| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  *  linux/mm/swap_state.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  *  Swap reorganised 29.12.95, Stephen Tweedie | 
 |  * | 
 |  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie | 
 |  */ | 
 | #include <linux/mm.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/init.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/swap_slots.h> | 
 | #include <linux/huge_mm.h> | 
 |  | 
 | #include <asm/pgtable.h> | 
 | #include "internal.h" | 
 |  | 
 | /* | 
 |  * swapper_space is a fiction, retained to simplify the path through | 
 |  * vmscan's shrink_page_list. | 
 |  */ | 
 | static const struct address_space_operations swap_aops = { | 
 | 	.writepage	= swap_writepage, | 
 | 	.set_page_dirty	= swap_set_page_dirty, | 
 | #ifdef CONFIG_MIGRATION | 
 | 	.migratepage	= migrate_page, | 
 | #endif | 
 | }; | 
 |  | 
 | struct address_space *swapper_spaces[MAX_SWAPFILES]; | 
 | static unsigned int nr_swapper_spaces[MAX_SWAPFILES]; | 
 | bool swap_vma_readahead = true; | 
 |  | 
 | #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2) | 
 | #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1) | 
 | #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK | 
 | #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK) | 
 |  | 
 | #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK) | 
 | #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) | 
 | #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK) | 
 |  | 
 | #define SWAP_RA_VAL(addr, win, hits)				\ | 
 | 	(((addr) & PAGE_MASK) |					\ | 
 | 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\ | 
 | 	 ((hits) & SWAP_RA_HITS_MASK)) | 
 |  | 
 | /* Initial readahead hits is 4 to start up with a small window */ | 
 | #define GET_SWAP_RA_VAL(vma)					\ | 
 | 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4) | 
 |  | 
 | #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0) | 
 | #define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0) | 
 |  | 
 | static struct { | 
 | 	unsigned long add_total; | 
 | 	unsigned long del_total; | 
 | 	unsigned long find_success; | 
 | 	unsigned long find_total; | 
 | } swap_cache_info; | 
 |  | 
 | unsigned long total_swapcache_pages(void) | 
 | { | 
 | 	unsigned int i, j, nr; | 
 | 	unsigned long ret = 0; | 
 | 	struct address_space *spaces; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for (i = 0; i < MAX_SWAPFILES; i++) { | 
 | 		/* | 
 | 		 * The corresponding entries in nr_swapper_spaces and | 
 | 		 * swapper_spaces will be reused only after at least | 
 | 		 * one grace period.  So it is impossible for them | 
 | 		 * belongs to different usage. | 
 | 		 */ | 
 | 		nr = nr_swapper_spaces[i]; | 
 | 		spaces = rcu_dereference(swapper_spaces[i]); | 
 | 		if (!nr || !spaces) | 
 | 			continue; | 
 | 		for (j = 0; j < nr; j++) | 
 | 			ret += spaces[j].nrpages; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); | 
 |  | 
 | void show_swap_cache_info(void) | 
 | { | 
 | 	printk("%lu pages in swap cache\n", total_swapcache_pages()); | 
 | 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", | 
 | 		swap_cache_info.add_total, swap_cache_info.del_total, | 
 | 		swap_cache_info.find_success, swap_cache_info.find_total); | 
 | 	printk("Free swap  = %ldkB\n", | 
 | 		get_nr_swap_pages() << (PAGE_SHIFT - 10)); | 
 | 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); | 
 | } | 
 |  | 
 | /* | 
 |  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, | 
 |  * but sets SwapCache flag and private instead of mapping and index. | 
 |  */ | 
 | int __add_to_swap_cache(struct page *page, swp_entry_t entry) | 
 | { | 
 | 	int error, i, nr = hpage_nr_pages(page); | 
 | 	struct address_space *address_space; | 
 | 	pgoff_t idx = swp_offset(entry); | 
 |  | 
 | 	VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 	VM_BUG_ON_PAGE(PageSwapCache(page), page); | 
 | 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | 
 |  | 
 | 	page_ref_add(page, nr); | 
 | 	SetPageSwapCache(page); | 
 |  | 
 | 	address_space = swap_address_space(entry); | 
 | 	spin_lock_irq(&address_space->tree_lock); | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		set_page_private(page + i, entry.val + i); | 
 | 		error = radix_tree_insert(&address_space->page_tree, | 
 | 					  idx + i, page + i); | 
 | 		if (unlikely(error)) | 
 | 			break; | 
 | 	} | 
 | 	if (likely(!error)) { | 
 | 		address_space->nrpages += nr; | 
 | 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); | 
 | 		ADD_CACHE_INFO(add_total, nr); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Only the context which have set SWAP_HAS_CACHE flag | 
 | 		 * would call add_to_swap_cache(). | 
 | 		 * So add_to_swap_cache() doesn't returns -EEXIST. | 
 | 		 */ | 
 | 		VM_BUG_ON(error == -EEXIST); | 
 | 		set_page_private(page + i, 0UL); | 
 | 		while (i--) { | 
 | 			radix_tree_delete(&address_space->page_tree, idx + i); | 
 | 			set_page_private(page + i, 0UL); | 
 | 		} | 
 | 		ClearPageSwapCache(page); | 
 | 		page_ref_sub(page, nr); | 
 | 	} | 
 | 	spin_unlock_irq(&address_space->tree_lock); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 |  | 
 | int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page)); | 
 | 	if (!error) { | 
 | 		error = __add_to_swap_cache(page, entry); | 
 | 		radix_tree_preload_end(); | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * This must be called only on pages that have | 
 |  * been verified to be in the swap cache. | 
 |  */ | 
 | void __delete_from_swap_cache(struct page *page) | 
 | { | 
 | 	struct address_space *address_space; | 
 | 	int i, nr = hpage_nr_pages(page); | 
 | 	swp_entry_t entry; | 
 | 	pgoff_t idx; | 
 |  | 
 | 	VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 	VM_BUG_ON_PAGE(!PageSwapCache(page), page); | 
 | 	VM_BUG_ON_PAGE(PageWriteback(page), page); | 
 |  | 
 | 	entry.val = page_private(page); | 
 | 	address_space = swap_address_space(entry); | 
 | 	idx = swp_offset(entry); | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		radix_tree_delete(&address_space->page_tree, idx + i); | 
 | 		set_page_private(page + i, 0); | 
 | 	} | 
 | 	ClearPageSwapCache(page); | 
 | 	address_space->nrpages -= nr; | 
 | 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); | 
 | 	ADD_CACHE_INFO(del_total, nr); | 
 | } | 
 |  | 
 | /** | 
 |  * add_to_swap - allocate swap space for a page | 
 |  * @page: page we want to move to swap | 
 |  * | 
 |  * Allocate swap space for the page and add the page to the | 
 |  * swap cache.  Caller needs to hold the page lock.  | 
 |  */ | 
 | int add_to_swap(struct page *page) | 
 | { | 
 | 	swp_entry_t entry; | 
 | 	int err; | 
 |  | 
 | 	VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 	VM_BUG_ON_PAGE(!PageUptodate(page), page); | 
 |  | 
 | 	entry = get_swap_page(page); | 
 | 	if (!entry.val) | 
 | 		return 0; | 
 |  | 
 | 	if (mem_cgroup_try_charge_swap(page, entry)) | 
 | 		goto fail; | 
 |  | 
 | 	/* | 
 | 	 * Radix-tree node allocations from PF_MEMALLOC contexts could | 
 | 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC | 
 | 	 * stops emergency reserves from being allocated. | 
 | 	 * | 
 | 	 * TODO: this could cause a theoretical memory reclaim | 
 | 	 * deadlock in the swap out path. | 
 | 	 */ | 
 | 	/* | 
 | 	 * Add it to the swap cache. | 
 | 	 */ | 
 | 	err = add_to_swap_cache(page, entry, | 
 | 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); | 
 | 	/* -ENOMEM radix-tree allocation failure */ | 
 | 	if (err) | 
 | 		/* | 
 | 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely | 
 | 		 * clear SWAP_HAS_CACHE flag. | 
 | 		 */ | 
 | 		goto fail; | 
 | 	/* | 
 | 	 * Normally the page will be dirtied in unmap because its pte should be | 
 | 	 * dirty. A special case is MADV_FREE page. The page'e pte could have | 
 | 	 * dirty bit cleared but the page's SwapBacked bit is still set because | 
 | 	 * clearing the dirty bit and SwapBacked bit has no lock protected. For | 
 | 	 * such page, unmap will not set dirty bit for it, so page reclaim will | 
 | 	 * not write the page out. This can cause data corruption when the page | 
 | 	 * is swap in later. Always setting the dirty bit for the page solves | 
 | 	 * the problem. | 
 | 	 */ | 
 | 	set_page_dirty(page); | 
 |  | 
 | 	return 1; | 
 |  | 
 | fail: | 
 | 	put_swap_page(page, entry); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This must be called only on pages that have | 
 |  * been verified to be in the swap cache and locked. | 
 |  * It will never put the page into the free list, | 
 |  * the caller has a reference on the page. | 
 |  */ | 
 | void delete_from_swap_cache(struct page *page) | 
 | { | 
 | 	swp_entry_t entry; | 
 | 	struct address_space *address_space; | 
 |  | 
 | 	entry.val = page_private(page); | 
 |  | 
 | 	address_space = swap_address_space(entry); | 
 | 	spin_lock_irq(&address_space->tree_lock); | 
 | 	__delete_from_swap_cache(page); | 
 | 	spin_unlock_irq(&address_space->tree_lock); | 
 |  | 
 | 	put_swap_page(page, entry); | 
 | 	page_ref_sub(page, hpage_nr_pages(page)); | 
 | } | 
 |  | 
 | /*  | 
 |  * If we are the only user, then try to free up the swap cache.  | 
 |  *  | 
 |  * Its ok to check for PageSwapCache without the page lock | 
 |  * here because we are going to recheck again inside | 
 |  * try_to_free_swap() _with_ the lock. | 
 |  * 					- Marcelo | 
 |  */ | 
 | static inline void free_swap_cache(struct page *page) | 
 | { | 
 | 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { | 
 | 		try_to_free_swap(page); | 
 | 		unlock_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | /*  | 
 |  * Perform a free_page(), also freeing any swap cache associated with | 
 |  * this page if it is the last user of the page. | 
 |  */ | 
 | void free_page_and_swap_cache(struct page *page) | 
 | { | 
 | 	free_swap_cache(page); | 
 | 	if (!is_huge_zero_page(page)) | 
 | 		put_page(page); | 
 | } | 
 |  | 
 | /* | 
 |  * Passed an array of pages, drop them all from swapcache and then release | 
 |  * them.  They are removed from the LRU and freed if this is their last use. | 
 |  */ | 
 | void free_pages_and_swap_cache(struct page **pages, int nr) | 
 | { | 
 | 	struct page **pagep = pages; | 
 | 	int i; | 
 |  | 
 | 	lru_add_drain(); | 
 | 	for (i = 0; i < nr; i++) | 
 | 		free_swap_cache(pagep[i]); | 
 | 	release_pages(pagep, nr, false); | 
 | } | 
 |  | 
 | /* | 
 |  * Lookup a swap entry in the swap cache. A found page will be returned | 
 |  * unlocked and with its refcount incremented - we rely on the kernel | 
 |  * lock getting page table operations atomic even if we drop the page | 
 |  * lock before returning. | 
 |  */ | 
 | struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, | 
 | 			       unsigned long addr) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned long ra_info; | 
 | 	int win, hits, readahead; | 
 |  | 
 | 	page = find_get_page(swap_address_space(entry), swp_offset(entry)); | 
 |  | 
 | 	INC_CACHE_INFO(find_total); | 
 | 	if (page) { | 
 | 		INC_CACHE_INFO(find_success); | 
 | 		if (unlikely(PageTransCompound(page))) | 
 | 			return page; | 
 | 		readahead = TestClearPageReadahead(page); | 
 | 		if (vma) { | 
 | 			ra_info = GET_SWAP_RA_VAL(vma); | 
 | 			win = SWAP_RA_WIN(ra_info); | 
 | 			hits = SWAP_RA_HITS(ra_info); | 
 | 			if (readahead) | 
 | 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); | 
 | 			atomic_long_set(&vma->swap_readahead_info, | 
 | 					SWAP_RA_VAL(addr, win, hits)); | 
 | 		} | 
 | 		if (readahead) { | 
 | 			count_vm_event(SWAP_RA_HIT); | 
 | 			if (!vma) | 
 | 				atomic_inc(&swapin_readahead_hits); | 
 | 		} | 
 | 	} | 
 | 	return page; | 
 | } | 
 |  | 
 | struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | 
 | 			struct vm_area_struct *vma, unsigned long addr, | 
 | 			bool *new_page_allocated) | 
 | { | 
 | 	struct page *found_page, *new_page = NULL; | 
 | 	struct address_space *swapper_space = swap_address_space(entry); | 
 | 	int err; | 
 | 	*new_page_allocated = false; | 
 |  | 
 | 	do { | 
 | 		/* | 
 | 		 * First check the swap cache.  Since this is normally | 
 | 		 * called after lookup_swap_cache() failed, re-calling | 
 | 		 * that would confuse statistics. | 
 | 		 */ | 
 | 		found_page = find_get_page(swapper_space, swp_offset(entry)); | 
 | 		if (found_page) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Just skip read ahead for unused swap slot. | 
 | 		 * During swap_off when swap_slot_cache is disabled, | 
 | 		 * we have to handle the race between putting | 
 | 		 * swap entry in swap cache and marking swap slot | 
 | 		 * as SWAP_HAS_CACHE.  That's done in later part of code or | 
 | 		 * else swap_off will be aborted if we return NULL. | 
 | 		 */ | 
 | 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Get a new page to read into from swap. | 
 | 		 */ | 
 | 		if (!new_page) { | 
 | 			new_page = alloc_page_vma(gfp_mask, vma, addr); | 
 | 			if (!new_page) | 
 | 				break;		/* Out of memory */ | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * call radix_tree_preload() while we can wait. | 
 | 		 */ | 
 | 		err = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK); | 
 | 		if (err) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Swap entry may have been freed since our caller observed it. | 
 | 		 */ | 
 | 		err = swapcache_prepare(entry); | 
 | 		if (err == -EEXIST) { | 
 | 			radix_tree_preload_end(); | 
 | 			/* | 
 | 			 * We might race against get_swap_page() and stumble | 
 | 			 * across a SWAP_HAS_CACHE swap_map entry whose page | 
 | 			 * has not been brought into the swapcache yet. | 
 | 			 */ | 
 | 			cond_resched(); | 
 | 			continue; | 
 | 		} | 
 | 		if (err) {		/* swp entry is obsolete ? */ | 
 | 			radix_tree_preload_end(); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */ | 
 | 		__SetPageLocked(new_page); | 
 | 		__SetPageSwapBacked(new_page); | 
 | 		err = __add_to_swap_cache(new_page, entry); | 
 | 		if (likely(!err)) { | 
 | 			radix_tree_preload_end(); | 
 | 			/* | 
 | 			 * Initiate read into locked page and return. | 
 | 			 */ | 
 | 			lru_cache_add_anon(new_page); | 
 | 			*new_page_allocated = true; | 
 | 			return new_page; | 
 | 		} | 
 | 		radix_tree_preload_end(); | 
 | 		__ClearPageLocked(new_page); | 
 | 		/* | 
 | 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely | 
 | 		 * clear SWAP_HAS_CACHE flag. | 
 | 		 */ | 
 | 		put_swap_page(new_page, entry); | 
 | 	} while (err != -ENOMEM); | 
 |  | 
 | 	if (new_page) | 
 | 		put_page(new_page); | 
 | 	return found_page; | 
 | } | 
 |  | 
 | /* | 
 |  * Locate a page of swap in physical memory, reserving swap cache space | 
 |  * and reading the disk if it is not already cached. | 
 |  * A failure return means that either the page allocation failed or that | 
 |  * the swap entry is no longer in use. | 
 |  */ | 
 | struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | 
 | 		struct vm_area_struct *vma, unsigned long addr, bool do_poll) | 
 | { | 
 | 	bool page_was_allocated; | 
 | 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask, | 
 | 			vma, addr, &page_was_allocated); | 
 |  | 
 | 	if (page_was_allocated) | 
 | 		swap_readpage(retpage, do_poll); | 
 |  | 
 | 	return retpage; | 
 | } | 
 |  | 
 | static unsigned int __swapin_nr_pages(unsigned long prev_offset, | 
 | 				      unsigned long offset, | 
 | 				      int hits, | 
 | 				      int max_pages, | 
 | 				      int prev_win) | 
 | { | 
 | 	unsigned int pages, last_ra; | 
 |  | 
 | 	/* | 
 | 	 * This heuristic has been found to work well on both sequential and | 
 | 	 * random loads, swapping to hard disk or to SSD: please don't ask | 
 | 	 * what the "+ 2" means, it just happens to work well, that's all. | 
 | 	 */ | 
 | 	pages = hits + 2; | 
 | 	if (pages == 2) { | 
 | 		/* | 
 | 		 * We can have no readahead hits to judge by: but must not get | 
 | 		 * stuck here forever, so check for an adjacent offset instead | 
 | 		 * (and don't even bother to check whether swap type is same). | 
 | 		 */ | 
 | 		if (offset != prev_offset + 1 && offset != prev_offset - 1) | 
 | 			pages = 1; | 
 | 	} else { | 
 | 		unsigned int roundup = 4; | 
 | 		while (roundup < pages) | 
 | 			roundup <<= 1; | 
 | 		pages = roundup; | 
 | 	} | 
 |  | 
 | 	if (pages > max_pages) | 
 | 		pages = max_pages; | 
 |  | 
 | 	/* Don't shrink readahead too fast */ | 
 | 	last_ra = prev_win / 2; | 
 | 	if (pages < last_ra) | 
 | 		pages = last_ra; | 
 |  | 
 | 	return pages; | 
 | } | 
 |  | 
 | static unsigned long swapin_nr_pages(unsigned long offset) | 
 | { | 
 | 	static unsigned long prev_offset; | 
 | 	unsigned int hits, pages, max_pages; | 
 | 	static atomic_t last_readahead_pages; | 
 |  | 
 | 	max_pages = 1 << READ_ONCE(page_cluster); | 
 | 	if (max_pages <= 1) | 
 | 		return 1; | 
 |  | 
 | 	hits = atomic_xchg(&swapin_readahead_hits, 0); | 
 | 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, | 
 | 				  max_pages, | 
 | 				  atomic_read(&last_readahead_pages)); | 
 | 	if (!hits) | 
 | 		WRITE_ONCE(prev_offset, offset); | 
 | 	atomic_set(&last_readahead_pages, pages); | 
 |  | 
 | 	return pages; | 
 | } | 
 |  | 
 | /** | 
 |  * swapin_readahead - swap in pages in hope we need them soon | 
 |  * @entry: swap entry of this memory | 
 |  * @gfp_mask: memory allocation flags | 
 |  * @vma: user vma this address belongs to | 
 |  * @addr: target address for mempolicy | 
 |  * | 
 |  * Returns the struct page for entry and addr, after queueing swapin. | 
 |  * | 
 |  * Primitive swap readahead code. We simply read an aligned block of | 
 |  * (1 << page_cluster) entries in the swap area. This method is chosen | 
 |  * because it doesn't cost us any seek time.  We also make sure to queue | 
 |  * the 'original' request together with the readahead ones... | 
 |  * | 
 |  * This has been extended to use the NUMA policies from the mm triggering | 
 |  * the readahead. | 
 |  * | 
 |  * Caller must hold down_read on the vma->vm_mm if vma is not NULL. | 
 |  */ | 
 | struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, | 
 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned long entry_offset = swp_offset(entry); | 
 | 	unsigned long offset = entry_offset; | 
 | 	unsigned long start_offset, end_offset; | 
 | 	unsigned long mask; | 
 | 	struct blk_plug plug; | 
 | 	bool do_poll = true, page_allocated; | 
 |  | 
 | 	mask = swapin_nr_pages(offset) - 1; | 
 | 	if (!mask) | 
 | 		goto skip; | 
 |  | 
 | 	do_poll = false; | 
 | 	/* Read a page_cluster sized and aligned cluster around offset. */ | 
 | 	start_offset = offset & ~mask; | 
 | 	end_offset = offset | mask; | 
 | 	if (!start_offset)	/* First page is swap header. */ | 
 | 		start_offset++; | 
 |  | 
 | 	blk_start_plug(&plug); | 
 | 	for (offset = start_offset; offset <= end_offset ; offset++) { | 
 | 		/* Ok, do the async read-ahead now */ | 
 | 		page = __read_swap_cache_async( | 
 | 			swp_entry(swp_type(entry), offset), | 
 | 			gfp_mask, vma, addr, &page_allocated); | 
 | 		if (!page) | 
 | 			continue; | 
 | 		if (page_allocated) { | 
 | 			swap_readpage(page, false); | 
 | 			if (offset != entry_offset && | 
 | 			    likely(!PageTransCompound(page))) { | 
 | 				SetPageReadahead(page); | 
 | 				count_vm_event(SWAP_RA); | 
 | 			} | 
 | 		} | 
 | 		put_page(page); | 
 | 	} | 
 | 	blk_finish_plug(&plug); | 
 |  | 
 | 	lru_add_drain();	/* Push any new pages onto the LRU now */ | 
 | skip: | 
 | 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll); | 
 | } | 
 |  | 
 | int init_swap_address_space(unsigned int type, unsigned long nr_pages) | 
 | { | 
 | 	struct address_space *spaces, *space; | 
 | 	unsigned int i, nr; | 
 |  | 
 | 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); | 
 | 	spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL); | 
 | 	if (!spaces) | 
 | 		return -ENOMEM; | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		space = spaces + i; | 
 | 		INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN); | 
 | 		atomic_set(&space->i_mmap_writable, 0); | 
 | 		space->a_ops = &swap_aops; | 
 | 		/* swap cache doesn't use writeback related tags */ | 
 | 		mapping_set_no_writeback_tags(space); | 
 | 		spin_lock_init(&space->tree_lock); | 
 | 	} | 
 | 	nr_swapper_spaces[type] = nr; | 
 | 	rcu_assign_pointer(swapper_spaces[type], spaces); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void exit_swap_address_space(unsigned int type) | 
 | { | 
 | 	struct address_space *spaces; | 
 |  | 
 | 	spaces = swapper_spaces[type]; | 
 | 	nr_swapper_spaces[type] = 0; | 
 | 	rcu_assign_pointer(swapper_spaces[type], NULL); | 
 | 	synchronize_rcu(); | 
 | 	kvfree(spaces); | 
 | } | 
 |  | 
 | static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma, | 
 | 				     unsigned long faddr, | 
 | 				     unsigned long lpfn, | 
 | 				     unsigned long rpfn, | 
 | 				     unsigned long *start, | 
 | 				     unsigned long *end) | 
 | { | 
 | 	*start = max3(lpfn, PFN_DOWN(vma->vm_start), | 
 | 		      PFN_DOWN(faddr & PMD_MASK)); | 
 | 	*end = min3(rpfn, PFN_DOWN(vma->vm_end), | 
 | 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); | 
 | } | 
 |  | 
 | struct page *swap_readahead_detect(struct vm_fault *vmf, | 
 | 				   struct vma_swap_readahead *swap_ra) | 
 | { | 
 | 	struct vm_area_struct *vma = vmf->vma; | 
 | 	unsigned long swap_ra_info; | 
 | 	struct page *page; | 
 | 	swp_entry_t entry; | 
 | 	unsigned long faddr, pfn, fpfn; | 
 | 	unsigned long start, end; | 
 | 	pte_t *pte; | 
 | 	unsigned int max_win, hits, prev_win, win, left; | 
 | #ifndef CONFIG_64BIT | 
 | 	pte_t *tpte; | 
 | #endif | 
 |  | 
 | 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), | 
 | 			     SWAP_RA_ORDER_CEILING); | 
 | 	if (max_win == 1) { | 
 | 		swap_ra->win = 1; | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	faddr = vmf->address; | 
 | 	entry = pte_to_swp_entry(vmf->orig_pte); | 
 | 	if ((unlikely(non_swap_entry(entry)))) | 
 | 		return NULL; | 
 | 	page = lookup_swap_cache(entry, vma, faddr); | 
 | 	if (page) | 
 | 		return page; | 
 |  | 
 | 	fpfn = PFN_DOWN(faddr); | 
 | 	swap_ra_info = GET_SWAP_RA_VAL(vma); | 
 | 	pfn = PFN_DOWN(SWAP_RA_ADDR(swap_ra_info)); | 
 | 	prev_win = SWAP_RA_WIN(swap_ra_info); | 
 | 	hits = SWAP_RA_HITS(swap_ra_info); | 
 | 	swap_ra->win = win = __swapin_nr_pages(pfn, fpfn, hits, | 
 | 					       max_win, prev_win); | 
 | 	atomic_long_set(&vma->swap_readahead_info, | 
 | 			SWAP_RA_VAL(faddr, win, 0)); | 
 |  | 
 | 	if (win == 1) | 
 | 		return NULL; | 
 |  | 
 | 	/* Copy the PTEs because the page table may be unmapped */ | 
 | 	if (fpfn == pfn + 1) | 
 | 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end); | 
 | 	else if (pfn == fpfn + 1) | 
 | 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1, | 
 | 				  &start, &end); | 
 | 	else { | 
 | 		left = (win - 1) / 2; | 
 | 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left, | 
 | 				  &start, &end); | 
 | 	} | 
 | 	swap_ra->nr_pte = end - start; | 
 | 	swap_ra->offset = fpfn - start; | 
 | 	pte = vmf->pte - swap_ra->offset; | 
 | #ifdef CONFIG_64BIT | 
 | 	swap_ra->ptes = pte; | 
 | #else | 
 | 	tpte = swap_ra->ptes; | 
 | 	for (pfn = start; pfn != end; pfn++) | 
 | 		*tpte++ = *pte++; | 
 | #endif | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct page *do_swap_page_readahead(swp_entry_t fentry, gfp_t gfp_mask, | 
 | 				    struct vm_fault *vmf, | 
 | 				    struct vma_swap_readahead *swap_ra) | 
 | { | 
 | 	struct blk_plug plug; | 
 | 	struct vm_area_struct *vma = vmf->vma; | 
 | 	struct page *page; | 
 | 	pte_t *pte, pentry; | 
 | 	swp_entry_t entry; | 
 | 	unsigned int i; | 
 | 	bool page_allocated; | 
 |  | 
 | 	if (swap_ra->win == 1) | 
 | 		goto skip; | 
 |  | 
 | 	blk_start_plug(&plug); | 
 | 	for (i = 0, pte = swap_ra->ptes; i < swap_ra->nr_pte; | 
 | 	     i++, pte++) { | 
 | 		pentry = *pte; | 
 | 		if (pte_none(pentry)) | 
 | 			continue; | 
 | 		if (pte_present(pentry)) | 
 | 			continue; | 
 | 		entry = pte_to_swp_entry(pentry); | 
 | 		if (unlikely(non_swap_entry(entry))) | 
 | 			continue; | 
 | 		page = __read_swap_cache_async(entry, gfp_mask, vma, | 
 | 					       vmf->address, &page_allocated); | 
 | 		if (!page) | 
 | 			continue; | 
 | 		if (page_allocated) { | 
 | 			swap_readpage(page, false); | 
 | 			if (i != swap_ra->offset && | 
 | 			    likely(!PageTransCompound(page))) { | 
 | 				SetPageReadahead(page); | 
 | 				count_vm_event(SWAP_RA); | 
 | 			} | 
 | 		} | 
 | 		put_page(page); | 
 | 	} | 
 | 	blk_finish_plug(&plug); | 
 | 	lru_add_drain(); | 
 | skip: | 
 | 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, | 
 | 				     swap_ra->win == 1); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 | static ssize_t vma_ra_enabled_show(struct kobject *kobj, | 
 | 				     struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%s\n", swap_vma_readahead ? "true" : "false"); | 
 | } | 
 | static ssize_t vma_ra_enabled_store(struct kobject *kobj, | 
 | 				      struct kobj_attribute *attr, | 
 | 				      const char *buf, size_t count) | 
 | { | 
 | 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) | 
 | 		swap_vma_readahead = true; | 
 | 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) | 
 | 		swap_vma_readahead = false; | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	return count; | 
 | } | 
 | static struct kobj_attribute vma_ra_enabled_attr = | 
 | 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show, | 
 | 	       vma_ra_enabled_store); | 
 |  | 
 | static struct attribute *swap_attrs[] = { | 
 | 	&vma_ra_enabled_attr.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static struct attribute_group swap_attr_group = { | 
 | 	.attrs = swap_attrs, | 
 | }; | 
 |  | 
 | static int __init swap_init_sysfs(void) | 
 | { | 
 | 	int err; | 
 | 	struct kobject *swap_kobj; | 
 |  | 
 | 	swap_kobj = kobject_create_and_add("swap", mm_kobj); | 
 | 	if (!swap_kobj) { | 
 | 		pr_err("failed to create swap kobject\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	err = sysfs_create_group(swap_kobj, &swap_attr_group); | 
 | 	if (err) { | 
 | 		pr_err("failed to register swap group\n"); | 
 | 		goto delete_obj; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | delete_obj: | 
 | 	kobject_put(swap_kobj); | 
 | 	return err; | 
 | } | 
 | subsys_initcall(swap_init_sysfs); | 
 | #endif |