value) { | 
 | 			max_value = khugepaged_node_load[nid]; | 
 | 			target_node = nid; | 
 | 		} | 
 |  | 
 | 	/* do some balance if several nodes have the same hit record */ | 
 | 	if (target_node <= last_khugepaged_target_node) | 
 | 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; | 
 | 				nid++) | 
 | 			if (max_value == khugepaged_node_load[nid]) { | 
 | 				target_node = nid; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 	last_khugepaged_target_node = target_node; | 
 | 	return target_node; | 
 | } | 
 |  | 
 | static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) | 
 | { | 
 | 	if (IS_ERR(*hpage)) { | 
 | 		if (!*wait) | 
 | 			return false; | 
 |  | 
 | 		*wait = false; | 
 | 		*hpage = NULL; | 
 | 		khugepaged_alloc_sleep(); | 
 | 	} else if (*hpage) { | 
 | 		put_page(*hpage); | 
 | 		*hpage = NULL; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static struct page * | 
 | khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) | 
 | { | 
 | 	VM_BUG_ON_PAGE(*hpage, *hpage); | 
 |  | 
 | 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER); | 
 | 	if (unlikely(!*hpage)) { | 
 | 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED); | 
 | 		*hpage = ERR_PTR(-ENOMEM); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	prep_transhuge_page(*hpage); | 
 | 	count_vm_event(THP_COLLAPSE_ALLOC); | 
 | 	return *hpage; | 
 | } | 
 | #else | 
 | static int khugepaged_find_target_node(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline struct page *alloc_khugepaged_hugepage(void) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(), | 
 | 			   HPAGE_PMD_ORDER); | 
 | 	if (page) | 
 | 		prep_transhuge_page(page); | 
 | 	return page; | 
 | } | 
 |  | 
 | static struct page *khugepaged_alloc_hugepage(bool *wait) | 
 | { | 
 | 	struct page *hpage; | 
 |  | 
 | 	do { | 
 | 		hpage = alloc_khugepaged_hugepage(); | 
 | 		if (!hpage) { | 
 | 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED); | 
 | 			if (!*wait) | 
 | 				return NULL; | 
 |  | 
 | 			*wait = false; | 
 | 			khugepaged_alloc_sleep(); | 
 | 		} else | 
 | 			count_vm_event(THP_COLLAPSE_ALLOC); | 
 | 	} while (unlikely(!hpage) && likely(khugepaged_enabled())); | 
 |  | 
 | 	return hpage; | 
 | } | 
 |  | 
 | static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) | 
 | { | 
 | 	if (!*hpage) | 
 | 		*hpage = khugepaged_alloc_hugepage(wait); | 
 |  | 
 | 	if (unlikely(!*hpage)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static struct page * | 
 | khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) | 
 | { | 
 | 	VM_BUG_ON(!*hpage); | 
 |  | 
 | 	return  *hpage; | 
 | } | 
 | #endif | 
 |  | 
 | static bool hugepage_vma_check(struct vm_area_struct *vma) | 
 | { | 
 | 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || | 
 | 	    (vma->vm_flags & VM_NOHUGEPAGE) || | 
 | 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) | 
 | 		return false; | 
 | 	if (shmem_file(vma->vm_file)) { | 
 | 		if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) | 
 | 			return false; | 
 | 		return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff, | 
 | 				HPAGE_PMD_NR); | 
 | 	} | 
 | 	if (!vma->anon_vma || vma->vm_ops) | 
 | 		return false; | 
 | 	if (is_vma_temporary_stack(vma)) | 
 | 		return false; | 
 | 	return !(vma->vm_flags & VM_NO_KHUGEPAGED); | 
 | } | 
 |  | 
 | /* | 
 |  * If mmap_sem temporarily dropped, revalidate vma | 
 |  * before taking mmap_sem. | 
 |  * Return 0 if succeeds, otherwise return none-zero | 
 |  * value (scan code). | 
 |  */ | 
 |  | 
 | static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, | 
 | 		struct vm_area_struct **vmap) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	unsigned long hstart, hend; | 
 |  | 
 | 	if (unlikely(khugepaged_test_exit(mm))) | 
 | 		return SCAN_ANY_PROCESS; | 
 |  | 
 | 	*vmap = vma = find_vma(mm, address); | 
 | 	if (!vma) | 
 | 		return SCAN_VMA_NULL; | 
 |  | 
 | 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | 
 | 	hend = vma->vm_end & HPAGE_PMD_MASK; | 
 | 	if (address < hstart || address + HPAGE_PMD_SIZE > hend) | 
 | 		return SCAN_ADDRESS_RANGE; | 
 | 	if (!hugepage_vma_check(vma)) | 
 | 		return SCAN_VMA_CHECK; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Bring missing pages in from swap, to complete THP collapse. | 
 |  * Only done if khugepaged_scan_pmd believes it is worthwhile. | 
 |  * | 
 |  * Called and returns without pte mapped or spinlocks held, | 
 |  * but with mmap_sem held to protect against vma changes. | 
 |  */ | 
 |  | 
 | static bool __collapse_huge_page_swapin(struct mm_struct *mm, | 
 | 					struct vm_area_struct *vma, | 
 | 					unsigned long address, pmd_t *pmd, | 
 | 					int referenced) | 
 | { | 
 | 	int swapped_in = 0, ret = 0; | 
 | 	struct vm_fault vmf = { | 
 | 		.vma = vma, | 
 | 		.address = address, | 
 | 		.flags = FAULT_FLAG_ALLOW_RETRY, | 
 | 		.pmd = pmd, | 
 | 		.pgoff = linear_page_index(vma, address), | 
 | 	}; | 
 |  | 
 | 	/* we only decide to swapin, if there is enough young ptes */ | 
 | 	if (referenced < HPAGE_PMD_NR/2) { | 
 | 		trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); | 
 | 		return false; | 
 | 	} | 
 | 	vmf.pte = pte_offset_map(pmd, address); | 
 | 	for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE; | 
 | 			vmf.pte++, vmf.address += PAGE_SIZE) { | 
 | 		vmf.orig_pte = *vmf.pte; | 
 | 		if (!is_swap_pte(vmf.orig_pte)) | 
 | 			continue; | 
 | 		swapped_in++; | 
 | 		ret = do_swap_page(&vmf); | 
 |  | 
 | 		/* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */ | 
 | 		if (ret & VM_FAULT_RETRY) { | 
 | 			down_read(&mm->mmap_sem); | 
 | 			if (hugepage_vma_revalidate(mm, address, &vmf.vma)) { | 
 | 				/* vma is no longer available, don't continue to swapin */ | 
 | 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); | 
 | 				return false; | 
 | 			} | 
 | 			/* check if the pmd is still valid */ | 
 | 			if (mm_find_pmd(mm, address) != pmd) { | 
 | 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); | 
 | 				return false; | 
 | 			} | 
 | 		} | 
 | 		if (ret & VM_FAULT_ERROR) { | 
 | 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); | 
 | 			return false; | 
 | 		} | 
 | 		/* pte is unmapped now, we need to map it */ | 
 | 		vmf.pte = pte_offset_map(pmd, vmf.address); | 
 | 	} | 
 | 	vmf.pte--; | 
 | 	pte_unmap(vmf.pte); | 
 | 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); | 
 | 	return true; | 
 | } | 
 |  | 
 | static void collapse_huge_page(struct mm_struct *mm, | 
 | 				   unsigned long address, | 
 | 				   struct page **hpage, | 
 | 				   int node, int referenced) | 
 | { | 
 | 	pmd_t *pmd, _pmd; | 
 | 	pte_t *pte; | 
 | 	pgtable_t pgtable; | 
 | 	struct page *new_page; | 
 | 	spinlock_t *pmd_ptl, *pte_ptl; | 
 | 	int isolated = 0, result = 0; | 
 | 	struct mem_cgroup *memcg; | 
 | 	struct vm_area_struct *vma; | 
 | 	unsigned long mmun_start;	/* For mmu_notifiers */ | 
 | 	unsigned long mmun_end;		/* For mmu_notifiers */ | 
 | 	gfp_t gfp; | 
 |  | 
 | 	VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
 |  | 
 | 	/* Only allocate from the target node */ | 
 | 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; | 
 |  | 
 | 	/* | 
 | 	 * Before allocating the hugepage, release the mmap_sem read lock. | 
 | 	 * The allocation can take potentially a long time if it involves | 
 | 	 * sync compaction, and we do not need to hold the mmap_sem during | 
 | 	 * that. We will recheck the vma after taking it again in write mode. | 
 | 	 */ | 
 | 	up_read(&mm->mmap_sem); | 
 | 	new_page = khugepaged_alloc_page(hpage, gfp, node); | 
 | 	if (!new_page) { | 
 | 		result = SCAN_ALLOC_HUGE_PAGE_FAIL; | 
 | 		goto out_nolock; | 
 | 	} | 
 |  | 
 | 	/* Do not oom kill for khugepaged charges */ | 
 | 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp | __GFP_NORETRY, | 
 | 					   &memcg, true))) { | 
 | 		result = SCAN_CGROUP_CHARGE_FAIL; | 
 | 		goto out_nolock; | 
 | 	} | 
 |  | 
 | 	down_read(&mm->mmap_sem); | 
 | 	result = hugepage_vma_revalidate(mm, address, &vma); | 
 | 	if (result) { | 
 | 		mem_cgroup_cancel_charge(new_page, memcg, true); | 
 | 		up_read(&mm->mmap_sem); | 
 | 		goto out_nolock; | 
 | 	} | 
 |  | 
 | 	pmd = mm_find_pmd(mm, address); | 
 | 	if (!pmd) { | 
 | 		result = SCAN_PMD_NULL; | 
 | 		mem_cgroup_cancel_charge(new_page, memcg, true); | 
 | 		up_read(&mm->mmap_sem); | 
 | 		goto out_nolock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * __collapse_huge_page_swapin always returns with mmap_sem locked. | 
 | 	 * If it fails, we release mmap_sem and jump out_nolock. | 
 | 	 * Continuing to collapse causes inconsistency. | 
 | 	 */ | 
 | 	if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) { | 
 | 		mem_cgroup_cancel_charge(new_page, memcg, true); | 
 | 		up_read(&mm->mmap_sem); | 
 | 		goto out_nolock; | 
 | 	} | 
 |  | 
 | 	up_read(&mm->mmap_sem); | 
 | 	/* | 
 | 	 * Prevent all access to pagetables with the exception of | 
 | 	 * gup_fast later handled by the ptep_clear_flush and the VM | 
 | 	 * handled by the anon_vma lock + PG_lock. | 
 | 	 */ | 
 | 	down_write(&mm->mmap_sem); | 
 | 	result = hugepage_vma_revalidate(mm, address, &vma); | 
 | 	if (result) | 
 | 		goto out; | 
 | 	/* check if the pmd is still valid */ | 
 | 	if (mm_find_pmd(mm, address) != pmd) | 
 | 		goto out; | 
 |  | 
 | 	anon_vma_lock_write(vma->anon_vma); | 
 |  | 
 | 	pte = pte_offset_map(pmd, address); | 
 | 	pte_ptl = pte_lockptr(mm, pmd); | 
 |  | 
 | 	mmun_start = address; | 
 | 	mmun_end   = address + HPAGE_PMD_SIZE; | 
 | 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | 
 | 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ | 
 | 	/* | 
 | 	 * After this gup_fast can't run anymore. This also removes | 
 | 	 * any huge TLB entry from the CPU so we won't allow | 
 | 	 * huge and small TLB entries for the same virtual address | 
 | 	 * to avoid the risk of CPU bugs in that area. | 
 | 	 */ | 
 | 	_pmd = pmdp_collapse_flush(vma, address, pmd); | 
 | 	spin_unlock(pmd_ptl); | 
 | 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
 |  | 
 | 	spin_lock(pte_ptl); | 
 | 	isolated = __collapse_huge_page_isolate(vma, address, pte); | 
 | 	spin_unlock(pte_ptl); | 
 |  | 
 | 	if (unlikely(!isolated)) { | 
 | 		pte_unmap(pte); | 
 | 		spin_lock(pmd_ptl); | 
 | 		BUG_ON(!pmd_none(*pmd)); | 
 | 		/* | 
 | 		 * We can only use set_pmd_at when establishing | 
 | 		 * hugepmds and never for establishing regular pmds that | 
 | 		 * points to regular pagetables. Use pmd_populate for that | 
 | 		 */ | 
 | 		pmd_populate(mm, pmd, pmd_pgtable(_pmd)); | 
 | 		spin_unlock(pmd_ptl); | 
 | 		anon_vma_unlock_write(vma->anon_vma); | 
 | 		result = SCAN_FAIL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * All pages are isolated and locked so anon_vma rmap | 
 | 	 * can't run anymore. | 
 | 	 */ | 
 | 	anon_vma_unlock_write(vma->anon_vma); | 
 |  | 
 | 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl); | 
 | 	pte_unmap(pte); | 
 | 	__SetPageUptodate(new_page); | 
 | 	pgtable = pmd_pgtable(_pmd); | 
 |  | 
 | 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot); | 
 | 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); | 
 |  | 
 | 	/* | 
 | 	 * spin_lock() below is not the equivalent of smp_wmb(), so | 
 | 	 * this is needed to avoid the copy_huge_page writes to become | 
 | 	 * visible after the set_pmd_at() write. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 |  | 
 | 	spin_lock(pmd_ptl); | 
 | 	BUG_ON(!pmd_none(*pmd)); | 
 | 	page_add_new_anon_rmap(new_page, vma, address, true); | 
 | 	mem_cgroup_commit_charge(new_page, memcg, false, true); | 
 | 	lru_cache_add_active_or_unevictable(new_page, vma); | 
 | 	pgtable_trans_huge_deposit(mm, pmd, pgtable); | 
 | 	set_pmd_at(mm, address, pmd, _pmd); | 
 | 	update_mmu_cache_pmd(vma, address, pmd); | 
 | 	spin_unlock(pmd_ptl); | 
 |  | 
 | 	*hpage = NULL; | 
 |  | 
 | 	khugepaged_pages_collapsed++; | 
 | 	result = SCAN_SUCCEED; | 
 | out_up_write: | 
 | 	up_write(&mm->mmap_sem); | 
 | out_nolock: | 
 | 	trace_mm_collapse_huge_page(mm, isolated, result); | 
 | 	return; | 
 | out: | 
 | 	mem_cgroup_cancel_charge(new_page, memcg, true); | 
 | 	goto out_up_write; | 
 | } | 
 |  | 
 | static int khugepaged_scan_pmd(struct mm_struct *mm, | 
 | 			       struct vm_area_struct *vma, | 
 | 			       unsigned long address, | 
 | 			       struct page **hpage) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte, *_pte; | 
 | 	int ret = 0, none_or_zero = 0, result = 0, referenced = 0; | 
 | 	struct page *page = NULL; | 
 | 	unsigned long _address; | 
 | 	spinlock_t *ptl; | 
 | 	int node = NUMA_NO_NODE, unmapped = 0; | 
 | 	bool writable = false; | 
 |  | 
 | 	VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
 |  | 
 | 	pmd = mm_find_pmd(mm, address); | 
 | 	if (!pmd) { | 
 | 		result = SCAN_PMD_NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); | 
 | 	pte = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; | 
 | 	     _pte++, _address += PAGE_SIZE) { | 
 | 		pte_t pteval = *_pte; | 
 | 		if (is_swap_pte(pteval)) { | 
 | 			if (++unmapped <= khugepaged_max_ptes_swap) { | 
 | 				continue; | 
 | 			} else { | 
 | 				result = SCAN_EXCEED_SWAP_PTE; | 
 | 				goto out_unmap; | 
 | 			} | 
 | 		} | 
 | 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { | 
 | 			if (!userfaultfd_armed(vma) && | 
 | 			    ++none_or_zero <= khugepaged_max_ptes_none) { | 
 | 				continue; | 
 | 			} else { | 
 | 				result = SCAN_EXCEED_NONE_PTE; | 
 | 				goto out_unmap; | 
 | 			} | 
 | 		} | 
 | 		if (!pte_present(pteval)) { | 
 | 			result = SCAN_PTE_NON_PRESENT; | 
 | 			goto out_unmap; | 
 | 		} | 
 | 		if (pte_write(pteval)) | 
 | 			writable = true; | 
 |  | 
 | 		page = vm_normal_page(vma, _address, pteval); | 
 | 		if (unlikely(!page)) { | 
 | 			result = SCAN_PAGE_NULL; | 
 | 			goto out_unmap; | 
 | 		} | 
 |  | 
 | 		/* TODO: teach khugepaged to collapse THP mapped with pte */ | 
 | 		if (PageCompound(page)) { | 
 | 			result = SCAN_PAGE_COMPOUND; | 
 | 			goto out_unmap; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Record which node the original page is from and save this | 
 | 		 * information to khugepaged_node_load[]. | 
 | 		 * Khupaged will allocate hugepage from the node has the max | 
 | 		 * hit record. | 
 | 		 */ | 
 | 		node = page_to_nid(page); | 
 | 		if (khugepaged_scan_abort(node)) { | 
 | 			result = SCAN_SCAN_ABORT; | 
 | 			goto out_unmap; | 
 | 		} | 
 | 		khugepaged_node_load[node]++; | 
 | 		if (!PageLRU(page)) { | 
 | 			result = SCAN_PAGE_LRU; | 
 | 			goto out_unmap; | 
 | 		} | 
 | 		if (PageLocked(page)) { | 
 | 			result = SCAN_PAGE_LOCK; | 
 | 			goto out_unmap; | 
 | 		} | 
 | 		if (!PageAnon(page)) { | 
 | 			result = SCAN_PAGE_ANON; | 
 | 			goto out_unmap; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * cannot use mapcount: can't collapse if there's a gup pin. | 
 | 		 * The page must only be referenced by the scanned process | 
 | 		 * and page swap cache. | 
 | 		 */ | 
 | 		if (page_count(page) != 1 + PageSwapCache(page)) { | 
 | 			result = SCAN_PAGE_COUNT; | 
 | 			goto out_unmap; | 
 | 		} | 
 | 		if (pte_young(pteval) || | 
 | 		    page_is_young(page) || PageReferenced(page) || | 
 | 		    mmu_notifier_test_young(vma->vm_mm, address)) | 
 | 			referenced++; | 
 | 	} | 
 | 	if (writable) { | 
 | 		if (referenced) { | 
 | 			result = SCAN_SUCCEED; | 
 | 			ret = 1; | 
 | 		} else { | 
 | 			result = SCAN_LACK_REFERENCED_PAGE; | 
 | 		} | 
 | 	} else { | 
 | 		result = SCAN_PAGE_RO; | 
 | 	} | 
 | out_unmap: | 
 | 	pte_unmap_unlock(pte, ptl); | 
 | 	if (ret) { | 
 | 		node = khugepaged_find_target_node(); | 
 | 		/* collapse_huge_page will return with the mmap_sem released */ | 
 | 		collapse_huge_page(mm, address, hpage, node, referenced); | 
 | 	} | 
 | out: | 
 | 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, | 
 | 				     none_or_zero, result, unmapped); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void collect_mm_slot(struct mm_slot *mm_slot) | 
 | { | 
 | 	struct mm_struct *mm = mm_slot->mm; | 
 |  | 
 | 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); | 
 |  | 
 | 	if (khugepaged_test_exit(mm)) { | 
 | 		/* free mm_slot */ | 
 | 		hash_del(&mm_slot->hash); | 
 | 		list_del(&mm_slot->mm_node); | 
 |  | 
 | 		/* | 
 | 		 * Not strictly needed because the mm exited already. | 
 | 		 * | 
 | 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); | 
 | 		 */ | 
 |  | 
 | 		/* khugepaged_mm_lock actually not necessary for the below */ | 
 | 		free_mm_slot(mm_slot); | 
 | 		mmdrop(mm); | 
 | 	} | 
 | } | 
 |  | 
 | #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) | 
 | static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	struct mm_struct *mm; | 
 | 	unsigned long addr; | 
 | 	pmd_t *pmd, _pmd; | 
 |  | 
 | 	i_mmap_lock_write(mapping); | 
 | 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { | 
 | 		/* probably overkill */ | 
 | 		if (vma->anon_vma) | 
 | 			continue; | 
 | 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | 
 | 		if (addr & ~HPAGE_PMD_MASK) | 
 | 			continue; | 
 | 		if (vma->vm_end < addr + HPAGE_PMD_SIZE) | 
 | 			continue; | 
 | 		mm = vma->vm_mm; | 
 | 		pmd = mm_find_pmd(mm, addr); | 
 | 		if (!pmd) | 
 | 			continue; | 
 | 		/* | 
 | 		 * We need exclusive mmap_sem to retract page table. | 
 | 		 * If trylock fails we would end up with pte-mapped THP after | 
 | 		 * re-fault. Not ideal, but it's more important to not disturb | 
 | 		 * the system too much. | 
 | 		 */ | 
 | 		if (down_write_trylock(&mm->mmap_sem)) { | 
 | 			if (!khugepaged_test_exit(mm)) { | 
 | 				spinlock_t *ptl = pmd_lock(mm, pmd); | 
 | 				/* assume page table is clear */ | 
 | 				_pmd = pmdp_collapse_flush(vma, addr, pmd); | 
 | 				spin_unlock(ptl); | 
 | 				atomic_long_dec(&mm->nr_ptes); | 
 | 				pte_free(mm, pmd_pgtable(_pmd)); | 
 | 			} | 
 | 			up_write(&mm->mmap_sem); | 
 | 		} | 
 | 	} | 
 | 	i_mmap_unlock_write(mapping); | 
 | } | 
 |  | 
 | /** | 
 |  * collapse_shmem - collapse small tmpfs/shmem pages into huge one. | 
 |  * | 
 |  * Basic scheme is simple, details are more complex: | 
 |  *  - allocate and lock a new huge page; | 
 |  *  - scan over radix tree replacing old pages the new one | 
 |  *    + swap in pages if necessary; | 
 |  *    + fill in gaps; | 
 |  *    + keep old pages around in case if rollback is required; | 
 |  *  - if replacing succeed: | 
 |  *    + copy data over; | 
 |  *    + free old pages; | 
 |  *    + unlock huge page; | 
 |  *  - if replacing failed; | 
 |  *    + put all pages back and unfreeze them; | 
 |  *    + restore gaps in the radix-tree; | 
 |  *    + unlock and free huge page; | 
 |  */ | 
 | static void collapse_shmem(struct mm_struct *mm, | 
 | 		struct address_space *mapping, pgoff_t start, | 
 | 		struct page **hpage, int node) | 
 | { | 
 | 	gfp_t gfp; | 
 | 	struct page *page, *new_page, *tmp; | 
 | 	struct mem_cgroup *memcg; | 
 | 	pgoff_t index, end = start + HPAGE_PMD_NR; | 
 | 	LIST_HEAD(pagelist); | 
 | 	struct radix_tree_iter iter; | 
 | 	void **slot; | 
 | 	int nr_none = 0, result = SCAN_SUCCEED; | 
 |  | 
 | 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); | 
 |  | 
 | 	/* Only allocate from the target node */ | 
 | 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; | 
 |  | 
 | 	new_page = khugepaged_alloc_page(hpage, gfp, node); | 
 | 	if (!new_page) { | 
 | 		result = SCAN_ALLOC_HUGE_PAGE_FAIL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Do not oom kill for khugepaged charges */ | 
 | 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp | __GFP_NORETRY, | 
 | 					   &memcg, true))) { | 
 | 		result = SCAN_CGROUP_CHARGE_FAIL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	__SetPageLocked(new_page); | 
 | 	__SetPageSwapBacked(new_page); | 
 | 	new_page->index = start; | 
 | 	new_page->mapping = mapping; | 
 |  | 
 | 	/* | 
 | 	 * At this point the new_page is locked and not up-to-date. | 
 | 	 * It's safe to insert it into the page cache, because nobody would | 
 | 	 * be able to map it or use it in another way until we unlock it. | 
 | 	 */ | 
 |  | 
 | 	index = start; | 
 | 	spin_lock_irq(&mapping->tree_lock); | 
 | 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { | 
 | 		int n = min(iter.index, end) - index; | 
 |  | 
 | 		/* | 
 | 		 * Stop if extent has been hole-punched, and is now completely | 
 | 		 * empty (the more obvious i_size_read() check would take an | 
 | 		 * irq-unsafe seqlock on 32-bit). | 
 | 		 */ | 
 | 		if (n >= HPAGE_PMD_NR) { | 
 | 			result = SCAN_TRUNCATED; | 
 | 			goto tree_locked; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Handle holes in the radix tree: charge it from shmem and | 
 | 		 * insert relevant subpage of new_page into the radix-tree. | 
 | 		 */ | 
 | 		if (n && !shmem_charge(mapping->host, n)) { | 
 | 			result = SCAN_FAIL; | 
 | 			goto tree_locked; | 
 | 		} | 
 | 		for (; index < min(iter.index, end); index++) { | 
 | 			radix_tree_insert(&mapping->page_tree, index, | 
 | 					new_page + (index % HPAGE_PMD_NR)); | 
 | 		} | 
 | 		nr_none += n; | 
 |  | 
 | 		/* We are done. */ | 
 | 		if (index >= end) | 
 | 			break; | 
 |  | 
 | 		page = radix_tree_deref_slot_protected(slot, | 
 | 				&mapping->tree_lock); | 
 | 		if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) { | 
 | 			spin_unlock_irq(&mapping->tree_lock); | 
 | 			/* swap in or instantiate fallocated page */ | 
 | 			if (shmem_getpage(mapping->host, index, &page, | 
 | 						SGP_NOHUGE)) { | 
 | 				result = SCAN_FAIL; | 
 | 				goto tree_unlocked; | 
 | 			} | 
 | 		} else if (trylock_page(page)) { | 
 | 			get_page(page); | 
 | 			spin_unlock_irq(&mapping->tree_lock); | 
 | 		} else { | 
 | 			result = SCAN_PAGE_LOCK; | 
 | 			goto tree_locked; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The page must be locked, so we can drop the tree_lock | 
 | 		 * without racing with truncate. | 
 | 		 */ | 
 | 		VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 		VM_BUG_ON_PAGE(!PageUptodate(page), page); | 
 |  | 
 | 		/* | 
 | 		 * If file was truncated then extended, or hole-punched, before | 
 | 		 * we locked the first page, then a THP might be there already. | 
 | 		 */ | 
 | 		if (PageTransCompound(page)) { | 
 | 			result = SCAN_PAGE_COMPOUND; | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		if (page_mapping(page) != mapping) { | 
 | 			result = SCAN_TRUNCATED; | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		if (isolate_lru_page(page)) { | 
 | 			result = SCAN_DEL_PAGE_LRU; | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		if (page_mapped(page)) | 
 | 			unmap_mapping_range(mapping, index << PAGE_SHIFT, | 
 | 					PAGE_SIZE, 0); | 
 |  | 
 | 		spin_lock_irq(&mapping->tree_lock); | 
 |  | 
 | 		slot = radix_tree_lookup_slot(&mapping->page_tree, index); | 
 | 		VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot, | 
 | 					&mapping->tree_lock), page); | 
 | 		VM_BUG_ON_PAGE(page_mapped(page), page); | 
 |  | 
 | 		/* | 
 | 		 * The page is expected to have page_count() == 3: | 
 | 		 *  - we hold a pin on it; | 
 | 		 *  - one reference from radix tree; | 
 | 		 *  - one from isolate_lru_page; | 
 | 		 */ | 
 | 		if (!page_ref_freeze(page, 3)) { | 
 | 			result = SCAN_PAGE_COUNT; | 
 | 			spin_unlock_irq(&mapping->tree_lock); | 
 | 			putback_lru_page(page); | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Add the page to the list to be able to undo the collapse if | 
 | 		 * something go wrong. | 
 | 		 */ | 
 | 		list_add_tail(&page->lru, &pagelist); | 
 |  | 
 | 		/* Finally, replace with the new page. */ | 
 | 		radix_tree_replace_slot(&mapping->page_tree, slot, | 
 | 				new_page + (index % HPAGE_PMD_NR)); | 
 |  | 
 | 		slot = radix_tree_iter_resume(slot, &iter); | 
 | 		index++; | 
 | 		continue; | 
 | out_unlock: | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 | 		goto tree_unlocked; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Handle hole in radix tree at the end of the range. | 
 | 	 * This code only triggers if there's nothing in radix tree | 
 | 	 * beyond 'end'. | 
 | 	 */ | 
 | 	if (index < end) { | 
 | 		int n = end - index; | 
 |  | 
 | 		/* Stop if extent has been truncated, and is now empty */ | 
 | 		if (n >= HPAGE_PMD_NR) { | 
 | 			result = SCAN_TRUNCATED; | 
 | 			goto tree_locked; | 
 | 		} | 
 | 		if (!shmem_charge(mapping->host, n)) { | 
 | 			result = SCAN_FAIL; | 
 | 			goto tree_locked; | 
 | 		} | 
 | 		for (; index < end; index++) { | 
 | 			radix_tree_insert(&mapping->page_tree, index, | 
 | 					new_page + (index % HPAGE_PMD_NR)); | 
 | 		} | 
 | 		nr_none += n; | 
 | 	} | 
 |  | 
 | 	__inc_node_page_state(new_page, NR_SHMEM_THPS); | 
 | 	if (nr_none) { | 
 | 		struct zone *zone = page_zone(new_page); | 
 |  | 
 | 		__mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none); | 
 | 		__mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none); | 
 | 	} | 
 |  | 
 | tree_locked: | 
 | 	spin_unlock_irq(&mapping->tree_lock); | 
 | tree_unlocked: | 
 |  | 
 | 	if (result == SCAN_SUCCEED) { | 
 | 		/* | 
 | 		 * Replacing old pages with new one has succeed, now we need to | 
 | 		 * copy the content and free old pages. | 
 | 		 */ | 
 | 		index = start; | 
 | 		list_for_each_entry_safe(page, tmp, &pagelist, lru) { | 
 | 			while (index < page->index) { | 
 | 				clear_highpage(new_page + (index % HPAGE_PMD_NR)); | 
 | 				index++; | 
 | 			} | 
 | 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR), | 
 | 					page); | 
 | 			list_del(&page->lru); | 
 | 			page->mapping = NULL; | 
 | 			page_ref_unfreeze(page, 1); | 
 | 			ClearPageActive(page); | 
 | 			ClearPageUnevictable(page); | 
 | 			unlock_page(page); | 
 | 			put_page(page); | 
 | 			index++; | 
 | 		} | 
 | 		while (index < end) { | 
 | 			clear_highpage(new_page + (index % HPAGE_PMD_NR)); | 
 | 			index++; | 
 | 		} | 
 |  | 
 | 		SetPageUptodate(new_page); | 
 | 		page_ref_add(new_page, HPAGE_PMD_NR - 1); | 
 | 		set_page_dirty(new_page); | 
 | 		mem_cgroup_commit_charge(new_page, memcg, false, true); | 
 | 		lru_cache_add_anon(new_page); | 
 |  | 
 | 		/* | 
 | 		 * Remove pte page tables, so we can re-fault the page as huge. | 
 | 		 */ | 
 | 		retract_page_tables(mapping, start); | 
 | 		*hpage = NULL; | 
 | 	} else { | 
 | 		/* Something went wrong: rollback changes to the radix-tree */ | 
 | 		spin_lock_irq(&mapping->tree_lock); | 
 | 		mapping->nrpages -= nr_none; | 
 | 		shmem_uncharge(mapping->host, nr_none); | 
 |  | 
 | 		radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, | 
 | 				start) { | 
 | 			if (iter.index >= end) | 
 | 				break; | 
 | 			page = list_first_entry_or_null(&pagelist, | 
 | 					struct page, lru); | 
 | 			if (!page || iter.index < page->index) { | 
 | 				if (!nr_none) | 
 | 					break; | 
 | 				nr_none--; | 
 | 				/* Put holes back where they were */ | 
 | 				radix_tree_delete(&mapping->page_tree, | 
 | 						  iter.index); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			VM_BUG_ON_PAGE(page->index != iter.index, page); | 
 |  | 
 | 			/* Unfreeze the page. */ | 
 | 			list_del(&page->lru); | 
 | 			page_ref_unfreeze(page, 2); | 
 | 			radix_tree_replace_slot(&mapping->page_tree, | 
 | 						slot, page); | 
 | 			slot = radix_tree_iter_resume(slot, &iter); | 
 | 			spin_unlock_irq(&mapping->tree_lock); | 
 | 			unlock_page(page); | 
 | 			putback_lru_page(page); | 
 | 			spin_lock_irq(&mapping->tree_lock); | 
 | 		} | 
 | 		VM_BUG_ON(nr_none); | 
 | 		spin_unlock_irq(&mapping->tree_lock); | 
 |  | 
 | 		mem_cgroup_cancel_charge(new_page, memcg, true); | 
 | 		new_page->mapping = NULL; | 
 | 	} | 
 |  | 
 | 	unlock_page(new_page); | 
 | out: | 
 | 	VM_BUG_ON(!list_empty(&pagelist)); | 
 | 	/* TODO: tracepoints */ | 
 | } | 
 |  | 
 | static void khugepaged_scan_shmem(struct mm_struct *mm, | 
 | 		struct address_space *mapping, | 
 | 		pgoff_t start, struct page **hpage) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	struct radix_tree_iter iter; | 
 | 	void **slot; | 
 | 	int present, swap; | 
 | 	int node = NUMA_NO_NODE; | 
 | 	int result = SCAN_SUCCEED; | 
 |  | 
 | 	present = 0; | 
 | 	swap = 0; | 
 | 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); | 
 | 	rcu_read_lock(); | 
 | 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { | 
 | 		if (iter.index >= start + HPAGE_PMD_NR) | 
 | 			break; | 
 |  | 
 | 		page = radix_tree_deref_slot(slot); | 
 | 		if (radix_tree_deref_retry(page)) { | 
 | 			slot = radix_tree_iter_retry(&iter); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (radix_tree_exception(page)) { | 
 | 			if (++swap > khugepaged_max_ptes_swap) { | 
 | 				result = SCAN_EXCEED_SWAP_PTE; | 
 | 				break; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (PageTransCompound(page)) { | 
 | 			result = SCAN_PAGE_COMPOUND; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		node = page_to_nid(page); | 
 | 		if (khugepaged_scan_abort(node)) { | 
 | 			result = SCAN_SCAN_ABORT; | 
 | 			break; | 
 | 		} | 
 | 		khugepaged_node_load[node]++; | 
 |  | 
 | 		if (!PageLRU(page)) { | 
 | 			result = SCAN_PAGE_LRU; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (page_count(page) != 1 + page_mapcount(page)) { | 
 | 			result = SCAN_PAGE_COUNT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We probably should check if the page is referenced here, but | 
 | 		 * nobody would transfer pte_young() to PageReferenced() for us. | 
 | 		 * And rmap walk here is just too costly... | 
 | 		 */ | 
 |  | 
 | 		present++; | 
 |  | 
 | 		if (need_resched()) { | 
 | 			slot = radix_tree_iter_resume(slot, &iter); | 
 | 			cond_resched_rcu(); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (result == SCAN_SUCCEED) { | 
 | 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { | 
 | 			result = SCAN_EXCEED_NONE_PTE; | 
 | 		} else { | 
 | 			node = khugepaged_find_target_node(); | 
 | 			collapse_shmem(mm, mapping, start, hpage, node); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* TODO: tracepoints */ | 
 | } | 
 | #else | 
 | static void khugepaged_scan_shmem(struct mm_struct *mm, | 
 | 		struct address_space *mapping, | 
 | 		pgoff_t start, struct page **hpage) | 
 | { | 
 | 	BUILD_BUG(); | 
 | } | 
 | #endif | 
 |  | 
 | static unsigned int khugepaged_scan_mm_slot(unsigned int pages, | 
 | 					    struct page **hpage) | 
 | 	__releases(&khugepaged_mm_lock) | 
 | 	__acquires(&khugepaged_mm_lock) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 | 	struct mm_struct *mm; | 
 | 	struct vm_area_struct *vma; | 
 | 	int progress = 0; | 
 |  | 
 | 	VM_BUG_ON(!pages); | 
 | 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); | 
 |  | 
 | 	if (khugepaged_scan.mm_slot) | 
 | 		mm_slot = khugepaged_scan.mm_slot; | 
 | 	else { | 
 | 		mm_slot = list_entry(khugepaged_scan.mm_head.next, | 
 | 				     struct mm_slot, mm_node); | 
 | 		khugepaged_scan.address = 0; | 
 | 		khugepaged_scan.mm_slot = mm_slot; | 
 | 	} | 
 | 	spin_unlock(&khugepaged_mm_lock); | 
 |  | 
 | 	mm = mm_slot->mm; | 
 | 	/* | 
 | 	 * Don't wait for semaphore (to avoid long wait times).  Just move to | 
 | 	 * the next mm on the list. | 
 | 	 */ | 
 | 	vma = NULL; | 
 | 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) | 
 | 		goto breakouterloop_mmap_sem; | 
 | 	if (likely(!khugepaged_test_exit(mm))) | 
 | 		vma = find_vma(mm, khugepaged_scan.address); | 
 |  | 
 | 	progress++; | 
 | 	for (; vma; vma = vma->vm_next) { | 
 | 		unsigned long hstart, hend; | 
 |  | 
 | 		cond_resched(); | 
 | 		if (unlikely(khugepaged_test_exit(mm))) { | 
 | 			progress++; | 
 | 			break; | 
 | 		} | 
 | 		if (!hugepage_vma_check(vma)) { | 
 | skip: | 
 | 			progress++; | 
 | 			continue; | 
 | 		} | 
 | 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | 
 | 		hend = vma->vm_end & HPAGE_PMD_MASK; | 
 | 		if (hstart >= hend) | 
 | 			goto skip; | 
 | 		if (khugepaged_scan.address > hend) | 
 | 			goto skip; | 
 | 		if (khugepaged_scan.address < hstart) | 
 | 			khugepaged_scan.address = hstart; | 
 | 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); | 
 |  | 
 | 		while (khugepaged_scan.address < hend) { | 
 | 			int ret; | 
 | 			cond_resched(); | 
 | 			if (unlikely(khugepaged_test_exit(mm))) | 
 | 				goto breakouterloop; | 
 |  | 
 | 			VM_BUG_ON(khugepaged_scan.address < hstart || | 
 | 				  khugepaged_scan.address + HPAGE_PMD_SIZE > | 
 | 				  hend); | 
 | 			if (shmem_file(vma->vm_file)) { | 
 | 				struct file *file; | 
 | 				pgoff_t pgoff = linear_page_index(vma, | 
 | 						khugepaged_scan.address); | 
 | 				if (!shmem_huge_enabled(vma)) | 
 | 					goto skip; | 
 | 				file = get_file(vma->vm_file); | 
 | 				up_read(&mm->mmap_sem); | 
 | 				ret = 1; | 
 | 				khugepaged_scan_shmem(mm, file->f_mapping, | 
 | 						pgoff, hpage); | 
 | 				fput(file); | 
 | 			} else { | 
 | 				ret = khugepaged_scan_pmd(mm, vma, | 
 | 						khugepaged_scan.address, | 
 | 						hpage); | 
 | 			} | 
 | 			/* move to next address */ | 
 | 			khugepaged_scan.address += HPAGE_PMD_SIZE; | 
 | 			progress += HPAGE_PMD_NR; | 
 | 			if (ret) | 
 | 				/* we released mmap_sem so break loop */ | 
 | 				goto breakouterloop_mmap_sem; | 
 | 			if (progress >= pages) | 
 | 				goto breakouterloop; | 
 | 		} | 
 | 	} | 
 | breakouterloop: | 
 | 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ | 
 | breakouterloop_mmap_sem: | 
 |  | 
 | 	spin_lock(&khugepaged_mm_lock); | 
 | 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); | 
 | 	/* | 
 | 	 * Release the current mm_slot if this mm is about to die, or | 
 | 	 * if we scanned all vmas of this mm. | 
 | 	 */ | 
 | 	if (khugepaged_test_exit(mm) || !vma) { | 
 | 		/* | 
 | 		 * Make sure that if mm_users is reaching zero while | 
 | 		 * khugepaged runs here, khugepaged_exit will find | 
 | 		 * mm_slot not pointing to the exiting mm. | 
 | 		 */ | 
 | 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { | 
 | 			khugepaged_scan.mm_slot = list_entry( | 
 | 				mm_slot->mm_node.next, | 
 | 				struct mm_slot, mm_node); | 
 | 			khugepaged_scan.address = 0; | 
 | 		} else { | 
 | 			khugepaged_scan.mm_slot = NULL; | 
 | 			khugepaged_full_scans++; | 
 | 		} | 
 |  | 
 | 		collect_mm_slot(mm_slot); | 
 | 	} | 
 |  | 
 | 	return progress; | 
 | } | 
 |  | 
 | static int khugepaged_has_work(void) | 
 | { | 
 | 	return !list_empty(&khugepaged_scan.mm_head) && | 
 | 		khugepaged_enabled(); | 
 | } | 
 |  | 
 | static int khugepaged_wait_event(void) | 
 | { | 
 | 	return !list_empty(&khugepaged_scan.mm_head) || | 
 | 		kthread_should_stop(); | 
 | } | 
 |  | 
 | static void khugepaged_do_scan(void) | 
 | { | 
 | 	struct page *hpage = NULL; | 
 | 	unsigned int progress = 0, pass_through_head = 0; | 
 | 	unsigned int pages = khugepaged_pages_to_scan; | 
 | 	bool wait = true; | 
 |  | 
 | 	barrier(); /* write khugepaged_pages_to_scan to local stack */ | 
 |  | 
 | 	while (progress < pages) { | 
 | 		if (!khugepaged_prealloc_page(&hpage, &wait)) | 
 | 			break; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		if (unlikely(kthread_should_stop() || try_to_freeze())) | 
 | 			break; | 
 |  | 
 | 		spin_lock(&khugepaged_mm_lock); | 
 | 		if (!khugepaged_scan.mm_slot) | 
 | 			pass_through_head++; | 
 | 		if (khugepaged_has_work() && | 
 | 		    pass_through_head < 2) | 
 | 			progress += khugepaged_scan_mm_slot(pages - progress, | 
 | 							    &hpage); | 
 | 		else | 
 | 			progress = pages; | 
 | 		spin_unlock(&khugepaged_mm_lock); | 
 | 	} | 
 |  | 
 | 	if (!IS_ERR_OR_NULL(hpage)) | 
 | 		put_page(hpage); | 
 | } | 
 |  | 
 | static bool khugepaged_should_wakeup(void) | 
 | { | 
 | 	return kthread_should_stop() || | 
 | 	       time_after_eq(jiffies, khugepaged_sleep_expire); | 
 | } | 
 |  | 
 | static void khugepaged_wait_work(void) | 
 | { | 
 | 	if (khugepaged_has_work()) { | 
 | 		const unsigned long scan_sleep_jiffies = | 
 | 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs); | 
 |  | 
 | 		if (!scan_sleep_jiffies) | 
 | 			return; | 
 |  | 
 | 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; | 
 | 		wait_event_freezable_timeout(khugepaged_wait, | 
 | 					     khugepaged_should_wakeup(), | 
 | 					     scan_sleep_jiffies); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (khugepaged_enabled()) | 
 | 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); | 
 | } | 
 |  | 
 | static int khugepaged(void *none) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 |  | 
 | 	set_freezable(); | 
 | 	set_user_nice(current, MAX_NICE); | 
 |  | 
 | 	while (!kthread_should_stop()) { | 
 | 		khugepaged_do_scan(); | 
 | 		khugepaged_wait_work(); | 
 | 	} | 
 |  | 
 | 	spin_lock(&khugepaged_mm_lock); | 
 | 	mm_slot = khugepaged_scan.mm_slot; | 
 | 	khugepaged_scan.mm_slot = NULL; | 
 | 	if (mm_slot) | 
 | 		collect_mm_slot(mm_slot); | 
 | 	spin_unlock(&khugepaged_mm_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void set_recommended_min_free_kbytes(void) | 
 | { | 
 | 	struct zone *zone; | 
 | 	int nr_zones = 0; | 
 | 	unsigned long recommended_min; | 
 |  | 
 | 	for_each_populated_zone(zone) | 
 | 		nr_zones++; | 
 |  | 
 | 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */ | 
 | 	recommended_min = pageblock_nr_pages * nr_zones * 2; | 
 |  | 
 | 	/* | 
 | 	 * Make sure that on average at least two pageblocks are almost free | 
 | 	 * of another type, one for a migratetype to fall back to and a | 
 | 	 * second to avoid subsequent fallbacks of other types There are 3 | 
 | 	 * MIGRATE_TYPES we care about. | 
 | 	 */ | 
 | 	recommended_min += pageblock_nr_pages * nr_zones * | 
 | 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; | 
 |  | 
 | 	/* don't ever allow to reserve more than 5% of the lowmem */ | 
 | 	recommended_min = min(recommended_min, | 
 | 			      (unsigned long) nr_free_buffer_pages() / 20); | 
 | 	recommended_min <<= (PAGE_SHIFT-10); | 
 |  | 
 | 	if (recommended_min > min_free_kbytes) { | 
 | 		if (user_min_free_kbytes >= 0) | 
 | 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", | 
 | 				min_free_kbytes, recommended_min); | 
 |  | 
 | 		min_free_kbytes = recommended_min; | 
 | 	} | 
 | 	setup_per_zone_wmarks(); | 
 | } | 
 |  | 
 | int start_stop_khugepaged(void) | 
 | { | 
 | 	static struct task_struct *khugepaged_thread __read_mostly; | 
 | 	static DEFINE_MUTEX(khugepaged_mutex); | 
 | 	int err = 0; | 
 |  | 
 | 	mutex_lock(&khugepaged_mutex); | 
 | 	if (khugepaged_enabled()) { | 
 | 		if (!khugepaged_thread) | 
 | 			khugepaged_thread = kthread_run(khugepaged, NULL, | 
 | 							"khugepaged"); | 
 | 		if (IS_ERR(khugepaged_thread)) { | 
 | 			pr_err("khugepaged: kthread_run(khugepaged) failed\n"); | 
 | 			err = PTR_ERR(khugepaged_thread); | 
 | 			khugepaged_thread = NULL; | 
 | 			goto fail; | 
 | 		} | 
 |  | 
 | 		if (!list_empty(&khugepaged_scan.mm_head)) | 
 | 			wake_up_interruptible(&khugepaged_wait); | 
 |  | 
 | 		set_recommended_min_free_kbytes(); | 
 | 	} else if (khugepaged_thread) { | 
 | 		kthread_stop(khugepaged_thread); | 
 | 		khugepaged_thread = NULL; | 
 | 	} | 
 | fail: | 
 | 	mutex_unlock(&khugepaged_mutex); | 
 | 	return err; | 
 | } |