| /* | 
 |  * inet fragments management | 
 |  * | 
 |  *		This program is free software; you can redistribute it and/or | 
 |  *		modify it under the terms of the GNU General Public License | 
 |  *		as published by the Free Software Foundation; either version | 
 |  *		2 of the License, or (at your option) any later version. | 
 |  * | 
 |  * 		Authors:	Pavel Emelyanov <xemul@openvz.org> | 
 |  *				Started as consolidation of ipv4/ip_fragment.c, | 
 |  *				ipv6/reassembly. and ipv6 nf conntrack reassembly | 
 |  */ | 
 |  | 
 | #include <linux/list.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/module.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/random.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/rtnetlink.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <net/sock.h> | 
 | #include <net/inet_frag.h> | 
 | #include <net/inet_ecn.h> | 
 | #include <net/ip.h> | 
 | #include <net/ipv6.h> | 
 |  | 
 | /* Use skb->cb to track consecutive/adjacent fragments coming at | 
 |  * the end of the queue. Nodes in the rb-tree queue will | 
 |  * contain "runs" of one or more adjacent fragments. | 
 |  * | 
 |  * Invariants: | 
 |  * - next_frag is NULL at the tail of a "run"; | 
 |  * - the head of a "run" has the sum of all fragment lengths in frag_run_len. | 
 |  */ | 
 | struct ipfrag_skb_cb { | 
 | 	union { | 
 | 		struct inet_skb_parm	h4; | 
 | 		struct inet6_skb_parm	h6; | 
 | 	}; | 
 | 	struct sk_buff		*next_frag; | 
 | 	int			frag_run_len; | 
 | }; | 
 |  | 
 | #define FRAG_CB(skb)		((struct ipfrag_skb_cb *)((skb)->cb)) | 
 |  | 
 | static void fragcb_clear(struct sk_buff *skb) | 
 | { | 
 | 	RB_CLEAR_NODE(&skb->rbnode); | 
 | 	FRAG_CB(skb)->next_frag = NULL; | 
 | 	FRAG_CB(skb)->frag_run_len = skb->len; | 
 | } | 
 |  | 
 | /* Append skb to the last "run". */ | 
 | static void fragrun_append_to_last(struct inet_frag_queue *q, | 
 | 				   struct sk_buff *skb) | 
 | { | 
 | 	fragcb_clear(skb); | 
 |  | 
 | 	FRAG_CB(q->last_run_head)->frag_run_len += skb->len; | 
 | 	FRAG_CB(q->fragments_tail)->next_frag = skb; | 
 | 	q->fragments_tail = skb; | 
 | } | 
 |  | 
 | /* Create a new "run" with the skb. */ | 
 | static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb) | 
 | { | 
 | 	BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb)); | 
 | 	fragcb_clear(skb); | 
 |  | 
 | 	if (q->last_run_head) | 
 | 		rb_link_node(&skb->rbnode, &q->last_run_head->rbnode, | 
 | 			     &q->last_run_head->rbnode.rb_right); | 
 | 	else | 
 | 		rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node); | 
 | 	rb_insert_color(&skb->rbnode, &q->rb_fragments); | 
 |  | 
 | 	q->fragments_tail = skb; | 
 | 	q->last_run_head = skb; | 
 | } | 
 |  | 
 | /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements | 
 |  * Value : 0xff if frame should be dropped. | 
 |  *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field | 
 |  */ | 
 | const u8 ip_frag_ecn_table[16] = { | 
 | 	/* at least one fragment had CE, and others ECT_0 or ECT_1 */ | 
 | 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]			= INET_ECN_CE, | 
 | 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]			= INET_ECN_CE, | 
 | 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]	= INET_ECN_CE, | 
 |  | 
 | 	/* invalid combinations : drop frame */ | 
 | 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff, | 
 | 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff, | 
 | 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff, | 
 | 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, | 
 | 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff, | 
 | 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff, | 
 | 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, | 
 | }; | 
 | EXPORT_SYMBOL(ip_frag_ecn_table); | 
 |  | 
 | int inet_frags_init(struct inet_frags *f) | 
 | { | 
 | 	f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0, | 
 | 					    NULL); | 
 | 	if (!f->frags_cachep) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(inet_frags_init); | 
 |  | 
 | void inet_frags_fini(struct inet_frags *f) | 
 | { | 
 | 	/* We must wait that all inet_frag_destroy_rcu() have completed. */ | 
 | 	rcu_barrier(); | 
 |  | 
 | 	kmem_cache_destroy(f->frags_cachep); | 
 | 	f->frags_cachep = NULL; | 
 | } | 
 | EXPORT_SYMBOL(inet_frags_fini); | 
 |  | 
 | static void inet_frags_free_cb(void *ptr, void *arg) | 
 | { | 
 | 	struct inet_frag_queue *fq = ptr; | 
 |  | 
 | 	/* If we can not cancel the timer, it means this frag_queue | 
 | 	 * is already disappearing, we have nothing to do. | 
 | 	 * Otherwise, we own a refcount until the end of this function. | 
 | 	 */ | 
 | 	if (!del_timer(&fq->timer)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_bh(&fq->lock); | 
 | 	if (!(fq->flags & INET_FRAG_COMPLETE)) { | 
 | 		fq->flags |= INET_FRAG_COMPLETE; | 
 | 		refcount_dec(&fq->refcnt); | 
 | 	} | 
 | 	spin_unlock_bh(&fq->lock); | 
 |  | 
 | 	inet_frag_put(fq); | 
 | } | 
 |  | 
 | void inet_frags_exit_net(struct netns_frags *nf) | 
 | { | 
 | 	nf->high_thresh = 0; /* prevent creation of new frags */ | 
 |  | 
 | 	rhashtable_free_and_destroy(&nf->rhashtable, inet_frags_free_cb, NULL); | 
 | } | 
 | EXPORT_SYMBOL(inet_frags_exit_net); | 
 |  | 
 | void inet_frag_kill(struct inet_frag_queue *fq) | 
 | { | 
 | 	if (del_timer(&fq->timer)) | 
 | 		refcount_dec(&fq->refcnt); | 
 |  | 
 | 	if (!(fq->flags & INET_FRAG_COMPLETE)) { | 
 | 		struct netns_frags *nf = fq->net; | 
 |  | 
 | 		fq->flags |= INET_FRAG_COMPLETE; | 
 | 		rhashtable_remove_fast(&nf->rhashtable, &fq->node, nf->f->rhash_params); | 
 | 		refcount_dec(&fq->refcnt); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(inet_frag_kill); | 
 |  | 
 | static void inet_frag_destroy_rcu(struct rcu_head *head) | 
 | { | 
 | 	struct inet_frag_queue *q = container_of(head, struct inet_frag_queue, | 
 | 						 rcu); | 
 | 	struct inet_frags *f = q->net->f; | 
 |  | 
 | 	if (f->destructor) | 
 | 		f->destructor(q); | 
 | 	kmem_cache_free(f->frags_cachep, q); | 
 | } | 
 |  | 
 | unsigned int inet_frag_rbtree_purge(struct rb_root *root) | 
 | { | 
 | 	struct rb_node *p = rb_first(root); | 
 | 	unsigned int sum = 0; | 
 |  | 
 | 	while (p) { | 
 | 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); | 
 |  | 
 | 		p = rb_next(p); | 
 | 		rb_erase(&skb->rbnode, root); | 
 | 		while (skb) { | 
 | 			struct sk_buff *next = FRAG_CB(skb)->next_frag; | 
 |  | 
 | 			sum += skb->truesize; | 
 | 			kfree_skb(skb); | 
 | 			skb = next; | 
 | 		} | 
 | 	} | 
 | 	return sum; | 
 | } | 
 | EXPORT_SYMBOL(inet_frag_rbtree_purge); | 
 |  | 
 | void inet_frag_destroy(struct inet_frag_queue *q) | 
 | { | 
 | 	struct sk_buff *fp; | 
 | 	struct netns_frags *nf; | 
 | 	unsigned int sum, sum_truesize = 0; | 
 | 	struct inet_frags *f; | 
 |  | 
 | 	WARN_ON(!(q->flags & INET_FRAG_COMPLETE)); | 
 | 	WARN_ON(del_timer(&q->timer) != 0); | 
 |  | 
 | 	/* Release all fragment data. */ | 
 | 	fp = q->fragments; | 
 | 	nf = q->net; | 
 | 	f = nf->f; | 
 | 	if (fp) { | 
 | 		do { | 
 | 			struct sk_buff *xp = fp->next; | 
 |  | 
 | 			sum_truesize += fp->truesize; | 
 | 			kfree_skb(fp); | 
 | 			fp = xp; | 
 | 		} while (fp); | 
 | 	} else { | 
 | 		sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments); | 
 | 	} | 
 | 	sum = sum_truesize + f->qsize; | 
 |  | 
 | 	call_rcu(&q->rcu, inet_frag_destroy_rcu); | 
 |  | 
 | 	sub_frag_mem_limit(nf, sum); | 
 | } | 
 | EXPORT_SYMBOL(inet_frag_destroy); | 
 |  | 
 | static struct inet_frag_queue *inet_frag_alloc(struct netns_frags *nf, | 
 | 					       struct inet_frags *f, | 
 | 					       void *arg) | 
 | { | 
 | 	struct inet_frag_queue *q; | 
 |  | 
 | 	if (!nf->high_thresh || frag_mem_limit(nf) > nf->high_thresh) | 
 | 		return NULL; | 
 |  | 
 | 	q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC); | 
 | 	if (!q) | 
 | 		return NULL; | 
 |  | 
 | 	q->net = nf; | 
 | 	f->constructor(q, arg); | 
 | 	add_frag_mem_limit(nf, f->qsize); | 
 |  | 
 | 	timer_setup(&q->timer, f->frag_expire, 0); | 
 | 	spin_lock_init(&q->lock); | 
 | 	refcount_set(&q->refcnt, 3); | 
 |  | 
 | 	return q; | 
 | } | 
 |  | 
 | static struct inet_frag_queue *inet_frag_create(struct netns_frags *nf, | 
 | 						void *arg, | 
 | 						struct inet_frag_queue **prev) | 
 | { | 
 | 	struct inet_frags *f = nf->f; | 
 | 	struct inet_frag_queue *q; | 
 |  | 
 | 	q = inet_frag_alloc(nf, f, arg); | 
 | 	if (!q) { | 
 | 		*prev = ERR_PTR(-ENOMEM); | 
 | 		return NULL; | 
 | 	} | 
 | 	mod_timer(&q->timer, jiffies + nf->timeout); | 
 |  | 
 | 	*prev = rhashtable_lookup_get_insert_key(&nf->rhashtable, &q->key, | 
 | 						 &q->node, f->rhash_params); | 
 | 	if (*prev) { | 
 | 		q->flags |= INET_FRAG_COMPLETE; | 
 | 		inet_frag_kill(q); | 
 | 		inet_frag_destroy(q); | 
 | 		return NULL; | 
 | 	} | 
 | 	return q; | 
 | } | 
 |  | 
 | /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */ | 
 | struct inet_frag_queue *inet_frag_find(struct netns_frags *nf, void *key) | 
 | { | 
 | 	struct inet_frag_queue *fq = NULL, *prev; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	prev = rhashtable_lookup(&nf->rhashtable, key, nf->f->rhash_params); | 
 | 	if (!prev) | 
 | 		fq = inet_frag_create(nf, key, &prev); | 
 | 	if (prev && !IS_ERR(prev)) { | 
 | 		fq = prev; | 
 | 		if (!refcount_inc_not_zero(&fq->refcnt)) | 
 | 			fq = NULL; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return fq; | 
 | } | 
 | EXPORT_SYMBOL(inet_frag_find); | 
 |  | 
 | int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb, | 
 | 			   int offset, int end) | 
 | { | 
 | 	struct sk_buff *last = q->fragments_tail; | 
 |  | 
 | 	/* RFC5722, Section 4, amended by Errata ID : 3089 | 
 | 	 *                          When reassembling an IPv6 datagram, if | 
 | 	 *   one or more its constituent fragments is determined to be an | 
 | 	 *   overlapping fragment, the entire datagram (and any constituent | 
 | 	 *   fragments) MUST be silently discarded. | 
 | 	 * | 
 | 	 * Duplicates, however, should be ignored (i.e. skb dropped, but the | 
 | 	 * queue/fragments kept for later reassembly). | 
 | 	 */ | 
 | 	if (!last) | 
 | 		fragrun_create(q, skb);  /* First fragment. */ | 
 | 	else if (last->ip_defrag_offset + last->len < end) { | 
 | 		/* This is the common case: skb goes to the end. */ | 
 | 		/* Detect and discard overlaps. */ | 
 | 		if (offset < last->ip_defrag_offset + last->len) | 
 | 			return IPFRAG_OVERLAP; | 
 | 		if (offset == last->ip_defrag_offset + last->len) | 
 | 			fragrun_append_to_last(q, skb); | 
 | 		else | 
 | 			fragrun_create(q, skb); | 
 | 	} else { | 
 | 		/* Binary search. Note that skb can become the first fragment, | 
 | 		 * but not the last (covered above). | 
 | 		 */ | 
 | 		struct rb_node **rbn, *parent; | 
 |  | 
 | 		rbn = &q->rb_fragments.rb_node; | 
 | 		do { | 
 | 			struct sk_buff *curr; | 
 | 			int curr_run_end; | 
 |  | 
 | 			parent = *rbn; | 
 | 			curr = rb_to_skb(parent); | 
 | 			curr_run_end = curr->ip_defrag_offset + | 
 | 					FRAG_CB(curr)->frag_run_len; | 
 | 			if (end <= curr->ip_defrag_offset) | 
 | 				rbn = &parent->rb_left; | 
 | 			else if (offset >= curr_run_end) | 
 | 				rbn = &parent->rb_right; | 
 | 			else if (offset >= curr->ip_defrag_offset && | 
 | 				 end <= curr_run_end) | 
 | 				return IPFRAG_DUP; | 
 | 			else | 
 | 				return IPFRAG_OVERLAP; | 
 | 		} while (*rbn); | 
 | 		/* Here we have parent properly set, and rbn pointing to | 
 | 		 * one of its NULL left/right children. Insert skb. | 
 | 		 */ | 
 | 		fragcb_clear(skb); | 
 | 		rb_link_node(&skb->rbnode, parent, rbn); | 
 | 		rb_insert_color(&skb->rbnode, &q->rb_fragments); | 
 | 	} | 
 |  | 
 | 	skb->ip_defrag_offset = offset; | 
 |  | 
 | 	return IPFRAG_OK; | 
 | } | 
 | EXPORT_SYMBOL(inet_frag_queue_insert); | 
 |  | 
 | void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb, | 
 | 			      struct sk_buff *parent) | 
 | { | 
 | 	struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments); | 
 | 	struct sk_buff **nextp; | 
 | 	int delta; | 
 |  | 
 | 	if (head != skb) { | 
 | 		fp = skb_clone(skb, GFP_ATOMIC); | 
 | 		if (!fp) | 
 | 			return NULL; | 
 | 		FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag; | 
 | 		if (RB_EMPTY_NODE(&skb->rbnode)) | 
 | 			FRAG_CB(parent)->next_frag = fp; | 
 | 		else | 
 | 			rb_replace_node(&skb->rbnode, &fp->rbnode, | 
 | 					&q->rb_fragments); | 
 | 		if (q->fragments_tail == skb) | 
 | 			q->fragments_tail = fp; | 
 | 		skb_morph(skb, head); | 
 | 		FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag; | 
 | 		rb_replace_node(&head->rbnode, &skb->rbnode, | 
 | 				&q->rb_fragments); | 
 | 		consume_skb(head); | 
 | 		head = skb; | 
 | 	} | 
 | 	WARN_ON(head->ip_defrag_offset != 0); | 
 |  | 
 | 	delta = -head->truesize; | 
 |  | 
 | 	/* Head of list must not be cloned. */ | 
 | 	if (skb_unclone(head, GFP_ATOMIC)) | 
 | 		return NULL; | 
 |  | 
 | 	delta += head->truesize; | 
 | 	if (delta) | 
 | 		add_frag_mem_limit(q->net, delta); | 
 |  | 
 | 	/* If the first fragment is fragmented itself, we split | 
 | 	 * it to two chunks: the first with data and paged part | 
 | 	 * and the second, holding only fragments. | 
 | 	 */ | 
 | 	if (skb_has_frag_list(head)) { | 
 | 		struct sk_buff *clone; | 
 | 		int i, plen = 0; | 
 |  | 
 | 		clone = alloc_skb(0, GFP_ATOMIC); | 
 | 		if (!clone) | 
 | 			return NULL; | 
 | 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; | 
 | 		skb_frag_list_init(head); | 
 | 		for (i = 0; i < skb_shinfo(head)->nr_frags; i++) | 
 | 			plen += skb_frag_size(&skb_shinfo(head)->frags[i]); | 
 | 		clone->data_len = head->data_len - plen; | 
 | 		clone->len = clone->data_len; | 
 | 		head->truesize += clone->truesize; | 
 | 		clone->csum = 0; | 
 | 		clone->ip_summed = head->ip_summed; | 
 | 		add_frag_mem_limit(q->net, clone->truesize); | 
 | 		skb_shinfo(head)->frag_list = clone; | 
 | 		nextp = &clone->next; | 
 | 	} else { | 
 | 		nextp = &skb_shinfo(head)->frag_list; | 
 | 	} | 
 |  | 
 | 	return nextp; | 
 | } | 
 | EXPORT_SYMBOL(inet_frag_reasm_prepare); | 
 |  | 
 | void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head, | 
 | 			    void *reasm_data) | 
 | { | 
 | 	struct sk_buff **nextp = (struct sk_buff **)reasm_data; | 
 | 	struct rb_node *rbn; | 
 | 	struct sk_buff *fp; | 
 |  | 
 | 	skb_push(head, head->data - skb_network_header(head)); | 
 |  | 
 | 	/* Traverse the tree in order, to build frag_list. */ | 
 | 	fp = FRAG_CB(head)->next_frag; | 
 | 	rbn = rb_next(&head->rbnode); | 
 | 	rb_erase(&head->rbnode, &q->rb_fragments); | 
 | 	while (rbn || fp) { | 
 | 		/* fp points to the next sk_buff in the current run; | 
 | 		 * rbn points to the next run. | 
 | 		 */ | 
 | 		/* Go through the current run. */ | 
 | 		while (fp) { | 
 | 			*nextp = fp; | 
 | 			nextp = &fp->next; | 
 | 			fp->prev = NULL; | 
 | 			memset(&fp->rbnode, 0, sizeof(fp->rbnode)); | 
 | 			fp->sk = NULL; | 
 | 			head->data_len += fp->len; | 
 | 			head->len += fp->len; | 
 | 			if (head->ip_summed != fp->ip_summed) | 
 | 				head->ip_summed = CHECKSUM_NONE; | 
 | 			else if (head->ip_summed == CHECKSUM_COMPLETE) | 
 | 				head->csum = csum_add(head->csum, fp->csum); | 
 | 			head->truesize += fp->truesize; | 
 | 			fp = FRAG_CB(fp)->next_frag; | 
 | 		} | 
 | 		/* Move to the next run. */ | 
 | 		if (rbn) { | 
 | 			struct rb_node *rbnext = rb_next(rbn); | 
 |  | 
 | 			fp = rb_to_skb(rbn); | 
 | 			rb_erase(rbn, &q->rb_fragments); | 
 | 			rbn = rbnext; | 
 | 		} | 
 | 	} | 
 | 	sub_frag_mem_limit(q->net, head->truesize); | 
 |  | 
 | 	*nextp = NULL; | 
 | 	head->next = NULL; | 
 | 	head->prev = NULL; | 
 | 	head->tstamp = q->stamp; | 
 | } | 
 | EXPORT_SYMBOL(inet_frag_reasm_finish); | 
 |  | 
 | struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q) | 
 | { | 
 | 	struct sk_buff *head; | 
 |  | 
 | 	if (q->fragments) { | 
 | 		head = q->fragments; | 
 | 		q->fragments = head->next; | 
 | 	} else { | 
 | 		struct sk_buff *skb; | 
 |  | 
 | 		head = skb_rb_first(&q->rb_fragments); | 
 | 		if (!head) | 
 | 			return NULL; | 
 | 		skb = FRAG_CB(head)->next_frag; | 
 | 		if (skb) | 
 | 			rb_replace_node(&head->rbnode, &skb->rbnode, | 
 | 					&q->rb_fragments); | 
 | 		else | 
 | 			rb_erase(&head->rbnode, &q->rb_fragments); | 
 | 		memset(&head->rbnode, 0, sizeof(head->rbnode)); | 
 | 		barrier(); | 
 | 	} | 
 | 	if (head == q->fragments_tail) | 
 | 		q->fragments_tail = NULL; | 
 |  | 
 | 	sub_frag_mem_limit(q->net, head->truesize); | 
 |  | 
 | 	return head; | 
 | } | 
 | EXPORT_SYMBOL(inet_frag_pull_head); |