| /* | 
 |  * I2C Link Layer for ST21NFCA HCI based Driver | 
 |  * Copyright (C) 2014  STMicroelectronics SAS. All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms and conditions of the GNU General Public License, | 
 |  * version 2, as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, see <http://www.gnu.org/licenses/>. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/crc-ccitt.h> | 
 | #include <linux/module.h> | 
 | #include <linux/i2c.h> | 
 | #include <linux/gpio/consumer.h> | 
 | #include <linux/of_irq.h> | 
 | #include <linux/of_gpio.h> | 
 | #include <linux/acpi.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/nfc.h> | 
 | #include <linux/firmware.h> | 
 |  | 
 | #include <asm/unaligned.h> | 
 |  | 
 | #include <net/nfc/hci.h> | 
 | #include <net/nfc/llc.h> | 
 | #include <net/nfc/nfc.h> | 
 |  | 
 | #include "st21nfca.h" | 
 |  | 
 | /* | 
 |  * Every frame starts with ST21NFCA_SOF_EOF and ends with ST21NFCA_SOF_EOF. | 
 |  * Because ST21NFCA_SOF_EOF is a possible data value, there is a mecanism | 
 |  * called byte stuffing has been introduced. | 
 |  * | 
 |  * if byte == ST21NFCA_SOF_EOF or ST21NFCA_ESCAPE_BYTE_STUFFING | 
 |  * - insert ST21NFCA_ESCAPE_BYTE_STUFFING (escape byte) | 
 |  * - xor byte with ST21NFCA_BYTE_STUFFING_MASK | 
 |  */ | 
 | #define ST21NFCA_SOF_EOF		0x7e | 
 | #define ST21NFCA_BYTE_STUFFING_MASK	0x20 | 
 | #define ST21NFCA_ESCAPE_BYTE_STUFFING	0x7d | 
 |  | 
 | /* SOF + 00 */ | 
 | #define ST21NFCA_FRAME_HEADROOM			2 | 
 |  | 
 | /* 2 bytes crc + EOF */ | 
 | #define ST21NFCA_FRAME_TAILROOM 3 | 
 | #define IS_START_OF_FRAME(buf) (buf[0] == ST21NFCA_SOF_EOF && \ | 
 | 				buf[1] == 0) | 
 |  | 
 | #define ST21NFCA_HCI_DRIVER_NAME "st21nfca_hci" | 
 | #define ST21NFCA_HCI_I2C_DRIVER_NAME "st21nfca_hci_i2c" | 
 |  | 
 | struct st21nfca_i2c_phy { | 
 | 	struct i2c_client *i2c_dev; | 
 | 	struct nfc_hci_dev *hdev; | 
 |  | 
 | 	struct gpio_desc *gpiod_ena; | 
 | 	struct st21nfca_se_status se_status; | 
 |  | 
 | 	struct sk_buff *pending_skb; | 
 | 	int current_read_len; | 
 | 	/* | 
 | 	 * crc might have fail because i2c macro | 
 | 	 * is disable due to other interface activity | 
 | 	 */ | 
 | 	int crc_trials; | 
 |  | 
 | 	int powered; | 
 | 	int run_mode; | 
 |  | 
 | 	/* | 
 | 	 * < 0 if hardware error occured (e.g. i2c err) | 
 | 	 * and prevents normal operation. | 
 | 	 */ | 
 | 	int hard_fault; | 
 | 	struct mutex phy_lock; | 
 | }; | 
 |  | 
 | static u8 len_seq[] = { 16, 24, 12, 29 }; | 
 | static u16 wait_tab[] = { 2, 3, 5, 15, 20, 40}; | 
 |  | 
 | #define I2C_DUMP_SKB(info, skb)					\ | 
 | do {								\ | 
 | 	pr_debug("%s:\n", info);				\ | 
 | 	print_hex_dump(KERN_DEBUG, "i2c: ", DUMP_PREFIX_OFFSET,	\ | 
 | 		       16, 1, (skb)->data, (skb)->len, 0);	\ | 
 | } while (0) | 
 |  | 
 | /* | 
 |  * In order to get the CLF in a known state we generate an internal reboot | 
 |  * using a proprietary command. | 
 |  * Once the reboot is completed, we expect to receive a ST21NFCA_SOF_EOF | 
 |  * fill buffer. | 
 |  */ | 
 | static int st21nfca_hci_platform_init(struct st21nfca_i2c_phy *phy) | 
 | { | 
 | 	u16 wait_reboot[] = { 50, 300, 1000 }; | 
 | 	char reboot_cmd[] = { 0x7E, 0x66, 0x48, 0xF6, 0x7E }; | 
 | 	u8 tmp[ST21NFCA_HCI_LLC_MAX_SIZE]; | 
 | 	int i, r = -1; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(wait_reboot) && r < 0; i++) { | 
 | 		r = i2c_master_send(phy->i2c_dev, reboot_cmd, | 
 | 				    sizeof(reboot_cmd)); | 
 | 		if (r < 0) | 
 | 			msleep(wait_reboot[i]); | 
 | 	} | 
 | 	if (r < 0) | 
 | 		return r; | 
 |  | 
 | 	/* CLF is spending about 20ms to do an internal reboot */ | 
 | 	msleep(20); | 
 | 	r = -1; | 
 | 	for (i = 0; i < ARRAY_SIZE(wait_reboot) && r < 0; i++) { | 
 | 		r = i2c_master_recv(phy->i2c_dev, tmp, | 
 | 				    ST21NFCA_HCI_LLC_MAX_SIZE); | 
 | 		if (r < 0) | 
 | 			msleep(wait_reboot[i]); | 
 | 	} | 
 | 	if (r < 0) | 
 | 		return r; | 
 |  | 
 | 	for (i = 0; i < ST21NFCA_HCI_LLC_MAX_SIZE && | 
 | 		tmp[i] == ST21NFCA_SOF_EOF; i++) | 
 | 		; | 
 |  | 
 | 	if (r != ST21NFCA_HCI_LLC_MAX_SIZE) | 
 | 		return -ENODEV; | 
 |  | 
 | 	usleep_range(1000, 1500); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int st21nfca_hci_i2c_enable(void *phy_id) | 
 | { | 
 | 	struct st21nfca_i2c_phy *phy = phy_id; | 
 |  | 
 | 	gpiod_set_value(phy->gpiod_ena, 1); | 
 | 	phy->powered = 1; | 
 | 	phy->run_mode = ST21NFCA_HCI_MODE; | 
 |  | 
 | 	usleep_range(10000, 15000); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void st21nfca_hci_i2c_disable(void *phy_id) | 
 | { | 
 | 	struct st21nfca_i2c_phy *phy = phy_id; | 
 |  | 
 | 	gpiod_set_value(phy->gpiod_ena, 0); | 
 |  | 
 | 	phy->powered = 0; | 
 | } | 
 |  | 
 | static void st21nfca_hci_add_len_crc(struct sk_buff *skb) | 
 | { | 
 | 	u16 crc; | 
 | 	u8 tmp; | 
 |  | 
 | 	*(u8 *)skb_push(skb, 1) = 0; | 
 |  | 
 | 	crc = crc_ccitt(0xffff, skb->data, skb->len); | 
 | 	crc = ~crc; | 
 |  | 
 | 	tmp = crc & 0x00ff; | 
 | 	skb_put_u8(skb, tmp); | 
 |  | 
 | 	tmp = (crc >> 8) & 0x00ff; | 
 | 	skb_put_u8(skb, tmp); | 
 | } | 
 |  | 
 | static void st21nfca_hci_remove_len_crc(struct sk_buff *skb) | 
 | { | 
 | 	skb_pull(skb, ST21NFCA_FRAME_HEADROOM); | 
 | 	skb_trim(skb, skb->len - ST21NFCA_FRAME_TAILROOM); | 
 | } | 
 |  | 
 | /* | 
 |  * Writing a frame must not return the number of written bytes. | 
 |  * It must return either zero for success, or <0 for error. | 
 |  * In addition, it must not alter the skb | 
 |  */ | 
 | static int st21nfca_hci_i2c_write(void *phy_id, struct sk_buff *skb) | 
 | { | 
 | 	int r = -1, i, j; | 
 | 	struct st21nfca_i2c_phy *phy = phy_id; | 
 | 	struct i2c_client *client = phy->i2c_dev; | 
 | 	u8 tmp[ST21NFCA_HCI_LLC_MAX_SIZE * 2]; | 
 |  | 
 | 	I2C_DUMP_SKB("st21nfca_hci_i2c_write", skb); | 
 |  | 
 | 	if (phy->hard_fault != 0) | 
 | 		return phy->hard_fault; | 
 |  | 
 | 	/* | 
 | 	 * Compute CRC before byte stuffing computation on frame | 
 | 	 * Note st21nfca_hci_add_len_crc is doing a byte stuffing | 
 | 	 * on its own value | 
 | 	 */ | 
 | 	st21nfca_hci_add_len_crc(skb); | 
 |  | 
 | 	/* add ST21NFCA_SOF_EOF on tail */ | 
 | 	skb_put_u8(skb, ST21NFCA_SOF_EOF); | 
 | 	/* add ST21NFCA_SOF_EOF on head */ | 
 | 	*(u8 *)skb_push(skb, 1) = ST21NFCA_SOF_EOF; | 
 |  | 
 | 	/* | 
 | 	 * Compute byte stuffing | 
 | 	 * if byte == ST21NFCA_SOF_EOF or ST21NFCA_ESCAPE_BYTE_STUFFING | 
 | 	 * insert ST21NFCA_ESCAPE_BYTE_STUFFING (escape byte) | 
 | 	 * xor byte with ST21NFCA_BYTE_STUFFING_MASK | 
 | 	 */ | 
 | 	tmp[0] = skb->data[0]; | 
 | 	for (i = 1, j = 1; i < skb->len - 1; i++, j++) { | 
 | 		if (skb->data[i] == ST21NFCA_SOF_EOF | 
 | 		    || skb->data[i] == ST21NFCA_ESCAPE_BYTE_STUFFING) { | 
 | 			tmp[j] = ST21NFCA_ESCAPE_BYTE_STUFFING; | 
 | 			j++; | 
 | 			tmp[j] = skb->data[i] ^ ST21NFCA_BYTE_STUFFING_MASK; | 
 | 		} else { | 
 | 			tmp[j] = skb->data[i]; | 
 | 		} | 
 | 	} | 
 | 	tmp[j] = skb->data[i]; | 
 | 	j++; | 
 |  | 
 | 	/* | 
 | 	 * Manage sleep mode | 
 | 	 * Try 3 times to send data with delay between each | 
 | 	 */ | 
 | 	mutex_lock(&phy->phy_lock); | 
 | 	for (i = 0; i < ARRAY_SIZE(wait_tab) && r < 0; i++) { | 
 | 		r = i2c_master_send(client, tmp, j); | 
 | 		if (r < 0) | 
 | 			msleep(wait_tab[i]); | 
 | 	} | 
 | 	mutex_unlock(&phy->phy_lock); | 
 |  | 
 | 	if (r >= 0) { | 
 | 		if (r != j) | 
 | 			r = -EREMOTEIO; | 
 | 		else | 
 | 			r = 0; | 
 | 	} | 
 |  | 
 | 	st21nfca_hci_remove_len_crc(skb); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int get_frame_size(u8 *buf, int buflen) | 
 | { | 
 | 	int len = 0; | 
 |  | 
 | 	if (buf[len + 1] == ST21NFCA_SOF_EOF) | 
 | 		return 0; | 
 |  | 
 | 	for (len = 1; len < buflen && buf[len] != ST21NFCA_SOF_EOF; len++) | 
 | 		; | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | static int check_crc(u8 *buf, int buflen) | 
 | { | 
 | 	u16 crc; | 
 |  | 
 | 	crc = crc_ccitt(0xffff, buf, buflen - 2); | 
 | 	crc = ~crc; | 
 |  | 
 | 	if (buf[buflen - 2] != (crc & 0xff) || buf[buflen - 1] != (crc >> 8)) { | 
 | 		pr_err(ST21NFCA_HCI_DRIVER_NAME | 
 | 		       ": CRC error 0x%x != 0x%x 0x%x\n", crc, buf[buflen - 1], | 
 | 		       buf[buflen - 2]); | 
 |  | 
 | 		pr_info(DRIVER_DESC ": %s : BAD CRC\n", __func__); | 
 | 		print_hex_dump(KERN_DEBUG, "crc: ", DUMP_PREFIX_NONE, | 
 | 			       16, 2, buf, buflen, false); | 
 | 		return -EPERM; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Prepare received data for upper layer. | 
 |  * Received data include byte stuffing, crc and sof/eof | 
 |  * which is not usable by hci part. | 
 |  * returns: | 
 |  * frame size without sof/eof, header and byte stuffing | 
 |  * -EBADMSG : frame was incorrect and discarded | 
 |  */ | 
 | static int st21nfca_hci_i2c_repack(struct sk_buff *skb) | 
 | { | 
 | 	int i, j, r, size; | 
 |  | 
 | 	if (skb->len < 1 || (skb->len > 1 && skb->data[1] != 0)) | 
 | 		return -EBADMSG; | 
 |  | 
 | 	size = get_frame_size(skb->data, skb->len); | 
 | 	if (size > 0) { | 
 | 		skb_trim(skb, size); | 
 | 		/* remove ST21NFCA byte stuffing for upper layer */ | 
 | 		for (i = 1, j = 0; i < skb->len; i++) { | 
 | 			if (skb->data[i + j] == | 
 | 					(u8) ST21NFCA_ESCAPE_BYTE_STUFFING) { | 
 | 				skb->data[i] = skb->data[i + j + 1] | 
 | 						| ST21NFCA_BYTE_STUFFING_MASK; | 
 | 				i++; | 
 | 				j++; | 
 | 			} | 
 | 			skb->data[i] = skb->data[i + j]; | 
 | 		} | 
 | 		/* remove byte stuffing useless byte */ | 
 | 		skb_trim(skb, i - j); | 
 | 		/* remove ST21NFCA_SOF_EOF from head */ | 
 | 		skb_pull(skb, 1); | 
 |  | 
 | 		r = check_crc(skb->data, skb->len); | 
 | 		if (r != 0) { | 
 | 			i = 0; | 
 | 			return -EBADMSG; | 
 | 		} | 
 |  | 
 | 		/* remove headbyte */ | 
 | 		skb_pull(skb, 1); | 
 | 		/* remove crc. Byte Stuffing is already removed here */ | 
 | 		skb_trim(skb, skb->len - 2); | 
 | 		return skb->len; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Reads an shdlc frame and returns it in a newly allocated sk_buff. Guarantees | 
 |  * that i2c bus will be flushed and that next read will start on a new frame. | 
 |  * returned skb contains only LLC header and payload. | 
 |  * returns: | 
 |  * frame size : if received frame is complete (find ST21NFCA_SOF_EOF at | 
 |  * end of read) | 
 |  * -EAGAIN : if received frame is incomplete (not find ST21NFCA_SOF_EOF | 
 |  * at end of read) | 
 |  * -EREMOTEIO : i2c read error (fatal) | 
 |  * -EBADMSG : frame was incorrect and discarded | 
 |  * (value returned from st21nfca_hci_i2c_repack) | 
 |  * -EIO : if no ST21NFCA_SOF_EOF is found after reaching | 
 |  * the read length end sequence | 
 |  */ | 
 | static int st21nfca_hci_i2c_read(struct st21nfca_i2c_phy *phy, | 
 | 				 struct sk_buff *skb) | 
 | { | 
 | 	int r, i; | 
 | 	u8 len; | 
 | 	u8 buf[ST21NFCA_HCI_LLC_MAX_PAYLOAD]; | 
 | 	struct i2c_client *client = phy->i2c_dev; | 
 |  | 
 | 	if (phy->current_read_len < ARRAY_SIZE(len_seq)) { | 
 | 		len = len_seq[phy->current_read_len]; | 
 |  | 
 | 		/* | 
 | 		 * Add retry mecanism | 
 | 		 * Operation on I2C interface may fail in case of operation on | 
 | 		 * RF or SWP interface | 
 | 		 */ | 
 | 		r = 0; | 
 | 		mutex_lock(&phy->phy_lock); | 
 | 		for (i = 0; i < ARRAY_SIZE(wait_tab) && r <= 0; i++) { | 
 | 			r = i2c_master_recv(client, buf, len); | 
 | 			if (r < 0) | 
 | 				msleep(wait_tab[i]); | 
 | 		} | 
 | 		mutex_unlock(&phy->phy_lock); | 
 |  | 
 | 		if (r != len) { | 
 | 			phy->current_read_len = 0; | 
 | 			return -EREMOTEIO; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The first read sequence does not start with SOF. | 
 | 		 * Data is corrupeted so we drop it. | 
 | 		 */ | 
 | 		if (!phy->current_read_len && !IS_START_OF_FRAME(buf)) { | 
 | 			skb_trim(skb, 0); | 
 | 			phy->current_read_len = 0; | 
 | 			return -EIO; | 
 | 		} else if (phy->current_read_len && IS_START_OF_FRAME(buf)) { | 
 | 			/* | 
 | 			 * Previous frame transmission was interrupted and | 
 | 			 * the frame got repeated. | 
 | 			 * Received frame start with ST21NFCA_SOF_EOF + 00. | 
 | 			 */ | 
 | 			skb_trim(skb, 0); | 
 | 			phy->current_read_len = 0; | 
 | 		} | 
 |  | 
 | 		skb_put_data(skb, buf, len); | 
 |  | 
 | 		if (skb->data[skb->len - 1] == ST21NFCA_SOF_EOF) { | 
 | 			phy->current_read_len = 0; | 
 | 			return st21nfca_hci_i2c_repack(skb); | 
 | 		} | 
 | 		phy->current_read_len++; | 
 | 		return -EAGAIN; | 
 | 	} | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | /* | 
 |  * Reads an shdlc frame from the chip. This is not as straightforward as it | 
 |  * seems. The frame format is data-crc, and corruption can occur anywhere | 
 |  * while transiting on i2c bus, such that we could read an invalid data. | 
 |  * The tricky case is when we read a corrupted data or crc. We must detect | 
 |  * this here in order to determine that data can be transmitted to the hci | 
 |  * core. This is the reason why we check the crc here. | 
 |  * The CLF will repeat a frame until we send a RR on that frame. | 
 |  * | 
 |  * On ST21NFCA, IRQ goes in idle when read starts. As no size information are | 
 |  * available in the incoming data, other IRQ might come. Every IRQ will trigger | 
 |  * a read sequence with different length and will fill the current frame. | 
 |  * The reception is complete once we reach a ST21NFCA_SOF_EOF. | 
 |  */ | 
 | static irqreturn_t st21nfca_hci_irq_thread_fn(int irq, void *phy_id) | 
 | { | 
 | 	struct st21nfca_i2c_phy *phy = phy_id; | 
 | 	struct i2c_client *client; | 
 |  | 
 | 	int r; | 
 |  | 
 | 	if (!phy || irq != phy->i2c_dev->irq) { | 
 | 		WARN_ON_ONCE(1); | 
 | 		return IRQ_NONE; | 
 | 	} | 
 |  | 
 | 	client = phy->i2c_dev; | 
 | 	dev_dbg(&client->dev, "IRQ\n"); | 
 |  | 
 | 	if (phy->hard_fault != 0) | 
 | 		return IRQ_HANDLED; | 
 |  | 
 | 	r = st21nfca_hci_i2c_read(phy, phy->pending_skb); | 
 | 	if (r == -EREMOTEIO) { | 
 | 		phy->hard_fault = r; | 
 |  | 
 | 		nfc_hci_recv_frame(phy->hdev, NULL); | 
 |  | 
 | 		return IRQ_HANDLED; | 
 | 	} else if (r == -EAGAIN || r == -EIO) { | 
 | 		return IRQ_HANDLED; | 
 | 	} else if (r == -EBADMSG && phy->crc_trials < ARRAY_SIZE(wait_tab)) { | 
 | 		/* | 
 | 		 * With ST21NFCA, only one interface (I2C, RF or SWP) | 
 | 		 * may be active at a time. | 
 | 		 * Having incorrect crc is usually due to i2c macrocell | 
 | 		 * deactivation in the middle of a transmission. | 
 | 		 * It may generate corrupted data on i2c. | 
 | 		 * We give sometime to get i2c back. | 
 | 		 * The complete frame will be repeated. | 
 | 		 */ | 
 | 		msleep(wait_tab[phy->crc_trials]); | 
 | 		phy->crc_trials++; | 
 | 		phy->current_read_len = 0; | 
 | 		kfree_skb(phy->pending_skb); | 
 | 	} else if (r > 0) { | 
 | 		/* | 
 | 		 * We succeeded to read data from the CLF and | 
 | 		 * data is valid. | 
 | 		 * Reset counter. | 
 | 		 */ | 
 | 		nfc_hci_recv_frame(phy->hdev, phy->pending_skb); | 
 | 		phy->crc_trials = 0; | 
 | 	} else { | 
 | 		kfree_skb(phy->pending_skb); | 
 | 	} | 
 |  | 
 | 	phy->pending_skb = alloc_skb(ST21NFCA_HCI_LLC_MAX_SIZE * 2, GFP_KERNEL); | 
 | 	if (phy->pending_skb == NULL) { | 
 | 		phy->hard_fault = -ENOMEM; | 
 | 		nfc_hci_recv_frame(phy->hdev, NULL); | 
 | 	} | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static struct nfc_phy_ops i2c_phy_ops = { | 
 | 	.write = st21nfca_hci_i2c_write, | 
 | 	.enable = st21nfca_hci_i2c_enable, | 
 | 	.disable = st21nfca_hci_i2c_disable, | 
 | }; | 
 |  | 
 | static const struct acpi_gpio_params enable_gpios = { 1, 0, false }; | 
 |  | 
 | static const struct acpi_gpio_mapping acpi_st21nfca_gpios[] = { | 
 | 	{ "enable-gpios", &enable_gpios, 1 }, | 
 | 	{}, | 
 | }; | 
 |  | 
 | static int st21nfca_hci_i2c_probe(struct i2c_client *client, | 
 | 				  const struct i2c_device_id *id) | 
 | { | 
 | 	struct device *dev = &client->dev; | 
 | 	struct st21nfca_i2c_phy *phy; | 
 | 	int r; | 
 |  | 
 | 	dev_dbg(&client->dev, "%s\n", __func__); | 
 | 	dev_dbg(&client->dev, "IRQ: %d\n", client->irq); | 
 |  | 
 | 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { | 
 | 		nfc_err(&client->dev, "Need I2C_FUNC_I2C\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	phy = devm_kzalloc(&client->dev, sizeof(struct st21nfca_i2c_phy), | 
 | 			   GFP_KERNEL); | 
 | 	if (!phy) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	phy->i2c_dev = client; | 
 | 	phy->pending_skb = alloc_skb(ST21NFCA_HCI_LLC_MAX_SIZE * 2, GFP_KERNEL); | 
 | 	if (phy->pending_skb == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	phy->current_read_len = 0; | 
 | 	phy->crc_trials = 0; | 
 | 	mutex_init(&phy->phy_lock); | 
 | 	i2c_set_clientdata(client, phy); | 
 |  | 
 | 	r = devm_acpi_dev_add_driver_gpios(dev, acpi_st21nfca_gpios); | 
 | 	if (r) | 
 | 		dev_dbg(dev, "Unable to add GPIO mapping table\n"); | 
 |  | 
 | 	/* Get EN GPIO from resource provider */ | 
 | 	phy->gpiod_ena = devm_gpiod_get(dev, "enable", GPIOD_OUT_LOW); | 
 | 	if (IS_ERR(phy->gpiod_ena)) { | 
 | 		nfc_err(dev, "Unable to get ENABLE GPIO\n"); | 
 | 		return PTR_ERR(phy->gpiod_ena); | 
 | 	} | 
 |  | 
 | 	phy->se_status.is_ese_present = | 
 | 			device_property_read_bool(&client->dev, "ese-present"); | 
 | 	phy->se_status.is_uicc_present = | 
 | 			device_property_read_bool(&client->dev, "uicc-present"); | 
 |  | 
 | 	r = st21nfca_hci_platform_init(phy); | 
 | 	if (r < 0) { | 
 | 		nfc_err(&client->dev, "Unable to reboot st21nfca\n"); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = devm_request_threaded_irq(&client->dev, client->irq, NULL, | 
 | 				st21nfca_hci_irq_thread_fn, | 
 | 				IRQF_ONESHOT, | 
 | 				ST21NFCA_HCI_DRIVER_NAME, phy); | 
 | 	if (r < 0) { | 
 | 		nfc_err(&client->dev, "Unable to register IRQ handler\n"); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	return st21nfca_hci_probe(phy, &i2c_phy_ops, LLC_SHDLC_NAME, | 
 | 					ST21NFCA_FRAME_HEADROOM, | 
 | 					ST21NFCA_FRAME_TAILROOM, | 
 | 					ST21NFCA_HCI_LLC_MAX_PAYLOAD, | 
 | 					&phy->hdev, | 
 | 					&phy->se_status); | 
 | } | 
 |  | 
 | static int st21nfca_hci_i2c_remove(struct i2c_client *client) | 
 | { | 
 | 	struct st21nfca_i2c_phy *phy = i2c_get_clientdata(client); | 
 |  | 
 | 	dev_dbg(&client->dev, "%s\n", __func__); | 
 |  | 
 | 	st21nfca_hci_remove(phy->hdev); | 
 |  | 
 | 	if (phy->powered) | 
 | 		st21nfca_hci_i2c_disable(phy); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct i2c_device_id st21nfca_hci_i2c_id_table[] = { | 
 | 	{ST21NFCA_HCI_DRIVER_NAME, 0}, | 
 | 	{} | 
 | }; | 
 | MODULE_DEVICE_TABLE(i2c, st21nfca_hci_i2c_id_table); | 
 |  | 
 | static const struct acpi_device_id st21nfca_hci_i2c_acpi_match[] = { | 
 | 	{"SMO2100", 0}, | 
 | 	{} | 
 | }; | 
 | MODULE_DEVICE_TABLE(acpi, st21nfca_hci_i2c_acpi_match); | 
 |  | 
 | static const struct of_device_id of_st21nfca_i2c_match[] = { | 
 | 	{ .compatible = "st,st21nfca-i2c", }, | 
 | 	{ .compatible = "st,st21nfca_i2c", }, | 
 | 	{} | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, of_st21nfca_i2c_match); | 
 |  | 
 | static struct i2c_driver st21nfca_hci_i2c_driver = { | 
 | 	.driver = { | 
 | 		.name = ST21NFCA_HCI_I2C_DRIVER_NAME, | 
 | 		.of_match_table = of_match_ptr(of_st21nfca_i2c_match), | 
 | 		.acpi_match_table = ACPI_PTR(st21nfca_hci_i2c_acpi_match), | 
 | 	}, | 
 | 	.probe = st21nfca_hci_i2c_probe, | 
 | 	.id_table = st21nfca_hci_i2c_id_table, | 
 | 	.remove = st21nfca_hci_i2c_remove, | 
 | }; | 
 | module_i2c_driver(st21nfca_hci_i2c_driver); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_DESCRIPTION(DRIVER_DESC); |