| /* | 
 |  * Copyright (C) 2006-2009 DENX Software Engineering. | 
 |  * | 
 |  * Author: Yuri Tikhonov <yur@emcraft.com> | 
 |  * | 
 |  * Further porting to arch/powerpc by | 
 |  * 	Anatolij Gustschin <agust@denx.de> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License as published by the Free | 
 |  * Software Foundation; either version 2 of the License, or (at your option) | 
 |  * any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  * | 
 |  * The full GNU General Public License is included in this distribution in the | 
 |  * file called COPYING. | 
 |  */ | 
 |  | 
 | /* | 
 |  * This driver supports the asynchrounous DMA copy and RAID engines available | 
 |  * on the AMCC PPC440SPe Processors. | 
 |  * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x) | 
 |  * ADMA driver written by D.Williams. | 
 |  */ | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/async_tx.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/of_irq.h> | 
 | #include <linux/of_platform.h> | 
 | #include <asm/dcr.h> | 
 | #include <asm/dcr-regs.h> | 
 | #include "adma.h" | 
 | #include "../dmaengine.h" | 
 |  | 
 | enum ppc_adma_init_code { | 
 | 	PPC_ADMA_INIT_OK = 0, | 
 | 	PPC_ADMA_INIT_MEMRES, | 
 | 	PPC_ADMA_INIT_MEMREG, | 
 | 	PPC_ADMA_INIT_ALLOC, | 
 | 	PPC_ADMA_INIT_COHERENT, | 
 | 	PPC_ADMA_INIT_CHANNEL, | 
 | 	PPC_ADMA_INIT_IRQ1, | 
 | 	PPC_ADMA_INIT_IRQ2, | 
 | 	PPC_ADMA_INIT_REGISTER | 
 | }; | 
 |  | 
 | static char *ppc_adma_errors[] = { | 
 | 	[PPC_ADMA_INIT_OK] = "ok", | 
 | 	[PPC_ADMA_INIT_MEMRES] = "failed to get memory resource", | 
 | 	[PPC_ADMA_INIT_MEMREG] = "failed to request memory region", | 
 | 	[PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev " | 
 | 				"structure", | 
 | 	[PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for " | 
 | 				   "hardware descriptors", | 
 | 	[PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel", | 
 | 	[PPC_ADMA_INIT_IRQ1] = "failed to request first irq", | 
 | 	[PPC_ADMA_INIT_IRQ2] = "failed to request second irq", | 
 | 	[PPC_ADMA_INIT_REGISTER] = "failed to register dma async device", | 
 | }; | 
 |  | 
 | static enum ppc_adma_init_code | 
 | ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM]; | 
 |  | 
 | struct ppc_dma_chan_ref { | 
 | 	struct dma_chan *chan; | 
 | 	struct list_head node; | 
 | }; | 
 |  | 
 | /* The list of channels exported by ppc440spe ADMA */ | 
 | struct list_head | 
 | ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list); | 
 |  | 
 | /* This flag is set when want to refetch the xor chain in the interrupt | 
 |  * handler | 
 |  */ | 
 | static u32 do_xor_refetch; | 
 |  | 
 | /* Pointer to DMA0, DMA1 CP/CS FIFO */ | 
 | static void *ppc440spe_dma_fifo_buf; | 
 |  | 
 | /* Pointers to last submitted to DMA0, DMA1 CDBs */ | 
 | static struct ppc440spe_adma_desc_slot *chan_last_sub[3]; | 
 | static struct ppc440spe_adma_desc_slot *chan_first_cdb[3]; | 
 |  | 
 | /* Pointer to last linked and submitted xor CB */ | 
 | static struct ppc440spe_adma_desc_slot *xor_last_linked; | 
 | static struct ppc440spe_adma_desc_slot *xor_last_submit; | 
 |  | 
 | /* This array is used in data-check operations for storing a pattern */ | 
 | static char ppc440spe_qword[16]; | 
 |  | 
 | static atomic_t ppc440spe_adma_err_irq_ref; | 
 | static dcr_host_t ppc440spe_mq_dcr_host; | 
 | static unsigned int ppc440spe_mq_dcr_len; | 
 |  | 
 | /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up | 
 |  * the block size in transactions, then we do not allow to activate more than | 
 |  * only one RXOR transactions simultaneously. So use this var to store | 
 |  * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is | 
 |  * set) or not (PPC440SPE_RXOR_RUN is clear). | 
 |  */ | 
 | static unsigned long ppc440spe_rxor_state; | 
 |  | 
 | /* These are used in enable & check routines | 
 |  */ | 
 | static u32 ppc440spe_r6_enabled; | 
 | static struct ppc440spe_adma_chan *ppc440spe_r6_tchan; | 
 | static struct completion ppc440spe_r6_test_comp; | 
 |  | 
 | static int ppc440spe_adma_dma2rxor_prep_src( | 
 | 		struct ppc440spe_adma_desc_slot *desc, | 
 | 		struct ppc440spe_rxor *cursor, int index, | 
 | 		int src_cnt, u32 addr); | 
 | static void ppc440spe_adma_dma2rxor_set_src( | 
 | 		struct ppc440spe_adma_desc_slot *desc, | 
 | 		int index, dma_addr_t addr); | 
 | static void ppc440spe_adma_dma2rxor_set_mult( | 
 | 		struct ppc440spe_adma_desc_slot *desc, | 
 | 		int index, u8 mult); | 
 |  | 
 | #ifdef ADMA_LL_DEBUG | 
 | #define ADMA_LL_DBG(x) ({ if (1) x; 0; }) | 
 | #else | 
 | #define ADMA_LL_DBG(x) ({ if (0) x; 0; }) | 
 | #endif | 
 |  | 
 | static void print_cb(struct ppc440spe_adma_chan *chan, void *block) | 
 | { | 
 | 	struct dma_cdb *cdb; | 
 | 	struct xor_cb *cb; | 
 | 	int i; | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case 0: | 
 | 	case 1: | 
 | 		cdb = block; | 
 |  | 
 | 		pr_debug("CDB at %p [%d]:\n" | 
 | 			"\t attr 0x%02x opc 0x%02x cnt 0x%08x\n" | 
 | 			"\t sg1u 0x%08x sg1l 0x%08x\n" | 
 | 			"\t sg2u 0x%08x sg2l 0x%08x\n" | 
 | 			"\t sg3u 0x%08x sg3l 0x%08x\n", | 
 | 			cdb, chan->device->id, | 
 | 			cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt), | 
 | 			le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l), | 
 | 			le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l), | 
 | 			le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l) | 
 | 		); | 
 | 		break; | 
 | 	case 2: | 
 | 		cb = block; | 
 |  | 
 | 		pr_debug("CB at %p [%d]:\n" | 
 | 			"\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n" | 
 | 			"\t cbtah 0x%08x cbtal 0x%08x\n" | 
 | 			"\t cblah 0x%08x cblal 0x%08x\n", | 
 | 			cb, chan->device->id, | 
 | 			cb->cbc, cb->cbbc, cb->cbs, | 
 | 			cb->cbtah, cb->cbtal, | 
 | 			cb->cblah, cb->cblal); | 
 | 		for (i = 0; i < 16; i++) { | 
 | 			if (i && !cb->ops[i].h && !cb->ops[i].l) | 
 | 				continue; | 
 | 			pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n", | 
 | 				i, cb->ops[i].h, cb->ops[i].l); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void print_cb_list(struct ppc440spe_adma_chan *chan, | 
 | 			  struct ppc440spe_adma_desc_slot *iter) | 
 | { | 
 | 	for (; iter; iter = iter->hw_next) | 
 | 		print_cb(chan, iter->hw_desc); | 
 | } | 
 |  | 
 | static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src, | 
 | 			     unsigned int src_cnt) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	pr_debug("\n%s(%d):\nsrc: ", __func__, id); | 
 | 	for (i = 0; i < src_cnt; i++) | 
 | 		pr_debug("\t0x%016llx ", src[i]); | 
 | 	pr_debug("dst:\n\t0x%016llx\n", dst); | 
 | } | 
 |  | 
 | static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src, | 
 | 			    unsigned int src_cnt) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	pr_debug("\n%s(%d):\nsrc: ", __func__, id); | 
 | 	for (i = 0; i < src_cnt; i++) | 
 | 		pr_debug("\t0x%016llx ", src[i]); | 
 | 	pr_debug("dst: "); | 
 | 	for (i = 0; i < 2; i++) | 
 | 		pr_debug("\t0x%016llx ", dst[i]); | 
 | } | 
 |  | 
 | static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src, | 
 | 				    unsigned int src_cnt, | 
 | 				    const unsigned char *scf) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id); | 
 | 	if (scf) { | 
 | 		for (i = 0; i < src_cnt; i++) | 
 | 			pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]); | 
 | 	} else { | 
 | 		for (i = 0; i < src_cnt; i++) | 
 | 			pr_debug("\t0x%016llx(no) ", src[i]); | 
 | 	} | 
 |  | 
 | 	pr_debug("dst: "); | 
 | 	for (i = 0; i < 2; i++) | 
 | 		pr_debug("\t0x%016llx ", src[src_cnt + i]); | 
 | } | 
 |  | 
 | /****************************************************************************** | 
 |  * Command (Descriptor) Blocks low-level routines | 
 |  ******************************************************************************/ | 
 | /** | 
 |  * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT | 
 |  * pseudo operation | 
 |  */ | 
 | static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc, | 
 | 					  struct ppc440spe_adma_chan *chan) | 
 | { | 
 | 	struct xor_cb *p; | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		p = desc->hw_desc; | 
 | 		memset(desc->hw_desc, 0, sizeof(struct xor_cb)); | 
 | 		/* NOP with Command Block Complete Enable */ | 
 | 		p->cbc = XOR_CBCR_CBCE_BIT; | 
 | 		break; | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); | 
 | 		/* NOP with interrupt */ | 
 | 		set_bit(PPC440SPE_DESC_INT, &desc->flags); | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id, | 
 | 				__func__); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR | 
 |  * pseudo operation | 
 |  */ | 
 | static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc) | 
 | { | 
 | 	memset(desc->hw_desc, 0, sizeof(struct xor_cb)); | 
 | 	desc->hw_next = NULL; | 
 | 	desc->src_cnt = 0; | 
 | 	desc->dst_cnt = 1; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation | 
 |  */ | 
 | static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc, | 
 | 					 int src_cnt, unsigned long flags) | 
 | { | 
 | 	struct xor_cb *hw_desc = desc->hw_desc; | 
 |  | 
 | 	memset(desc->hw_desc, 0, sizeof(struct xor_cb)); | 
 | 	desc->hw_next = NULL; | 
 | 	desc->src_cnt = src_cnt; | 
 | 	desc->dst_cnt = 1; | 
 |  | 
 | 	hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt; | 
 | 	if (flags & DMA_PREP_INTERRUPT) | 
 | 		/* Enable interrupt on completion */ | 
 | 		hw_desc->cbc |= XOR_CBCR_CBCE_BIT; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ | 
 |  * operation in DMA2 controller | 
 |  */ | 
 | static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc, | 
 | 		int dst_cnt, int src_cnt, unsigned long flags) | 
 | { | 
 | 	struct xor_cb *hw_desc = desc->hw_desc; | 
 |  | 
 | 	memset(desc->hw_desc, 0, sizeof(struct xor_cb)); | 
 | 	desc->hw_next = NULL; | 
 | 	desc->src_cnt = src_cnt; | 
 | 	desc->dst_cnt = dst_cnt; | 
 | 	memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags)); | 
 | 	desc->descs_per_op = 0; | 
 |  | 
 | 	hw_desc->cbc = XOR_CBCR_TGT_BIT; | 
 | 	if (flags & DMA_PREP_INTERRUPT) | 
 | 		/* Enable interrupt on completion */ | 
 | 		hw_desc->cbc |= XOR_CBCR_CBCE_BIT; | 
 | } | 
 |  | 
 | #define DMA_CTRL_FLAGS_LAST	DMA_PREP_FENCE | 
 | #define DMA_PREP_ZERO_P		(DMA_CTRL_FLAGS_LAST << 1) | 
 | #define DMA_PREP_ZERO_Q		(DMA_PREP_ZERO_P << 1) | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation | 
 |  * with DMA0/1 | 
 |  */ | 
 | static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc, | 
 | 				int dst_cnt, int src_cnt, unsigned long flags, | 
 | 				unsigned long op) | 
 | { | 
 | 	struct dma_cdb *hw_desc; | 
 | 	struct ppc440spe_adma_desc_slot *iter; | 
 | 	u8 dopc; | 
 |  | 
 | 	/* Common initialization of a PQ descriptors chain */ | 
 | 	set_bits(op, &desc->flags); | 
 | 	desc->src_cnt = src_cnt; | 
 | 	desc->dst_cnt = dst_cnt; | 
 |  | 
 | 	/* WXOR MULTICAST if both P and Q are being computed | 
 | 	 * MV_SG1_SG2 if Q only | 
 | 	 */ | 
 | 	dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ? | 
 | 		DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2; | 
 |  | 
 | 	list_for_each_entry(iter, &desc->group_list, chain_node) { | 
 | 		hw_desc = iter->hw_desc; | 
 | 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | 
 |  | 
 | 		if (likely(!list_is_last(&iter->chain_node, | 
 | 				&desc->group_list))) { | 
 | 			/* set 'next' pointer */ | 
 | 			iter->hw_next = list_entry(iter->chain_node.next, | 
 | 				struct ppc440spe_adma_desc_slot, chain_node); | 
 | 			clear_bit(PPC440SPE_DESC_INT, &iter->flags); | 
 | 		} else { | 
 | 			/* this is the last descriptor. | 
 | 			 * this slot will be pasted from ADMA level | 
 | 			 * each time it wants to configure parameters | 
 | 			 * of the transaction (src, dst, ...) | 
 | 			 */ | 
 | 			iter->hw_next = NULL; | 
 | 			if (flags & DMA_PREP_INTERRUPT) | 
 | 				set_bit(PPC440SPE_DESC_INT, &iter->flags); | 
 | 			else | 
 | 				clear_bit(PPC440SPE_DESC_INT, &iter->flags); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Set OPS depending on WXOR/RXOR type of operation */ | 
 | 	if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) { | 
 | 		/* This is a WXOR only chain: | 
 | 		 * - first descriptors are for zeroing destinations | 
 | 		 *   if PPC440SPE_ZERO_P/Q set; | 
 | 		 * - descriptors remained are for GF-XOR operations. | 
 | 		 */ | 
 | 		iter = list_first_entry(&desc->group_list, | 
 | 					struct ppc440spe_adma_desc_slot, | 
 | 					chain_node); | 
 |  | 
 | 		if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) { | 
 | 			hw_desc = iter->hw_desc; | 
 | 			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | 
 | 			iter = list_first_entry(&iter->chain_node, | 
 | 					struct ppc440spe_adma_desc_slot, | 
 | 					chain_node); | 
 | 		} | 
 |  | 
 | 		if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) { | 
 | 			hw_desc = iter->hw_desc; | 
 | 			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | 
 | 			iter = list_first_entry(&iter->chain_node, | 
 | 					struct ppc440spe_adma_desc_slot, | 
 | 					chain_node); | 
 | 		} | 
 |  | 
 | 		list_for_each_entry_from(iter, &desc->group_list, chain_node) { | 
 | 			hw_desc = iter->hw_desc; | 
 | 			hw_desc->opc = dopc; | 
 | 		} | 
 | 	} else { | 
 | 		/* This is either RXOR-only or mixed RXOR/WXOR */ | 
 |  | 
 | 		/* The first 1 or 2 slots in chain are always RXOR, | 
 | 		 * if need to calculate P & Q, then there are two | 
 | 		 * RXOR slots; if only P or only Q, then there is one | 
 | 		 */ | 
 | 		iter = list_first_entry(&desc->group_list, | 
 | 					struct ppc440spe_adma_desc_slot, | 
 | 					chain_node); | 
 | 		hw_desc = iter->hw_desc; | 
 | 		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | 
 |  | 
 | 		if (desc->dst_cnt == DMA_DEST_MAX_NUM) { | 
 | 			iter = list_first_entry(&iter->chain_node, | 
 | 						struct ppc440spe_adma_desc_slot, | 
 | 						chain_node); | 
 | 			hw_desc = iter->hw_desc; | 
 | 			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | 
 | 		} | 
 |  | 
 | 		/* The remaining descs (if any) are WXORs */ | 
 | 		if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) { | 
 | 			iter = list_first_entry(&iter->chain_node, | 
 | 						struct ppc440spe_adma_desc_slot, | 
 | 						chain_node); | 
 | 			list_for_each_entry_from(iter, &desc->group_list, | 
 | 						chain_node) { | 
 | 				hw_desc = iter->hw_desc; | 
 | 				hw_desc->opc = dopc; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor | 
 |  * for PQ_ZERO_SUM operation | 
 |  */ | 
 | static void ppc440spe_desc_init_dma01pqzero_sum( | 
 | 				struct ppc440spe_adma_desc_slot *desc, | 
 | 				int dst_cnt, int src_cnt) | 
 | { | 
 | 	struct dma_cdb *hw_desc; | 
 | 	struct ppc440spe_adma_desc_slot *iter; | 
 | 	int i = 0; | 
 | 	u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST : | 
 | 				   DMA_CDB_OPC_MV_SG1_SG2; | 
 | 	/* | 
 | 	 * Initialize starting from 2nd or 3rd descriptor dependent | 
 | 	 * on dst_cnt. First one or two slots are for cloning P | 
 | 	 * and/or Q to chan->pdest and/or chan->qdest as we have | 
 | 	 * to preserve original P/Q. | 
 | 	 */ | 
 | 	iter = list_first_entry(&desc->group_list, | 
 | 				struct ppc440spe_adma_desc_slot, chain_node); | 
 | 	iter = list_entry(iter->chain_node.next, | 
 | 			  struct ppc440spe_adma_desc_slot, chain_node); | 
 |  | 
 | 	if (dst_cnt > 1) { | 
 | 		iter = list_entry(iter->chain_node.next, | 
 | 				  struct ppc440spe_adma_desc_slot, chain_node); | 
 | 	} | 
 | 	/* initialize each source descriptor in chain */ | 
 | 	list_for_each_entry_from(iter, &desc->group_list, chain_node) { | 
 | 		hw_desc = iter->hw_desc; | 
 | 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | 
 | 		iter->src_cnt = 0; | 
 | 		iter->dst_cnt = 0; | 
 |  | 
 | 		/* This is a ZERO_SUM operation: | 
 | 		 * - <src_cnt> descriptors starting from 2nd or 3rd | 
 | 		 *   descriptor are for GF-XOR operations; | 
 | 		 * - remaining <dst_cnt> descriptors are for checking the result | 
 | 		 */ | 
 | 		if (i++ < src_cnt) | 
 | 			/* MV_SG1_SG2 if only Q is being verified | 
 | 			 * MULTICAST if both P and Q are being verified | 
 | 			 */ | 
 | 			hw_desc->opc = dopc; | 
 | 		else | 
 | 			/* DMA_CDB_OPC_DCHECK128 operation */ | 
 | 			hw_desc->opc = DMA_CDB_OPC_DCHECK128; | 
 |  | 
 | 		if (likely(!list_is_last(&iter->chain_node, | 
 | 					 &desc->group_list))) { | 
 | 			/* set 'next' pointer */ | 
 | 			iter->hw_next = list_entry(iter->chain_node.next, | 
 | 						struct ppc440spe_adma_desc_slot, | 
 | 						chain_node); | 
 | 		} else { | 
 | 			/* this is the last descriptor. | 
 | 			 * this slot will be pasted from ADMA level | 
 | 			 * each time it wants to configure parameters | 
 | 			 * of the transaction (src, dst, ...) | 
 | 			 */ | 
 | 			iter->hw_next = NULL; | 
 | 			/* always enable interrupt generation since we get | 
 | 			 * the status of pqzero from the handler | 
 | 			 */ | 
 | 			set_bit(PPC440SPE_DESC_INT, &iter->flags); | 
 | 		} | 
 | 	} | 
 | 	desc->src_cnt = src_cnt; | 
 | 	desc->dst_cnt = dst_cnt; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation | 
 |  */ | 
 | static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc, | 
 | 					unsigned long flags) | 
 | { | 
 | 	struct dma_cdb *hw_desc = desc->hw_desc; | 
 |  | 
 | 	memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); | 
 | 	desc->hw_next = NULL; | 
 | 	desc->src_cnt = 1; | 
 | 	desc->dst_cnt = 1; | 
 |  | 
 | 	if (flags & DMA_PREP_INTERRUPT) | 
 | 		set_bit(PPC440SPE_DESC_INT, &desc->flags); | 
 | 	else | 
 | 		clear_bit(PPC440SPE_DESC_INT, &desc->flags); | 
 |  | 
 | 	hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_set_src_addr - set source address into the descriptor | 
 |  */ | 
 | static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc, | 
 | 					struct ppc440spe_adma_chan *chan, | 
 | 					int src_idx, dma_addr_t addrh, | 
 | 					dma_addr_t addrl) | 
 | { | 
 | 	struct dma_cdb *dma_hw_desc; | 
 | 	struct xor_cb *xor_hw_desc; | 
 | 	phys_addr_t addr64, tmplow, tmphi; | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		if (!addrh) { | 
 | 			addr64 = addrl; | 
 | 			tmphi = (addr64 >> 32); | 
 | 			tmplow = (addr64 & 0xFFFFFFFF); | 
 | 		} else { | 
 | 			tmphi = addrh; | 
 | 			tmplow = addrl; | 
 | 		} | 
 | 		dma_hw_desc = desc->hw_desc; | 
 | 		dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow); | 
 | 		dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi); | 
 | 		break; | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		xor_hw_desc = desc->hw_desc; | 
 | 		xor_hw_desc->ops[src_idx].l = addrl; | 
 | 		xor_hw_desc->ops[src_idx].h |= addrh; | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_set_src_mult - set source address mult into the descriptor | 
 |  */ | 
 | static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc, | 
 | 			struct ppc440spe_adma_chan *chan, u32 mult_index, | 
 | 			int sg_index, unsigned char mult_value) | 
 | { | 
 | 	struct dma_cdb *dma_hw_desc; | 
 | 	struct xor_cb *xor_hw_desc; | 
 | 	u32 *psgu; | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		dma_hw_desc = desc->hw_desc; | 
 |  | 
 | 		switch (sg_index) { | 
 | 		/* for RXOR operations set multiplier | 
 | 		 * into source cued address | 
 | 		 */ | 
 | 		case DMA_CDB_SG_SRC: | 
 | 			psgu = &dma_hw_desc->sg1u; | 
 | 			break; | 
 | 		/* for WXOR operations set multiplier | 
 | 		 * into destination cued address(es) | 
 | 		 */ | 
 | 		case DMA_CDB_SG_DST1: | 
 | 			psgu = &dma_hw_desc->sg2u; | 
 | 			break; | 
 | 		case DMA_CDB_SG_DST2: | 
 | 			psgu = &dma_hw_desc->sg3u; | 
 | 			break; | 
 | 		default: | 
 | 			BUG(); | 
 | 		} | 
 |  | 
 | 		*psgu |= cpu_to_le32(mult_value << mult_index); | 
 | 		break; | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		xor_hw_desc = desc->hw_desc; | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_set_dest_addr - set destination address into the descriptor | 
 |  */ | 
 | static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc, | 
 | 				struct ppc440spe_adma_chan *chan, | 
 | 				dma_addr_t addrh, dma_addr_t addrl, | 
 | 				u32 dst_idx) | 
 | { | 
 | 	struct dma_cdb *dma_hw_desc; | 
 | 	struct xor_cb *xor_hw_desc; | 
 | 	phys_addr_t addr64, tmphi, tmplow; | 
 | 	u32 *psgu, *psgl; | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		if (!addrh) { | 
 | 			addr64 = addrl; | 
 | 			tmphi = (addr64 >> 32); | 
 | 			tmplow = (addr64 & 0xFFFFFFFF); | 
 | 		} else { | 
 | 			tmphi = addrh; | 
 | 			tmplow = addrl; | 
 | 		} | 
 | 		dma_hw_desc = desc->hw_desc; | 
 |  | 
 | 		psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u; | 
 | 		psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l; | 
 |  | 
 | 		*psgl = cpu_to_le32((u32)tmplow); | 
 | 		*psgu |= cpu_to_le32((u32)tmphi); | 
 | 		break; | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		xor_hw_desc = desc->hw_desc; | 
 | 		xor_hw_desc->cbtal = addrl; | 
 | 		xor_hw_desc->cbtah |= addrh; | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_set_byte_count - set number of data bytes involved | 
 |  * into the operation | 
 |  */ | 
 | static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc, | 
 | 				struct ppc440spe_adma_chan *chan, | 
 | 				u32 byte_count) | 
 | { | 
 | 	struct dma_cdb *dma_hw_desc; | 
 | 	struct xor_cb *xor_hw_desc; | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		dma_hw_desc = desc->hw_desc; | 
 | 		dma_hw_desc->cnt = cpu_to_le32(byte_count); | 
 | 		break; | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		xor_hw_desc = desc->hw_desc; | 
 | 		xor_hw_desc->cbbc = byte_count; | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_set_rxor_block_size - set RXOR block size | 
 |  */ | 
 | static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count) | 
 | { | 
 | 	/* assume that byte_count is aligned on the 512-boundary; | 
 | 	 * thus write it directly to the register (bits 23:31 are | 
 | 	 * reserved there). | 
 | 	 */ | 
 | 	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count); | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_set_dcheck - set CHECK pattern | 
 |  */ | 
 | static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc, | 
 | 				struct ppc440spe_adma_chan *chan, u8 *qword) | 
 | { | 
 | 	struct dma_cdb *dma_hw_desc; | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		dma_hw_desc = desc->hw_desc; | 
 | 		iowrite32(qword[0], &dma_hw_desc->sg3l); | 
 | 		iowrite32(qword[4], &dma_hw_desc->sg3u); | 
 | 		iowrite32(qword[8], &dma_hw_desc->sg2l); | 
 | 		iowrite32(qword[12], &dma_hw_desc->sg2u); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_xor_set_link - set link address in xor CB | 
 |  */ | 
 | static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc, | 
 | 				struct ppc440spe_adma_desc_slot *next_desc) | 
 | { | 
 | 	struct xor_cb *xor_hw_desc = prev_desc->hw_desc; | 
 |  | 
 | 	if (unlikely(!next_desc || !(next_desc->phys))) { | 
 | 		printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n", | 
 | 			__func__, next_desc, | 
 | 			next_desc ? next_desc->phys : 0); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	xor_hw_desc->cbs = 0; | 
 | 	xor_hw_desc->cblal = next_desc->phys; | 
 | 	xor_hw_desc->cblah = 0; | 
 | 	xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_set_link - set the address of descriptor following this | 
 |  * descriptor in chain | 
 |  */ | 
 | static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan, | 
 | 				struct ppc440spe_adma_desc_slot *prev_desc, | 
 | 				struct ppc440spe_adma_desc_slot *next_desc) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct ppc440spe_adma_desc_slot *tail = next_desc; | 
 |  | 
 | 	if (unlikely(!prev_desc || !next_desc || | 
 | 		(prev_desc->hw_next && prev_desc->hw_next != next_desc))) { | 
 | 		/* If previous next is overwritten something is wrong. | 
 | 		 * though we may refetch from append to initiate list | 
 | 		 * processing; in this case - it's ok. | 
 | 		 */ | 
 | 		printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; " | 
 | 			"prev->hw_next=0x%p\n", __func__, prev_desc, | 
 | 			next_desc, prev_desc ? prev_desc->hw_next : 0); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	/* do s/w chaining both for DMA and XOR descriptors */ | 
 | 	prev_desc->hw_next = next_desc; | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		break; | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		/* bind descriptor to the chain */ | 
 | 		while (tail->hw_next) | 
 | 			tail = tail->hw_next; | 
 | 		xor_last_linked = tail; | 
 |  | 
 | 		if (prev_desc == xor_last_submit) | 
 | 			/* do not link to the last submitted CB */ | 
 | 			break; | 
 | 		ppc440spe_xor_set_link(prev_desc, next_desc); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_get_link - get the address of the descriptor that | 
 |  * follows this one | 
 |  */ | 
 | static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc, | 
 | 					struct ppc440spe_adma_chan *chan) | 
 | { | 
 | 	if (!desc->hw_next) | 
 | 		return 0; | 
 |  | 
 | 	return desc->hw_next->phys; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_is_aligned - check alignment | 
 |  */ | 
 | static inline int ppc440spe_desc_is_aligned( | 
 | 	struct ppc440spe_adma_desc_slot *desc, int num_slots) | 
 | { | 
 | 	return (desc->idx & (num_slots - 1)) ? 0 : 1; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_chan_xor_slot_count - get the number of slots necessary for | 
 |  * XOR operation | 
 |  */ | 
 | static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt, | 
 | 			int *slots_per_op) | 
 | { | 
 | 	int slot_cnt; | 
 |  | 
 | 	/* each XOR descriptor provides up to 16 source operands */ | 
 | 	slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS; | 
 |  | 
 | 	if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT)) | 
 | 		return slot_cnt; | 
 |  | 
 | 	printk(KERN_ERR "%s: len %d > max %d !!\n", | 
 | 		__func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); | 
 | 	BUG(); | 
 | 	return slot_cnt; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for | 
 |  * DMA2 PQ operation | 
 |  */ | 
 | static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs, | 
 | 		int src_cnt, size_t len) | 
 | { | 
 | 	signed long long order = 0; | 
 | 	int state = 0; | 
 | 	int addr_count = 0; | 
 | 	int i; | 
 | 	for (i = 1; i < src_cnt; i++) { | 
 | 		dma_addr_t cur_addr = srcs[i]; | 
 | 		dma_addr_t old_addr = srcs[i-1]; | 
 | 		switch (state) { | 
 | 		case 0: | 
 | 			if (cur_addr == old_addr + len) { | 
 | 				/* direct RXOR */ | 
 | 				order = 1; | 
 | 				state = 1; | 
 | 				if (i == src_cnt-1) | 
 | 					addr_count++; | 
 | 			} else if (old_addr == cur_addr + len) { | 
 | 				/* reverse RXOR */ | 
 | 				order = -1; | 
 | 				state = 1; | 
 | 				if (i == src_cnt-1) | 
 | 					addr_count++; | 
 | 			} else { | 
 | 				state = 3; | 
 | 			} | 
 | 			break; | 
 | 		case 1: | 
 | 			if (i == src_cnt-2 || (order == -1 | 
 | 				&& cur_addr != old_addr - len)) { | 
 | 				order = 0; | 
 | 				state = 0; | 
 | 				addr_count++; | 
 | 			} else if (cur_addr == old_addr + len*order) { | 
 | 				state = 2; | 
 | 				if (i == src_cnt-1) | 
 | 					addr_count++; | 
 | 			} else if (cur_addr == old_addr + 2*len) { | 
 | 				state = 2; | 
 | 				if (i == src_cnt-1) | 
 | 					addr_count++; | 
 | 			} else if (cur_addr == old_addr + 3*len) { | 
 | 				state = 2; | 
 | 				if (i == src_cnt-1) | 
 | 					addr_count++; | 
 | 			} else { | 
 | 				order = 0; | 
 | 				state = 0; | 
 | 				addr_count++; | 
 | 			} | 
 | 			break; | 
 | 		case 2: | 
 | 			order = 0; | 
 | 			state = 0; | 
 | 			addr_count++; | 
 | 				break; | 
 | 		} | 
 | 		if (state == 3) | 
 | 			break; | 
 | 	} | 
 | 	if (src_cnt <= 1 || (state != 1 && state != 2)) { | 
 | 		pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n", | 
 | 			__func__, src_cnt, state, addr_count, order); | 
 | 		for (i = 0; i < src_cnt; i++) | 
 | 			pr_err("\t[%d] 0x%llx \n", i, srcs[i]); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS; | 
 | } | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * ADMA channel low-level routines | 
 |  ******************************************************************************/ | 
 |  | 
 | static u32 | 
 | ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan); | 
 | static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan); | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine | 
 |  */ | 
 | static void ppc440spe_adma_device_clear_eot_status( | 
 | 					struct ppc440spe_adma_chan *chan) | 
 | { | 
 | 	struct dma_regs *dma_reg; | 
 | 	struct xor_regs *xor_reg; | 
 | 	u8 *p = chan->device->dma_desc_pool_virt; | 
 | 	struct dma_cdb *cdb; | 
 | 	u32 rv, i; | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		/* read FIFO to ack */ | 
 | 		dma_reg = chan->device->dma_reg; | 
 | 		while ((rv = ioread32(&dma_reg->csfpl))) { | 
 | 			i = rv & DMA_CDB_ADDR_MSK; | 
 | 			cdb = (struct dma_cdb *)&p[i - | 
 | 			    (u32)chan->device->dma_desc_pool]; | 
 |  | 
 | 			/* Clear opcode to ack. This is necessary for | 
 | 			 * ZeroSum operations only | 
 | 			 */ | 
 | 			cdb->opc = 0; | 
 |  | 
 | 			if (test_bit(PPC440SPE_RXOR_RUN, | 
 | 			    &ppc440spe_rxor_state)) { | 
 | 				/* probably this is a completed RXOR op, | 
 | 				 * get pointer to CDB using the fact that | 
 | 				 * physical and virtual addresses of CDB | 
 | 				 * in pools have the same offsets | 
 | 				 */ | 
 | 				if (le32_to_cpu(cdb->sg1u) & | 
 | 				    DMA_CUED_XOR_BASE) { | 
 | 					/* this is a RXOR */ | 
 | 					clear_bit(PPC440SPE_RXOR_RUN, | 
 | 						  &ppc440spe_rxor_state); | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (rv & DMA_CDB_STATUS_MSK) { | 
 | 				/* ZeroSum check failed | 
 | 				 */ | 
 | 				struct ppc440spe_adma_desc_slot *iter; | 
 | 				dma_addr_t phys = rv & ~DMA_CDB_MSK; | 
 |  | 
 | 				/* | 
 | 				 * Update the status of corresponding | 
 | 				 * descriptor. | 
 | 				 */ | 
 | 				list_for_each_entry(iter, &chan->chain, | 
 | 				    chain_node) { | 
 | 					if (iter->phys == phys) | 
 | 						break; | 
 | 				} | 
 | 				/* | 
 | 				 * if cannot find the corresponding | 
 | 				 * slot it's a bug | 
 | 				 */ | 
 | 				BUG_ON(&iter->chain_node == &chan->chain); | 
 |  | 
 | 				if (iter->xor_check_result) { | 
 | 					if (test_bit(PPC440SPE_DESC_PCHECK, | 
 | 						     &iter->flags)) { | 
 | 						*iter->xor_check_result |= | 
 | 							SUM_CHECK_P_RESULT; | 
 | 					} else | 
 | 					if (test_bit(PPC440SPE_DESC_QCHECK, | 
 | 						     &iter->flags)) { | 
 | 						*iter->xor_check_result |= | 
 | 							SUM_CHECK_Q_RESULT; | 
 | 					} else | 
 | 						BUG(); | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		rv = ioread32(&dma_reg->dsts); | 
 | 		if (rv) { | 
 | 			pr_err("DMA%d err status: 0x%x\n", | 
 | 			       chan->device->id, rv); | 
 | 			/* write back to clear */ | 
 | 			iowrite32(rv, &dma_reg->dsts); | 
 | 		} | 
 | 		break; | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		/* reset status bits to ack */ | 
 | 		xor_reg = chan->device->xor_reg; | 
 | 		rv = ioread32be(&xor_reg->sr); | 
 | 		iowrite32be(rv, &xor_reg->sr); | 
 |  | 
 | 		if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) { | 
 | 			if (rv & XOR_IE_RPTIE_BIT) { | 
 | 				/* Read PLB Timeout Error. | 
 | 				 * Try to resubmit the CB | 
 | 				 */ | 
 | 				u32 val = ioread32be(&xor_reg->ccbalr); | 
 |  | 
 | 				iowrite32be(val, &xor_reg->cblalr); | 
 |  | 
 | 				val = ioread32be(&xor_reg->crsr); | 
 | 				iowrite32be(val | XOR_CRSR_XAE_BIT, | 
 | 					    &xor_reg->crsr); | 
 | 			} else | 
 | 				pr_err("XOR ERR 0x%x status\n", rv); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/*  if the XORcore is idle, but there are unprocessed CBs | 
 | 		 * then refetch the s/w chain here | 
 | 		 */ | 
 | 		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) && | 
 | 		    do_xor_refetch) | 
 | 			ppc440spe_chan_append(chan); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_chan_is_busy - get the channel status | 
 |  */ | 
 | static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan) | 
 | { | 
 | 	struct dma_regs *dma_reg; | 
 | 	struct xor_regs *xor_reg; | 
 | 	int busy = 0; | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		dma_reg = chan->device->dma_reg; | 
 | 		/*  if command FIFO's head and tail pointers are equal and | 
 | 		 * status tail is the same as command, then channel is free | 
 | 		 */ | 
 | 		if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) || | 
 | 		    ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp)) | 
 | 			busy = 1; | 
 | 		break; | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		/* use the special status bit for the XORcore | 
 | 		 */ | 
 | 		xor_reg = chan->device->xor_reg; | 
 | 		busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return busy; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain | 
 |  */ | 
 | static void ppc440spe_chan_set_first_xor_descriptor( | 
 | 				struct ppc440spe_adma_chan *chan, | 
 | 				struct ppc440spe_adma_desc_slot *next_desc) | 
 | { | 
 | 	struct xor_regs *xor_reg = chan->device->xor_reg; | 
 |  | 
 | 	if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) | 
 | 		printk(KERN_INFO "%s: Warn: XORcore is running " | 
 | 			"when try to set the first CDB!\n", | 
 | 			__func__); | 
 |  | 
 | 	xor_last_submit = xor_last_linked = next_desc; | 
 |  | 
 | 	iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr); | 
 |  | 
 | 	iowrite32be(next_desc->phys, &xor_reg->cblalr); | 
 | 	iowrite32be(0, &xor_reg->cblahr); | 
 | 	iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT, | 
 | 		    &xor_reg->cbcr); | 
 |  | 
 | 	chan->hw_chain_inited = 1; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO. | 
 |  * called with irqs disabled | 
 |  */ | 
 | static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan, | 
 | 		struct ppc440spe_adma_desc_slot *desc) | 
 | { | 
 | 	u32 pcdb; | 
 | 	struct dma_regs *dma_reg = chan->device->dma_reg; | 
 |  | 
 | 	pcdb = desc->phys; | 
 | 	if (!test_bit(PPC440SPE_DESC_INT, &desc->flags)) | 
 | 		pcdb |= DMA_CDB_NO_INT; | 
 |  | 
 | 	chan_last_sub[chan->device->id] = desc; | 
 |  | 
 | 	ADMA_LL_DBG(print_cb(chan, desc->hw_desc)); | 
 |  | 
 | 	iowrite32(pcdb, &dma_reg->cpfpl); | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_chan_append - update the h/w chain in the channel | 
 |  */ | 
 | static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan) | 
 | { | 
 | 	struct xor_regs *xor_reg; | 
 | 	struct ppc440spe_adma_desc_slot *iter; | 
 | 	struct xor_cb *xcb; | 
 | 	u32 cur_desc; | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		cur_desc = ppc440spe_chan_get_current_descriptor(chan); | 
 |  | 
 | 		if (likely(cur_desc)) { | 
 | 			iter = chan_last_sub[chan->device->id]; | 
 | 			BUG_ON(!iter); | 
 | 		} else { | 
 | 			/* first peer */ | 
 | 			iter = chan_first_cdb[chan->device->id]; | 
 | 			BUG_ON(!iter); | 
 | 			ppc440spe_dma_put_desc(chan, iter); | 
 | 			chan->hw_chain_inited = 1; | 
 | 		} | 
 |  | 
 | 		/* is there something new to append */ | 
 | 		if (!iter->hw_next) | 
 | 			break; | 
 |  | 
 | 		/* flush descriptors from the s/w queue to fifo */ | 
 | 		list_for_each_entry_continue(iter, &chan->chain, chain_node) { | 
 | 			ppc440spe_dma_put_desc(chan, iter); | 
 | 			if (!iter->hw_next) | 
 | 				break; | 
 | 		} | 
 | 		break; | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		/* update h/w links and refetch */ | 
 | 		if (!xor_last_submit->hw_next) | 
 | 			break; | 
 |  | 
 | 		xor_reg = chan->device->xor_reg; | 
 | 		/* the last linked CDB has to generate an interrupt | 
 | 		 * that we'd be able to append the next lists to h/w | 
 | 		 * regardless of the XOR engine state at the moment of | 
 | 		 * appending of these next lists | 
 | 		 */ | 
 | 		xcb = xor_last_linked->hw_desc; | 
 | 		xcb->cbc |= XOR_CBCR_CBCE_BIT; | 
 |  | 
 | 		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) { | 
 | 			/* XORcore is idle. Refetch now */ | 
 | 			do_xor_refetch = 0; | 
 | 			ppc440spe_xor_set_link(xor_last_submit, | 
 | 				xor_last_submit->hw_next); | 
 |  | 
 | 			ADMA_LL_DBG(print_cb_list(chan, | 
 | 				xor_last_submit->hw_next)); | 
 |  | 
 | 			xor_last_submit = xor_last_linked; | 
 | 			iowrite32be(ioread32be(&xor_reg->crsr) | | 
 | 				    XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT, | 
 | 				    &xor_reg->crsr); | 
 | 		} else { | 
 | 			/* XORcore is running. Refetch later in the handler */ | 
 | 			do_xor_refetch = 1; | 
 | 		} | 
 |  | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor | 
 |  */ | 
 | static u32 | 
 | ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan) | 
 | { | 
 | 	struct dma_regs *dma_reg; | 
 | 	struct xor_regs *xor_reg; | 
 |  | 
 | 	if (unlikely(!chan->hw_chain_inited)) | 
 | 		/* h/w descriptor chain is not initialized yet */ | 
 | 		return 0; | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		dma_reg = chan->device->dma_reg; | 
 | 		return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK); | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		xor_reg = chan->device->xor_reg; | 
 | 		return ioread32be(&xor_reg->ccbalr); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_chan_run - enable the channel | 
 |  */ | 
 | static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan) | 
 | { | 
 | 	struct xor_regs *xor_reg; | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		/* DMAs are always enabled, do nothing */ | 
 | 		break; | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		/* drain write buffer */ | 
 | 		xor_reg = chan->device->xor_reg; | 
 |  | 
 | 		/* fetch descriptor pointed to in <link> */ | 
 | 		iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT, | 
 | 			    &xor_reg->crsr); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /****************************************************************************** | 
 |  * ADMA device level | 
 |  ******************************************************************************/ | 
 |  | 
 | static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan); | 
 | static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan); | 
 |  | 
 | static dma_cookie_t | 
 | ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx); | 
 |  | 
 | static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx, | 
 | 				    dma_addr_t addr, int index); | 
 | static void | 
 | ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx, | 
 | 				  dma_addr_t addr, int index); | 
 |  | 
 | static void | 
 | ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx, | 
 | 			   dma_addr_t *paddr, unsigned long flags); | 
 | static void | 
 | ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx, | 
 | 			  dma_addr_t addr, int index); | 
 | static void | 
 | ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx, | 
 | 			       unsigned char mult, int index, int dst_pos); | 
 | static void | 
 | ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx, | 
 | 				   dma_addr_t paddr, dma_addr_t qaddr); | 
 |  | 
 | static struct page *ppc440spe_rxor_srcs[32]; | 
 |  | 
 | /** | 
 |  * ppc440spe_can_rxor - check if the operands may be processed with RXOR | 
 |  */ | 
 | static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len) | 
 | { | 
 | 	int i, order = 0, state = 0; | 
 | 	int idx = 0; | 
 |  | 
 | 	if (unlikely(!(src_cnt > 1))) | 
 | 		return 0; | 
 |  | 
 | 	BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs)); | 
 |  | 
 | 	/* Skip holes in the source list before checking */ | 
 | 	for (i = 0; i < src_cnt; i++) { | 
 | 		if (!srcs[i]) | 
 | 			continue; | 
 | 		ppc440spe_rxor_srcs[idx++] = srcs[i]; | 
 | 	} | 
 | 	src_cnt = idx; | 
 |  | 
 | 	for (i = 1; i < src_cnt; i++) { | 
 | 		char *cur_addr = page_address(ppc440spe_rxor_srcs[i]); | 
 | 		char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]); | 
 |  | 
 | 		switch (state) { | 
 | 		case 0: | 
 | 			if (cur_addr == old_addr + len) { | 
 | 				/* direct RXOR */ | 
 | 				order = 1; | 
 | 				state = 1; | 
 | 			} else if (old_addr == cur_addr + len) { | 
 | 				/* reverse RXOR */ | 
 | 				order = -1; | 
 | 				state = 1; | 
 | 			} else | 
 | 				goto out; | 
 | 			break; | 
 | 		case 1: | 
 | 			if ((i == src_cnt - 2) || | 
 | 			    (order == -1 && cur_addr != old_addr - len)) { | 
 | 				order = 0; | 
 | 				state = 0; | 
 | 			} else if ((cur_addr == old_addr + len * order) || | 
 | 				   (cur_addr == old_addr + 2 * len) || | 
 | 				   (cur_addr == old_addr + 3 * len)) { | 
 | 				state = 2; | 
 | 			} else { | 
 | 				order = 0; | 
 | 				state = 0; | 
 | 			} | 
 | 			break; | 
 | 		case 2: | 
 | 			order = 0; | 
 | 			state = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (state == 1 || state == 2) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_device_estimate - estimate the efficiency of processing | 
 |  *	the operation given on this channel. It's assumed that 'chan' is | 
 |  *	capable to process 'cap' type of operation. | 
 |  * @chan: channel to use | 
 |  * @cap: type of transaction | 
 |  * @dst_lst: array of destination pointers | 
 |  * @dst_cnt: number of destination operands | 
 |  * @src_lst: array of source pointers | 
 |  * @src_cnt: number of source operands | 
 |  * @src_sz: size of each source operand | 
 |  */ | 
 | static int ppc440spe_adma_estimate(struct dma_chan *chan, | 
 | 	enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt, | 
 | 	struct page **src_lst, int src_cnt, size_t src_sz) | 
 | { | 
 | 	int ef = 1; | 
 |  | 
 | 	if (cap == DMA_PQ || cap == DMA_PQ_VAL) { | 
 | 		/* If RAID-6 capabilities were not activated don't try | 
 | 		 * to use them | 
 | 		 */ | 
 | 		if (unlikely(!ppc440spe_r6_enabled)) | 
 | 			return -1; | 
 | 	} | 
 | 	/*  In the current implementation of ppc440spe ADMA driver it | 
 | 	 * makes sense to pick out only pq case, because it may be | 
 | 	 * processed: | 
 | 	 * (1) either using Biskup method on DMA2; | 
 | 	 * (2) or on DMA0/1. | 
 | 	 *  Thus we give a favour to (1) if the sources are suitable; | 
 | 	 * else let it be processed on one of the DMA0/1 engines. | 
 | 	 *  In the sum_product case where destination is also the | 
 | 	 * source process it on DMA0/1 only. | 
 | 	 */ | 
 | 	if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) { | 
 |  | 
 | 		if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1]) | 
 | 			ef = 0; /* sum_product case, process on DMA0/1 */ | 
 | 		else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz)) | 
 | 			ef = 3; /* override (DMA0/1 + idle) */ | 
 | 		else | 
 | 			ef = 0; /* can't process on DMA2 if !rxor */ | 
 | 	} | 
 |  | 
 | 	/* channel idleness increases the priority */ | 
 | 	if (likely(ef) && | 
 | 	    !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan))) | 
 | 		ef++; | 
 |  | 
 | 	return ef; | 
 | } | 
 |  | 
 | struct dma_chan * | 
 | ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap, | 
 | 	struct page **dst_lst, int dst_cnt, struct page **src_lst, | 
 | 	int src_cnt, size_t src_sz) | 
 | { | 
 | 	struct dma_chan *best_chan = NULL; | 
 | 	struct ppc_dma_chan_ref *ref; | 
 | 	int best_rank = -1; | 
 |  | 
 | 	if (unlikely(!src_sz)) | 
 | 		return NULL; | 
 | 	if (src_sz > PAGE_SIZE) { | 
 | 		/* | 
 | 		 * should a user of the api ever pass > PAGE_SIZE requests | 
 | 		 * we sort out cases where temporary page-sized buffers | 
 | 		 * are used. | 
 | 		 */ | 
 | 		switch (cap) { | 
 | 		case DMA_PQ: | 
 | 			if (src_cnt == 1 && dst_lst[1] == src_lst[0]) | 
 | 				return NULL; | 
 | 			if (src_cnt == 2 && dst_lst[1] == src_lst[1]) | 
 | 				return NULL; | 
 | 			break; | 
 | 		case DMA_PQ_VAL: | 
 | 		case DMA_XOR_VAL: | 
 | 			return NULL; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) { | 
 | 		if (dma_has_cap(cap, ref->chan->device->cap_mask)) { | 
 | 			int rank; | 
 |  | 
 | 			rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst, | 
 | 					dst_cnt, src_lst, src_cnt, src_sz); | 
 | 			if (rank > best_rank) { | 
 | 				best_rank = rank; | 
 | 				best_chan = ref->chan; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return best_chan; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel); | 
 |  | 
 | /** | 
 |  * ppc440spe_get_group_entry - get group entry with index idx | 
 |  * @tdesc: is the last allocated slot in the group. | 
 |  */ | 
 | static struct ppc440spe_adma_desc_slot * | 
 | ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx) | 
 | { | 
 | 	struct ppc440spe_adma_desc_slot *iter = tdesc->group_head; | 
 | 	int i = 0; | 
 |  | 
 | 	if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) { | 
 | 		printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n", | 
 | 			__func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(iter, &tdesc->group_list, chain_node) { | 
 | 		if (i++ == entry_idx) | 
 | 			break; | 
 | 	} | 
 | 	return iter; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_free_slots - flags descriptor slots for reuse | 
 |  * @slot: Slot to free | 
 |  * Caller must hold &ppc440spe_chan->lock while calling this function | 
 |  */ | 
 | static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot, | 
 | 				      struct ppc440spe_adma_chan *chan) | 
 | { | 
 | 	int stride = slot->slots_per_op; | 
 |  | 
 | 	while (stride--) { | 
 | 		slot->slots_per_op = 0; | 
 | 		slot = list_entry(slot->slot_node.next, | 
 | 				struct ppc440spe_adma_desc_slot, | 
 | 				slot_node); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_run_tx_complete_actions - call functions to be called | 
 |  * upon completion | 
 |  */ | 
 | static dma_cookie_t ppc440spe_adma_run_tx_complete_actions( | 
 | 		struct ppc440spe_adma_desc_slot *desc, | 
 | 		struct ppc440spe_adma_chan *chan, | 
 | 		dma_cookie_t cookie) | 
 | { | 
 | 	BUG_ON(desc->async_tx.cookie < 0); | 
 | 	if (desc->async_tx.cookie > 0) { | 
 | 		cookie = desc->async_tx.cookie; | 
 | 		desc->async_tx.cookie = 0; | 
 |  | 
 | 		dma_descriptor_unmap(&desc->async_tx); | 
 | 		/* call the callback (must not sleep or submit new | 
 | 		 * operations to this channel) | 
 | 		 */ | 
 | 		dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL); | 
 | 	} | 
 |  | 
 | 	/* run dependent operations */ | 
 | 	dma_run_dependencies(&desc->async_tx); | 
 |  | 
 | 	return cookie; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set) | 
 |  */ | 
 | static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc, | 
 | 		struct ppc440spe_adma_chan *chan) | 
 | { | 
 | 	/* the client is allowed to attach dependent operations | 
 | 	 * until 'ack' is set | 
 | 	 */ | 
 | 	if (!async_tx_test_ack(&desc->async_tx)) | 
 | 		return 0; | 
 |  | 
 | 	/* leave the last descriptor in the chain | 
 | 	 * so we can append to it | 
 | 	 */ | 
 | 	if (list_is_last(&desc->chain_node, &chan->chain) || | 
 | 	    desc->phys == ppc440spe_chan_get_current_descriptor(chan)) | 
 | 		return 1; | 
 |  | 
 | 	if (chan->device->id != PPC440SPE_XOR_ID) { | 
 | 		/* our DMA interrupt handler clears opc field of | 
 | 		 * each processed descriptor. For all types of | 
 | 		 * operations except for ZeroSum we do not actually | 
 | 		 * need ack from the interrupt handler. ZeroSum is a | 
 | 		 * special case since the result of this operation | 
 | 		 * is available from the handler only, so if we see | 
 | 		 * such type of descriptor (which is unprocessed yet) | 
 | 		 * then leave it in chain. | 
 | 		 */ | 
 | 		struct dma_cdb *cdb = desc->hw_desc; | 
 | 		if (cdb->opc == DMA_CDB_OPC_DCHECK128) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n", | 
 | 		desc->phys, desc->idx, desc->slots_per_op); | 
 |  | 
 | 	list_del(&desc->chain_node); | 
 | 	ppc440spe_adma_free_slots(desc, chan); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine | 
 |  *	which runs through the channel CDBs list until reach the descriptor | 
 |  *	currently processed. When routine determines that all CDBs of group | 
 |  *	are completed then corresponding callbacks (if any) are called and slots | 
 |  *	are freed. | 
 |  */ | 
 | static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan) | 
 | { | 
 | 	struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL; | 
 | 	dma_cookie_t cookie = 0; | 
 | 	u32 current_desc = ppc440spe_chan_get_current_descriptor(chan); | 
 | 	int busy = ppc440spe_chan_is_busy(chan); | 
 | 	int seen_current = 0, slot_cnt = 0, slots_per_op = 0; | 
 |  | 
 | 	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n", | 
 | 		chan->device->id, __func__); | 
 |  | 
 | 	if (!current_desc) { | 
 | 		/*  There were no transactions yet, so | 
 | 		 * nothing to clean | 
 | 		 */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* free completed slots from the chain starting with | 
 | 	 * the oldest descriptor | 
 | 	 */ | 
 | 	list_for_each_entry_safe(iter, _iter, &chan->chain, | 
 | 					chain_node) { | 
 | 		dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d " | 
 | 		    "busy: %d this_desc: %#llx next_desc: %#x " | 
 | 		    "cur: %#x ack: %d\n", | 
 | 		    iter->async_tx.cookie, iter->idx, busy, iter->phys, | 
 | 		    ppc440spe_desc_get_link(iter, chan), current_desc, | 
 | 		    async_tx_test_ack(&iter->async_tx)); | 
 | 		prefetch(_iter); | 
 | 		prefetch(&_iter->async_tx); | 
 |  | 
 | 		/* do not advance past the current descriptor loaded into the | 
 | 		 * hardware channel,subsequent descriptors are either in process | 
 | 		 * or have not been submitted | 
 | 		 */ | 
 | 		if (seen_current) | 
 | 			break; | 
 |  | 
 | 		/* stop the search if we reach the current descriptor and the | 
 | 		 * channel is busy, or if it appears that the current descriptor | 
 | 		 * needs to be re-read (i.e. has been appended to) | 
 | 		 */ | 
 | 		if (iter->phys == current_desc) { | 
 | 			BUG_ON(seen_current++); | 
 | 			if (busy || ppc440spe_desc_get_link(iter, chan)) { | 
 | 				/* not all descriptors of the group have | 
 | 				 * been completed; exit. | 
 | 				 */ | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* detect the start of a group transaction */ | 
 | 		if (!slot_cnt && !slots_per_op) { | 
 | 			slot_cnt = iter->slot_cnt; | 
 | 			slots_per_op = iter->slots_per_op; | 
 | 			if (slot_cnt <= slots_per_op) { | 
 | 				slot_cnt = 0; | 
 | 				slots_per_op = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (slot_cnt) { | 
 | 			if (!group_start) | 
 | 				group_start = iter; | 
 | 			slot_cnt -= slots_per_op; | 
 | 		} | 
 |  | 
 | 		/* all the members of a group are complete */ | 
 | 		if (slots_per_op != 0 && slot_cnt == 0) { | 
 | 			struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter; | 
 | 			int end_of_chain = 0; | 
 |  | 
 | 			/* clean up the group */ | 
 | 			slot_cnt = group_start->slot_cnt; | 
 | 			grp_iter = group_start; | 
 | 			list_for_each_entry_safe_from(grp_iter, _grp_iter, | 
 | 				&chan->chain, chain_node) { | 
 |  | 
 | 				cookie = ppc440spe_adma_run_tx_complete_actions( | 
 | 					grp_iter, chan, cookie); | 
 |  | 
 | 				slot_cnt -= slots_per_op; | 
 | 				end_of_chain = ppc440spe_adma_clean_slot( | 
 | 				    grp_iter, chan); | 
 | 				if (end_of_chain && slot_cnt) { | 
 | 					/* Should wait for ZeroSum completion */ | 
 | 					if (cookie > 0) | 
 | 						chan->common.completed_cookie = cookie; | 
 | 					return; | 
 | 				} | 
 |  | 
 | 				if (slot_cnt == 0 || end_of_chain) | 
 | 					break; | 
 | 			} | 
 |  | 
 | 			/* the group should be complete at this point */ | 
 | 			BUG_ON(slot_cnt); | 
 |  | 
 | 			slots_per_op = 0; | 
 | 			group_start = NULL; | 
 | 			if (end_of_chain) | 
 | 				break; | 
 | 			else | 
 | 				continue; | 
 | 		} else if (slots_per_op) /* wait for group completion */ | 
 | 			continue; | 
 |  | 
 | 		cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan, | 
 | 		    cookie); | 
 |  | 
 | 		if (ppc440spe_adma_clean_slot(iter, chan)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	BUG_ON(!seen_current); | 
 |  | 
 | 	if (cookie > 0) { | 
 | 		chan->common.completed_cookie = cookie; | 
 | 		pr_debug("\tcompleted cookie %d\n", cookie); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_tasklet - clean up watch-dog initiator | 
 |  */ | 
 | static void ppc440spe_adma_tasklet(unsigned long data) | 
 | { | 
 | 	struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data; | 
 |  | 
 | 	spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING); | 
 | 	__ppc440spe_adma_slot_cleanup(chan); | 
 | 	spin_unlock(&chan->lock); | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_slot_cleanup - clean up scheduled initiator | 
 |  */ | 
 | static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan) | 
 | { | 
 | 	spin_lock_bh(&chan->lock); | 
 | 	__ppc440spe_adma_slot_cleanup(chan); | 
 | 	spin_unlock_bh(&chan->lock); | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_alloc_slots - allocate free slots (if any) | 
 |  */ | 
 | static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots( | 
 | 		struct ppc440spe_adma_chan *chan, int num_slots, | 
 | 		int slots_per_op) | 
 | { | 
 | 	struct ppc440spe_adma_desc_slot *iter = NULL, *_iter; | 
 | 	struct ppc440spe_adma_desc_slot *alloc_start = NULL; | 
 | 	struct list_head chain = LIST_HEAD_INIT(chain); | 
 | 	int slots_found, retry = 0; | 
 |  | 
 |  | 
 | 	BUG_ON(!num_slots || !slots_per_op); | 
 | 	/* start search from the last allocated descrtiptor | 
 | 	 * if a contiguous allocation can not be found start searching | 
 | 	 * from the beginning of the list | 
 | 	 */ | 
 | retry: | 
 | 	slots_found = 0; | 
 | 	if (retry == 0) | 
 | 		iter = chan->last_used; | 
 | 	else | 
 | 		iter = list_entry(&chan->all_slots, | 
 | 				  struct ppc440spe_adma_desc_slot, | 
 | 				  slot_node); | 
 | 	list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots, | 
 | 	    slot_node) { | 
 | 		prefetch(_iter); | 
 | 		prefetch(&_iter->async_tx); | 
 | 		if (iter->slots_per_op) { | 
 | 			slots_found = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* start the allocation if the slot is correctly aligned */ | 
 | 		if (!slots_found++) | 
 | 			alloc_start = iter; | 
 |  | 
 | 		if (slots_found == num_slots) { | 
 | 			struct ppc440spe_adma_desc_slot *alloc_tail = NULL; | 
 | 			struct ppc440spe_adma_desc_slot *last_used = NULL; | 
 |  | 
 | 			iter = alloc_start; | 
 | 			while (num_slots) { | 
 | 				int i; | 
 | 				/* pre-ack all but the last descriptor */ | 
 | 				if (num_slots != slots_per_op) | 
 | 					async_tx_ack(&iter->async_tx); | 
 |  | 
 | 				list_add_tail(&iter->chain_node, &chain); | 
 | 				alloc_tail = iter; | 
 | 				iter->async_tx.cookie = 0; | 
 | 				iter->hw_next = NULL; | 
 | 				iter->flags = 0; | 
 | 				iter->slot_cnt = num_slots; | 
 | 				iter->xor_check_result = NULL; | 
 | 				for (i = 0; i < slots_per_op; i++) { | 
 | 					iter->slots_per_op = slots_per_op - i; | 
 | 					last_used = iter; | 
 | 					iter = list_entry(iter->slot_node.next, | 
 | 						struct ppc440spe_adma_desc_slot, | 
 | 						slot_node); | 
 | 				} | 
 | 				num_slots -= slots_per_op; | 
 | 			} | 
 | 			alloc_tail->group_head = alloc_start; | 
 | 			alloc_tail->async_tx.cookie = -EBUSY; | 
 | 			list_splice(&chain, &alloc_tail->group_list); | 
 | 			chan->last_used = last_used; | 
 | 			return alloc_tail; | 
 | 		} | 
 | 	} | 
 | 	if (!retry++) | 
 | 		goto retry; | 
 |  | 
 | 	/* try to free some slots if the allocation fails */ | 
 | 	tasklet_schedule(&chan->irq_tasklet); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots | 
 |  */ | 
 | static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan) | 
 | { | 
 | 	struct ppc440spe_adma_chan *ppc440spe_chan; | 
 | 	struct ppc440spe_adma_desc_slot *slot = NULL; | 
 | 	char *hw_desc; | 
 | 	int i, db_sz; | 
 | 	int init; | 
 |  | 
 | 	ppc440spe_chan = to_ppc440spe_adma_chan(chan); | 
 | 	init = ppc440spe_chan->slots_allocated ? 0 : 1; | 
 | 	chan->chan_id = ppc440spe_chan->device->id; | 
 |  | 
 | 	/* Allocate descriptor slots */ | 
 | 	i = ppc440spe_chan->slots_allocated; | 
 | 	if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID) | 
 | 		db_sz = sizeof(struct dma_cdb); | 
 | 	else | 
 | 		db_sz = sizeof(struct xor_cb); | 
 |  | 
 | 	for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) { | 
 | 		slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot), | 
 | 			       GFP_KERNEL); | 
 | 		if (!slot) { | 
 | 			printk(KERN_INFO "SPE ADMA Channel only initialized" | 
 | 				" %d descriptor slots", i--); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt; | 
 | 		slot->hw_desc = (void *) &hw_desc[i * db_sz]; | 
 | 		dma_async_tx_descriptor_init(&slot->async_tx, chan); | 
 | 		slot->async_tx.tx_submit = ppc440spe_adma_tx_submit; | 
 | 		INIT_LIST_HEAD(&slot->chain_node); | 
 | 		INIT_LIST_HEAD(&slot->slot_node); | 
 | 		INIT_LIST_HEAD(&slot->group_list); | 
 | 		slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz; | 
 | 		slot->idx = i; | 
 |  | 
 | 		spin_lock_bh(&ppc440spe_chan->lock); | 
 | 		ppc440spe_chan->slots_allocated++; | 
 | 		list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots); | 
 | 		spin_unlock_bh(&ppc440spe_chan->lock); | 
 | 	} | 
 |  | 
 | 	if (i && !ppc440spe_chan->last_used) { | 
 | 		ppc440spe_chan->last_used = | 
 | 			list_entry(ppc440spe_chan->all_slots.next, | 
 | 				struct ppc440spe_adma_desc_slot, | 
 | 				slot_node); | 
 | 	} | 
 |  | 
 | 	dev_dbg(ppc440spe_chan->device->common.dev, | 
 | 		"ppc440spe adma%d: allocated %d descriptor slots\n", | 
 | 		ppc440spe_chan->device->id, i); | 
 |  | 
 | 	/* initialize the channel and the chain with a null operation */ | 
 | 	if (init) { | 
 | 		switch (ppc440spe_chan->device->id) { | 
 | 		case PPC440SPE_DMA0_ID: | 
 | 		case PPC440SPE_DMA1_ID: | 
 | 			ppc440spe_chan->hw_chain_inited = 0; | 
 | 			/* Use WXOR for self-testing */ | 
 | 			if (!ppc440spe_r6_tchan) | 
 | 				ppc440spe_r6_tchan = ppc440spe_chan; | 
 | 			break; | 
 | 		case PPC440SPE_XOR_ID: | 
 | 			ppc440spe_chan_start_null_xor(ppc440spe_chan); | 
 | 			break; | 
 | 		default: | 
 | 			BUG(); | 
 | 		} | 
 | 		ppc440spe_chan->needs_unmap = 1; | 
 | 	} | 
 |  | 
 | 	return (i > 0) ? i : -ENOMEM; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_rxor_set_region_data - | 
 |  */ | 
 | static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc, | 
 | 	u8 xor_arg_no, u32 mask) | 
 | { | 
 | 	struct xor_cb *xcb = desc->hw_desc; | 
 |  | 
 | 	xcb->ops[xor_arg_no].h |= mask; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_rxor_set_src - | 
 |  */ | 
 | static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc, | 
 | 	u8 xor_arg_no, dma_addr_t addr) | 
 | { | 
 | 	struct xor_cb *xcb = desc->hw_desc; | 
 |  | 
 | 	xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE; | 
 | 	xcb->ops[xor_arg_no].l = addr; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_rxor_set_mult - | 
 |  */ | 
 | static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc, | 
 | 	u8 xor_arg_no, u8 idx, u8 mult) | 
 | { | 
 | 	struct xor_cb *xcb = desc->hw_desc; | 
 |  | 
 | 	xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8); | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold | 
 |  *	has been achieved | 
 |  */ | 
 | static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan) | 
 | { | 
 | 	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n", | 
 | 		chan->device->id, chan->pending); | 
 |  | 
 | 	if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) { | 
 | 		chan->pending = 0; | 
 | 		ppc440spe_chan_append(chan); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_tx_submit - submit new descriptor group to the channel | 
 |  *	(it's not necessary that descriptors will be submitted to the h/w | 
 |  *	chains too right now) | 
 |  */ | 
 | static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx) | 
 | { | 
 | 	struct ppc440spe_adma_desc_slot *sw_desc; | 
 | 	struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan); | 
 | 	struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail; | 
 | 	int slot_cnt; | 
 | 	int slots_per_op; | 
 | 	dma_cookie_t cookie; | 
 |  | 
 | 	sw_desc = tx_to_ppc440spe_adma_slot(tx); | 
 |  | 
 | 	group_start = sw_desc->group_head; | 
 | 	slot_cnt = group_start->slot_cnt; | 
 | 	slots_per_op = group_start->slots_per_op; | 
 |  | 
 | 	spin_lock_bh(&chan->lock); | 
 | 	cookie = dma_cookie_assign(tx); | 
 |  | 
 | 	if (unlikely(list_empty(&chan->chain))) { | 
 | 		/* first peer */ | 
 | 		list_splice_init(&sw_desc->group_list, &chan->chain); | 
 | 		chan_first_cdb[chan->device->id] = group_start; | 
 | 	} else { | 
 | 		/* isn't first peer, bind CDBs to chain */ | 
 | 		old_chain_tail = list_entry(chan->chain.prev, | 
 | 					struct ppc440spe_adma_desc_slot, | 
 | 					chain_node); | 
 | 		list_splice_init(&sw_desc->group_list, | 
 | 		    &old_chain_tail->chain_node); | 
 | 		/* fix up the hardware chain */ | 
 | 		ppc440spe_desc_set_link(chan, old_chain_tail, group_start); | 
 | 	} | 
 |  | 
 | 	/* increment the pending count by the number of operations */ | 
 | 	chan->pending += slot_cnt / slots_per_op; | 
 | 	ppc440spe_adma_check_threshold(chan); | 
 | 	spin_unlock_bh(&chan->lock); | 
 |  | 
 | 	dev_dbg(chan->device->common.dev, | 
 | 		"ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n", | 
 | 		chan->device->id, __func__, | 
 | 		sw_desc->async_tx.cookie, sw_desc->idx, sw_desc); | 
 |  | 
 | 	return cookie; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation | 
 |  */ | 
 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt( | 
 | 		struct dma_chan *chan, unsigned long flags) | 
 | { | 
 | 	struct ppc440spe_adma_chan *ppc440spe_chan; | 
 | 	struct ppc440spe_adma_desc_slot *sw_desc, *group_start; | 
 | 	int slot_cnt, slots_per_op; | 
 |  | 
 | 	ppc440spe_chan = to_ppc440spe_adma_chan(chan); | 
 |  | 
 | 	dev_dbg(ppc440spe_chan->device->common.dev, | 
 | 		"ppc440spe adma%d: %s\n", ppc440spe_chan->device->id, | 
 | 		__func__); | 
 |  | 
 | 	spin_lock_bh(&ppc440spe_chan->lock); | 
 | 	slot_cnt = slots_per_op = 1; | 
 | 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, | 
 | 			slots_per_op); | 
 | 	if (sw_desc) { | 
 | 		group_start = sw_desc->group_head; | 
 | 		ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan); | 
 | 		group_start->unmap_len = 0; | 
 | 		sw_desc->async_tx.flags = flags; | 
 | 	} | 
 | 	spin_unlock_bh(&ppc440spe_chan->lock); | 
 |  | 
 | 	return sw_desc ? &sw_desc->async_tx : NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation | 
 |  */ | 
 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy( | 
 | 		struct dma_chan *chan, dma_addr_t dma_dest, | 
 | 		dma_addr_t dma_src, size_t len, unsigned long flags) | 
 | { | 
 | 	struct ppc440spe_adma_chan *ppc440spe_chan; | 
 | 	struct ppc440spe_adma_desc_slot *sw_desc, *group_start; | 
 | 	int slot_cnt, slots_per_op; | 
 |  | 
 | 	ppc440spe_chan = to_ppc440spe_adma_chan(chan); | 
 |  | 
 | 	if (unlikely(!len)) | 
 | 		return NULL; | 
 |  | 
 | 	BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT); | 
 |  | 
 | 	spin_lock_bh(&ppc440spe_chan->lock); | 
 |  | 
 | 	dev_dbg(ppc440spe_chan->device->common.dev, | 
 | 		"ppc440spe adma%d: %s len: %u int_en %d\n", | 
 | 		ppc440spe_chan->device->id, __func__, len, | 
 | 		flags & DMA_PREP_INTERRUPT ? 1 : 0); | 
 | 	slot_cnt = slots_per_op = 1; | 
 | 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, | 
 | 		slots_per_op); | 
 | 	if (sw_desc) { | 
 | 		group_start = sw_desc->group_head; | 
 | 		ppc440spe_desc_init_memcpy(group_start, flags); | 
 | 		ppc440spe_adma_set_dest(group_start, dma_dest, 0); | 
 | 		ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0); | 
 | 		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); | 
 | 		sw_desc->unmap_len = len; | 
 | 		sw_desc->async_tx.flags = flags; | 
 | 	} | 
 | 	spin_unlock_bh(&ppc440spe_chan->lock); | 
 |  | 
 | 	return sw_desc ? &sw_desc->async_tx : NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation | 
 |  */ | 
 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor( | 
 | 		struct dma_chan *chan, dma_addr_t dma_dest, | 
 | 		dma_addr_t *dma_src, u32 src_cnt, size_t len, | 
 | 		unsigned long flags) | 
 | { | 
 | 	struct ppc440spe_adma_chan *ppc440spe_chan; | 
 | 	struct ppc440spe_adma_desc_slot *sw_desc, *group_start; | 
 | 	int slot_cnt, slots_per_op; | 
 |  | 
 | 	ppc440spe_chan = to_ppc440spe_adma_chan(chan); | 
 |  | 
 | 	ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id, | 
 | 				     dma_dest, dma_src, src_cnt)); | 
 | 	if (unlikely(!len)) | 
 | 		return NULL; | 
 | 	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); | 
 |  | 
 | 	dev_dbg(ppc440spe_chan->device->common.dev, | 
 | 		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n", | 
 | 		ppc440spe_chan->device->id, __func__, src_cnt, len, | 
 | 		flags & DMA_PREP_INTERRUPT ? 1 : 0); | 
 |  | 
 | 	spin_lock_bh(&ppc440spe_chan->lock); | 
 | 	slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op); | 
 | 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, | 
 | 			slots_per_op); | 
 | 	if (sw_desc) { | 
 | 		group_start = sw_desc->group_head; | 
 | 		ppc440spe_desc_init_xor(group_start, src_cnt, flags); | 
 | 		ppc440spe_adma_set_dest(group_start, dma_dest, 0); | 
 | 		while (src_cnt--) | 
 | 			ppc440spe_adma_memcpy_xor_set_src(group_start, | 
 | 				dma_src[src_cnt], src_cnt); | 
 | 		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); | 
 | 		sw_desc->unmap_len = len; | 
 | 		sw_desc->async_tx.flags = flags; | 
 | 	} | 
 | 	spin_unlock_bh(&ppc440spe_chan->lock); | 
 |  | 
 | 	return sw_desc ? &sw_desc->async_tx : NULL; | 
 | } | 
 |  | 
 | static inline void | 
 | ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc, | 
 | 				int src_cnt); | 
 | static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor); | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_init_dma2rxor_slot - | 
 |  */ | 
 | static void ppc440spe_adma_init_dma2rxor_slot( | 
 | 		struct ppc440spe_adma_desc_slot *desc, | 
 | 		dma_addr_t *src, int src_cnt) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* initialize CDB */ | 
 | 	for (i = 0; i < src_cnt; i++) { | 
 | 		ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i, | 
 | 						 desc->src_cnt, (u32)src[i]); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_dma01_prep_mult - | 
 |  * for Q operation where destination is also the source | 
 |  */ | 
 | static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult( | 
 | 		struct ppc440spe_adma_chan *ppc440spe_chan, | 
 | 		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, | 
 | 		const unsigned char *scf, size_t len, unsigned long flags) | 
 | { | 
 | 	struct ppc440spe_adma_desc_slot *sw_desc = NULL; | 
 | 	unsigned long op = 0; | 
 | 	int slot_cnt; | 
 |  | 
 | 	set_bit(PPC440SPE_DESC_WXOR, &op); | 
 | 	slot_cnt = 2; | 
 |  | 
 | 	spin_lock_bh(&ppc440spe_chan->lock); | 
 |  | 
 | 	/* use WXOR, each descriptor occupies one slot */ | 
 | 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); | 
 | 	if (sw_desc) { | 
 | 		struct ppc440spe_adma_chan *chan; | 
 | 		struct ppc440spe_adma_desc_slot *iter; | 
 | 		struct dma_cdb *hw_desc; | 
 |  | 
 | 		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | 
 | 		set_bits(op, &sw_desc->flags); | 
 | 		sw_desc->src_cnt = src_cnt; | 
 | 		sw_desc->dst_cnt = dst_cnt; | 
 | 		/* First descriptor, zero data in the destination and copy it | 
 | 		 * to q page using MULTICAST transfer. | 
 | 		 */ | 
 | 		iter = list_first_entry(&sw_desc->group_list, | 
 | 					struct ppc440spe_adma_desc_slot, | 
 | 					chain_node); | 
 | 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | 
 | 		/* set 'next' pointer */ | 
 | 		iter->hw_next = list_entry(iter->chain_node.next, | 
 | 					   struct ppc440spe_adma_desc_slot, | 
 | 					   chain_node); | 
 | 		clear_bit(PPC440SPE_DESC_INT, &iter->flags); | 
 | 		hw_desc = iter->hw_desc; | 
 | 		hw_desc->opc = DMA_CDB_OPC_MULTICAST; | 
 |  | 
 | 		ppc440spe_desc_set_dest_addr(iter, chan, | 
 | 					     DMA_CUED_XOR_BASE, dst[0], 0); | 
 | 		ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1); | 
 | 		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, | 
 | 					    src[0]); | 
 | 		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); | 
 | 		iter->unmap_len = len; | 
 |  | 
 | 		/* | 
 | 		 * Second descriptor, multiply data from the q page | 
 | 		 * and store the result in real destination. | 
 | 		 */ | 
 | 		iter = list_first_entry(&iter->chain_node, | 
 | 					struct ppc440spe_adma_desc_slot, | 
 | 					chain_node); | 
 | 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | 
 | 		iter->hw_next = NULL; | 
 | 		if (flags & DMA_PREP_INTERRUPT) | 
 | 			set_bit(PPC440SPE_DESC_INT, &iter->flags); | 
 | 		else | 
 | 			clear_bit(PPC440SPE_DESC_INT, &iter->flags); | 
 |  | 
 | 		hw_desc = iter->hw_desc; | 
 | 		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | 
 | 		ppc440spe_desc_set_src_addr(iter, chan, 0, | 
 | 					    DMA_CUED_XOR_HB, dst[1]); | 
 | 		ppc440spe_desc_set_dest_addr(iter, chan, | 
 | 					     DMA_CUED_XOR_BASE, dst[0], 0); | 
 |  | 
 | 		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, | 
 | 					    DMA_CDB_SG_DST1, scf[0]); | 
 | 		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); | 
 | 		iter->unmap_len = len; | 
 | 		sw_desc->async_tx.flags = flags; | 
 | 	} | 
 |  | 
 | 	spin_unlock_bh(&ppc440spe_chan->lock); | 
 |  | 
 | 	return sw_desc; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_dma01_prep_sum_product - | 
 |  * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also | 
 |  * the source. | 
 |  */ | 
 | static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product( | 
 | 		struct ppc440spe_adma_chan *ppc440spe_chan, | 
 | 		dma_addr_t *dst, dma_addr_t *src, int src_cnt, | 
 | 		const unsigned char *scf, size_t len, unsigned long flags) | 
 | { | 
 | 	struct ppc440spe_adma_desc_slot *sw_desc = NULL; | 
 | 	unsigned long op = 0; | 
 | 	int slot_cnt; | 
 |  | 
 | 	set_bit(PPC440SPE_DESC_WXOR, &op); | 
 | 	slot_cnt = 3; | 
 |  | 
 | 	spin_lock_bh(&ppc440spe_chan->lock); | 
 |  | 
 | 	/* WXOR, each descriptor occupies one slot */ | 
 | 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); | 
 | 	if (sw_desc) { | 
 | 		struct ppc440spe_adma_chan *chan; | 
 | 		struct ppc440spe_adma_desc_slot *iter; | 
 | 		struct dma_cdb *hw_desc; | 
 |  | 
 | 		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | 
 | 		set_bits(op, &sw_desc->flags); | 
 | 		sw_desc->src_cnt = src_cnt; | 
 | 		sw_desc->dst_cnt = 1; | 
 | 		/* 1st descriptor, src[1] data to q page and zero destination */ | 
 | 		iter = list_first_entry(&sw_desc->group_list, | 
 | 					struct ppc440spe_adma_desc_slot, | 
 | 					chain_node); | 
 | 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | 
 | 		iter->hw_next = list_entry(iter->chain_node.next, | 
 | 					   struct ppc440spe_adma_desc_slot, | 
 | 					   chain_node); | 
 | 		clear_bit(PPC440SPE_DESC_INT, &iter->flags); | 
 | 		hw_desc = iter->hw_desc; | 
 | 		hw_desc->opc = DMA_CDB_OPC_MULTICAST; | 
 |  | 
 | 		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, | 
 | 					     *dst, 0); | 
 | 		ppc440spe_desc_set_dest_addr(iter, chan, 0, | 
 | 					     ppc440spe_chan->qdest, 1); | 
 | 		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, | 
 | 					    src[1]); | 
 | 		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); | 
 | 		iter->unmap_len = len; | 
 |  | 
 | 		/* 2nd descriptor, multiply src[1] data and store the | 
 | 		 * result in destination */ | 
 | 		iter = list_first_entry(&iter->chain_node, | 
 | 					struct ppc440spe_adma_desc_slot, | 
 | 					chain_node); | 
 | 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | 
 | 		/* set 'next' pointer */ | 
 | 		iter->hw_next = list_entry(iter->chain_node.next, | 
 | 					   struct ppc440spe_adma_desc_slot, | 
 | 					   chain_node); | 
 | 		if (flags & DMA_PREP_INTERRUPT) | 
 | 			set_bit(PPC440SPE_DESC_INT, &iter->flags); | 
 | 		else | 
 | 			clear_bit(PPC440SPE_DESC_INT, &iter->flags); | 
 |  | 
 | 		hw_desc = iter->hw_desc; | 
 | 		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | 
 | 		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, | 
 | 					    ppc440spe_chan->qdest); | 
 | 		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, | 
 | 					     *dst, 0); | 
 | 		ppc440spe_desc_set_src_mult(iter, chan,	DMA_CUED_MULT1_OFF, | 
 | 					    DMA_CDB_SG_DST1, scf[1]); | 
 | 		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); | 
 | 		iter->unmap_len = len; | 
 |  | 
 | 		/* | 
 | 		 * 3rd descriptor, multiply src[0] data and xor it | 
 | 		 * with destination | 
 | 		 */ | 
 | 		iter = list_first_entry(&iter->chain_node, | 
 | 					struct ppc440spe_adma_desc_slot, | 
 | 					chain_node); | 
 | 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | 
 | 		iter->hw_next = NULL; | 
 | 		if (flags & DMA_PREP_INTERRUPT) | 
 | 			set_bit(PPC440SPE_DESC_INT, &iter->flags); | 
 | 		else | 
 | 			clear_bit(PPC440SPE_DESC_INT, &iter->flags); | 
 |  | 
 | 		hw_desc = iter->hw_desc; | 
 | 		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | 
 | 		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, | 
 | 					    src[0]); | 
 | 		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, | 
 | 					     *dst, 0); | 
 | 		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, | 
 | 					    DMA_CDB_SG_DST1, scf[0]); | 
 | 		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); | 
 | 		iter->unmap_len = len; | 
 | 		sw_desc->async_tx.flags = flags; | 
 | 	} | 
 |  | 
 | 	spin_unlock_bh(&ppc440spe_chan->lock); | 
 |  | 
 | 	return sw_desc; | 
 | } | 
 |  | 
 | static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq( | 
 | 		struct ppc440spe_adma_chan *ppc440spe_chan, | 
 | 		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, | 
 | 		const unsigned char *scf, size_t len, unsigned long flags) | 
 | { | 
 | 	int slot_cnt; | 
 | 	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter; | 
 | 	unsigned long op = 0; | 
 | 	unsigned char mult = 1; | 
 |  | 
 | 	pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n", | 
 | 		 __func__, dst_cnt, src_cnt, len); | 
 | 	/*  select operations WXOR/RXOR depending on the | 
 | 	 * source addresses of operators and the number | 
 | 	 * of destinations (RXOR support only Q-parity calculations) | 
 | 	 */ | 
 | 	set_bit(PPC440SPE_DESC_WXOR, &op); | 
 | 	if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) { | 
 | 		/* no active RXOR; | 
 | 		 * do RXOR if: | 
 | 		 * - there are more than 1 source, | 
 | 		 * - len is aligned on 512-byte boundary, | 
 | 		 * - source addresses fit to one of 4 possible regions. | 
 | 		 */ | 
 | 		if (src_cnt > 1 && | 
 | 		    !(len & MQ0_CF2H_RXOR_BS_MASK) && | 
 | 		    (src[0] + len) == src[1]) { | 
 | 			/* may do RXOR R1 R2 */ | 
 | 			set_bit(PPC440SPE_DESC_RXOR, &op); | 
 | 			if (src_cnt != 2) { | 
 | 				/* may try to enhance region of RXOR */ | 
 | 				if ((src[1] + len) == src[2]) { | 
 | 					/* do RXOR R1 R2 R3 */ | 
 | 					set_bit(PPC440SPE_DESC_RXOR123, | 
 | 						&op); | 
 | 				} else if ((src[1] + len * 2) == src[2]) { | 
 | 					/* do RXOR R1 R2 R4 */ | 
 | 					set_bit(PPC440SPE_DESC_RXOR124, &op); | 
 | 				} else if ((src[1] + len * 3) == src[2]) { | 
 | 					/* do RXOR R1 R2 R5 */ | 
 | 					set_bit(PPC440SPE_DESC_RXOR125, | 
 | 						&op); | 
 | 				} else { | 
 | 					/* do RXOR R1 R2 */ | 
 | 					set_bit(PPC440SPE_DESC_RXOR12, | 
 | 						&op); | 
 | 				} | 
 | 			} else { | 
 | 				/* do RXOR R1 R2 */ | 
 | 				set_bit(PPC440SPE_DESC_RXOR12, &op); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!test_bit(PPC440SPE_DESC_RXOR, &op)) { | 
 | 			/* can not do this operation with RXOR */ | 
 | 			clear_bit(PPC440SPE_RXOR_RUN, | 
 | 				&ppc440spe_rxor_state); | 
 | 		} else { | 
 | 			/* can do; set block size right now */ | 
 | 			ppc440spe_desc_set_rxor_block_size(len); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Number of necessary slots depends on operation type selected */ | 
 | 	if (!test_bit(PPC440SPE_DESC_RXOR, &op)) { | 
 | 		/*  This is a WXOR only chain. Need descriptors for each | 
 | 		 * source to GF-XOR them with WXOR, and need descriptors | 
 | 		 * for each destination to zero them with WXOR | 
 | 		 */ | 
 | 		slot_cnt = src_cnt; | 
 |  | 
 | 		if (flags & DMA_PREP_ZERO_P) { | 
 | 			slot_cnt++; | 
 | 			set_bit(PPC440SPE_ZERO_P, &op); | 
 | 		} | 
 | 		if (flags & DMA_PREP_ZERO_Q) { | 
 | 			slot_cnt++; | 
 | 			set_bit(PPC440SPE_ZERO_Q, &op); | 
 | 		} | 
 | 	} else { | 
 | 		/*  Need 1/2 descriptor for RXOR operation, and | 
 | 		 * need (src_cnt - (2 or 3)) for WXOR of sources | 
 | 		 * remained (if any) | 
 | 		 */ | 
 | 		slot_cnt = dst_cnt; | 
 |  | 
 | 		if (flags & DMA_PREP_ZERO_P) | 
 | 			set_bit(PPC440SPE_ZERO_P, &op); | 
 | 		if (flags & DMA_PREP_ZERO_Q) | 
 | 			set_bit(PPC440SPE_ZERO_Q, &op); | 
 |  | 
 | 		if (test_bit(PPC440SPE_DESC_RXOR12, &op)) | 
 | 			slot_cnt += src_cnt - 2; | 
 | 		else | 
 | 			slot_cnt += src_cnt - 3; | 
 |  | 
 | 		/*  Thus we have either RXOR only chain or | 
 | 		 * mixed RXOR/WXOR | 
 | 		 */ | 
 | 		if (slot_cnt == dst_cnt) | 
 | 			/* RXOR only chain */ | 
 | 			clear_bit(PPC440SPE_DESC_WXOR, &op); | 
 | 	} | 
 |  | 
 | 	spin_lock_bh(&ppc440spe_chan->lock); | 
 | 	/* for both RXOR/WXOR each descriptor occupies one slot */ | 
 | 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); | 
 | 	if (sw_desc) { | 
 | 		ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt, | 
 | 				flags, op); | 
 |  | 
 | 		/* setup dst/src/mult */ | 
 | 		pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n", | 
 | 			 __func__, dst[0], dst[1]); | 
 | 		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags); | 
 | 		while (src_cnt--) { | 
 | 			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt], | 
 | 						  src_cnt); | 
 |  | 
 | 			/* NOTE: "Multi = 0 is equivalent to = 1" as it | 
 | 			 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf | 
 | 			 * doesn't work for RXOR with DMA0/1! Instead, multi=0 | 
 | 			 * leads to zeroing source data after RXOR. | 
 | 			 * So, for P case set-up mult=1 explicitly. | 
 | 			 */ | 
 | 			if (!(flags & DMA_PREP_PQ_DISABLE_Q)) | 
 | 				mult = scf[src_cnt]; | 
 | 			ppc440spe_adma_pq_set_src_mult(sw_desc, | 
 | 				mult, src_cnt,  dst_cnt - 1); | 
 | 		} | 
 |  | 
 | 		/* Setup byte count foreach slot just allocated */ | 
 | 		sw_desc->async_tx.flags = flags; | 
 | 		list_for_each_entry(iter, &sw_desc->group_list, | 
 | 				chain_node) { | 
 | 			ppc440spe_desc_set_byte_count(iter, | 
 | 				ppc440spe_chan, len); | 
 | 			iter->unmap_len = len; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_bh(&ppc440spe_chan->lock); | 
 |  | 
 | 	return sw_desc; | 
 | } | 
 |  | 
 | static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq( | 
 | 		struct ppc440spe_adma_chan *ppc440spe_chan, | 
 | 		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, | 
 | 		const unsigned char *scf, size_t len, unsigned long flags) | 
 | { | 
 | 	int slot_cnt, descs_per_op; | 
 | 	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter; | 
 | 	unsigned long op = 0; | 
 | 	unsigned char mult = 1; | 
 |  | 
 | 	BUG_ON(!dst_cnt); | 
 | 	/*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n", | 
 | 		 __func__, dst_cnt, src_cnt, len);*/ | 
 |  | 
 | 	spin_lock_bh(&ppc440spe_chan->lock); | 
 | 	descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len); | 
 | 	if (descs_per_op < 0) { | 
 | 		spin_unlock_bh(&ppc440spe_chan->lock); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* depending on number of sources we have 1 or 2 RXOR chains */ | 
 | 	slot_cnt = descs_per_op * dst_cnt; | 
 |  | 
 | 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); | 
 | 	if (sw_desc) { | 
 | 		op = slot_cnt; | 
 | 		sw_desc->async_tx.flags = flags; | 
 | 		list_for_each_entry(iter, &sw_desc->group_list, chain_node) { | 
 | 			ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt, | 
 | 				--op ? 0 : flags); | 
 | 			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, | 
 | 				len); | 
 | 			iter->unmap_len = len; | 
 |  | 
 | 			ppc440spe_init_rxor_cursor(&(iter->rxor_cursor)); | 
 | 			iter->rxor_cursor.len = len; | 
 | 			iter->descs_per_op = descs_per_op; | 
 | 		} | 
 | 		op = 0; | 
 | 		list_for_each_entry(iter, &sw_desc->group_list, chain_node) { | 
 | 			op++; | 
 | 			if (op % descs_per_op == 0) | 
 | 				ppc440spe_adma_init_dma2rxor_slot(iter, src, | 
 | 								  src_cnt); | 
 | 			if (likely(!list_is_last(&iter->chain_node, | 
 | 						 &sw_desc->group_list))) { | 
 | 				/* set 'next' pointer */ | 
 | 				iter->hw_next = | 
 | 					list_entry(iter->chain_node.next, | 
 | 						struct ppc440spe_adma_desc_slot, | 
 | 						chain_node); | 
 | 				ppc440spe_xor_set_link(iter, iter->hw_next); | 
 | 			} else { | 
 | 				/* this is the last descriptor. */ | 
 | 				iter->hw_next = NULL; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* fixup head descriptor */ | 
 | 		sw_desc->dst_cnt = dst_cnt; | 
 | 		if (flags & DMA_PREP_ZERO_P) | 
 | 			set_bit(PPC440SPE_ZERO_P, &sw_desc->flags); | 
 | 		if (flags & DMA_PREP_ZERO_Q) | 
 | 			set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags); | 
 |  | 
 | 		/* setup dst/src/mult */ | 
 | 		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags); | 
 |  | 
 | 		while (src_cnt--) { | 
 | 			/* handle descriptors (if dst_cnt == 2) inside | 
 | 			 * the ppc440spe_adma_pq_set_srcxxx() functions | 
 | 			 */ | 
 | 			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt], | 
 | 						  src_cnt); | 
 | 			if (!(flags & DMA_PREP_PQ_DISABLE_Q)) | 
 | 				mult = scf[src_cnt]; | 
 | 			ppc440spe_adma_pq_set_src_mult(sw_desc, | 
 | 					mult, src_cnt, dst_cnt - 1); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_bh(&ppc440spe_chan->lock); | 
 | 	ppc440spe_desc_set_rxor_block_size(len); | 
 | 	return sw_desc; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation | 
 |  */ | 
 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq( | 
 | 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, | 
 | 		unsigned int src_cnt, const unsigned char *scf, | 
 | 		size_t len, unsigned long flags) | 
 | { | 
 | 	struct ppc440spe_adma_chan *ppc440spe_chan; | 
 | 	struct ppc440spe_adma_desc_slot *sw_desc = NULL; | 
 | 	int dst_cnt = 0; | 
 |  | 
 | 	ppc440spe_chan = to_ppc440spe_adma_chan(chan); | 
 |  | 
 | 	ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id, | 
 | 				    dst, src, src_cnt)); | 
 | 	BUG_ON(!len); | 
 | 	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); | 
 | 	BUG_ON(!src_cnt); | 
 |  | 
 | 	if (src_cnt == 1 && dst[1] == src[0]) { | 
 | 		dma_addr_t dest[2]; | 
 |  | 
 | 		/* dst[1] is real destination (Q) */ | 
 | 		dest[0] = dst[1]; | 
 | 		/* this is the page to multicast source data to */ | 
 | 		dest[1] = ppc440spe_chan->qdest; | 
 | 		sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan, | 
 | 				dest, 2, src, src_cnt, scf, len, flags); | 
 | 		return sw_desc ? &sw_desc->async_tx : NULL; | 
 | 	} | 
 |  | 
 | 	if (src_cnt == 2 && dst[1] == src[1]) { | 
 | 		sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan, | 
 | 					&dst[1], src, 2, scf, len, flags); | 
 | 		return sw_desc ? &sw_desc->async_tx : NULL; | 
 | 	} | 
 |  | 
 | 	if (!(flags & DMA_PREP_PQ_DISABLE_P)) { | 
 | 		BUG_ON(!dst[0]); | 
 | 		dst_cnt++; | 
 | 		flags |= DMA_PREP_ZERO_P; | 
 | 	} | 
 |  | 
 | 	if (!(flags & DMA_PREP_PQ_DISABLE_Q)) { | 
 | 		BUG_ON(!dst[1]); | 
 | 		dst_cnt++; | 
 | 		flags |= DMA_PREP_ZERO_Q; | 
 | 	} | 
 |  | 
 | 	BUG_ON(!dst_cnt); | 
 |  | 
 | 	dev_dbg(ppc440spe_chan->device->common.dev, | 
 | 		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n", | 
 | 		ppc440spe_chan->device->id, __func__, src_cnt, len, | 
 | 		flags & DMA_PREP_INTERRUPT ? 1 : 0); | 
 |  | 
 | 	switch (ppc440spe_chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan, | 
 | 				dst, dst_cnt, src, src_cnt, scf, | 
 | 				len, flags); | 
 | 		break; | 
 |  | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan, | 
 | 				dst, dst_cnt, src, src_cnt, scf, | 
 | 				len, flags); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return sw_desc ? &sw_desc->async_tx : NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for | 
 |  * a PQ_ZERO_SUM operation | 
 |  */ | 
 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum( | 
 | 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, | 
 | 		unsigned int src_cnt, const unsigned char *scf, size_t len, | 
 | 		enum sum_check_flags *pqres, unsigned long flags) | 
 | { | 
 | 	struct ppc440spe_adma_chan *ppc440spe_chan; | 
 | 	struct ppc440spe_adma_desc_slot *sw_desc, *iter; | 
 | 	dma_addr_t pdest, qdest; | 
 | 	int slot_cnt, slots_per_op, idst, dst_cnt; | 
 |  | 
 | 	ppc440spe_chan = to_ppc440spe_adma_chan(chan); | 
 |  | 
 | 	if (flags & DMA_PREP_PQ_DISABLE_P) | 
 | 		pdest = 0; | 
 | 	else | 
 | 		pdest = pq[0]; | 
 |  | 
 | 	if (flags & DMA_PREP_PQ_DISABLE_Q) | 
 | 		qdest = 0; | 
 | 	else | 
 | 		qdest = pq[1]; | 
 |  | 
 | 	ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id, | 
 | 					    src, src_cnt, scf)); | 
 |  | 
 | 	/* Always use WXOR for P/Q calculations (two destinations). | 
 | 	 * Need 1 or 2 extra slots to verify results are zero. | 
 | 	 */ | 
 | 	idst = dst_cnt = (pdest && qdest) ? 2 : 1; | 
 |  | 
 | 	/* One additional slot per destination to clone P/Q | 
 | 	 * before calculation (we have to preserve destinations). | 
 | 	 */ | 
 | 	slot_cnt = src_cnt + dst_cnt * 2; | 
 | 	slots_per_op = 1; | 
 |  | 
 | 	spin_lock_bh(&ppc440spe_chan->lock); | 
 | 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, | 
 | 					     slots_per_op); | 
 | 	if (sw_desc) { | 
 | 		ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt); | 
 |  | 
 | 		/* Setup byte count for each slot just allocated */ | 
 | 		sw_desc->async_tx.flags = flags; | 
 | 		list_for_each_entry(iter, &sw_desc->group_list, chain_node) { | 
 | 			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, | 
 | 						      len); | 
 | 			iter->unmap_len = len; | 
 | 		} | 
 |  | 
 | 		if (pdest) { | 
 | 			struct dma_cdb *hw_desc; | 
 | 			struct ppc440spe_adma_chan *chan; | 
 |  | 
 | 			iter = sw_desc->group_head; | 
 | 			chan = to_ppc440spe_adma_chan(iter->async_tx.chan); | 
 | 			memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | 
 | 			iter->hw_next = list_entry(iter->chain_node.next, | 
 | 						struct ppc440spe_adma_desc_slot, | 
 | 						chain_node); | 
 | 			hw_desc = iter->hw_desc; | 
 | 			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | 
 | 			iter->src_cnt = 0; | 
 | 			iter->dst_cnt = 0; | 
 | 			ppc440spe_desc_set_dest_addr(iter, chan, 0, | 
 | 						     ppc440spe_chan->pdest, 0); | 
 | 			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest); | 
 | 			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, | 
 | 						      len); | 
 | 			iter->unmap_len = 0; | 
 | 			/* override pdest to preserve original P */ | 
 | 			pdest = ppc440spe_chan->pdest; | 
 | 		} | 
 | 		if (qdest) { | 
 | 			struct dma_cdb *hw_desc; | 
 | 			struct ppc440spe_adma_chan *chan; | 
 |  | 
 | 			iter = list_first_entry(&sw_desc->group_list, | 
 | 						struct ppc440spe_adma_desc_slot, | 
 | 						chain_node); | 
 | 			chan = to_ppc440spe_adma_chan(iter->async_tx.chan); | 
 |  | 
 | 			if (pdest) { | 
 | 				iter = list_entry(iter->chain_node.next, | 
 | 						struct ppc440spe_adma_desc_slot, | 
 | 						chain_node); | 
 | 			} | 
 |  | 
 | 			memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | 
 | 			iter->hw_next = list_entry(iter->chain_node.next, | 
 | 						struct ppc440spe_adma_desc_slot, | 
 | 						chain_node); | 
 | 			hw_desc = iter->hw_desc; | 
 | 			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | 
 | 			iter->src_cnt = 0; | 
 | 			iter->dst_cnt = 0; | 
 | 			ppc440spe_desc_set_dest_addr(iter, chan, 0, | 
 | 						     ppc440spe_chan->qdest, 0); | 
 | 			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest); | 
 | 			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, | 
 | 						      len); | 
 | 			iter->unmap_len = 0; | 
 | 			/* override qdest to preserve original Q */ | 
 | 			qdest = ppc440spe_chan->qdest; | 
 | 		} | 
 |  | 
 | 		/* Setup destinations for P/Q ops */ | 
 | 		ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest); | 
 |  | 
 | 		/* Setup zero QWORDs into DCHECK CDBs */ | 
 | 		idst = dst_cnt; | 
 | 		list_for_each_entry_reverse(iter, &sw_desc->group_list, | 
 | 					    chain_node) { | 
 | 			/* | 
 | 			 * The last CDB corresponds to Q-parity check, | 
 | 			 * the one before last CDB corresponds | 
 | 			 * P-parity check | 
 | 			 */ | 
 | 			if (idst == DMA_DEST_MAX_NUM) { | 
 | 				if (idst == dst_cnt) { | 
 | 					set_bit(PPC440SPE_DESC_QCHECK, | 
 | 						&iter->flags); | 
 | 				} else { | 
 | 					set_bit(PPC440SPE_DESC_PCHECK, | 
 | 						&iter->flags); | 
 | 				} | 
 | 			} else { | 
 | 				if (qdest) { | 
 | 					set_bit(PPC440SPE_DESC_QCHECK, | 
 | 						&iter->flags); | 
 | 				} else { | 
 | 					set_bit(PPC440SPE_DESC_PCHECK, | 
 | 						&iter->flags); | 
 | 				} | 
 | 			} | 
 | 			iter->xor_check_result = pqres; | 
 |  | 
 | 			/* | 
 | 			 * set it to zero, if check fail then result will | 
 | 			 * be updated | 
 | 			 */ | 
 | 			*iter->xor_check_result = 0; | 
 | 			ppc440spe_desc_set_dcheck(iter, ppc440spe_chan, | 
 | 				ppc440spe_qword); | 
 |  | 
 | 			if (!(--dst_cnt)) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		/* Setup sources and mults for P/Q ops */ | 
 | 		list_for_each_entry_continue_reverse(iter, &sw_desc->group_list, | 
 | 						     chain_node) { | 
 | 			struct ppc440spe_adma_chan *chan; | 
 | 			u32 mult_dst; | 
 |  | 
 | 			chan = to_ppc440spe_adma_chan(iter->async_tx.chan); | 
 | 			ppc440spe_desc_set_src_addr(iter, chan, 0, | 
 | 						    DMA_CUED_XOR_HB, | 
 | 						    src[src_cnt - 1]); | 
 | 			if (qdest) { | 
 | 				mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 : | 
 | 							   DMA_CDB_SG_DST1; | 
 | 				ppc440spe_desc_set_src_mult(iter, chan, | 
 | 							    DMA_CUED_MULT1_OFF, | 
 | 							    mult_dst, | 
 | 							    scf[src_cnt - 1]); | 
 | 			} | 
 | 			if (!(--src_cnt)) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_bh(&ppc440spe_chan->lock); | 
 | 	return sw_desc ? &sw_desc->async_tx : NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for | 
 |  * XOR ZERO_SUM operation | 
 |  */ | 
 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum( | 
 | 		struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, | 
 | 		size_t len, enum sum_check_flags *result, unsigned long flags) | 
 | { | 
 | 	struct dma_async_tx_descriptor *tx; | 
 | 	dma_addr_t pq[2]; | 
 |  | 
 | 	/* validate P, disable Q */ | 
 | 	pq[0] = src[0]; | 
 | 	pq[1] = 0; | 
 | 	flags |= DMA_PREP_PQ_DISABLE_Q; | 
 |  | 
 | 	tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1], | 
 | 						src_cnt - 1, 0, len, | 
 | 						result, flags); | 
 | 	return tx; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_set_dest - set destination address into descriptor | 
 |  */ | 
 | static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc, | 
 | 		dma_addr_t addr, int index) | 
 | { | 
 | 	struct ppc440spe_adma_chan *chan; | 
 |  | 
 | 	BUG_ON(index >= sw_desc->dst_cnt); | 
 |  | 
 | 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		/* to do: support transfers lengths > | 
 | 		 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT | 
 | 		 */ | 
 | 		ppc440spe_desc_set_dest_addr(sw_desc->group_head, | 
 | 			chan, 0, addr, index); | 
 | 		break; | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		sw_desc = ppc440spe_get_group_entry(sw_desc, index); | 
 | 		ppc440spe_desc_set_dest_addr(sw_desc, | 
 | 			chan, 0, addr, index); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter, | 
 | 		struct ppc440spe_adma_chan *chan, dma_addr_t addr) | 
 | { | 
 | 	/*  To clear destinations update the descriptor | 
 | 	 * (P or Q depending on index) as follows: | 
 | 	 * addr is destination (0 corresponds to SG2): | 
 | 	 */ | 
 | 	ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0); | 
 |  | 
 | 	/* ... and the addr is source: */ | 
 | 	ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr); | 
 |  | 
 | 	/* addr is always SG2 then the mult is always DST1 */ | 
 | 	ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, | 
 | 				    DMA_CDB_SG_DST1, 1); | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_pq_set_dest - set destination address into descriptor | 
 |  * for the PQXOR operation | 
 |  */ | 
 | static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc, | 
 | 		dma_addr_t *addrs, unsigned long flags) | 
 | { | 
 | 	struct ppc440spe_adma_desc_slot *iter; | 
 | 	struct ppc440spe_adma_chan *chan; | 
 | 	dma_addr_t paddr, qaddr; | 
 | 	dma_addr_t addr = 0, ppath, qpath; | 
 | 	int index = 0, i; | 
 |  | 
 | 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | 
 |  | 
 | 	if (flags & DMA_PREP_PQ_DISABLE_P) | 
 | 		paddr = 0; | 
 | 	else | 
 | 		paddr = addrs[0]; | 
 |  | 
 | 	if (flags & DMA_PREP_PQ_DISABLE_Q) | 
 | 		qaddr = 0; | 
 | 	else | 
 | 		qaddr = addrs[1]; | 
 |  | 
 | 	if (!paddr || !qaddr) | 
 | 		addr = paddr ? paddr : qaddr; | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		/* walk through the WXOR source list and set P/Q-destinations | 
 | 		 * for each slot: | 
 | 		 */ | 
 | 		if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { | 
 | 			/* This is WXOR-only chain; may have 1/2 zero descs */ | 
 | 			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) | 
 | 				index++; | 
 | 			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) | 
 | 				index++; | 
 |  | 
 | 			iter = ppc440spe_get_group_entry(sw_desc, index); | 
 | 			if (addr) { | 
 | 				/* one destination */ | 
 | 				list_for_each_entry_from(iter, | 
 | 					&sw_desc->group_list, chain_node) | 
 | 					ppc440spe_desc_set_dest_addr(iter, chan, | 
 | 						DMA_CUED_XOR_BASE, addr, 0); | 
 | 			} else { | 
 | 				/* two destinations */ | 
 | 				list_for_each_entry_from(iter, | 
 | 					&sw_desc->group_list, chain_node) { | 
 | 					ppc440spe_desc_set_dest_addr(iter, chan, | 
 | 						DMA_CUED_XOR_BASE, paddr, 0); | 
 | 					ppc440spe_desc_set_dest_addr(iter, chan, | 
 | 						DMA_CUED_XOR_BASE, qaddr, 1); | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (index) { | 
 | 				/*  To clear destinations update the descriptor | 
 | 				 * (1st,2nd, or both depending on flags) | 
 | 				 */ | 
 | 				index = 0; | 
 | 				if (test_bit(PPC440SPE_ZERO_P, | 
 | 						&sw_desc->flags)) { | 
 | 					iter = ppc440spe_get_group_entry( | 
 | 							sw_desc, index++); | 
 | 					ppc440spe_adma_pq_zero_op(iter, chan, | 
 | 							paddr); | 
 | 				} | 
 |  | 
 | 				if (test_bit(PPC440SPE_ZERO_Q, | 
 | 						&sw_desc->flags)) { | 
 | 					iter = ppc440spe_get_group_entry( | 
 | 							sw_desc, index++); | 
 | 					ppc440spe_adma_pq_zero_op(iter, chan, | 
 | 							qaddr); | 
 | 				} | 
 |  | 
 | 				return; | 
 | 			} | 
 | 		} else { | 
 | 			/* This is RXOR-only or RXOR/WXOR mixed chain */ | 
 |  | 
 | 			/* If we want to include destination into calculations, | 
 | 			 * then make dest addresses cued with mult=1 (XOR). | 
 | 			 */ | 
 | 			ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ? | 
 | 					DMA_CUED_XOR_HB : | 
 | 					DMA_CUED_XOR_BASE | | 
 | 						(1 << DMA_CUED_MULT1_OFF); | 
 | 			qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ? | 
 | 					DMA_CUED_XOR_HB : | 
 | 					DMA_CUED_XOR_BASE | | 
 | 						(1 << DMA_CUED_MULT1_OFF); | 
 |  | 
 | 			/* Setup destination(s) in RXOR slot(s) */ | 
 | 			iter = ppc440spe_get_group_entry(sw_desc, index++); | 
 | 			ppc440spe_desc_set_dest_addr(iter, chan, | 
 | 						paddr ? ppath : qpath, | 
 | 						paddr ? paddr : qaddr, 0); | 
 | 			if (!addr) { | 
 | 				/* two destinations */ | 
 | 				iter = ppc440spe_get_group_entry(sw_desc, | 
 | 								 index++); | 
 | 				ppc440spe_desc_set_dest_addr(iter, chan, | 
 | 						qpath, qaddr, 0); | 
 | 			} | 
 |  | 
 | 			if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) { | 
 | 				/* Setup destination(s) in remaining WXOR | 
 | 				 * slots | 
 | 				 */ | 
 | 				iter = ppc440spe_get_group_entry(sw_desc, | 
 | 								 index); | 
 | 				if (addr) { | 
 | 					/* one destination */ | 
 | 					list_for_each_entry_from(iter, | 
 | 					    &sw_desc->group_list, | 
 | 					    chain_node) | 
 | 						ppc440spe_desc_set_dest_addr( | 
 | 							iter, chan, | 
 | 							DMA_CUED_XOR_BASE, | 
 | 							addr, 0); | 
 |  | 
 | 				} else { | 
 | 					/* two destinations */ | 
 | 					list_for_each_entry_from(iter, | 
 | 					    &sw_desc->group_list, | 
 | 					    chain_node) { | 
 | 						ppc440spe_desc_set_dest_addr( | 
 | 							iter, chan, | 
 | 							DMA_CUED_XOR_BASE, | 
 | 							paddr, 0); | 
 | 						ppc440spe_desc_set_dest_addr( | 
 | 							iter, chan, | 
 | 							DMA_CUED_XOR_BASE, | 
 | 							qaddr, 1); | 
 | 					} | 
 | 				} | 
 | 			} | 
 |  | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		/* DMA2 descriptors have only 1 destination, so there are | 
 | 		 * two chains - one for each dest. | 
 | 		 * If we want to include destination into calculations, | 
 | 		 * then make dest addresses cued with mult=1 (XOR). | 
 | 		 */ | 
 | 		ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ? | 
 | 				DMA_CUED_XOR_HB : | 
 | 				DMA_CUED_XOR_BASE | | 
 | 					(1 << DMA_CUED_MULT1_OFF); | 
 |  | 
 | 		qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ? | 
 | 				DMA_CUED_XOR_HB : | 
 | 				DMA_CUED_XOR_BASE | | 
 | 					(1 << DMA_CUED_MULT1_OFF); | 
 |  | 
 | 		iter = ppc440spe_get_group_entry(sw_desc, 0); | 
 | 		for (i = 0; i < sw_desc->descs_per_op; i++) { | 
 | 			ppc440spe_desc_set_dest_addr(iter, chan, | 
 | 				paddr ? ppath : qpath, | 
 | 				paddr ? paddr : qaddr, 0); | 
 | 			iter = list_entry(iter->chain_node.next, | 
 | 					  struct ppc440spe_adma_desc_slot, | 
 | 					  chain_node); | 
 | 		} | 
 |  | 
 | 		if (!addr) { | 
 | 			/* Two destinations; setup Q here */ | 
 | 			iter = ppc440spe_get_group_entry(sw_desc, | 
 | 				sw_desc->descs_per_op); | 
 | 			for (i = 0; i < sw_desc->descs_per_op; i++) { | 
 | 				ppc440spe_desc_set_dest_addr(iter, | 
 | 					chan, qpath, qaddr, 0); | 
 | 				iter = list_entry(iter->chain_node.next, | 
 | 						struct ppc440spe_adma_desc_slot, | 
 | 						chain_node); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor | 
 |  * for the PQ_ZERO_SUM operation | 
 |  */ | 
 | static void ppc440spe_adma_pqzero_sum_set_dest( | 
 | 		struct ppc440spe_adma_desc_slot *sw_desc, | 
 | 		dma_addr_t paddr, dma_addr_t qaddr) | 
 | { | 
 | 	struct ppc440spe_adma_desc_slot *iter, *end; | 
 | 	struct ppc440spe_adma_chan *chan; | 
 | 	dma_addr_t addr = 0; | 
 | 	int idx; | 
 |  | 
 | 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | 
 |  | 
 | 	/* walk through the WXOR source list and set P/Q-destinations | 
 | 	 * for each slot | 
 | 	 */ | 
 | 	idx = (paddr && qaddr) ? 2 : 1; | 
 | 	/* set end */ | 
 | 	list_for_each_entry_reverse(end, &sw_desc->group_list, | 
 | 				    chain_node) { | 
 | 		if (!(--idx)) | 
 | 			break; | 
 | 	} | 
 | 	/* set start */ | 
 | 	idx = (paddr && qaddr) ? 2 : 1; | 
 | 	iter = ppc440spe_get_group_entry(sw_desc, idx); | 
 |  | 
 | 	if (paddr && qaddr) { | 
 | 		/* two destinations */ | 
 | 		list_for_each_entry_from(iter, &sw_desc->group_list, | 
 | 					 chain_node) { | 
 | 			if (unlikely(iter == end)) | 
 | 				break; | 
 | 			ppc440spe_desc_set_dest_addr(iter, chan, | 
 | 						DMA_CUED_XOR_BASE, paddr, 0); | 
 | 			ppc440spe_desc_set_dest_addr(iter, chan, | 
 | 						DMA_CUED_XOR_BASE, qaddr, 1); | 
 | 		} | 
 | 	} else { | 
 | 		/* one destination */ | 
 | 		addr = paddr ? paddr : qaddr; | 
 | 		list_for_each_entry_from(iter, &sw_desc->group_list, | 
 | 					 chain_node) { | 
 | 			if (unlikely(iter == end)) | 
 | 				break; | 
 | 			ppc440spe_desc_set_dest_addr(iter, chan, | 
 | 						DMA_CUED_XOR_BASE, addr, 0); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/*  The remaining descriptors are DATACHECK. These have no need in | 
 | 	 * destination. Actually, these destinations are used there | 
 | 	 * as sources for check operation. So, set addr as source. | 
 | 	 */ | 
 | 	ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr); | 
 |  | 
 | 	if (!addr) { | 
 | 		end = list_entry(end->chain_node.next, | 
 | 				 struct ppc440spe_adma_desc_slot, chain_node); | 
 | 		ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor | 
 |  */ | 
 | static inline void ppc440spe_desc_set_xor_src_cnt( | 
 | 			struct ppc440spe_adma_desc_slot *desc, | 
 | 			int src_cnt) | 
 | { | 
 | 	struct xor_cb *hw_desc = desc->hw_desc; | 
 |  | 
 | 	hw_desc->cbc &= ~XOR_CDCR_OAC_MSK; | 
 | 	hw_desc->cbc |= src_cnt; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_pq_set_src - set source address into descriptor | 
 |  */ | 
 | static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc, | 
 | 		dma_addr_t addr, int index) | 
 | { | 
 | 	struct ppc440spe_adma_chan *chan; | 
 | 	dma_addr_t haddr = 0; | 
 | 	struct ppc440spe_adma_desc_slot *iter = NULL; | 
 |  | 
 | 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		/* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain | 
 | 		 */ | 
 | 		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { | 
 | 			/* RXOR-only or RXOR/WXOR operation */ | 
 | 			int iskip = test_bit(PPC440SPE_DESC_RXOR12, | 
 | 				&sw_desc->flags) ?  2 : 3; | 
 |  | 
 | 			if (index == 0) { | 
 | 				/* 1st slot (RXOR) */ | 
 | 				/* setup sources region (R1-2-3, R1-2-4, | 
 | 				 * or R1-2-5) | 
 | 				 */ | 
 | 				if (test_bit(PPC440SPE_DESC_RXOR12, | 
 | 						&sw_desc->flags)) | 
 | 					haddr = DMA_RXOR12 << | 
 | 						DMA_CUED_REGION_OFF; | 
 | 				else if (test_bit(PPC440SPE_DESC_RXOR123, | 
 | 				    &sw_desc->flags)) | 
 | 					haddr = DMA_RXOR123 << | 
 | 						DMA_CUED_REGION_OFF; | 
 | 				else if (test_bit(PPC440SPE_DESC_RXOR124, | 
 | 				    &sw_desc->flags)) | 
 | 					haddr = DMA_RXOR124 << | 
 | 						DMA_CUED_REGION_OFF; | 
 | 				else if (test_bit(PPC440SPE_DESC_RXOR125, | 
 | 				    &sw_desc->flags)) | 
 | 					haddr = DMA_RXOR125 << | 
 | 						DMA_CUED_REGION_OFF; | 
 | 				else | 
 | 					BUG(); | 
 | 				haddr |= DMA_CUED_XOR_BASE; | 
 | 				iter = ppc440spe_get_group_entry(sw_desc, 0); | 
 | 			} else if (index < iskip) { | 
 | 				/* 1st slot (RXOR) | 
 | 				 * shall actually set source address only once | 
 | 				 * instead of first <iskip> | 
 | 				 */ | 
 | 				iter = NULL; | 
 | 			} else { | 
 | 				/* 2nd/3d and next slots (WXOR); | 
 | 				 * skip first slot with RXOR | 
 | 				 */ | 
 | 				haddr = DMA_CUED_XOR_HB; | 
 | 				iter = ppc440spe_get_group_entry(sw_desc, | 
 | 				    index - iskip + sw_desc->dst_cnt); | 
 | 			} | 
 | 		} else { | 
 | 			int znum = 0; | 
 |  | 
 | 			/* WXOR-only operation; skip first slots with | 
 | 			 * zeroing destinations | 
 | 			 */ | 
 | 			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) | 
 | 				znum++; | 
 | 			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) | 
 | 				znum++; | 
 |  | 
 | 			haddr = DMA_CUED_XOR_HB; | 
 | 			iter = ppc440spe_get_group_entry(sw_desc, | 
 | 					index + znum); | 
 | 		} | 
 |  | 
 | 		if (likely(iter)) { | 
 | 			ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr); | 
 |  | 
 | 			if (!index && | 
 | 			    test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) && | 
 | 			    sw_desc->dst_cnt == 2) { | 
 | 				/* if we have two destinations for RXOR, then | 
 | 				 * setup source in the second descr too | 
 | 				 */ | 
 | 				iter = ppc440spe_get_group_entry(sw_desc, 1); | 
 | 				ppc440spe_desc_set_src_addr(iter, chan, 0, | 
 | 					haddr, addr); | 
 | 			} | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		/* DMA2 may do Biskup */ | 
 | 		iter = sw_desc->group_head; | 
 | 		if (iter->dst_cnt == 2) { | 
 | 			/* both P & Q calculations required; set P src here */ | 
 | 			ppc440spe_adma_dma2rxor_set_src(iter, index, addr); | 
 |  | 
 | 			/* this is for Q */ | 
 | 			iter = ppc440spe_get_group_entry(sw_desc, | 
 | 				sw_desc->descs_per_op); | 
 | 		} | 
 | 		ppc440spe_adma_dma2rxor_set_src(iter, index, addr); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor | 
 |  */ | 
 | static void ppc440spe_adma_memcpy_xor_set_src( | 
 | 		struct ppc440spe_adma_desc_slot *sw_desc, | 
 | 		dma_addr_t addr, int index) | 
 | { | 
 | 	struct ppc440spe_adma_chan *chan; | 
 |  | 
 | 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | 
 | 	sw_desc = sw_desc->group_head; | 
 |  | 
 | 	if (likely(sw_desc)) | 
 | 		ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr); | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_dma2rxor_inc_addr  - | 
 |  */ | 
 | static void ppc440spe_adma_dma2rxor_inc_addr( | 
 | 		struct ppc440spe_adma_desc_slot *desc, | 
 | 		struct ppc440spe_rxor *cursor, int index, int src_cnt) | 
 | { | 
 | 	cursor->addr_count++; | 
 | 	if (index == src_cnt - 1) { | 
 | 		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count); | 
 | 	} else if (cursor->addr_count == XOR_MAX_OPS) { | 
 | 		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count); | 
 | 		cursor->addr_count = 0; | 
 | 		cursor->desc_count++; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB | 
 |  */ | 
 | static int ppc440spe_adma_dma2rxor_prep_src( | 
 | 		struct ppc440spe_adma_desc_slot *hdesc, | 
 | 		struct ppc440spe_rxor *cursor, int index, | 
 | 		int src_cnt, u32 addr) | 
 | { | 
 | 	int rval = 0; | 
 | 	u32 sign; | 
 | 	struct ppc440spe_adma_desc_slot *desc = hdesc; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < cursor->desc_count; i++) { | 
 | 		desc = list_entry(hdesc->chain_node.next, | 
 | 				  struct ppc440spe_adma_desc_slot, | 
 | 				  chain_node); | 
 | 	} | 
 |  | 
 | 	switch (cursor->state) { | 
 | 	case 0: | 
 | 		if (addr == cursor->addrl + cursor->len) { | 
 | 			/* direct RXOR */ | 
 | 			cursor->state = 1; | 
 | 			cursor->xor_count++; | 
 | 			if (index == src_cnt-1) { | 
 | 				ppc440spe_rxor_set_region(desc, | 
 | 					cursor->addr_count, | 
 | 					DMA_RXOR12 << DMA_CUED_REGION_OFF); | 
 | 				ppc440spe_adma_dma2rxor_inc_addr( | 
 | 					desc, cursor, index, src_cnt); | 
 | 			} | 
 | 		} else if (cursor->addrl == addr + cursor->len) { | 
 | 			/* reverse RXOR */ | 
 | 			cursor->state = 1; | 
 | 			cursor->xor_count++; | 
 | 			set_bit(cursor->addr_count, &desc->reverse_flags[0]); | 
 | 			if (index == src_cnt-1) { | 
 | 				ppc440spe_rxor_set_region(desc, | 
 | 					cursor->addr_count, | 
 | 					DMA_RXOR12 << DMA_CUED_REGION_OFF); | 
 | 				ppc440spe_adma_dma2rxor_inc_addr( | 
 | 					desc, cursor, index, src_cnt); | 
 | 			} | 
 | 		} else { | 
 | 			printk(KERN_ERR "Cannot build " | 
 | 				"DMA2 RXOR command block.\n"); | 
 | 			BUG(); | 
 | 		} | 
 | 		break; | 
 | 	case 1: | 
 | 		sign = test_bit(cursor->addr_count, | 
 | 				desc->reverse_flags) | 
 | 			? -1 : 1; | 
 | 		if (index == src_cnt-2 || (sign == -1 | 
 | 			&& addr != cursor->addrl - 2*cursor->len)) { | 
 | 			cursor->state = 0; | 
 | 			cursor->xor_count = 1; | 
 | 			cursor->addrl = addr; | 
 | 			ppc440spe_rxor_set_region(desc, | 
 | 				cursor->addr_count, | 
 | 				DMA_RXOR12 << DMA_CUED_REGION_OFF); | 
 | 			ppc440spe_adma_dma2rxor_inc_addr( | 
 | 				desc, cursor, index, src_cnt); | 
 | 		} else if (addr == cursor->addrl + 2*sign*cursor->len) { | 
 | 			cursor->state = 2; | 
 | 			cursor->xor_count = 0; | 
 | 			ppc440spe_rxor_set_region(desc, | 
 | 				cursor->addr_count, | 
 | 				DMA_RXOR123 << DMA_CUED_REGION_OFF); | 
 | 			if (index == src_cnt-1) { | 
 | 				ppc440spe_adma_dma2rxor_inc_addr( | 
 | 					desc, cursor, index, src_cnt); | 
 | 			} | 
 | 		} else if (addr == cursor->addrl + 3*cursor->len) { | 
 | 			cursor->state = 2; | 
 | 			cursor->xor_count = 0; | 
 | 			ppc440spe_rxor_set_region(desc, | 
 | 				cursor->addr_count, | 
 | 				DMA_RXOR124 << DMA_CUED_REGION_OFF); | 
 | 			if (index == src_cnt-1) { | 
 | 				ppc440spe_adma_dma2rxor_inc_addr( | 
 | 					desc, cursor, index, src_cnt); | 
 | 			} | 
 | 		} else if (addr == cursor->addrl + 4*cursor->len) { | 
 | 			cursor->state = 2; | 
 | 			cursor->xor_count = 0; | 
 | 			ppc440spe_rxor_set_region(desc, | 
 | 				cursor->addr_count, | 
 | 				DMA_RXOR125 << DMA_CUED_REGION_OFF); | 
 | 			if (index == src_cnt-1) { | 
 | 				ppc440spe_adma_dma2rxor_inc_addr( | 
 | 					desc, cursor, index, src_cnt); | 
 | 			} | 
 | 		} else { | 
 | 			cursor->state = 0; | 
 | 			cursor->xor_count = 1; | 
 | 			cursor->addrl = addr; | 
 | 			ppc440spe_rxor_set_region(desc, | 
 | 				cursor->addr_count, | 
 | 				DMA_RXOR12 << DMA_CUED_REGION_OFF); | 
 | 			ppc440spe_adma_dma2rxor_inc_addr( | 
 | 				desc, cursor, index, src_cnt); | 
 | 		} | 
 | 		break; | 
 | 	case 2: | 
 | 		cursor->state = 0; | 
 | 		cursor->addrl = addr; | 
 | 		cursor->xor_count++; | 
 | 		if (index) { | 
 | 			ppc440spe_adma_dma2rxor_inc_addr( | 
 | 				desc, cursor, index, src_cnt); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return rval; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that | 
 |  *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call | 
 |  */ | 
 | static void ppc440spe_adma_dma2rxor_set_src( | 
 | 		struct ppc440spe_adma_desc_slot *desc, | 
 | 		int index, dma_addr_t addr) | 
 | { | 
 | 	struct xor_cb *xcb = desc->hw_desc; | 
 | 	int k = 0, op = 0, lop = 0; | 
 |  | 
 | 	/* get the RXOR operand which corresponds to index addr */ | 
 | 	while (op <= index) { | 
 | 		lop = op; | 
 | 		if (k == XOR_MAX_OPS) { | 
 | 			k = 0; | 
 | 			desc = list_entry(desc->chain_node.next, | 
 | 				struct ppc440spe_adma_desc_slot, chain_node); | 
 | 			xcb = desc->hw_desc; | 
 |  | 
 | 		} | 
 | 		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == | 
 | 		    (DMA_RXOR12 << DMA_CUED_REGION_OFF)) | 
 | 			op += 2; | 
 | 		else | 
 | 			op += 3; | 
 | 	} | 
 |  | 
 | 	BUG_ON(k < 1); | 
 |  | 
 | 	if (test_bit(k-1, desc->reverse_flags)) { | 
 | 		/* reverse operand order; put last op in RXOR group */ | 
 | 		if (index == op - 1) | 
 | 			ppc440spe_rxor_set_src(desc, k - 1, addr); | 
 | 	} else { | 
 | 		/* direct operand order; put first op in RXOR group */ | 
 | 		if (index == lop) | 
 | 			ppc440spe_rxor_set_src(desc, k - 1, addr); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that | 
 |  *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call | 
 |  */ | 
 | static void ppc440spe_adma_dma2rxor_set_mult( | 
 | 		struct ppc440spe_adma_desc_slot *desc, | 
 | 		int index, u8 mult) | 
 | { | 
 | 	struct xor_cb *xcb = desc->hw_desc; | 
 | 	int k = 0, op = 0, lop = 0; | 
 |  | 
 | 	/* get the RXOR operand which corresponds to index mult */ | 
 | 	while (op <= index) { | 
 | 		lop = op; | 
 | 		if (k == XOR_MAX_OPS) { | 
 | 			k = 0; | 
 | 			desc = list_entry(desc->chain_node.next, | 
 | 					  struct ppc440spe_adma_desc_slot, | 
 | 					  chain_node); | 
 | 			xcb = desc->hw_desc; | 
 |  | 
 | 		} | 
 | 		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == | 
 | 		    (DMA_RXOR12 << DMA_CUED_REGION_OFF)) | 
 | 			op += 2; | 
 | 		else | 
 | 			op += 3; | 
 | 	} | 
 |  | 
 | 	BUG_ON(k < 1); | 
 | 	if (test_bit(k-1, desc->reverse_flags)) { | 
 | 		/* reverse order */ | 
 | 		ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult); | 
 | 	} else { | 
 | 		/* direct order */ | 
 | 		ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_init_rxor_cursor - | 
 |  */ | 
 | static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor) | 
 | { | 
 | 	memset(cursor, 0, sizeof(struct ppc440spe_rxor)); | 
 | 	cursor->state = 2; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into | 
 |  * descriptor for the PQXOR operation | 
 |  */ | 
 | static void ppc440spe_adma_pq_set_src_mult( | 
 | 		struct ppc440spe_adma_desc_slot *sw_desc, | 
 | 		unsigned char mult, int index, int dst_pos) | 
 | { | 
 | 	struct ppc440spe_adma_chan *chan; | 
 | 	u32 mult_idx, mult_dst; | 
 | 	struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL; | 
 |  | 
 | 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | 
 |  | 
 | 	switch (chan->device->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { | 
 | 			int region = test_bit(PPC440SPE_DESC_RXOR12, | 
 | 					&sw_desc->flags) ? 2 : 3; | 
 |  | 
 | 			if (index < region) { | 
 | 				/* RXOR multipliers */ | 
 | 				iter = ppc440spe_get_group_entry(sw_desc, | 
 | 					sw_desc->dst_cnt - 1); | 
 | 				if (sw_desc->dst_cnt == 2) | 
 | 					iter1 = ppc440spe_get_group_entry( | 
 | 							sw_desc, 0); | 
 |  | 
 | 				mult_idx = DMA_CUED_MULT1_OFF + (index << 3); | 
 | 				mult_dst = DMA_CDB_SG_SRC; | 
 | 			} else { | 
 | 				/* WXOR multiplier */ | 
 | 				iter = ppc440spe_get_group_entry(sw_desc, | 
 | 							index - region + | 
 | 							sw_desc->dst_cnt); | 
 | 				mult_idx = DMA_CUED_MULT1_OFF; | 
 | 				mult_dst = dst_pos ? DMA_CDB_SG_DST2 : | 
 | 						     DMA_CDB_SG_DST1; | 
 | 			} | 
 | 		} else { | 
 | 			int znum = 0; | 
 |  | 
 | 			/* WXOR-only; | 
 | 			 * skip first slots with destinations (if ZERO_DST has | 
 | 			 * place) | 
 | 			 */ | 
 | 			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) | 
 | 				znum++; | 
 | 			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) | 
 | 				znum++; | 
 |  | 
 | 			iter = ppc440spe_get_group_entry(sw_desc, index + znum); | 
 | 			mult_idx = DMA_CUED_MULT1_OFF; | 
 | 			mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1; | 
 | 		} | 
 |  | 
 | 		if (likely(iter)) { | 
 | 			ppc440spe_desc_set_src_mult(iter, chan, | 
 | 				mult_idx, mult_dst, mult); | 
 |  | 
 | 			if (unlikely(iter1)) { | 
 | 				/* if we have two destinations for RXOR, then | 
 | 				 * we've just set Q mult. Set-up P now. | 
 | 				 */ | 
 | 				ppc440spe_desc_set_src_mult(iter1, chan, | 
 | 					mult_idx, mult_dst, 1); | 
 | 			} | 
 |  | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		iter = sw_desc->group_head; | 
 | 		if (sw_desc->dst_cnt == 2) { | 
 | 			/* both P & Q calculations required; set P mult here */ | 
 | 			ppc440spe_adma_dma2rxor_set_mult(iter, index, 1); | 
 |  | 
 | 			/* and then set Q mult */ | 
 | 			iter = ppc440spe_get_group_entry(sw_desc, | 
 | 			       sw_desc->descs_per_op); | 
 | 		} | 
 | 		ppc440spe_adma_dma2rxor_set_mult(iter, index, mult); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_free_chan_resources - free the resources allocated | 
 |  */ | 
 | static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan) | 
 | { | 
 | 	struct ppc440spe_adma_chan *ppc440spe_chan; | 
 | 	struct ppc440spe_adma_desc_slot *iter, *_iter; | 
 | 	int in_use_descs = 0; | 
 |  | 
 | 	ppc440spe_chan = to_ppc440spe_adma_chan(chan); | 
 | 	ppc440spe_adma_slot_cleanup(ppc440spe_chan); | 
 |  | 
 | 	spin_lock_bh(&ppc440spe_chan->lock); | 
 | 	list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain, | 
 | 					chain_node) { | 
 | 		in_use_descs++; | 
 | 		list_del(&iter->chain_node); | 
 | 	} | 
 | 	list_for_each_entry_safe_reverse(iter, _iter, | 
 | 			&ppc440spe_chan->all_slots, slot_node) { | 
 | 		list_del(&iter->slot_node); | 
 | 		kfree(iter); | 
 | 		ppc440spe_chan->slots_allocated--; | 
 | 	} | 
 | 	ppc440spe_chan->last_used = NULL; | 
 |  | 
 | 	dev_dbg(ppc440spe_chan->device->common.dev, | 
 | 		"ppc440spe adma%d %s slots_allocated %d\n", | 
 | 		ppc440spe_chan->device->id, | 
 | 		__func__, ppc440spe_chan->slots_allocated); | 
 | 	spin_unlock_bh(&ppc440spe_chan->lock); | 
 |  | 
 | 	/* one is ok since we left it on there on purpose */ | 
 | 	if (in_use_descs > 1) | 
 | 		printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n", | 
 | 			in_use_descs - 1); | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_tx_status - poll the status of an ADMA transaction | 
 |  * @chan: ADMA channel handle | 
 |  * @cookie: ADMA transaction identifier | 
 |  * @txstate: a holder for the current state of the channel | 
 |  */ | 
 | static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan, | 
 | 			dma_cookie_t cookie, struct dma_tx_state *txstate) | 
 | { | 
 | 	struct ppc440spe_adma_chan *ppc440spe_chan; | 
 | 	enum dma_status ret; | 
 |  | 
 | 	ppc440spe_chan = to_ppc440spe_adma_chan(chan); | 
 | 	ret = dma_cookie_status(chan, cookie, txstate); | 
 | 	if (ret == DMA_COMPLETE) | 
 | 		return ret; | 
 |  | 
 | 	ppc440spe_adma_slot_cleanup(ppc440spe_chan); | 
 |  | 
 | 	return dma_cookie_status(chan, cookie, txstate); | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_eot_handler - end of transfer interrupt handler | 
 |  */ | 
 | static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data) | 
 | { | 
 | 	struct ppc440spe_adma_chan *chan = data; | 
 |  | 
 | 	dev_dbg(chan->device->common.dev, | 
 | 		"ppc440spe adma%d: %s\n", chan->device->id, __func__); | 
 |  | 
 | 	tasklet_schedule(&chan->irq_tasklet); | 
 | 	ppc440spe_adma_device_clear_eot_status(chan); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_err_handler - DMA error interrupt handler; | 
 |  *	do the same things as a eot handler | 
 |  */ | 
 | static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data) | 
 | { | 
 | 	struct ppc440spe_adma_chan *chan = data; | 
 |  | 
 | 	dev_dbg(chan->device->common.dev, | 
 | 		"ppc440spe adma%d: %s\n", chan->device->id, __func__); | 
 |  | 
 | 	tasklet_schedule(&chan->irq_tasklet); | 
 | 	ppc440spe_adma_device_clear_eot_status(chan); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_test_callback - called when test operation has been done | 
 |  */ | 
 | static void ppc440spe_test_callback(void *unused) | 
 | { | 
 | 	complete(&ppc440spe_r6_test_comp); | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w | 
 |  */ | 
 | static void ppc440spe_adma_issue_pending(struct dma_chan *chan) | 
 | { | 
 | 	struct ppc440spe_adma_chan *ppc440spe_chan; | 
 |  | 
 | 	ppc440spe_chan = to_ppc440spe_adma_chan(chan); | 
 | 	dev_dbg(ppc440spe_chan->device->common.dev, | 
 | 		"ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id, | 
 | 		__func__, ppc440spe_chan->pending); | 
 |  | 
 | 	if (ppc440spe_chan->pending) { | 
 | 		ppc440spe_chan->pending = 0; | 
 | 		ppc440spe_chan_append(ppc440spe_chan); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines | 
 |  *	use FIFOs (as opposite to chains used in XOR) so this is a XOR | 
 |  *	specific operation) | 
 |  */ | 
 | static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan) | 
 | { | 
 | 	struct ppc440spe_adma_desc_slot *sw_desc, *group_start; | 
 | 	dma_cookie_t cookie; | 
 | 	int slot_cnt, slots_per_op; | 
 |  | 
 | 	dev_dbg(chan->device->common.dev, | 
 | 		"ppc440spe adma%d: %s\n", chan->device->id, __func__); | 
 |  | 
 | 	spin_lock_bh(&chan->lock); | 
 | 	slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op); | 
 | 	sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op); | 
 | 	if (sw_desc) { | 
 | 		group_start = sw_desc->group_head; | 
 | 		list_splice_init(&sw_desc->group_list, &chan->chain); | 
 | 		async_tx_ack(&sw_desc->async_tx); | 
 | 		ppc440spe_desc_init_null_xor(group_start); | 
 |  | 
 | 		cookie = dma_cookie_assign(&sw_desc->async_tx); | 
 |  | 
 | 		/* initialize the completed cookie to be less than | 
 | 		 * the most recently used cookie | 
 | 		 */ | 
 | 		chan->common.completed_cookie = cookie - 1; | 
 |  | 
 | 		/* channel should not be busy */ | 
 | 		BUG_ON(ppc440spe_chan_is_busy(chan)); | 
 |  | 
 | 		/* set the descriptor address */ | 
 | 		ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc); | 
 |  | 
 | 		/* run the descriptor */ | 
 | 		ppc440spe_chan_run(chan); | 
 | 	} else | 
 | 		printk(KERN_ERR "ppc440spe adma%d" | 
 | 			" failed to allocate null descriptor\n", | 
 | 			chan->device->id); | 
 | 	spin_unlock_bh(&chan->lock); | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully. | 
 |  *	For this we just perform one WXOR operation with the same source | 
 |  *	and destination addresses, the GF-multiplier is 1; so if RAID-6 | 
 |  *	capabilities are enabled then we'll get src/dst filled with zero. | 
 |  */ | 
 | static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan) | 
 | { | 
 | 	struct ppc440spe_adma_desc_slot *sw_desc, *iter; | 
 | 	struct page *pg; | 
 | 	char *a; | 
 | 	dma_addr_t dma_addr, addrs[2]; | 
 | 	unsigned long op = 0; | 
 | 	int rval = 0; | 
 |  | 
 | 	set_bit(PPC440SPE_DESC_WXOR, &op); | 
 |  | 
 | 	pg = alloc_page(GFP_KERNEL); | 
 | 	if (!pg) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock_bh(&chan->lock); | 
 | 	sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1); | 
 | 	if (sw_desc) { | 
 | 		/* 1 src, 1 dsr, int_ena, WXOR */ | 
 | 		ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op); | 
 | 		list_for_each_entry(iter, &sw_desc->group_list, chain_node) { | 
 | 			ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE); | 
 | 			iter->unmap_len = PAGE_SIZE; | 
 | 		} | 
 | 	} else { | 
 | 		rval = -EFAULT; | 
 | 		spin_unlock_bh(&chan->lock); | 
 | 		goto exit; | 
 | 	} | 
 | 	spin_unlock_bh(&chan->lock); | 
 |  | 
 | 	/* Fill the test page with ones */ | 
 | 	memset(page_address(pg), 0xFF, PAGE_SIZE); | 
 | 	dma_addr = dma_map_page(chan->device->dev, pg, 0, | 
 | 				PAGE_SIZE, DMA_BIDIRECTIONAL); | 
 |  | 
 | 	/* Setup addresses */ | 
 | 	ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0); | 
 | 	ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0); | 
 | 	addrs[0] = dma_addr; | 
 | 	addrs[1] = 0; | 
 | 	ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q); | 
 |  | 
 | 	async_tx_ack(&sw_desc->async_tx); | 
 | 	sw_desc->async_tx.callback = ppc440spe_test_callback; | 
 | 	sw_desc->async_tx.callback_param = NULL; | 
 |  | 
 | 	init_completion(&ppc440spe_r6_test_comp); | 
 |  | 
 | 	ppc440spe_adma_tx_submit(&sw_desc->async_tx); | 
 | 	ppc440spe_adma_issue_pending(&chan->common); | 
 |  | 
 | 	wait_for_completion(&ppc440spe_r6_test_comp); | 
 |  | 
 | 	/* Now check if the test page is zeroed */ | 
 | 	a = page_address(pg); | 
 | 	if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) { | 
 | 		/* page is zero - RAID-6 enabled */ | 
 | 		rval = 0; | 
 | 	} else { | 
 | 		/* RAID-6 was not enabled */ | 
 | 		rval = -EINVAL; | 
 | 	} | 
 | exit: | 
 | 	__free_page(pg); | 
 | 	return rval; | 
 | } | 
 |  | 
 | static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev) | 
 | { | 
 | 	switch (adev->id) { | 
 | 	case PPC440SPE_DMA0_ID: | 
 | 	case PPC440SPE_DMA1_ID: | 
 | 		dma_cap_set(DMA_MEMCPY, adev->common.cap_mask); | 
 | 		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); | 
 | 		dma_cap_set(DMA_PQ, adev->common.cap_mask); | 
 | 		dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask); | 
 | 		dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask); | 
 | 		break; | 
 | 	case PPC440SPE_XOR_ID: | 
 | 		dma_cap_set(DMA_XOR, adev->common.cap_mask); | 
 | 		dma_cap_set(DMA_PQ, adev->common.cap_mask); | 
 | 		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); | 
 | 		adev->common.cap_mask = adev->common.cap_mask; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* Set base routines */ | 
 | 	adev->common.device_alloc_chan_resources = | 
 | 				ppc440spe_adma_alloc_chan_resources; | 
 | 	adev->common.device_free_chan_resources = | 
 | 				ppc440spe_adma_free_chan_resources; | 
 | 	adev->common.device_tx_status = ppc440spe_adma_tx_status; | 
 | 	adev->common.device_issue_pending = ppc440spe_adma_issue_pending; | 
 |  | 
 | 	/* Set prep routines based on capability */ | 
 | 	if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) { | 
 | 		adev->common.device_prep_dma_memcpy = | 
 | 			ppc440spe_adma_prep_dma_memcpy; | 
 | 	} | 
 | 	if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) { | 
 | 		adev->common.max_xor = XOR_MAX_OPS; | 
 | 		adev->common.device_prep_dma_xor = | 
 | 			ppc440spe_adma_prep_dma_xor; | 
 | 	} | 
 | 	if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) { | 
 | 		switch (adev->id) { | 
 | 		case PPC440SPE_DMA0_ID: | 
 | 			dma_set_maxpq(&adev->common, | 
 | 				DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0); | 
 | 			break; | 
 | 		case PPC440SPE_DMA1_ID: | 
 | 			dma_set_maxpq(&adev->common, | 
 | 				DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0); | 
 | 			break; | 
 | 		case PPC440SPE_XOR_ID: | 
 | 			adev->common.max_pq = XOR_MAX_OPS * 3; | 
 | 			break; | 
 | 		} | 
 | 		adev->common.device_prep_dma_pq = | 
 | 			ppc440spe_adma_prep_dma_pq; | 
 | 	} | 
 | 	if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) { | 
 | 		switch (adev->id) { | 
 | 		case PPC440SPE_DMA0_ID: | 
 | 			adev->common.max_pq = DMA0_FIFO_SIZE / | 
 | 						sizeof(struct dma_cdb); | 
 | 			break; | 
 | 		case PPC440SPE_DMA1_ID: | 
 | 			adev->common.max_pq = DMA1_FIFO_SIZE / | 
 | 						sizeof(struct dma_cdb); | 
 | 			break; | 
 | 		} | 
 | 		adev->common.device_prep_dma_pq_val = | 
 | 			ppc440spe_adma_prep_dma_pqzero_sum; | 
 | 	} | 
 | 	if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) { | 
 | 		switch (adev->id) { | 
 | 		case PPC440SPE_DMA0_ID: | 
 | 			adev->common.max_xor = DMA0_FIFO_SIZE / | 
 | 						sizeof(struct dma_cdb); | 
 | 			break; | 
 | 		case PPC440SPE_DMA1_ID: | 
 | 			adev->common.max_xor = DMA1_FIFO_SIZE / | 
 | 						sizeof(struct dma_cdb); | 
 | 			break; | 
 | 		} | 
 | 		adev->common.device_prep_dma_xor_val = | 
 | 			ppc440spe_adma_prep_dma_xor_zero_sum; | 
 | 	} | 
 | 	if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) { | 
 | 		adev->common.device_prep_dma_interrupt = | 
 | 			ppc440spe_adma_prep_dma_interrupt; | 
 | 	} | 
 | 	pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: " | 
 | 	  "( %s%s%s%s%s%s)\n", | 
 | 	  dev_name(adev->dev), | 
 | 	  dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "", | 
 | 	  dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "", | 
 | 	  dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "", | 
 | 	  dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "", | 
 | 	  dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "", | 
 | 	  dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : ""); | 
 | } | 
 |  | 
 | static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev, | 
 | 				     struct ppc440spe_adma_chan *chan, | 
 | 				     int *initcode) | 
 | { | 
 | 	struct platform_device *ofdev; | 
 | 	struct device_node *np; | 
 | 	int ret; | 
 |  | 
 | 	ofdev = container_of(adev->dev, struct platform_device, dev); | 
 | 	np = ofdev->dev.of_node; | 
 | 	if (adev->id != PPC440SPE_XOR_ID) { | 
 | 		adev->err_irq = irq_of_parse_and_map(np, 1); | 
 | 		if (!adev->err_irq) { | 
 | 			dev_warn(adev->dev, "no err irq resource?\n"); | 
 | 			*initcode = PPC_ADMA_INIT_IRQ2; | 
 | 			adev->err_irq = -ENXIO; | 
 | 		} else | 
 | 			atomic_inc(&ppc440spe_adma_err_irq_ref); | 
 | 	} else { | 
 | 		adev->err_irq = -ENXIO; | 
 | 	} | 
 |  | 
 | 	adev->irq = irq_of_parse_and_map(np, 0); | 
 | 	if (!adev->irq) { | 
 | 		dev_err(adev->dev, "no irq resource\n"); | 
 | 		*initcode = PPC_ADMA_INIT_IRQ1; | 
 | 		ret = -ENXIO; | 
 | 		goto err_irq_map; | 
 | 	} | 
 | 	dev_dbg(adev->dev, "irq %d, err irq %d\n", | 
 | 		adev->irq, adev->err_irq); | 
 |  | 
 | 	ret = request_irq(adev->irq, ppc440spe_adma_eot_handler, | 
 | 			  0, dev_driver_string(adev->dev), chan); | 
 | 	if (ret) { | 
 | 		dev_err(adev->dev, "can't request irq %d\n", | 
 | 			adev->irq); | 
 | 		*initcode = PPC_ADMA_INIT_IRQ1; | 
 | 		ret = -EIO; | 
 | 		goto err_req1; | 
 | 	} | 
 |  | 
 | 	/* only DMA engines have a separate error IRQ | 
 | 	 * so it's Ok if err_irq < 0 in XOR engine case. | 
 | 	 */ | 
 | 	if (adev->err_irq > 0) { | 
 | 		/* both DMA engines share common error IRQ */ | 
 | 		ret = request_irq(adev->err_irq, | 
 | 				  ppc440spe_adma_err_handler, | 
 | 				  IRQF_SHARED, | 
 | 				  dev_driver_string(adev->dev), | 
 | 				  chan); | 
 | 		if (ret) { | 
 | 			dev_err(adev->dev, "can't request irq %d\n", | 
 | 				adev->err_irq); | 
 | 			*initcode = PPC_ADMA_INIT_IRQ2; | 
 | 			ret = -EIO; | 
 | 			goto err_req2; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (adev->id == PPC440SPE_XOR_ID) { | 
 | 		/* enable XOR engine interrupts */ | 
 | 		iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT | | 
 | 			    XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT, | 
 | 			    &adev->xor_reg->ier); | 
 | 	} else { | 
 | 		u32 mask, enable; | 
 |  | 
 | 		np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe"); | 
 | 		if (!np) { | 
 | 			pr_err("%s: can't find I2O device tree node\n", | 
 | 				__func__); | 
 | 			ret = -ENODEV; | 
 | 			goto err_req2; | 
 | 		} | 
 | 		adev->i2o_reg = of_iomap(np, 0); | 
 | 		if (!adev->i2o_reg) { | 
 | 			pr_err("%s: failed to map I2O registers\n", __func__); | 
 | 			of_node_put(np); | 
 | 			ret = -EINVAL; | 
 | 			goto err_req2; | 
 | 		} | 
 | 		of_node_put(np); | 
 | 		/* Unmask 'CS FIFO Attention' interrupts and | 
 | 		 * enable generating interrupts on errors | 
 | 		 */ | 
 | 		enable = (adev->id == PPC440SPE_DMA0_ID) ? | 
 | 			 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) : | 
 | 			 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM); | 
 | 		mask = ioread32(&adev->i2o_reg->iopim) & enable; | 
 | 		iowrite32(mask, &adev->i2o_reg->iopim); | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | err_req2: | 
 | 	free_irq(adev->irq, chan); | 
 | err_req1: | 
 | 	irq_dispose_mapping(adev->irq); | 
 | err_irq_map: | 
 | 	if (adev->err_irq > 0) { | 
 | 		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) | 
 | 			irq_dispose_mapping(adev->err_irq); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev, | 
 | 					struct ppc440spe_adma_chan *chan) | 
 | { | 
 | 	u32 mask, disable; | 
 |  | 
 | 	if (adev->id == PPC440SPE_XOR_ID) { | 
 | 		/* disable XOR engine interrupts */ | 
 | 		mask = ioread32be(&adev->xor_reg->ier); | 
 | 		mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT | | 
 | 			  XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT); | 
 | 		iowrite32be(mask, &adev->xor_reg->ier); | 
 | 	} else { | 
 | 		/* disable DMAx engine interrupts */ | 
 | 		disable = (adev->id == PPC440SPE_DMA0_ID) ? | 
 | 			  (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) : | 
 | 			  (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM); | 
 | 		mask = ioread32(&adev->i2o_reg->iopim) | disable; | 
 | 		iowrite32(mask, &adev->i2o_reg->iopim); | 
 | 	} | 
 | 	free_irq(adev->irq, chan); | 
 | 	irq_dispose_mapping(adev->irq); | 
 | 	if (adev->err_irq > 0) { | 
 | 		free_irq(adev->err_irq, chan); | 
 | 		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) { | 
 | 			irq_dispose_mapping(adev->err_irq); | 
 | 			iounmap(adev->i2o_reg); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_probe - probe the asynch device | 
 |  */ | 
 | static int ppc440spe_adma_probe(struct platform_device *ofdev) | 
 | { | 
 | 	struct device_node *np = ofdev->dev.of_node; | 
 | 	struct resource res; | 
 | 	struct ppc440spe_adma_device *adev; | 
 | 	struct ppc440spe_adma_chan *chan; | 
 | 	struct ppc_dma_chan_ref *ref, *_ref; | 
 | 	int ret = 0, initcode = PPC_ADMA_INIT_OK; | 
 | 	const u32 *idx; | 
 | 	int len; | 
 | 	void *regs; | 
 | 	u32 id, pool_size; | 
 |  | 
 | 	if (of_device_is_compatible(np, "amcc,xor-accelerator")) { | 
 | 		id = PPC440SPE_XOR_ID; | 
 | 		/* As far as the XOR engine is concerned, it does not | 
 | 		 * use FIFOs but uses linked list. So there is no dependency | 
 | 		 * between pool size to allocate and the engine configuration. | 
 | 		 */ | 
 | 		pool_size = PAGE_SIZE << 1; | 
 | 	} else { | 
 | 		/* it is DMA0 or DMA1 */ | 
 | 		idx = of_get_property(np, "cell-index", &len); | 
 | 		if (!idx || (len != sizeof(u32))) { | 
 | 			dev_err(&ofdev->dev, "Device node %pOF has missing " | 
 | 				"or invalid cell-index property\n", | 
 | 				np); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		id = *idx; | 
 | 		/* DMA0,1 engines use FIFO to maintain CDBs, so we | 
 | 		 * should allocate the pool accordingly to size of this | 
 | 		 * FIFO. Thus, the pool size depends on the FIFO depth: | 
 | 		 * how much CDBs pointers the FIFO may contain then so | 
 | 		 * much CDBs we should provide in the pool. | 
 | 		 * That is | 
 | 		 *   CDB size = 32B; | 
 | 		 *   CDBs number = (DMA0_FIFO_SIZE >> 3); | 
 | 		 *   Pool size = CDBs number * CDB size = | 
 | 		 *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2. | 
 | 		 */ | 
 | 		pool_size = (id == PPC440SPE_DMA0_ID) ? | 
 | 			    DMA0_FIFO_SIZE : DMA1_FIFO_SIZE; | 
 | 		pool_size <<= 2; | 
 | 	} | 
 |  | 
 | 	if (of_address_to_resource(np, 0, &res)) { | 
 | 		dev_err(&ofdev->dev, "failed to get memory resource\n"); | 
 | 		initcode = PPC_ADMA_INIT_MEMRES; | 
 | 		ret = -ENODEV; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!request_mem_region(res.start, resource_size(&res), | 
 | 				dev_driver_string(&ofdev->dev))) { | 
 | 		dev_err(&ofdev->dev, "failed to request memory region %pR\n", | 
 | 			&res); | 
 | 		initcode = PPC_ADMA_INIT_MEMREG; | 
 | 		ret = -EBUSY; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* create a device */ | 
 | 	adev = kzalloc(sizeof(*adev), GFP_KERNEL); | 
 | 	if (!adev) { | 
 | 		initcode = PPC_ADMA_INIT_ALLOC; | 
 | 		ret = -ENOMEM; | 
 | 		goto err_adev_alloc; | 
 | 	} | 
 |  | 
 | 	adev->id = id; | 
 | 	adev->pool_size = pool_size; | 
 | 	/* allocate coherent memory for hardware descriptors */ | 
 | 	adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev, | 
 | 					adev->pool_size, &adev->dma_desc_pool, | 
 | 					GFP_KERNEL); | 
 | 	if (adev->dma_desc_pool_virt == NULL) { | 
 | 		dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent " | 
 | 			"memory for hardware descriptors\n", | 
 | 			adev->pool_size); | 
 | 		initcode = PPC_ADMA_INIT_COHERENT; | 
 | 		ret = -ENOMEM; | 
 | 		goto err_dma_alloc; | 
 | 	} | 
 | 	dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n", | 
 | 		adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool); | 
 |  | 
 | 	regs = ioremap(res.start, resource_size(&res)); | 
 | 	if (!regs) { | 
 | 		dev_err(&ofdev->dev, "failed to ioremap regs!\n"); | 
 | 		ret = -ENOMEM; | 
 | 		goto err_regs_alloc; | 
 | 	} | 
 |  | 
 | 	if (adev->id == PPC440SPE_XOR_ID) { | 
 | 		adev->xor_reg = regs; | 
 | 		/* Reset XOR */ | 
 | 		iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr); | 
 | 		iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr); | 
 | 	} else { | 
 | 		size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ? | 
 | 				   DMA0_FIFO_SIZE : DMA1_FIFO_SIZE; | 
 | 		adev->dma_reg = regs; | 
 | 		/* DMAx_FIFO_SIZE is defined in bytes, | 
 | 		 * <fsiz> - is defined in number of CDB pointers (8byte). | 
 | 		 * DMA FIFO Length = CSlength + CPlength, where | 
 | 		 * CSlength = CPlength = (fsiz + 1) * 8. | 
 | 		 */ | 
 | 		iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2), | 
 | 			  &adev->dma_reg->fsiz); | 
 | 		/* Configure DMA engine */ | 
 | 		iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN, | 
 | 			  &adev->dma_reg->cfg); | 
 | 		/* Clear Status */ | 
 | 		iowrite32(~0, &adev->dma_reg->dsts); | 
 | 	} | 
 |  | 
 | 	adev->dev = &ofdev->dev; | 
 | 	adev->common.dev = &ofdev->dev; | 
 | 	INIT_LIST_HEAD(&adev->common.channels); | 
 | 	platform_set_drvdata(ofdev, adev); | 
 |  | 
 | 	/* create a channel */ | 
 | 	chan = kzalloc(sizeof(*chan), GFP_KERNEL); | 
 | 	if (!chan) { | 
 | 		initcode = PPC_ADMA_INIT_CHANNEL; | 
 | 		ret = -ENOMEM; | 
 | 		goto err_chan_alloc; | 
 | 	} | 
 |  | 
 | 	spin_lock_init(&chan->lock); | 
 | 	INIT_LIST_HEAD(&chan->chain); | 
 | 	INIT_LIST_HEAD(&chan->all_slots); | 
 | 	chan->device = adev; | 
 | 	chan->common.device = &adev->common; | 
 | 	dma_cookie_init(&chan->common); | 
 | 	list_add_tail(&chan->common.device_node, &adev->common.channels); | 
 | 	tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet, | 
 | 		     (unsigned long)chan); | 
 |  | 
 | 	/* allocate and map helper pages for async validation or | 
 | 	 * async_mult/async_sum_product operations on DMA0/1. | 
 | 	 */ | 
 | 	if (adev->id != PPC440SPE_XOR_ID) { | 
 | 		chan->pdest_page = alloc_page(GFP_KERNEL); | 
 | 		chan->qdest_page = alloc_page(GFP_KERNEL); | 
 | 		if (!chan->pdest_page || | 
 | 		    !chan->qdest_page) { | 
 | 			if (chan->pdest_page) | 
 | 				__free_page(chan->pdest_page); | 
 | 			if (chan->qdest_page) | 
 | 				__free_page(chan->qdest_page); | 
 | 			ret = -ENOMEM; | 
 | 			goto err_page_alloc; | 
 | 		} | 
 | 		chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0, | 
 | 					   PAGE_SIZE, DMA_BIDIRECTIONAL); | 
 | 		chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0, | 
 | 					   PAGE_SIZE, DMA_BIDIRECTIONAL); | 
 | 	} | 
 |  | 
 | 	ref = kmalloc(sizeof(*ref), GFP_KERNEL); | 
 | 	if (ref) { | 
 | 		ref->chan = &chan->common; | 
 | 		INIT_LIST_HEAD(&ref->node); | 
 | 		list_add_tail(&ref->node, &ppc440spe_adma_chan_list); | 
 | 	} else { | 
 | 		dev_err(&ofdev->dev, "failed to allocate channel reference!\n"); | 
 | 		ret = -ENOMEM; | 
 | 		goto err_ref_alloc; | 
 | 	} | 
 |  | 
 | 	ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode); | 
 | 	if (ret) | 
 | 		goto err_irq; | 
 |  | 
 | 	ppc440spe_adma_init_capabilities(adev); | 
 |  | 
 | 	ret = dma_async_device_register(&adev->common); | 
 | 	if (ret) { | 
 | 		initcode = PPC_ADMA_INIT_REGISTER; | 
 | 		dev_err(&ofdev->dev, "failed to register dma device\n"); | 
 | 		goto err_dev_reg; | 
 | 	} | 
 |  | 
 | 	goto out; | 
 |  | 
 | err_dev_reg: | 
 | 	ppc440spe_adma_release_irqs(adev, chan); | 
 | err_irq: | 
 | 	list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) { | 
 | 		if (chan == to_ppc440spe_adma_chan(ref->chan)) { | 
 | 			list_del(&ref->node); | 
 | 			kfree(ref); | 
 | 		} | 
 | 	} | 
 | err_ref_alloc: | 
 | 	if (adev->id != PPC440SPE_XOR_ID) { | 
 | 		dma_unmap_page(&ofdev->dev, chan->pdest, | 
 | 			       PAGE_SIZE, DMA_BIDIRECTIONAL); | 
 | 		dma_unmap_page(&ofdev->dev, chan->qdest, | 
 | 			       PAGE_SIZE, DMA_BIDIRECTIONAL); | 
 | 		__free_page(chan->pdest_page); | 
 | 		__free_page(chan->qdest_page); | 
 | 	} | 
 | err_page_alloc: | 
 | 	kfree(chan); | 
 | err_chan_alloc: | 
 | 	if (adev->id == PPC440SPE_XOR_ID) | 
 | 		iounmap(adev->xor_reg); | 
 | 	else | 
 | 		iounmap(adev->dma_reg); | 
 | err_regs_alloc: | 
 | 	dma_free_coherent(adev->dev, adev->pool_size, | 
 | 			  adev->dma_desc_pool_virt, | 
 | 			  adev->dma_desc_pool); | 
 | err_dma_alloc: | 
 | 	kfree(adev); | 
 | err_adev_alloc: | 
 | 	release_mem_region(res.start, resource_size(&res)); | 
 | out: | 
 | 	if (id < PPC440SPE_ADMA_ENGINES_NUM) | 
 | 		ppc440spe_adma_devices[id] = initcode; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * ppc440spe_adma_remove - remove the asynch device | 
 |  */ | 
 | static int ppc440spe_adma_remove(struct platform_device *ofdev) | 
 | { | 
 | 	struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev); | 
 | 	struct device_node *np = ofdev->dev.of_node; | 
 | 	struct resource res; | 
 | 	struct dma_chan *chan, *_chan; | 
 | 	struct ppc_dma_chan_ref *ref, *_ref; | 
 | 	struct ppc440spe_adma_chan *ppc440spe_chan; | 
 |  | 
 | 	if (adev->id < PPC440SPE_ADMA_ENGINES_NUM) | 
 | 		ppc440spe_adma_devices[adev->id] = -1; | 
 |  | 
 | 	dma_async_device_unregister(&adev->common); | 
 |  | 
 | 	list_for_each_entry_safe(chan, _chan, &adev->common.channels, | 
 | 				 device_node) { | 
 | 		ppc440spe_chan = to_ppc440spe_adma_chan(chan); | 
 | 		ppc440spe_adma_release_irqs(adev, ppc440spe_chan); | 
 | 		tasklet_kill(&ppc440spe_chan->irq_tasklet); | 
 | 		if (adev->id != PPC440SPE_XOR_ID) { | 
 | 			dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest, | 
 | 					PAGE_SIZE, DMA_BIDIRECTIONAL); | 
 | 			dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest, | 
 | 					PAGE_SIZE, DMA_BIDIRECTIONAL); | 
 | 			__free_page(ppc440spe_chan->pdest_page); | 
 | 			__free_page(ppc440spe_chan->qdest_page); | 
 | 		} | 
 | 		list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, | 
 | 					 node) { | 
 | 			if (ppc440spe_chan == | 
 | 			    to_ppc440spe_adma_chan(ref->chan)) { | 
 | 				list_del(&ref->node); | 
 | 				kfree(ref); | 
 | 			} | 
 | 		} | 
 | 		list_del(&chan->device_node); | 
 | 		kfree(ppc440spe_chan); | 
 | 	} | 
 |  | 
 | 	dma_free_coherent(adev->dev, adev->pool_size, | 
 | 			  adev->dma_desc_pool_virt, adev->dma_desc_pool); | 
 | 	if (adev->id == PPC440SPE_XOR_ID) | 
 | 		iounmap(adev->xor_reg); | 
 | 	else | 
 | 		iounmap(adev->dma_reg); | 
 | 	of_address_to_resource(np, 0, &res); | 
 | 	release_mem_region(res.start, resource_size(&res)); | 
 | 	kfree(adev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * /sys driver interface to enable h/w RAID-6 capabilities | 
 |  * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/ | 
 |  * directory are "devices", "enable" and "poly". | 
 |  * "devices" shows available engines. | 
 |  * "enable" is used to enable RAID-6 capabilities or to check | 
 |  * whether these has been activated. | 
 |  * "poly" allows setting/checking used polynomial (for PPC440SPe only). | 
 |  */ | 
 |  | 
 | static ssize_t devices_show(struct device_driver *dev, char *buf) | 
 | { | 
 | 	ssize_t size = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) { | 
 | 		if (ppc440spe_adma_devices[i] == -1) | 
 | 			continue; | 
 | 		size += snprintf(buf + size, PAGE_SIZE - size, | 
 | 				 "PPC440SP(E)-ADMA.%d: %s\n", i, | 
 | 				 ppc_adma_errors[ppc440spe_adma_devices[i]]); | 
 | 	} | 
 | 	return size; | 
 | } | 
 | static DRIVER_ATTR_RO(devices); | 
 |  | 
 | static ssize_t enable_show(struct device_driver *dev, char *buf) | 
 | { | 
 | 	return snprintf(buf, PAGE_SIZE, | 
 | 			"PPC440SP(e) RAID-6 capabilities are %sABLED.\n", | 
 | 			ppc440spe_r6_enabled ? "EN" : "DIS"); | 
 | } | 
 |  | 
 | static ssize_t enable_store(struct device_driver *dev, const char *buf, | 
 | 			    size_t count) | 
 | { | 
 | 	unsigned long val; | 
 |  | 
 | 	if (!count || count > 11) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!ppc440spe_r6_tchan) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* Write a key */ | 
 | 	sscanf(buf, "%lx", &val); | 
 | 	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val); | 
 | 	isync(); | 
 |  | 
 | 	/* Verify whether it really works now */ | 
 | 	if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) { | 
 | 		pr_info("PPC440SP(e) RAID-6 has been activated " | 
 | 			"successfully\n"); | 
 | 		ppc440spe_r6_enabled = 1; | 
 | 	} else { | 
 | 		pr_info("PPC440SP(e) RAID-6 hasn't been activated!" | 
 | 			" Error key ?\n"); | 
 | 		ppc440spe_r6_enabled = 0; | 
 | 	} | 
 | 	return count; | 
 | } | 
 | static DRIVER_ATTR_RW(enable); | 
 |  | 
 | static ssize_t poly_show(struct device_driver *dev, char *buf) | 
 | { | 
 | 	ssize_t size = 0; | 
 | 	u32 reg; | 
 |  | 
 | #ifdef CONFIG_440SP | 
 | 	/* 440SP has fixed polynomial */ | 
 | 	reg = 0x4d; | 
 | #else | 
 | 	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL); | 
 | 	reg >>= MQ0_CFBHL_POLY; | 
 | 	reg &= 0xFF; | 
 | #endif | 
 |  | 
 | 	size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver " | 
 | 			"uses 0x1%02x polynomial.\n", reg); | 
 | 	return size; | 
 | } | 
 |  | 
 | static ssize_t poly_store(struct device_driver *dev, const char *buf, | 
 | 			  size_t count) | 
 | { | 
 | 	unsigned long reg, val; | 
 |  | 
 | #ifdef CONFIG_440SP | 
 | 	/* 440SP uses default 0x14D polynomial only */ | 
 | 	return -EINVAL; | 
 | #endif | 
 |  | 
 | 	if (!count || count > 6) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* e.g., 0x14D or 0x11D */ | 
 | 	sscanf(buf, "%lx", &val); | 
 |  | 
 | 	if (val & ~0x1FF) | 
 | 		return -EINVAL; | 
 |  | 
 | 	val &= 0xFF; | 
 | 	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL); | 
 | 	reg &= ~(0xFF << MQ0_CFBHL_POLY); | 
 | 	reg |= val << MQ0_CFBHL_POLY; | 
 | 	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg); | 
 |  | 
 | 	return count; | 
 | } | 
 | static DRIVER_ATTR_RW(poly); | 
 |  | 
 | /* | 
 |  * Common initialisation for RAID engines; allocate memory for | 
 |  * DMAx FIFOs, perform configuration common for all DMA engines. | 
 |  * Further DMA engine specific configuration is done at probe time. | 
 |  */ | 
 | static int ppc440spe_configure_raid_devices(void) | 
 | { | 
 | 	struct device_node *np; | 
 | 	struct resource i2o_res; | 
 | 	struct i2o_regs __iomem *i2o_reg; | 
 | 	dcr_host_t i2o_dcr_host; | 
 | 	unsigned int dcr_base, dcr_len; | 
 | 	int i, ret; | 
 |  | 
 | 	np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe"); | 
 | 	if (!np) { | 
 | 		pr_err("%s: can't find I2O device tree node\n", | 
 | 			__func__); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	if (of_address_to_resource(np, 0, &i2o_res)) { | 
 | 		of_node_put(np); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	i2o_reg = of_iomap(np, 0); | 
 | 	if (!i2o_reg) { | 
 | 		pr_err("%s: failed to map I2O registers\n", __func__); | 
 | 		of_node_put(np); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Get I2O DCRs base */ | 
 | 	dcr_base = dcr_resource_start(np, 0); | 
 | 	dcr_len = dcr_resource_len(np, 0); | 
 | 	if (!dcr_base && !dcr_len) { | 
 | 		pr_err("%pOF: can't get DCR registers base/len!\n", np); | 
 | 		of_node_put(np); | 
 | 		iounmap(i2o_reg); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	i2o_dcr_host = dcr_map(np, dcr_base, dcr_len); | 
 | 	if (!DCR_MAP_OK(i2o_dcr_host)) { | 
 | 		pr_err("%pOF: failed to map DCRs!\n", np); | 
 | 		of_node_put(np); | 
 | 		iounmap(i2o_reg); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	of_node_put(np); | 
 |  | 
 | 	/* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share | 
 | 	 * the base address of FIFO memory space. | 
 | 	 * Actually we need twice more physical memory than programmed in the | 
 | 	 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS) | 
 | 	 */ | 
 | 	ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1, | 
 | 					 GFP_KERNEL); | 
 | 	if (!ppc440spe_dma_fifo_buf) { | 
 | 		pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__); | 
 | 		iounmap(i2o_reg); | 
 | 		dcr_unmap(i2o_dcr_host, dcr_len); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Configure h/w | 
 | 	 */ | 
 | 	/* Reset I2O/DMA */ | 
 | 	mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA); | 
 | 	mtdcri(SDR0, DCRN_SDR0_SRST, 0); | 
 |  | 
 | 	/* Setup the base address of mmaped registers */ | 
 | 	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32)); | 
 | 	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) | | 
 | 						I2O_REG_ENABLE); | 
 | 	dcr_unmap(i2o_dcr_host, dcr_len); | 
 |  | 
 | 	/* Setup FIFO memory space base address */ | 
 | 	iowrite32(0, &i2o_reg->ifbah); | 
 | 	iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal); | 
 |  | 
 | 	/* set zero FIFO size for I2O, so the whole | 
 | 	 * ppc440spe_dma_fifo_buf is used by DMAs. | 
 | 	 * DMAx_FIFOs will be configured while probe. | 
 | 	 */ | 
 | 	iowrite32(0, &i2o_reg->ifsiz); | 
 | 	iounmap(i2o_reg); | 
 |  | 
 | 	/* To prepare WXOR/RXOR functionality we need access to | 
 | 	 * Memory Queue Module DCRs (finally it will be enabled | 
 | 	 * via /sys interface of the ppc440spe ADMA driver). | 
 | 	 */ | 
 | 	np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe"); | 
 | 	if (!np) { | 
 | 		pr_err("%s: can't find MQ device tree node\n", | 
 | 			__func__); | 
 | 		ret = -ENODEV; | 
 | 		goto out_free; | 
 | 	} | 
 |  | 
 | 	/* Get MQ DCRs base */ | 
 | 	dcr_base = dcr_resource_start(np, 0); | 
 | 	dcr_len = dcr_resource_len(np, 0); | 
 | 	if (!dcr_base && !dcr_len) { | 
 | 		pr_err("%pOF: can't get DCR registers base/len!\n", np); | 
 | 		ret = -ENODEV; | 
 | 		goto out_mq; | 
 | 	} | 
 |  | 
 | 	ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len); | 
 | 	if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) { | 
 | 		pr_err("%pOF: failed to map DCRs!\n", np); | 
 | 		ret = -ENODEV; | 
 | 		goto out_mq; | 
 | 	} | 
 | 	of_node_put(np); | 
 | 	ppc440spe_mq_dcr_len = dcr_len; | 
 |  | 
 | 	/* Set HB alias */ | 
 | 	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB); | 
 |  | 
 | 	/* Set: | 
 | 	 * - LL transaction passing limit to 1; | 
 | 	 * - Memory controller cycle limit to 1; | 
 | 	 * - Galois Polynomial to 0x14d (default) | 
 | 	 */ | 
 | 	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, | 
 | 		  (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) | | 
 | 		  (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY)); | 
 |  | 
 | 	atomic_set(&ppc440spe_adma_err_irq_ref, 0); | 
 | 	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) | 
 | 		ppc440spe_adma_devices[i] = -1; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_mq: | 
 | 	of_node_put(np); | 
 | out_free: | 
 | 	kfree(ppc440spe_dma_fifo_buf); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static const struct of_device_id ppc440spe_adma_of_match[] = { | 
 | 	{ .compatible	= "ibm,dma-440spe", }, | 
 | 	{ .compatible	= "amcc,xor-accelerator", }, | 
 | 	{}, | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match); | 
 |  | 
 | static struct platform_driver ppc440spe_adma_driver = { | 
 | 	.probe = ppc440spe_adma_probe, | 
 | 	.remove = ppc440spe_adma_remove, | 
 | 	.driver = { | 
 | 		.name = "PPC440SP(E)-ADMA", | 
 | 		.of_match_table = ppc440spe_adma_of_match, | 
 | 	}, | 
 | }; | 
 |  | 
 | static __init int ppc440spe_adma_init(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = ppc440spe_configure_raid_devices(); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = platform_driver_register(&ppc440spe_adma_driver); | 
 | 	if (ret) { | 
 | 		pr_err("%s: failed to register platform driver\n", | 
 | 			__func__); | 
 | 		goto out_reg; | 
 | 	} | 
 |  | 
 | 	/* Initialization status */ | 
 | 	ret = driver_create_file(&ppc440spe_adma_driver.driver, | 
 | 				 &driver_attr_devices); | 
 | 	if (ret) | 
 | 		goto out_dev; | 
 |  | 
 | 	/* RAID-6 h/w enable entry */ | 
 | 	ret = driver_create_file(&ppc440spe_adma_driver.driver, | 
 | 				 &driver_attr_enable); | 
 | 	if (ret) | 
 | 		goto out_en; | 
 |  | 
 | 	/* GF polynomial to use */ | 
 | 	ret = driver_create_file(&ppc440spe_adma_driver.driver, | 
 | 				 &driver_attr_poly); | 
 | 	if (!ret) | 
 | 		return ret; | 
 |  | 
 | 	driver_remove_file(&ppc440spe_adma_driver.driver, | 
 | 			   &driver_attr_enable); | 
 | out_en: | 
 | 	driver_remove_file(&ppc440spe_adma_driver.driver, | 
 | 			   &driver_attr_devices); | 
 | out_dev: | 
 | 	/* User will not be able to enable h/w RAID-6 */ | 
 | 	pr_err("%s: failed to create RAID-6 driver interface\n", | 
 | 		__func__); | 
 | 	platform_driver_unregister(&ppc440spe_adma_driver); | 
 | out_reg: | 
 | 	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len); | 
 | 	kfree(ppc440spe_dma_fifo_buf); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __exit ppc440spe_adma_exit(void) | 
 | { | 
 | 	driver_remove_file(&ppc440spe_adma_driver.driver, | 
 | 			   &driver_attr_poly); | 
 | 	driver_remove_file(&ppc440spe_adma_driver.driver, | 
 | 			   &driver_attr_enable); | 
 | 	driver_remove_file(&ppc440spe_adma_driver.driver, | 
 | 			   &driver_attr_devices); | 
 | 	platform_driver_unregister(&ppc440spe_adma_driver); | 
 | 	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len); | 
 | 	kfree(ppc440spe_dma_fifo_buf); | 
 | } | 
 |  | 
 | arch_initcall(ppc440spe_adma_init); | 
 | module_exit(ppc440spe_adma_exit); | 
 |  | 
 | MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>"); | 
 | MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver"); | 
 | MODULE_LICENSE("GPL"); |