| Code Examples | 
 | ============= | 
 |  | 
 | Code Example For Symmetric Key Cipher Operation | 
 | ----------------------------------------------- | 
 |  | 
 | :: | 
 |  | 
 |  | 
 |     struct tcrypt_result { | 
 |         struct completion completion; | 
 |         int err; | 
 |     }; | 
 |  | 
 |     /* tie all data structures together */ | 
 |     struct skcipher_def { | 
 |         struct scatterlist sg; | 
 |         struct crypto_skcipher *tfm; | 
 |         struct skcipher_request *req; | 
 |         struct tcrypt_result result; | 
 |     }; | 
 |  | 
 |     /* Callback function */ | 
 |     static void test_skcipher_cb(struct crypto_async_request *req, int error) | 
 |     { | 
 |         struct tcrypt_result *result = req->data; | 
 |  | 
 |         if (error == -EINPROGRESS) | 
 |             return; | 
 |         result->err = error; | 
 |         complete(&result->completion); | 
 |         pr_info("Encryption finished successfully\n"); | 
 |     } | 
 |  | 
 |     /* Perform cipher operation */ | 
 |     static unsigned int test_skcipher_encdec(struct skcipher_def *sk, | 
 |                          int enc) | 
 |     { | 
 |         int rc = 0; | 
 |  | 
 |         if (enc) | 
 |             rc = crypto_skcipher_encrypt(sk->req); | 
 |         else | 
 |             rc = crypto_skcipher_decrypt(sk->req); | 
 |  | 
 |         switch (rc) { | 
 |         case 0: | 
 |             break; | 
 |         case -EINPROGRESS: | 
 |         case -EBUSY: | 
 |             rc = wait_for_completion_interruptible( | 
 |                 &sk->result.completion); | 
 |             if (!rc && !sk->result.err) { | 
 |                 reinit_completion(&sk->result.completion); | 
 |                 break; | 
 |             } | 
 |         default: | 
 |             pr_info("skcipher encrypt returned with %d result %d\n", | 
 |                 rc, sk->result.err); | 
 |             break; | 
 |         } | 
 |         init_completion(&sk->result.completion); | 
 |  | 
 |         return rc; | 
 |     } | 
 |  | 
 |     /* Initialize and trigger cipher operation */ | 
 |     static int test_skcipher(void) | 
 |     { | 
 |         struct skcipher_def sk; | 
 |         struct crypto_skcipher *skcipher = NULL; | 
 |         struct skcipher_request *req = NULL; | 
 |         char *scratchpad = NULL; | 
 |         char *ivdata = NULL; | 
 |         unsigned char key[32]; | 
 |         int ret = -EFAULT; | 
 |  | 
 |         skcipher = crypto_alloc_skcipher("cbc-aes-aesni", 0, 0); | 
 |         if (IS_ERR(skcipher)) { | 
 |             pr_info("could not allocate skcipher handle\n"); | 
 |             return PTR_ERR(skcipher); | 
 |         } | 
 |  | 
 |         req = skcipher_request_alloc(skcipher, GFP_KERNEL); | 
 |         if (!req) { | 
 |             pr_info("could not allocate skcipher request\n"); | 
 |             ret = -ENOMEM; | 
 |             goto out; | 
 |         } | 
 |  | 
 |         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, | 
 |                           test_skcipher_cb, | 
 |                           &sk.result); | 
 |  | 
 |         /* AES 256 with random key */ | 
 |         get_random_bytes(&key, 32); | 
 |         if (crypto_skcipher_setkey(skcipher, key, 32)) { | 
 |             pr_info("key could not be set\n"); | 
 |             ret = -EAGAIN; | 
 |             goto out; | 
 |         } | 
 |  | 
 |         /* IV will be random */ | 
 |         ivdata = kmalloc(16, GFP_KERNEL); | 
 |         if (!ivdata) { | 
 |             pr_info("could not allocate ivdata\n"); | 
 |             goto out; | 
 |         } | 
 |         get_random_bytes(ivdata, 16); | 
 |  | 
 |         /* Input data will be random */ | 
 |         scratchpad = kmalloc(16, GFP_KERNEL); | 
 |         if (!scratchpad) { | 
 |             pr_info("could not allocate scratchpad\n"); | 
 |             goto out; | 
 |         } | 
 |         get_random_bytes(scratchpad, 16); | 
 |  | 
 |         sk.tfm = skcipher; | 
 |         sk.req = req; | 
 |  | 
 |         /* We encrypt one block */ | 
 |         sg_init_one(&sk.sg, scratchpad, 16); | 
 |         skcipher_request_set_crypt(req, &sk.sg, &sk.sg, 16, ivdata); | 
 |         init_completion(&sk.result.completion); | 
 |  | 
 |         /* encrypt data */ | 
 |         ret = test_skcipher_encdec(&sk, 1); | 
 |         if (ret) | 
 |             goto out; | 
 |  | 
 |         pr_info("Encryption triggered successfully\n"); | 
 |  | 
 |     out: | 
 |         if (skcipher) | 
 |             crypto_free_skcipher(skcipher); | 
 |         if (req) | 
 |             skcipher_request_free(req); | 
 |         if (ivdata) | 
 |             kfree(ivdata); | 
 |         if (scratchpad) | 
 |             kfree(scratchpad); | 
 |         return ret; | 
 |     } | 
 |  | 
 |  | 
 | Code Example For Use of Operational State Memory With SHASH | 
 | ----------------------------------------------------------- | 
 |  | 
 | :: | 
 |  | 
 |  | 
 |     struct sdesc { | 
 |         struct shash_desc shash; | 
 |         char ctx[]; | 
 |     }; | 
 |  | 
 |     static struct sdesc *init_sdesc(struct crypto_shash *alg) | 
 |     { | 
 |         struct sdesc *sdesc; | 
 |         int size; | 
 |  | 
 |         size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); | 
 |         sdesc = kmalloc(size, GFP_KERNEL); | 
 |         if (!sdesc) | 
 |             return ERR_PTR(-ENOMEM); | 
 |         sdesc->shash.tfm = alg; | 
 |         sdesc->shash.flags = 0x0; | 
 |         return sdesc; | 
 |     } | 
 |  | 
 |     static int calc_hash(struct crypto_shash *alg, | 
 |                  const unsigned char *data, unsigned int datalen, | 
 |                  unsigned char *digest) | 
 |     { | 
 |         struct sdesc *sdesc; | 
 |         int ret; | 
 |  | 
 |         sdesc = init_sdesc(alg); | 
 |         if (IS_ERR(sdesc)) { | 
 |             pr_info("can't alloc sdesc\n"); | 
 |             return PTR_ERR(sdesc); | 
 |         } | 
 |  | 
 |         ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest); | 
 |         kfree(sdesc); | 
 |         return ret; | 
 |     } | 
 |  | 
 |     static int test_hash(const unsigned char *data, unsigned int datalen, | 
 |                  unsigned char *digest) | 
 |     { | 
 |         struct crypto_shash *alg; | 
 |         char *hash_alg_name = "sha1-padlock-nano"; | 
 |         int ret; | 
 |  | 
 |         alg = crypto_alloc_shash(hash_alg_name, CRYPTO_ALG_TYPE_SHASH, 0); | 
 |         if (IS_ERR(alg)) { | 
 |                 pr_info("can't alloc alg %s\n", hash_alg_name); | 
 |                 return PTR_ERR(alg); | 
 |         } | 
 |         ret = calc_hash(alg, data, datalen, digest); | 
 |         crypto_free_shash(alg); | 
 |         return ret; | 
 |     } | 
 |  | 
 |  | 
 | Code Example For Random Number Generator Usage | 
 | ---------------------------------------------- | 
 |  | 
 | :: | 
 |  | 
 |  | 
 |     static int get_random_numbers(u8 *buf, unsigned int len) | 
 |     { | 
 |         struct crypto_rng *rng = NULL; | 
 |         char *drbg = "drbg_nopr_sha256"; /* Hash DRBG with SHA-256, no PR */ | 
 |         int ret; | 
 |  | 
 |         if (!buf || !len) { | 
 |             pr_debug("No output buffer provided\n"); | 
 |             return -EINVAL; | 
 |         } | 
 |  | 
 |         rng = crypto_alloc_rng(drbg, 0, 0); | 
 |         if (IS_ERR(rng)) { | 
 |             pr_debug("could not allocate RNG handle for %s\n", drbg); | 
 |             return PTR_ERR(rng); | 
 |         } | 
 |  | 
 |         ret = crypto_rng_get_bytes(rng, buf, len); | 
 |         if (ret < 0) | 
 |             pr_debug("generation of random numbers failed\n"); | 
 |         else if (ret == 0) | 
 |             pr_debug("RNG returned no data"); | 
 |         else | 
 |             pr_debug("RNG returned %d bytes of data\n", ret); | 
 |  | 
 |     out: | 
 |         crypto_free_rng(rng); | 
 |         return ret; | 
 |     } |