| /* | 
 |  *  linux/mm/vmstat.c | 
 |  * | 
 |  *  Manages VM statistics | 
 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  * | 
 |  *  zoned VM statistics | 
 |  *  Copyright (C) 2006 Silicon Graphics, Inc., | 
 |  *		Christoph Lameter <christoph@lameter.com> | 
 |  *  Copyright (C) 2008-2014 Christoph Lameter | 
 |  */ | 
 | #include <linux/fs.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/err.h> | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/vmstat.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/math64.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/compaction.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/page_ext.h> | 
 | #include <linux/page_owner.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | #define NUMA_STATS_THRESHOLD (U16_MAX - 2) | 
 |  | 
 | #ifdef CONFIG_VM_EVENT_COUNTERS | 
 | DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; | 
 | EXPORT_PER_CPU_SYMBOL(vm_event_states); | 
 |  | 
 | static void sum_vm_events(unsigned long *ret) | 
 | { | 
 | 	int cpu; | 
 | 	int i; | 
 |  | 
 | 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu); | 
 |  | 
 | 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) | 
 | 			ret[i] += this->event[i]; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Accumulate the vm event counters across all CPUs. | 
 |  * The result is unavoidably approximate - it can change | 
 |  * during and after execution of this function. | 
 | */ | 
 | void all_vm_events(unsigned long *ret) | 
 | { | 
 | 	get_online_cpus(); | 
 | 	sum_vm_events(ret); | 
 | 	put_online_cpus(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(all_vm_events); | 
 |  | 
 | /* | 
 |  * Fold the foreign cpu events into our own. | 
 |  * | 
 |  * This is adding to the events on one processor | 
 |  * but keeps the global counts constant. | 
 |  */ | 
 | void vm_events_fold_cpu(int cpu) | 
 | { | 
 | 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { | 
 | 		count_vm_events(i, fold_state->event[i]); | 
 | 		fold_state->event[i] = 0; | 
 | 	} | 
 | } | 
 |  | 
 | #endif /* CONFIG_VM_EVENT_COUNTERS */ | 
 |  | 
 | /* | 
 |  * Manage combined zone based / global counters | 
 |  * | 
 |  * vm_stat contains the global counters | 
 |  */ | 
 | atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; | 
 | atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp; | 
 | atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; | 
 | EXPORT_SYMBOL(vm_zone_stat); | 
 | EXPORT_SYMBOL(vm_numa_stat); | 
 | EXPORT_SYMBOL(vm_node_stat); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | int calculate_pressure_threshold(struct zone *zone) | 
 | { | 
 | 	int threshold; | 
 | 	int watermark_distance; | 
 |  | 
 | 	/* | 
 | 	 * As vmstats are not up to date, there is drift between the estimated | 
 | 	 * and real values. For high thresholds and a high number of CPUs, it | 
 | 	 * is possible for the min watermark to be breached while the estimated | 
 | 	 * value looks fine. The pressure threshold is a reduced value such | 
 | 	 * that even the maximum amount of drift will not accidentally breach | 
 | 	 * the min watermark | 
 | 	 */ | 
 | 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); | 
 | 	threshold = max(1, (int)(watermark_distance / num_online_cpus())); | 
 |  | 
 | 	/* | 
 | 	 * Maximum threshold is 125 | 
 | 	 */ | 
 | 	threshold = min(125, threshold); | 
 |  | 
 | 	return threshold; | 
 | } | 
 |  | 
 | int calculate_normal_threshold(struct zone *zone) | 
 | { | 
 | 	int threshold; | 
 | 	int mem;	/* memory in 128 MB units */ | 
 |  | 
 | 	/* | 
 | 	 * The threshold scales with the number of processors and the amount | 
 | 	 * of memory per zone. More memory means that we can defer updates for | 
 | 	 * longer, more processors could lead to more contention. | 
 |  	 * fls() is used to have a cheap way of logarithmic scaling. | 
 | 	 * | 
 | 	 * Some sample thresholds: | 
 | 	 * | 
 | 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1) | 
 | 	 * ------------------------------------------------------------------ | 
 | 	 * 8		1		1	0.9-1 GB	4 | 
 | 	 * 16		2		2	0.9-1 GB	4 | 
 | 	 * 20 		2		2	1-2 GB		5 | 
 | 	 * 24		2		2	2-4 GB		6 | 
 | 	 * 28		2		2	4-8 GB		7 | 
 | 	 * 32		2		2	8-16 GB		8 | 
 | 	 * 4		2		2	<128M		1 | 
 | 	 * 30		4		3	2-4 GB		5 | 
 | 	 * 48		4		3	8-16 GB		8 | 
 | 	 * 32		8		4	1-2 GB		4 | 
 | 	 * 32		8		4	0.9-1GB		4 | 
 | 	 * 10		16		5	<128M		1 | 
 | 	 * 40		16		5	900M		4 | 
 | 	 * 70		64		7	2-4 GB		5 | 
 | 	 * 84		64		7	4-8 GB		6 | 
 | 	 * 108		512		9	4-8 GB		6 | 
 | 	 * 125		1024		10	8-16 GB		8 | 
 | 	 * 125		1024		10	16-32 GB	9 | 
 | 	 */ | 
 |  | 
 | 	mem = zone->managed_pages >> (27 - PAGE_SHIFT); | 
 |  | 
 | 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); | 
 |  | 
 | 	/* | 
 | 	 * Maximum threshold is 125 | 
 | 	 */ | 
 | 	threshold = min(125, threshold); | 
 |  | 
 | 	return threshold; | 
 | } | 
 |  | 
 | /* | 
 |  * Refresh the thresholds for each zone. | 
 |  */ | 
 | void refresh_zone_stat_thresholds(void) | 
 | { | 
 | 	struct pglist_data *pgdat; | 
 | 	struct zone *zone; | 
 | 	int cpu; | 
 | 	int threshold; | 
 |  | 
 | 	/* Zero current pgdat thresholds */ | 
 | 	for_each_online_pgdat(pgdat) { | 
 | 		for_each_online_cpu(cpu) { | 
 | 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		struct pglist_data *pgdat = zone->zone_pgdat; | 
 | 		unsigned long max_drift, tolerate_drift; | 
 |  | 
 | 		threshold = calculate_normal_threshold(zone); | 
 |  | 
 | 		for_each_online_cpu(cpu) { | 
 | 			int pgdat_threshold; | 
 |  | 
 | 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold | 
 | 							= threshold; | 
 |  | 
 | 			/* Base nodestat threshold on the largest populated zone. */ | 
 | 			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; | 
 | 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold | 
 | 				= max(threshold, pgdat_threshold); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Only set percpu_drift_mark if there is a danger that | 
 | 		 * NR_FREE_PAGES reports the low watermark is ok when in fact | 
 | 		 * the min watermark could be breached by an allocation | 
 | 		 */ | 
 | 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); | 
 | 		max_drift = num_online_cpus() * threshold; | 
 | 		if (max_drift > tolerate_drift) | 
 | 			zone->percpu_drift_mark = high_wmark_pages(zone) + | 
 | 					max_drift; | 
 | 	} | 
 | } | 
 |  | 
 | void set_pgdat_percpu_threshold(pg_data_t *pgdat, | 
 | 				int (*calculate_pressure)(struct zone *)) | 
 | { | 
 | 	struct zone *zone; | 
 | 	int cpu; | 
 | 	int threshold; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < pgdat->nr_zones; i++) { | 
 | 		zone = &pgdat->node_zones[i]; | 
 | 		if (!zone->percpu_drift_mark) | 
 | 			continue; | 
 |  | 
 | 		threshold = (*calculate_pressure)(zone); | 
 | 		for_each_online_cpu(cpu) | 
 | 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold | 
 | 							= threshold; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * For use when we know that interrupts are disabled, | 
 |  * or when we know that preemption is disabled and that | 
 |  * particular counter cannot be updated from interrupt context. | 
 |  */ | 
 | void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, | 
 | 			   long delta) | 
 | { | 
 | 	struct per_cpu_pageset __percpu *pcp = zone->pageset; | 
 | 	s8 __percpu *p = pcp->vm_stat_diff + item; | 
 | 	long x; | 
 | 	long t; | 
 |  | 
 | 	x = delta + __this_cpu_read(*p); | 
 |  | 
 | 	t = __this_cpu_read(pcp->stat_threshold); | 
 |  | 
 | 	if (unlikely(x > t || x < -t)) { | 
 | 		zone_page_state_add(x, zone, item); | 
 | 		x = 0; | 
 | 	} | 
 | 	__this_cpu_write(*p, x); | 
 | } | 
 | EXPORT_SYMBOL(__mod_zone_page_state); | 
 |  | 
 | void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, | 
 | 				long delta) | 
 | { | 
 | 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; | 
 | 	s8 __percpu *p = pcp->vm_node_stat_diff + item; | 
 | 	long x; | 
 | 	long t; | 
 |  | 
 | 	x = delta + __this_cpu_read(*p); | 
 |  | 
 | 	t = __this_cpu_read(pcp->stat_threshold); | 
 |  | 
 | 	if (unlikely(x > t || x < -t)) { | 
 | 		node_page_state_add(x, pgdat, item); | 
 | 		x = 0; | 
 | 	} | 
 | 	__this_cpu_write(*p, x); | 
 | } | 
 | EXPORT_SYMBOL(__mod_node_page_state); | 
 |  | 
 | /* | 
 |  * Optimized increment and decrement functions. | 
 |  * | 
 |  * These are only for a single page and therefore can take a struct page * | 
 |  * argument instead of struct zone *. This allows the inclusion of the code | 
 |  * generated for page_zone(page) into the optimized functions. | 
 |  * | 
 |  * No overflow check is necessary and therefore the differential can be | 
 |  * incremented or decremented in place which may allow the compilers to | 
 |  * generate better code. | 
 |  * The increment or decrement is known and therefore one boundary check can | 
 |  * be omitted. | 
 |  * | 
 |  * NOTE: These functions are very performance sensitive. Change only | 
 |  * with care. | 
 |  * | 
 |  * Some processors have inc/dec instructions that are atomic vs an interrupt. | 
 |  * However, the code must first determine the differential location in a zone | 
 |  * based on the processor number and then inc/dec the counter. There is no | 
 |  * guarantee without disabling preemption that the processor will not change | 
 |  * in between and therefore the atomicity vs. interrupt cannot be exploited | 
 |  * in a useful way here. | 
 |  */ | 
 | void __inc_zone_state(struct zone *zone, enum zone_stat_item item) | 
 | { | 
 | 	struct per_cpu_pageset __percpu *pcp = zone->pageset; | 
 | 	s8 __percpu *p = pcp->vm_stat_diff + item; | 
 | 	s8 v, t; | 
 |  | 
 | 	v = __this_cpu_inc_return(*p); | 
 | 	t = __this_cpu_read(pcp->stat_threshold); | 
 | 	if (unlikely(v > t)) { | 
 | 		s8 overstep = t >> 1; | 
 |  | 
 | 		zone_page_state_add(v + overstep, zone, item); | 
 | 		__this_cpu_write(*p, -overstep); | 
 | 	} | 
 | } | 
 |  | 
 | void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) | 
 | { | 
 | 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; | 
 | 	s8 __percpu *p = pcp->vm_node_stat_diff + item; | 
 | 	s8 v, t; | 
 |  | 
 | 	v = __this_cpu_inc_return(*p); | 
 | 	t = __this_cpu_read(pcp->stat_threshold); | 
 | 	if (unlikely(v > t)) { | 
 | 		s8 overstep = t >> 1; | 
 |  | 
 | 		node_page_state_add(v + overstep, pgdat, item); | 
 | 		__this_cpu_write(*p, -overstep); | 
 | 	} | 
 | } | 
 |  | 
 | void __inc_zone_page_state(struct page *page, enum zone_stat_item item) | 
 | { | 
 | 	__inc_zone_state(page_zone(page), item); | 
 | } | 
 | EXPORT_SYMBOL(__inc_zone_page_state); | 
 |  | 
 | void __inc_node_page_state(struct page *page, enum node_stat_item item) | 
 | { | 
 | 	__inc_node_state(page_pgdat(page), item); | 
 | } | 
 | EXPORT_SYMBOL(__inc_node_page_state); | 
 |  | 
 | void __dec_zone_state(struct zone *zone, enum zone_stat_item item) | 
 | { | 
 | 	struct per_cpu_pageset __percpu *pcp = zone->pageset; | 
 | 	s8 __percpu *p = pcp->vm_stat_diff + item; | 
 | 	s8 v, t; | 
 |  | 
 | 	v = __this_cpu_dec_return(*p); | 
 | 	t = __this_cpu_read(pcp->stat_threshold); | 
 | 	if (unlikely(v < - t)) { | 
 | 		s8 overstep = t >> 1; | 
 |  | 
 | 		zone_page_state_add(v - overstep, zone, item); | 
 | 		__this_cpu_write(*p, overstep); | 
 | 	} | 
 | } | 
 |  | 
 | void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) | 
 | { | 
 | 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; | 
 | 	s8 __percpu *p = pcp->vm_node_stat_diff + item; | 
 | 	s8 v, t; | 
 |  | 
 | 	v = __this_cpu_dec_return(*p); | 
 | 	t = __this_cpu_read(pcp->stat_threshold); | 
 | 	if (unlikely(v < - t)) { | 
 | 		s8 overstep = t >> 1; | 
 |  | 
 | 		node_page_state_add(v - overstep, pgdat, item); | 
 | 		__this_cpu_write(*p, overstep); | 
 | 	} | 
 | } | 
 |  | 
 | void __dec_zone_page_state(struct page *page, enum zone_stat_item item) | 
 | { | 
 | 	__dec_zone_state(page_zone(page), item); | 
 | } | 
 | EXPORT_SYMBOL(__dec_zone_page_state); | 
 |  | 
 | void __dec_node_page_state(struct page *page, enum node_stat_item item) | 
 | { | 
 | 	__dec_node_state(page_pgdat(page), item); | 
 | } | 
 | EXPORT_SYMBOL(__dec_node_page_state); | 
 |  | 
 | #ifdef CONFIG_HAVE_CMPXCHG_LOCAL | 
 | /* | 
 |  * If we have cmpxchg_local support then we do not need to incur the overhead | 
 |  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. | 
 |  * | 
 |  * mod_state() modifies the zone counter state through atomic per cpu | 
 |  * operations. | 
 |  * | 
 |  * Overstep mode specifies how overstep should handled: | 
 |  *     0       No overstepping | 
 |  *     1       Overstepping half of threshold | 
 |  *     -1      Overstepping minus half of threshold | 
 | */ | 
 | static inline void mod_zone_state(struct zone *zone, | 
 |        enum zone_stat_item item, long delta, int overstep_mode) | 
 | { | 
 | 	struct per_cpu_pageset __percpu *pcp = zone->pageset; | 
 | 	s8 __percpu *p = pcp->vm_stat_diff + item; | 
 | 	long o, n, t, z; | 
 |  | 
 | 	do { | 
 | 		z = 0;  /* overflow to zone counters */ | 
 |  | 
 | 		/* | 
 | 		 * The fetching of the stat_threshold is racy. We may apply | 
 | 		 * a counter threshold to the wrong the cpu if we get | 
 | 		 * rescheduled while executing here. However, the next | 
 | 		 * counter update will apply the threshold again and | 
 | 		 * therefore bring the counter under the threshold again. | 
 | 		 * | 
 | 		 * Most of the time the thresholds are the same anyways | 
 | 		 * for all cpus in a zone. | 
 | 		 */ | 
 | 		t = this_cpu_read(pcp->stat_threshold); | 
 |  | 
 | 		o = this_cpu_read(*p); | 
 | 		n = delta + o; | 
 |  | 
 | 		if (n > t || n < -t) { | 
 | 			int os = overstep_mode * (t >> 1) ; | 
 |  | 
 | 			/* Overflow must be added to zone counters */ | 
 | 			z = n + os; | 
 | 			n = -os; | 
 | 		} | 
 | 	} while (this_cpu_cmpxchg(*p, o, n) != o); | 
 |  | 
 | 	if (z) | 
 | 		zone_page_state_add(z, zone, item); | 
 | } | 
 |  | 
 | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, | 
 | 			 long delta) | 
 | { | 
 | 	mod_zone_state(zone, item, delta, 0); | 
 | } | 
 | EXPORT_SYMBOL(mod_zone_page_state); | 
 |  | 
 | void inc_zone_page_state(struct page *page, enum zone_stat_item item) | 
 | { | 
 | 	mod_zone_state(page_zone(page), item, 1, 1); | 
 | } | 
 | EXPORT_SYMBOL(inc_zone_page_state); | 
 |  | 
 | void dec_zone_page_state(struct page *page, enum zone_stat_item item) | 
 | { | 
 | 	mod_zone_state(page_zone(page), item, -1, -1); | 
 | } | 
 | EXPORT_SYMBOL(dec_zone_page_state); | 
 |  | 
 | static inline void mod_node_state(struct pglist_data *pgdat, | 
 |        enum node_stat_item item, int delta, int overstep_mode) | 
 | { | 
 | 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; | 
 | 	s8 __percpu *p = pcp->vm_node_stat_diff + item; | 
 | 	long o, n, t, z; | 
 |  | 
 | 	do { | 
 | 		z = 0;  /* overflow to node counters */ | 
 |  | 
 | 		/* | 
 | 		 * The fetching of the stat_threshold is racy. We may apply | 
 | 		 * a counter threshold to the wrong the cpu if we get | 
 | 		 * rescheduled while executing here. However, the next | 
 | 		 * counter update will apply the threshold again and | 
 | 		 * therefore bring the counter under the threshold again. | 
 | 		 * | 
 | 		 * Most of the time the thresholds are the same anyways | 
 | 		 * for all cpus in a node. | 
 | 		 */ | 
 | 		t = this_cpu_read(pcp->stat_threshold); | 
 |  | 
 | 		o = this_cpu_read(*p); | 
 | 		n = delta + o; | 
 |  | 
 | 		if (n > t || n < -t) { | 
 | 			int os = overstep_mode * (t >> 1) ; | 
 |  | 
 | 			/* Overflow must be added to node counters */ | 
 | 			z = n + os; | 
 | 			n = -os; | 
 | 		} | 
 | 	} while (this_cpu_cmpxchg(*p, o, n) != o); | 
 |  | 
 | 	if (z) | 
 | 		node_page_state_add(z, pgdat, item); | 
 | } | 
 |  | 
 | void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, | 
 | 					long delta) | 
 | { | 
 | 	mod_node_state(pgdat, item, delta, 0); | 
 | } | 
 | EXPORT_SYMBOL(mod_node_page_state); | 
 |  | 
 | void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) | 
 | { | 
 | 	mod_node_state(pgdat, item, 1, 1); | 
 | } | 
 |  | 
 | void inc_node_page_state(struct page *page, enum node_stat_item item) | 
 | { | 
 | 	mod_node_state(page_pgdat(page), item, 1, 1); | 
 | } | 
 | EXPORT_SYMBOL(inc_node_page_state); | 
 |  | 
 | void dec_node_page_state(struct page *page, enum node_stat_item item) | 
 | { | 
 | 	mod_node_state(page_pgdat(page), item, -1, -1); | 
 | } | 
 | EXPORT_SYMBOL(dec_node_page_state); | 
 | #else | 
 | /* | 
 |  * Use interrupt disable to serialize counter updates | 
 |  */ | 
 | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, | 
 | 			 long delta) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	__mod_zone_page_state(zone, item, delta); | 
 | 	local_irq_restore(flags); | 
 | } | 
 | EXPORT_SYMBOL(mod_zone_page_state); | 
 |  | 
 | void inc_zone_page_state(struct page *page, enum zone_stat_item item) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct zone *zone; | 
 |  | 
 | 	zone = page_zone(page); | 
 | 	local_irq_save(flags); | 
 | 	__inc_zone_state(zone, item); | 
 | 	local_irq_restore(flags); | 
 | } | 
 | EXPORT_SYMBOL(inc_zone_page_state); | 
 |  | 
 | void dec_zone_page_state(struct page *page, enum zone_stat_item item) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	__dec_zone_page_state(page, item); | 
 | 	local_irq_restore(flags); | 
 | } | 
 | EXPORT_SYMBOL(dec_zone_page_state); | 
 |  | 
 | void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	__inc_node_state(pgdat, item); | 
 | 	local_irq_restore(flags); | 
 | } | 
 | EXPORT_SYMBOL(inc_node_state); | 
 |  | 
 | void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, | 
 | 					long delta) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	__mod_node_page_state(pgdat, item, delta); | 
 | 	local_irq_restore(flags); | 
 | } | 
 | EXPORT_SYMBOL(mod_node_page_state); | 
 |  | 
 | void inc_node_page_state(struct page *page, enum node_stat_item item) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct pglist_data *pgdat; | 
 |  | 
 | 	pgdat = page_pgdat(page); | 
 | 	local_irq_save(flags); | 
 | 	__inc_node_state(pgdat, item); | 
 | 	local_irq_restore(flags); | 
 | } | 
 | EXPORT_SYMBOL(inc_node_page_state); | 
 |  | 
 | void dec_node_page_state(struct page *page, enum node_stat_item item) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	__dec_node_page_state(page, item); | 
 | 	local_irq_restore(flags); | 
 | } | 
 | EXPORT_SYMBOL(dec_node_page_state); | 
 | #endif | 
 |  | 
 | /* | 
 |  * Fold a differential into the global counters. | 
 |  * Returns the number of counters updated. | 
 |  */ | 
 | #ifdef CONFIG_NUMA | 
 | static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff) | 
 | { | 
 | 	int i; | 
 | 	int changes = 0; | 
 |  | 
 | 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
 | 		if (zone_diff[i]) { | 
 | 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]); | 
 | 			changes++; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) | 
 | 		if (numa_diff[i]) { | 
 | 			atomic_long_add(numa_diff[i], &vm_numa_stat[i]); | 
 | 			changes++; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) | 
 | 		if (node_diff[i]) { | 
 | 			atomic_long_add(node_diff[i], &vm_node_stat[i]); | 
 | 			changes++; | 
 | 	} | 
 | 	return changes; | 
 | } | 
 | #else | 
 | static int fold_diff(int *zone_diff, int *node_diff) | 
 | { | 
 | 	int i; | 
 | 	int changes = 0; | 
 |  | 
 | 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
 | 		if (zone_diff[i]) { | 
 | 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]); | 
 | 			changes++; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) | 
 | 		if (node_diff[i]) { | 
 | 			atomic_long_add(node_diff[i], &vm_node_stat[i]); | 
 | 			changes++; | 
 | 	} | 
 | 	return changes; | 
 | } | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | /* | 
 |  * Update the zone counters for the current cpu. | 
 |  * | 
 |  * Note that refresh_cpu_vm_stats strives to only access | 
 |  * node local memory. The per cpu pagesets on remote zones are placed | 
 |  * in the memory local to the processor using that pageset. So the | 
 |  * loop over all zones will access a series of cachelines local to | 
 |  * the processor. | 
 |  * | 
 |  * The call to zone_page_state_add updates the cachelines with the | 
 |  * statistics in the remote zone struct as well as the global cachelines | 
 |  * with the global counters. These could cause remote node cache line | 
 |  * bouncing and will have to be only done when necessary. | 
 |  * | 
 |  * The function returns the number of global counters updated. | 
 |  */ | 
 | static int refresh_cpu_vm_stats(bool do_pagesets) | 
 | { | 
 | 	struct pglist_data *pgdat; | 
 | 	struct zone *zone; | 
 | 	int i; | 
 | 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; | 
 | #ifdef CONFIG_NUMA | 
 | 	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; | 
 | #endif | 
 | 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; | 
 | 	int changes = 0; | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		struct per_cpu_pageset __percpu *p = zone->pageset; | 
 |  | 
 | 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { | 
 | 			int v; | 
 |  | 
 | 			v = this_cpu_xchg(p->vm_stat_diff[i], 0); | 
 | 			if (v) { | 
 |  | 
 | 				atomic_long_add(v, &zone->vm_stat[i]); | 
 | 				global_zone_diff[i] += v; | 
 | #ifdef CONFIG_NUMA | 
 | 				/* 3 seconds idle till flush */ | 
 | 				__this_cpu_write(p->expire, 3); | 
 | #endif | 
 | 			} | 
 | 		} | 
 | #ifdef CONFIG_NUMA | 
 | 		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { | 
 | 			int v; | 
 |  | 
 | 			v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0); | 
 | 			if (v) { | 
 |  | 
 | 				atomic_long_add(v, &zone->vm_numa_stat[i]); | 
 | 				global_numa_diff[i] += v; | 
 | 				__this_cpu_write(p->expire, 3); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (do_pagesets) { | 
 | 			cond_resched(); | 
 | 			/* | 
 | 			 * Deal with draining the remote pageset of this | 
 | 			 * processor | 
 | 			 * | 
 | 			 * Check if there are pages remaining in this pageset | 
 | 			 * if not then there is nothing to expire. | 
 | 			 */ | 
 | 			if (!__this_cpu_read(p->expire) || | 
 | 			       !__this_cpu_read(p->pcp.count)) | 
 | 				continue; | 
 |  | 
 | 			/* | 
 | 			 * We never drain zones local to this processor. | 
 | 			 */ | 
 | 			if (zone_to_nid(zone) == numa_node_id()) { | 
 | 				__this_cpu_write(p->expire, 0); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (__this_cpu_dec_return(p->expire)) | 
 | 				continue; | 
 |  | 
 | 			if (__this_cpu_read(p->pcp.count)) { | 
 | 				drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); | 
 | 				changes++; | 
 | 			} | 
 | 		} | 
 | #endif | 
 | 	} | 
 |  | 
 | 	for_each_online_pgdat(pgdat) { | 
 | 		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; | 
 |  | 
 | 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { | 
 | 			int v; | 
 |  | 
 | 			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); | 
 | 			if (v) { | 
 | 				atomic_long_add(v, &pgdat->vm_stat[i]); | 
 | 				global_node_diff[i] += v; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	changes += fold_diff(global_zone_diff, global_numa_diff, | 
 | 			     global_node_diff); | 
 | #else | 
 | 	changes += fold_diff(global_zone_diff, global_node_diff); | 
 | #endif | 
 | 	return changes; | 
 | } | 
 |  | 
 | /* | 
 |  * Fold the data for an offline cpu into the global array. | 
 |  * There cannot be any access by the offline cpu and therefore | 
 |  * synchronization is simplified. | 
 |  */ | 
 | void cpu_vm_stats_fold(int cpu) | 
 | { | 
 | 	struct pglist_data *pgdat; | 
 | 	struct zone *zone; | 
 | 	int i; | 
 | 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; | 
 | #ifdef CONFIG_NUMA | 
 | 	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; | 
 | #endif | 
 | 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		struct per_cpu_pageset *p; | 
 |  | 
 | 		p = per_cpu_ptr(zone->pageset, cpu); | 
 |  | 
 | 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
 | 			if (p->vm_stat_diff[i]) { | 
 | 				int v; | 
 |  | 
 | 				v = p->vm_stat_diff[i]; | 
 | 				p->vm_stat_diff[i] = 0; | 
 | 				atomic_long_add(v, &zone->vm_stat[i]); | 
 | 				global_zone_diff[i] += v; | 
 | 			} | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) | 
 | 			if (p->vm_numa_stat_diff[i]) { | 
 | 				int v; | 
 |  | 
 | 				v = p->vm_numa_stat_diff[i]; | 
 | 				p->vm_numa_stat_diff[i] = 0; | 
 | 				atomic_long_add(v, &zone->vm_numa_stat[i]); | 
 | 				global_numa_diff[i] += v; | 
 | 			} | 
 | #endif | 
 | 	} | 
 |  | 
 | 	for_each_online_pgdat(pgdat) { | 
 | 		struct per_cpu_nodestat *p; | 
 |  | 
 | 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); | 
 |  | 
 | 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) | 
 | 			if (p->vm_node_stat_diff[i]) { | 
 | 				int v; | 
 |  | 
 | 				v = p->vm_node_stat_diff[i]; | 
 | 				p->vm_node_stat_diff[i] = 0; | 
 | 				atomic_long_add(v, &pgdat->vm_stat[i]); | 
 | 				global_node_diff[i] += v; | 
 | 			} | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	fold_diff(global_zone_diff, global_numa_diff, global_node_diff); | 
 | #else | 
 | 	fold_diff(global_zone_diff, global_node_diff); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * this is only called if !populated_zone(zone), which implies no other users of | 
 |  * pset->vm_stat_diff[] exsist. | 
 |  */ | 
 | void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
 | 		if (pset->vm_stat_diff[i]) { | 
 | 			int v = pset->vm_stat_diff[i]; | 
 | 			pset->vm_stat_diff[i] = 0; | 
 | 			atomic_long_add(v, &zone->vm_stat[i]); | 
 | 			atomic_long_add(v, &vm_zone_stat[i]); | 
 | 		} | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) | 
 | 		if (pset->vm_numa_stat_diff[i]) { | 
 | 			int v = pset->vm_numa_stat_diff[i]; | 
 |  | 
 | 			pset->vm_numa_stat_diff[i] = 0; | 
 | 			atomic_long_add(v, &zone->vm_numa_stat[i]); | 
 | 			atomic_long_add(v, &vm_numa_stat[i]); | 
 | 		} | 
 | #endif | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | void __inc_numa_state(struct zone *zone, | 
 | 				 enum numa_stat_item item) | 
 | { | 
 | 	struct per_cpu_pageset __percpu *pcp = zone->pageset; | 
 | 	u16 __percpu *p = pcp->vm_numa_stat_diff + item; | 
 | 	u16 v; | 
 |  | 
 | 	v = __this_cpu_inc_return(*p); | 
 |  | 
 | 	if (unlikely(v > NUMA_STATS_THRESHOLD)) { | 
 | 		zone_numa_state_add(v, zone, item); | 
 | 		__this_cpu_write(*p, 0); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Determine the per node value of a stat item. This function | 
 |  * is called frequently in a NUMA machine, so try to be as | 
 |  * frugal as possible. | 
 |  */ | 
 | unsigned long sum_zone_node_page_state(int node, | 
 | 				 enum zone_stat_item item) | 
 | { | 
 | 	struct zone *zones = NODE_DATA(node)->node_zones; | 
 | 	int i; | 
 | 	unsigned long count = 0; | 
 |  | 
 | 	for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 		count += zone_page_state(zones + i, item); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine the per node value of a numa stat item. To avoid deviation, | 
 |  * the per cpu stat number in vm_numa_stat_diff[] is also included. | 
 |  */ | 
 | unsigned long sum_zone_numa_state(int node, | 
 | 				 enum numa_stat_item item) | 
 | { | 
 | 	struct zone *zones = NODE_DATA(node)->node_zones; | 
 | 	int i; | 
 | 	unsigned long count = 0; | 
 |  | 
 | 	for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 		count += zone_numa_state_snapshot(zones + i, item); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine the per node value of a stat item. | 
 |  */ | 
 | unsigned long node_page_state(struct pglist_data *pgdat, | 
 | 				enum node_stat_item item) | 
 | { | 
 | 	long x = atomic_long_read(&pgdat->vm_stat[item]); | 
 | #ifdef CONFIG_SMP | 
 | 	if (x < 0) | 
 | 		x = 0; | 
 | #endif | 
 | 	return x; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_COMPACTION | 
 |  | 
 | struct contig_page_info { | 
 | 	unsigned long free_pages; | 
 | 	unsigned long free_blocks_total; | 
 | 	unsigned long free_blocks_suitable; | 
 | }; | 
 |  | 
 | /* | 
 |  * Calculate the number of free pages in a zone, how many contiguous | 
 |  * pages are free and how many are large enough to satisfy an allocation of | 
 |  * the target size. Note that this function makes no attempt to estimate | 
 |  * how many suitable free blocks there *might* be if MOVABLE pages were | 
 |  * migrated. Calculating that is possible, but expensive and can be | 
 |  * figured out from userspace | 
 |  */ | 
 | static void fill_contig_page_info(struct zone *zone, | 
 | 				unsigned int suitable_order, | 
 | 				struct contig_page_info *info) | 
 | { | 
 | 	unsigned int order; | 
 |  | 
 | 	info->free_pages = 0; | 
 | 	info->free_blocks_total = 0; | 
 | 	info->free_blocks_suitable = 0; | 
 |  | 
 | 	for (order = 0; order < MAX_ORDER; order++) { | 
 | 		unsigned long blocks; | 
 |  | 
 | 		/* Count number of free blocks */ | 
 | 		blocks = zone->free_area[order].nr_free; | 
 | 		info->free_blocks_total += blocks; | 
 |  | 
 | 		/* Count free base pages */ | 
 | 		info->free_pages += blocks << order; | 
 |  | 
 | 		/* Count the suitable free blocks */ | 
 | 		if (order >= suitable_order) | 
 | 			info->free_blocks_suitable += blocks << | 
 | 						(order - suitable_order); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * A fragmentation index only makes sense if an allocation of a requested | 
 |  * size would fail. If that is true, the fragmentation index indicates | 
 |  * whether external fragmentation or a lack of memory was the problem. | 
 |  * The value can be used to determine if page reclaim or compaction | 
 |  * should be used | 
 |  */ | 
 | static int __fragmentation_index(unsigned int order, struct contig_page_info *info) | 
 | { | 
 | 	unsigned long requested = 1UL << order; | 
 |  | 
 | 	if (WARN_ON_ONCE(order >= MAX_ORDER)) | 
 | 		return 0; | 
 |  | 
 | 	if (!info->free_blocks_total) | 
 | 		return 0; | 
 |  | 
 | 	/* Fragmentation index only makes sense when a request would fail */ | 
 | 	if (info->free_blocks_suitable) | 
 | 		return -1000; | 
 |  | 
 | 	/* | 
 | 	 * Index is between 0 and 1 so return within 3 decimal places | 
 | 	 * | 
 | 	 * 0 => allocation would fail due to lack of memory | 
 | 	 * 1 => allocation would fail due to fragmentation | 
 | 	 */ | 
 | 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); | 
 | } | 
 |  | 
 | /* Same as __fragmentation index but allocs contig_page_info on stack */ | 
 | int fragmentation_index(struct zone *zone, unsigned int order) | 
 | { | 
 | 	struct contig_page_info info; | 
 |  | 
 | 	fill_contig_page_info(zone, order, &info); | 
 | 	return __fragmentation_index(order, &info); | 
 | } | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) | 
 | #ifdef CONFIG_ZONE_DMA | 
 | #define TEXT_FOR_DMA(xx) xx "_dma", | 
 | #else | 
 | #define TEXT_FOR_DMA(xx) | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_ZONE_DMA32 | 
 | #define TEXT_FOR_DMA32(xx) xx "_dma32", | 
 | #else | 
 | #define TEXT_FOR_DMA32(xx) | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_HIGHMEM | 
 | #define TEXT_FOR_HIGHMEM(xx) xx "_high", | 
 | #else | 
 | #define TEXT_FOR_HIGHMEM(xx) | 
 | #endif | 
 |  | 
 | #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ | 
 | 					TEXT_FOR_HIGHMEM(xx) xx "_movable", | 
 |  | 
 | const char * const vmstat_text[] = { | 
 | 	/* enum zone_stat_item countes */ | 
 | 	"nr_free_pages", | 
 | 	"nr_zone_inactive_anon", | 
 | 	"nr_zone_active_anon", | 
 | 	"nr_zone_inactive_file", | 
 | 	"nr_zone_active_file", | 
 | 	"nr_zone_unevictable", | 
 | 	"nr_zone_write_pending", | 
 | 	"nr_mlock", | 
 | 	"nr_page_table_pages", | 
 | 	"nr_kernel_stack", | 
 | 	"nr_bounce", | 
 | #if IS_ENABLED(CONFIG_ZSMALLOC) | 
 | 	"nr_zspages", | 
 | #endif | 
 | 	"nr_free_cma", | 
 |  | 
 | 	/* enum numa_stat_item counters */ | 
 | #ifdef CONFIG_NUMA | 
 | 	"numa_hit", | 
 | 	"numa_miss", | 
 | 	"numa_foreign", | 
 | 	"numa_interleave", | 
 | 	"numa_local", | 
 | 	"numa_other", | 
 | #endif | 
 |  | 
 | 	/* Node-based counters */ | 
 | 	"nr_inactive_anon", | 
 | 	"nr_active_anon", | 
 | 	"nr_inactive_file", | 
 | 	"nr_active_file", | 
 | 	"nr_unevictable", | 
 | 	"nr_slab_reclaimable", | 
 | 	"nr_slab_unreclaimable", | 
 | 	"nr_isolated_anon", | 
 | 	"nr_isolated_file", | 
 | 	"workingset_refault", | 
 | 	"workingset_activate", | 
 | 	"workingset_nodereclaim", | 
 | 	"nr_anon_pages", | 
 | 	"nr_mapped", | 
 | 	"nr_file_pages", | 
 | 	"nr_dirty", | 
 | 	"nr_writeback", | 
 | 	"nr_writeback_temp", | 
 | 	"nr_shmem", | 
 | 	"nr_shmem_hugepages", | 
 | 	"nr_shmem_pmdmapped", | 
 | 	"nr_anon_transparent_hugepages", | 
 | 	"nr_unstable", | 
 | 	"nr_vmscan_write", | 
 | 	"nr_vmscan_immediate_reclaim", | 
 | 	"nr_dirtied", | 
 | 	"nr_written", | 
 | 	"", /* nr_indirectly_reclaimable */ | 
 |  | 
 | 	/* enum writeback_stat_item counters */ | 
 | 	"nr_dirty_threshold", | 
 | 	"nr_dirty_background_threshold", | 
 |  | 
 | #ifdef CONFIG_VM_EVENT_COUNTERS | 
 | 	/* enum vm_event_item counters */ | 
 | 	"pgpgin", | 
 | 	"pgpgout", | 
 | 	"pswpin", | 
 | 	"pswpout", | 
 |  | 
 | 	TEXTS_FOR_ZONES("pgalloc") | 
 | 	TEXTS_FOR_ZONES("allocstall") | 
 | 	TEXTS_FOR_ZONES("pgskip") | 
 |  | 
 | 	"pgfree", | 
 | 	"pgactivate", | 
 | 	"pgdeactivate", | 
 | 	"pglazyfree", | 
 |  | 
 | 	"pgfault", | 
 | 	"pgmajfault", | 
 | 	"pglazyfreed", | 
 |  | 
 | 	"pgrefill", | 
 | 	"pgsteal_kswapd", | 
 | 	"pgsteal_direct", | 
 | 	"pgscan_kswapd", | 
 | 	"pgscan_direct", | 
 | 	"pgscan_direct_throttle", | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	"zone_reclaim_failed", | 
 | #endif | 
 | 	"pginodesteal", | 
 | 	"slabs_scanned", | 
 | 	"kswapd_inodesteal", | 
 | 	"kswapd_low_wmark_hit_quickly", | 
 | 	"kswapd_high_wmark_hit_quickly", | 
 | 	"pageoutrun", | 
 |  | 
 | 	"pgrotated", | 
 |  | 
 | 	"drop_pagecache", | 
 | 	"drop_slab", | 
 | 	"oom_kill", | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | 	"numa_pte_updates", | 
 | 	"numa_huge_pte_updates", | 
 | 	"numa_hint_faults", | 
 | 	"numa_hint_faults_local", | 
 | 	"numa_pages_migrated", | 
 | #endif | 
 | #ifdef CONFIG_MIGRATION | 
 | 	"pgmigrate_success", | 
 | 	"pgmigrate_fail", | 
 | #endif | 
 | #ifdef CONFIG_COMPACTION | 
 | 	"compact_migrate_scanned", | 
 | 	"compact_free_scanned", | 
 | 	"compact_isolated", | 
 | 	"compact_stall", | 
 | 	"compact_fail", | 
 | 	"compact_success", | 
 | 	"compact_daemon_wake", | 
 | 	"compact_daemon_migrate_scanned", | 
 | 	"compact_daemon_free_scanned", | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | 	"htlb_buddy_alloc_success", | 
 | 	"htlb_buddy_alloc_fail", | 
 | #endif | 
 | 	"unevictable_pgs_culled", | 
 | 	"unevictable_pgs_scanned", | 
 | 	"unevictable_pgs_rescued", | 
 | 	"unevictable_pgs_mlocked", | 
 | 	"unevictable_pgs_munlocked", | 
 | 	"unevictable_pgs_cleared", | 
 | 	"unevictable_pgs_stranded", | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	"thp_fault_alloc", | 
 | 	"thp_fault_fallback", | 
 | 	"thp_collapse_alloc", | 
 | 	"thp_collapse_alloc_failed", | 
 | 	"thp_file_alloc", | 
 | 	"thp_file_mapped", | 
 | 	"thp_split_page", | 
 | 	"thp_split_page_failed", | 
 | 	"thp_deferred_split_page", | 
 | 	"thp_split_pmd", | 
 | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD | 
 | 	"thp_split_pud", | 
 | #endif | 
 | 	"thp_zero_page_alloc", | 
 | 	"thp_zero_page_alloc_failed", | 
 | 	"thp_swpout", | 
 | 	"thp_swpout_fallback", | 
 | #endif | 
 | #ifdef CONFIG_MEMORY_BALLOON | 
 | 	"balloon_inflate", | 
 | 	"balloon_deflate", | 
 | #ifdef CONFIG_BALLOON_COMPACTION | 
 | 	"balloon_migrate", | 
 | #endif | 
 | #endif /* CONFIG_MEMORY_BALLOON */ | 
 | #ifdef CONFIG_DEBUG_TLBFLUSH | 
 | 	"nr_tlb_remote_flush", | 
 | 	"nr_tlb_remote_flush_received", | 
 | 	"nr_tlb_local_flush_all", | 
 | 	"nr_tlb_local_flush_one", | 
 | #endif /* CONFIG_DEBUG_TLBFLUSH */ | 
 |  | 
 | #ifdef CONFIG_DEBUG_VM_VMACACHE | 
 | 	"vmacache_find_calls", | 
 | 	"vmacache_find_hits", | 
 | #endif | 
 | #ifdef CONFIG_SWAP | 
 | 	"swap_ra", | 
 | 	"swap_ra_hit", | 
 | #endif | 
 | #endif /* CONFIG_VM_EVENTS_COUNTERS */ | 
 | }; | 
 | #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ | 
 |  | 
 | #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ | 
 |      defined(CONFIG_PROC_FS) | 
 | static void *frag_start(struct seq_file *m, loff_t *pos) | 
 | { | 
 | 	pg_data_t *pgdat; | 
 | 	loff_t node = *pos; | 
 |  | 
 | 	for (pgdat = first_online_pgdat(); | 
 | 	     pgdat && node; | 
 | 	     pgdat = next_online_pgdat(pgdat)) | 
 | 		--node; | 
 |  | 
 | 	return pgdat; | 
 | } | 
 |  | 
 | static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) | 
 | { | 
 | 	pg_data_t *pgdat = (pg_data_t *)arg; | 
 |  | 
 | 	(*pos)++; | 
 | 	return next_online_pgdat(pgdat); | 
 | } | 
 |  | 
 | static void frag_stop(struct seq_file *m, void *arg) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * Walk zones in a node and print using a callback. | 
 |  * If @assert_populated is true, only use callback for zones that are populated. | 
 |  */ | 
 | static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, | 
 | 		bool assert_populated, bool nolock, | 
 | 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) | 
 | { | 
 | 	struct zone *zone; | 
 | 	struct zone *node_zones = pgdat->node_zones; | 
 | 	unsigned long flags; | 
 |  | 
 | 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { | 
 | 		if (assert_populated && !populated_zone(zone)) | 
 | 			continue; | 
 |  | 
 | 		if (!nolock) | 
 | 			spin_lock_irqsave(&zone->lock, flags); | 
 | 		print(m, pgdat, zone); | 
 | 		if (!nolock) | 
 | 			spin_unlock_irqrestore(&zone->lock, flags); | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, | 
 | 						struct zone *zone) | 
 | { | 
 | 	int order; | 
 |  | 
 | 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); | 
 | 	for (order = 0; order < MAX_ORDER; ++order) | 
 | 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free); | 
 | 	seq_putc(m, '\n'); | 
 | } | 
 |  | 
 | /* | 
 |  * This walks the free areas for each zone. | 
 |  */ | 
 | static int frag_show(struct seq_file *m, void *arg) | 
 | { | 
 | 	pg_data_t *pgdat = (pg_data_t *)arg; | 
 | 	walk_zones_in_node(m, pgdat, true, false, frag_show_print); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void pagetypeinfo_showfree_print(struct seq_file *m, | 
 | 					pg_data_t *pgdat, struct zone *zone) | 
 | { | 
 | 	int order, mtype; | 
 |  | 
 | 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { | 
 | 		seq_printf(m, "Node %4d, zone %8s, type %12s ", | 
 | 					pgdat->node_id, | 
 | 					zone->name, | 
 | 					migratetype_names[mtype]); | 
 | 		for (order = 0; order < MAX_ORDER; ++order) { | 
 | 			unsigned long freecount = 0; | 
 | 			struct free_area *area; | 
 | 			struct list_head *curr; | 
 |  | 
 | 			area = &(zone->free_area[order]); | 
 |  | 
 | 			list_for_each(curr, &area->free_list[mtype]) | 
 | 				freecount++; | 
 | 			seq_printf(m, "%6lu ", freecount); | 
 | 		} | 
 | 		seq_putc(m, '\n'); | 
 | 	} | 
 | } | 
 |  | 
 | /* Print out the free pages at each order for each migatetype */ | 
 | static int pagetypeinfo_showfree(struct seq_file *m, void *arg) | 
 | { | 
 | 	int order; | 
 | 	pg_data_t *pgdat = (pg_data_t *)arg; | 
 |  | 
 | 	/* Print header */ | 
 | 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); | 
 | 	for (order = 0; order < MAX_ORDER; ++order) | 
 | 		seq_printf(m, "%6d ", order); | 
 | 	seq_putc(m, '\n'); | 
 |  | 
 | 	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void pagetypeinfo_showblockcount_print(struct seq_file *m, | 
 | 					pg_data_t *pgdat, struct zone *zone) | 
 | { | 
 | 	int mtype; | 
 | 	unsigned long pfn; | 
 | 	unsigned long start_pfn = zone->zone_start_pfn; | 
 | 	unsigned long end_pfn = zone_end_pfn(zone); | 
 | 	unsigned long count[MIGRATE_TYPES] = { 0, }; | 
 |  | 
 | 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { | 
 | 		struct page *page; | 
 |  | 
 | 		page = pfn_to_online_page(pfn); | 
 | 		if (!page) | 
 | 			continue; | 
 |  | 
 | 		/* Watch for unexpected holes punched in the memmap */ | 
 | 		if (!memmap_valid_within(pfn, page, zone)) | 
 | 			continue; | 
 |  | 
 | 		if (page_zone(page) != zone) | 
 | 			continue; | 
 |  | 
 | 		mtype = get_pageblock_migratetype(page); | 
 |  | 
 | 		if (mtype < MIGRATE_TYPES) | 
 | 			count[mtype]++; | 
 | 	} | 
 |  | 
 | 	/* Print counts */ | 
 | 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); | 
 | 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) | 
 | 		seq_printf(m, "%12lu ", count[mtype]); | 
 | 	seq_putc(m, '\n'); | 
 | } | 
 |  | 
 | /* Print out the number of pageblocks for each migratetype */ | 
 | static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) | 
 | { | 
 | 	int mtype; | 
 | 	pg_data_t *pgdat = (pg_data_t *)arg; | 
 |  | 
 | 	seq_printf(m, "\n%-23s", "Number of blocks type "); | 
 | 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) | 
 | 		seq_printf(m, "%12s ", migratetype_names[mtype]); | 
 | 	seq_putc(m, '\n'); | 
 | 	walk_zones_in_node(m, pgdat, true, false, | 
 | 		pagetypeinfo_showblockcount_print); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Print out the number of pageblocks for each migratetype that contain pages | 
 |  * of other types. This gives an indication of how well fallbacks are being | 
 |  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER | 
 |  * to determine what is going on | 
 |  */ | 
 | static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) | 
 | { | 
 | #ifdef CONFIG_PAGE_OWNER | 
 | 	int mtype; | 
 |  | 
 | 	if (!static_branch_unlikely(&page_owner_inited)) | 
 | 		return; | 
 |  | 
 | 	drain_all_pages(NULL); | 
 |  | 
 | 	seq_printf(m, "\n%-23s", "Number of mixed blocks "); | 
 | 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) | 
 | 		seq_printf(m, "%12s ", migratetype_names[mtype]); | 
 | 	seq_putc(m, '\n'); | 
 |  | 
 | 	walk_zones_in_node(m, pgdat, true, true, | 
 | 		pagetypeinfo_showmixedcount_print); | 
 | #endif /* CONFIG_PAGE_OWNER */ | 
 | } | 
 |  | 
 | /* | 
 |  * This prints out statistics in relation to grouping pages by mobility. | 
 |  * It is expensive to collect so do not constantly read the file. | 
 |  */ | 
 | static int pagetypeinfo_show(struct seq_file *m, void *arg) | 
 | { | 
 | 	pg_data_t *pgdat = (pg_data_t *)arg; | 
 |  | 
 | 	/* check memoryless node */ | 
 | 	if (!node_state(pgdat->node_id, N_MEMORY)) | 
 | 		return 0; | 
 |  | 
 | 	seq_printf(m, "Page block order: %d\n", pageblock_order); | 
 | 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages); | 
 | 	seq_putc(m, '\n'); | 
 | 	pagetypeinfo_showfree(m, pgdat); | 
 | 	pagetypeinfo_showblockcount(m, pgdat); | 
 | 	pagetypeinfo_showmixedcount(m, pgdat); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct seq_operations fragmentation_op = { | 
 | 	.start	= frag_start, | 
 | 	.next	= frag_next, | 
 | 	.stop	= frag_stop, | 
 | 	.show	= frag_show, | 
 | }; | 
 |  | 
 | static int fragmentation_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return seq_open(file, &fragmentation_op); | 
 | } | 
 |  | 
 | static const struct file_operations buddyinfo_file_operations = { | 
 | 	.open		= fragmentation_open, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= seq_release, | 
 | }; | 
 |  | 
 | static const struct seq_operations pagetypeinfo_op = { | 
 | 	.start	= frag_start, | 
 | 	.next	= frag_next, | 
 | 	.stop	= frag_stop, | 
 | 	.show	= pagetypeinfo_show, | 
 | }; | 
 |  | 
 | static int pagetypeinfo_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return seq_open(file, &pagetypeinfo_op); | 
 | } | 
 |  | 
 | static const struct file_operations pagetypeinfo_file_operations = { | 
 | 	.open		= pagetypeinfo_open, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= seq_release, | 
 | }; | 
 |  | 
 | static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) | 
 | { | 
 | 	int zid; | 
 |  | 
 | 	for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
 | 		struct zone *compare = &pgdat->node_zones[zid]; | 
 |  | 
 | 		if (populated_zone(compare)) | 
 | 			return zone == compare; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, | 
 | 							struct zone *zone) | 
 | { | 
 | 	int i; | 
 | 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); | 
 | 	if (is_zone_first_populated(pgdat, zone)) { | 
 | 		seq_printf(m, "\n  per-node stats"); | 
 | 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { | 
 | 			/* Skip hidden vmstat items. */ | 
 | 			if (*vmstat_text[i + NR_VM_ZONE_STAT_ITEMS + | 
 | 					 NR_VM_NUMA_STAT_ITEMS] == '\0') | 
 | 				continue; | 
 | 			seq_printf(m, "\n      %-12s %lu", | 
 | 				vmstat_text[i + NR_VM_ZONE_STAT_ITEMS + | 
 | 				NR_VM_NUMA_STAT_ITEMS], | 
 | 				node_page_state(pgdat, i)); | 
 | 		} | 
 | 	} | 
 | 	seq_printf(m, | 
 | 		   "\n  pages free     %lu" | 
 | 		   "\n        min      %lu" | 
 | 		   "\n        low      %lu" | 
 | 		   "\n        high     %lu" | 
 | 		   "\n        spanned  %lu" | 
 | 		   "\n        present  %lu" | 
 | 		   "\n        managed  %lu", | 
 | 		   zone_page_state(zone, NR_FREE_PAGES), | 
 | 		   min_wmark_pages(zone), | 
 | 		   low_wmark_pages(zone), | 
 | 		   high_wmark_pages(zone), | 
 | 		   zone->spanned_pages, | 
 | 		   zone->present_pages, | 
 | 		   zone->managed_pages); | 
 |  | 
 | 	seq_printf(m, | 
 | 		   "\n        protection: (%ld", | 
 | 		   zone->lowmem_reserve[0]); | 
 | 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) | 
 | 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]); | 
 | 	seq_putc(m, ')'); | 
 |  | 
 | 	/* If unpopulated, no other information is useful */ | 
 | 	if (!populated_zone(zone)) { | 
 | 		seq_putc(m, '\n'); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
 | 		seq_printf(m, "\n      %-12s %lu", vmstat_text[i], | 
 | 				zone_page_state(zone, i)); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) | 
 | 		seq_printf(m, "\n      %-12s %lu", | 
 | 				vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], | 
 | 				zone_numa_state_snapshot(zone, i)); | 
 | #endif | 
 |  | 
 | 	seq_printf(m, "\n  pagesets"); | 
 | 	for_each_online_cpu(i) { | 
 | 		struct per_cpu_pageset *pageset; | 
 |  | 
 | 		pageset = per_cpu_ptr(zone->pageset, i); | 
 | 		seq_printf(m, | 
 | 			   "\n    cpu: %i" | 
 | 			   "\n              count: %i" | 
 | 			   "\n              high:  %i" | 
 | 			   "\n              batch: %i", | 
 | 			   i, | 
 | 			   pageset->pcp.count, | 
 | 			   pageset->pcp.high, | 
 | 			   pageset->pcp.batch); | 
 | #ifdef CONFIG_SMP | 
 | 		seq_printf(m, "\n  vm stats threshold: %d", | 
 | 				pageset->stat_threshold); | 
 | #endif | 
 | 	} | 
 | 	seq_printf(m, | 
 | 		   "\n  node_unreclaimable:  %u" | 
 | 		   "\n  start_pfn:           %lu" | 
 | 		   "\n  node_inactive_ratio: %u", | 
 | 		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, | 
 | 		   zone->zone_start_pfn, | 
 | 		   zone->zone_pgdat->inactive_ratio); | 
 | 	seq_putc(m, '\n'); | 
 | } | 
 |  | 
 | /* | 
 |  * Output information about zones in @pgdat.  All zones are printed regardless | 
 |  * of whether they are populated or not: lowmem_reserve_ratio operates on the | 
 |  * set of all zones and userspace would not be aware of such zones if they are | 
 |  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). | 
 |  */ | 
 | static int zoneinfo_show(struct seq_file *m, void *arg) | 
 | { | 
 | 	pg_data_t *pgdat = (pg_data_t *)arg; | 
 | 	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct seq_operations zoneinfo_op = { | 
 | 	.start	= frag_start, /* iterate over all zones. The same as in | 
 | 			       * fragmentation. */ | 
 | 	.next	= frag_next, | 
 | 	.stop	= frag_stop, | 
 | 	.show	= zoneinfo_show, | 
 | }; | 
 |  | 
 | static int zoneinfo_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return seq_open(file, &zoneinfo_op); | 
 | } | 
 |  | 
 | static const struct file_operations zoneinfo_file_operations = { | 
 | 	.open		= zoneinfo_open, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= seq_release, | 
 | }; | 
 |  | 
 | enum writeback_stat_item { | 
 | 	NR_DIRTY_THRESHOLD, | 
 | 	NR_DIRTY_BG_THRESHOLD, | 
 | 	NR_VM_WRITEBACK_STAT_ITEMS, | 
 | }; | 
 |  | 
 | static void *vmstat_start(struct seq_file *m, loff_t *pos) | 
 | { | 
 | 	unsigned long *v; | 
 | 	int i, stat_items_size; | 
 |  | 
 | 	if (*pos >= ARRAY_SIZE(vmstat_text)) | 
 | 		return NULL; | 
 | 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + | 
 | 			  NR_VM_NUMA_STAT_ITEMS * sizeof(unsigned long) + | 
 | 			  NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) + | 
 | 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); | 
 |  | 
 | #ifdef CONFIG_VM_EVENT_COUNTERS | 
 | 	stat_items_size += sizeof(struct vm_event_state); | 
 | #endif | 
 |  | 
 | 	v = kmalloc(stat_items_size, GFP_KERNEL); | 
 | 	m->private = v; | 
 | 	if (!v) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
 | 		v[i] = global_zone_page_state(i); | 
 | 	v += NR_VM_ZONE_STAT_ITEMS; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) | 
 | 		v[i] = global_numa_state(i); | 
 | 	v += NR_VM_NUMA_STAT_ITEMS; | 
 | #endif | 
 |  | 
 | 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) | 
 | 		v[i] = global_node_page_state(i); | 
 | 	v += NR_VM_NODE_STAT_ITEMS; | 
 |  | 
 | 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, | 
 | 			    v + NR_DIRTY_THRESHOLD); | 
 | 	v += NR_VM_WRITEBACK_STAT_ITEMS; | 
 |  | 
 | #ifdef CONFIG_VM_EVENT_COUNTERS | 
 | 	all_vm_events(v); | 
 | 	v[PGPGIN] /= 2;		/* sectors -> kbytes */ | 
 | 	v[PGPGOUT] /= 2; | 
 | #endif | 
 | 	return (unsigned long *)m->private + *pos; | 
 | } | 
 |  | 
 | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) | 
 | { | 
 | 	(*pos)++; | 
 | 	if (*pos >= ARRAY_SIZE(vmstat_text)) | 
 | 		return NULL; | 
 | 	return (unsigned long *)m->private + *pos; | 
 | } | 
 |  | 
 | static int vmstat_show(struct seq_file *m, void *arg) | 
 | { | 
 | 	unsigned long *l = arg; | 
 | 	unsigned long off = l - (unsigned long *)m->private; | 
 |  | 
 | 	/* Skip hidden vmstat items. */ | 
 | 	if (*vmstat_text[off] == '\0') | 
 | 		return 0; | 
 |  | 
 | 	seq_puts(m, vmstat_text[off]); | 
 | 	seq_put_decimal_ull(m, " ", *l); | 
 | 	seq_putc(m, '\n'); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void vmstat_stop(struct seq_file *m, void *arg) | 
 | { | 
 | 	kfree(m->private); | 
 | 	m->private = NULL; | 
 | } | 
 |  | 
 | static const struct seq_operations vmstat_op = { | 
 | 	.start	= vmstat_start, | 
 | 	.next	= vmstat_next, | 
 | 	.stop	= vmstat_stop, | 
 | 	.show	= vmstat_show, | 
 | }; | 
 |  | 
 | static int vmstat_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return seq_open(file, &vmstat_op); | 
 | } | 
 |  | 
 | static const struct file_operations vmstat_file_operations = { | 
 | 	.open		= vmstat_open, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= seq_release, | 
 | }; | 
 | #endif /* CONFIG_PROC_FS */ | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static DEFINE_PER_CPU(struct delayed_work, vmstat_work); | 
 | int sysctl_stat_interval __read_mostly = HZ; | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | static void refresh_vm_stats(struct work_struct *work) | 
 | { | 
 | 	refresh_cpu_vm_stats(true); | 
 | } | 
 |  | 
 | int vmstat_refresh(struct ctl_table *table, int write, | 
 | 		   void __user *buffer, size_t *lenp, loff_t *ppos) | 
 | { | 
 | 	long val; | 
 | 	int err; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * The regular update, every sysctl_stat_interval, may come later | 
 | 	 * than expected: leaving a significant amount in per_cpu buckets. | 
 | 	 * This is particularly misleading when checking a quantity of HUGE | 
 | 	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh, | 
 | 	 * which can equally be echo'ed to or cat'ted from (by root), | 
 | 	 * can be used to update the stats just before reading them. | 
 | 	 * | 
 | 	 * Oh, and since global_zone_page_state() etc. are so careful to hide | 
 | 	 * transiently negative values, report an error here if any of | 
 | 	 * the stats is negative, so we know to go looking for imbalance. | 
 | 	 */ | 
 | 	err = schedule_on_each_cpu(refresh_vm_stats); | 
 | 	if (err) | 
 | 		return err; | 
 | 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { | 
 | 		val = atomic_long_read(&vm_zone_stat[i]); | 
 | 		if (val < 0) { | 
 | 			pr_warn("%s: %s %ld\n", | 
 | 				__func__, vmstat_text[i], val); | 
 | 			err = -EINVAL; | 
 | 		} | 
 | 	} | 
 | #ifdef CONFIG_NUMA | 
 | 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { | 
 | 		val = atomic_long_read(&vm_numa_stat[i]); | 
 | 		if (val < 0) { | 
 | 			pr_warn("%s: %s %ld\n", | 
 | 				__func__, vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], val); | 
 | 			err = -EINVAL; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	if (err) | 
 | 		return err; | 
 | 	if (write) | 
 | 		*ppos += *lenp; | 
 | 	else | 
 | 		*lenp = 0; | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_PROC_FS */ | 
 |  | 
 | static void vmstat_update(struct work_struct *w) | 
 | { | 
 | 	if (refresh_cpu_vm_stats(true)) { | 
 | 		/* | 
 | 		 * Counters were updated so we expect more updates | 
 | 		 * to occur in the future. Keep on running the | 
 | 		 * update worker thread. | 
 | 		 */ | 
 | 		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, | 
 | 				this_cpu_ptr(&vmstat_work), | 
 | 				round_jiffies_relative(sysctl_stat_interval)); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Switch off vmstat processing and then fold all the remaining differentials | 
 |  * until the diffs stay at zero. The function is used by NOHZ and can only be | 
 |  * invoked when tick processing is not active. | 
 |  */ | 
 | /* | 
 |  * Check if the diffs for a certain cpu indicate that | 
 |  * an update is needed. | 
 |  */ | 
 | static bool need_update(int cpu) | 
 | { | 
 | 	struct zone *zone; | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); | 
 |  | 
 | 		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); | 
 | #ifdef CONFIG_NUMA | 
 | 		BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2); | 
 | #endif | 
 |  | 
 | 		/* | 
 | 		 * The fast way of checking if there are any vmstat diffs. | 
 | 		 */ | 
 | 		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS * | 
 | 			       sizeof(p->vm_stat_diff[0]))) | 
 | 			return true; | 
 | #ifdef CONFIG_NUMA | 
 | 		if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS * | 
 | 			       sizeof(p->vm_numa_stat_diff[0]))) | 
 | 			return true; | 
 | #endif | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Switch off vmstat processing and then fold all the remaining differentials | 
 |  * until the diffs stay at zero. The function is used by NOHZ and can only be | 
 |  * invoked when tick processing is not active. | 
 |  */ | 
 | void quiet_vmstat(void) | 
 | { | 
 | 	if (system_state != SYSTEM_RUNNING) | 
 | 		return; | 
 |  | 
 | 	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) | 
 | 		return; | 
 |  | 
 | 	if (!need_update(smp_processor_id())) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Just refresh counters and do not care about the pending delayed | 
 | 	 * vmstat_update. It doesn't fire that often to matter and canceling | 
 | 	 * it would be too expensive from this path. | 
 | 	 * vmstat_shepherd will take care about that for us. | 
 | 	 */ | 
 | 	refresh_cpu_vm_stats(false); | 
 | } | 
 |  | 
 | /* | 
 |  * Shepherd worker thread that checks the | 
 |  * differentials of processors that have their worker | 
 |  * threads for vm statistics updates disabled because of | 
 |  * inactivity. | 
 |  */ | 
 | static void vmstat_shepherd(struct work_struct *w); | 
 |  | 
 | static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); | 
 |  | 
 | static void vmstat_shepherd(struct work_struct *w) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	get_online_cpus(); | 
 | 	/* Check processors whose vmstat worker threads have been disabled */ | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct delayed_work *dw = &per_cpu(vmstat_work, cpu); | 
 |  | 
 | 		if (!delayed_work_pending(dw) && need_update(cpu)) | 
 | 			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); | 
 | 	} | 
 | 	put_online_cpus(); | 
 |  | 
 | 	schedule_delayed_work(&shepherd, | 
 | 		round_jiffies_relative(sysctl_stat_interval)); | 
 | } | 
 |  | 
 | static void __init start_shepherd_timer(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), | 
 | 			vmstat_update); | 
 |  | 
 | 	schedule_delayed_work(&shepherd, | 
 | 		round_jiffies_relative(sysctl_stat_interval)); | 
 | } | 
 |  | 
 | static void __init init_cpu_node_state(void) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		if (cpumask_weight(cpumask_of_node(node)) > 0) | 
 | 			node_set_state(node, N_CPU); | 
 | 	} | 
 | } | 
 |  | 
 | static int vmstat_cpu_online(unsigned int cpu) | 
 | { | 
 | 	refresh_zone_stat_thresholds(); | 
 | 	node_set_state(cpu_to_node(cpu), N_CPU); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmstat_cpu_down_prep(unsigned int cpu) | 
 | { | 
 | 	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmstat_cpu_dead(unsigned int cpu) | 
 | { | 
 | 	const struct cpumask *node_cpus; | 
 | 	int node; | 
 |  | 
 | 	node = cpu_to_node(cpu); | 
 |  | 
 | 	refresh_zone_stat_thresholds(); | 
 | 	node_cpus = cpumask_of_node(node); | 
 | 	if (cpumask_weight(node_cpus) > 0) | 
 | 		return 0; | 
 |  | 
 | 	node_clear_state(node, N_CPU); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | struct workqueue_struct *mm_percpu_wq; | 
 |  | 
 | void __init init_mm_internals(void) | 
 | { | 
 | 	int ret __maybe_unused; | 
 |  | 
 | 	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", | 
 | 					NULL, vmstat_cpu_dead); | 
 | 	if (ret < 0) | 
 | 		pr_err("vmstat: failed to register 'dead' hotplug state\n"); | 
 |  | 
 | 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", | 
 | 					vmstat_cpu_online, | 
 | 					vmstat_cpu_down_prep); | 
 | 	if (ret < 0) | 
 | 		pr_err("vmstat: failed to register 'online' hotplug state\n"); | 
 |  | 
 | 	get_online_cpus(); | 
 | 	init_cpu_node_state(); | 
 | 	put_online_cpus(); | 
 |  | 
 | 	start_shepherd_timer(); | 
 | #endif | 
 | #ifdef CONFIG_PROC_FS | 
 | 	proc_create("buddyinfo", 0444, NULL, &buddyinfo_file_operations); | 
 | 	proc_create("pagetypeinfo", 0400, NULL, &pagetypeinfo_file_operations); | 
 | 	proc_create("vmstat", 0444, NULL, &vmstat_file_operations); | 
 | 	proc_create("zoneinfo", 0444, NULL, &zoneinfo_file_operations); | 
 | #endif | 
 | } | 
 |  | 
 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) | 
 |  | 
 | /* | 
 |  * Return an index indicating how much of the available free memory is | 
 |  * unusable for an allocation of the requested size. | 
 |  */ | 
 | static int unusable_free_index(unsigned int order, | 
 | 				struct contig_page_info *info) | 
 | { | 
 | 	/* No free memory is interpreted as all free memory is unusable */ | 
 | 	if (info->free_pages == 0) | 
 | 		return 1000; | 
 |  | 
 | 	/* | 
 | 	 * Index should be a value between 0 and 1. Return a value to 3 | 
 | 	 * decimal places. | 
 | 	 * | 
 | 	 * 0 => no fragmentation | 
 | 	 * 1 => high fragmentation | 
 | 	 */ | 
 | 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); | 
 |  | 
 | } | 
 |  | 
 | static void unusable_show_print(struct seq_file *m, | 
 | 					pg_data_t *pgdat, struct zone *zone) | 
 | { | 
 | 	unsigned int order; | 
 | 	int index; | 
 | 	struct contig_page_info info; | 
 |  | 
 | 	seq_printf(m, "Node %d, zone %8s ", | 
 | 				pgdat->node_id, | 
 | 				zone->name); | 
 | 	for (order = 0; order < MAX_ORDER; ++order) { | 
 | 		fill_contig_page_info(zone, order, &info); | 
 | 		index = unusable_free_index(order, &info); | 
 | 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000); | 
 | 	} | 
 |  | 
 | 	seq_putc(m, '\n'); | 
 | } | 
 |  | 
 | /* | 
 |  * Display unusable free space index | 
 |  * | 
 |  * The unusable free space index measures how much of the available free | 
 |  * memory cannot be used to satisfy an allocation of a given size and is a | 
 |  * value between 0 and 1. The higher the value, the more of free memory is | 
 |  * unusable and by implication, the worse the external fragmentation is. This | 
 |  * can be expressed as a percentage by multiplying by 100. | 
 |  */ | 
 | static int unusable_show(struct seq_file *m, void *arg) | 
 | { | 
 | 	pg_data_t *pgdat = (pg_data_t *)arg; | 
 |  | 
 | 	/* check memoryless node */ | 
 | 	if (!node_state(pgdat->node_id, N_MEMORY)) | 
 | 		return 0; | 
 |  | 
 | 	walk_zones_in_node(m, pgdat, true, false, unusable_show_print); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct seq_operations unusable_op = { | 
 | 	.start	= frag_start, | 
 | 	.next	= frag_next, | 
 | 	.stop	= frag_stop, | 
 | 	.show	= unusable_show, | 
 | }; | 
 |  | 
 | static int unusable_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return seq_open(file, &unusable_op); | 
 | } | 
 |  | 
 | static const struct file_operations unusable_file_ops = { | 
 | 	.open		= unusable_open, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= seq_release, | 
 | }; | 
 |  | 
 | static void extfrag_show_print(struct seq_file *m, | 
 | 					pg_data_t *pgdat, struct zone *zone) | 
 | { | 
 | 	unsigned int order; | 
 | 	int index; | 
 |  | 
 | 	/* Alloc on stack as interrupts are disabled for zone walk */ | 
 | 	struct contig_page_info info; | 
 |  | 
 | 	seq_printf(m, "Node %d, zone %8s ", | 
 | 				pgdat->node_id, | 
 | 				zone->name); | 
 | 	for (order = 0; order < MAX_ORDER; ++order) { | 
 | 		fill_contig_page_info(zone, order, &info); | 
 | 		index = __fragmentation_index(order, &info); | 
 | 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000); | 
 | 	} | 
 |  | 
 | 	seq_putc(m, '\n'); | 
 | } | 
 |  | 
 | /* | 
 |  * Display fragmentation index for orders that allocations would fail for | 
 |  */ | 
 | static int extfrag_show(struct seq_file *m, void *arg) | 
 | { | 
 | 	pg_data_t *pgdat = (pg_data_t *)arg; | 
 |  | 
 | 	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct seq_operations extfrag_op = { | 
 | 	.start	= frag_start, | 
 | 	.next	= frag_next, | 
 | 	.stop	= frag_stop, | 
 | 	.show	= extfrag_show, | 
 | }; | 
 |  | 
 | static int extfrag_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return seq_open(file, &extfrag_op); | 
 | } | 
 |  | 
 | static const struct file_operations extfrag_file_ops = { | 
 | 	.open		= extfrag_open, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= seq_release, | 
 | }; | 
 |  | 
 | static int __init extfrag_debug_init(void) | 
 | { | 
 | 	struct dentry *extfrag_debug_root; | 
 |  | 
 | 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL); | 
 | 	if (!extfrag_debug_root) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (!debugfs_create_file("unusable_index", 0444, | 
 | 			extfrag_debug_root, NULL, &unusable_file_ops)) | 
 | 		goto fail; | 
 |  | 
 | 	if (!debugfs_create_file("extfrag_index", 0444, | 
 | 			extfrag_debug_root, NULL, &extfrag_file_ops)) | 
 | 		goto fail; | 
 |  | 
 | 	return 0; | 
 | fail: | 
 | 	debugfs_remove_recursive(extfrag_debug_root); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | module_init(extfrag_debug_init); | 
 | #endif |