| /* | 
 |  * This file contains shadow memory manipulation code. | 
 |  * | 
 |  * Copyright (c) 2014 Samsung Electronics Co., Ltd. | 
 |  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> | 
 |  * | 
 |  * Some code borrowed from https://github.com/xairy/kasan-prototype by | 
 |  *        Andrey Konovalov <adech.fo@gmail.com> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 | #define DISABLE_BRANCH_PROFILING | 
 |  | 
 | #include <linux/export.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kasan.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/kmemleak.h> | 
 | #include <linux/linkage.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/printk.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/task_stack.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/stacktrace.h> | 
 | #include <linux/string.h> | 
 | #include <linux/types.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/bug.h> | 
 |  | 
 | #include "kasan.h" | 
 | #include "../slab.h" | 
 |  | 
 | void kasan_enable_current(void) | 
 | { | 
 | 	current->kasan_depth++; | 
 | } | 
 |  | 
 | void kasan_disable_current(void) | 
 | { | 
 | 	current->kasan_depth--; | 
 | } | 
 |  | 
 | /* | 
 |  * Poisons the shadow memory for 'size' bytes starting from 'addr'. | 
 |  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE. | 
 |  */ | 
 | static void kasan_poison_shadow(const void *address, size_t size, u8 value) | 
 | { | 
 | 	void *shadow_start, *shadow_end; | 
 |  | 
 | 	shadow_start = kasan_mem_to_shadow(address); | 
 | 	shadow_end = kasan_mem_to_shadow(address + size); | 
 |  | 
 | 	memset(shadow_start, value, shadow_end - shadow_start); | 
 | } | 
 |  | 
 | void kasan_unpoison_shadow(const void *address, size_t size) | 
 | { | 
 | 	kasan_poison_shadow(address, size, 0); | 
 |  | 
 | 	if (size & KASAN_SHADOW_MASK) { | 
 | 		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); | 
 | 		*shadow = size & KASAN_SHADOW_MASK; | 
 | 	} | 
 | } | 
 |  | 
 | static void __kasan_unpoison_stack(struct task_struct *task, const void *sp) | 
 | { | 
 | 	void *base = task_stack_page(task); | 
 | 	size_t size = sp - base; | 
 |  | 
 | 	kasan_unpoison_shadow(base, size); | 
 | } | 
 |  | 
 | /* Unpoison the entire stack for a task. */ | 
 | void kasan_unpoison_task_stack(struct task_struct *task) | 
 | { | 
 | 	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE); | 
 | } | 
 |  | 
 | /* Unpoison the stack for the current task beyond a watermark sp value. */ | 
 | asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) | 
 | { | 
 | 	/* | 
 | 	 * Calculate the task stack base address.  Avoid using 'current' | 
 | 	 * because this function is called by early resume code which hasn't | 
 | 	 * yet set up the percpu register (%gs). | 
 | 	 */ | 
 | 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); | 
 |  | 
 | 	kasan_unpoison_shadow(base, watermark - base); | 
 | } | 
 |  | 
 | /* | 
 |  * Clear all poison for the region between the current SP and a provided | 
 |  * watermark value, as is sometimes required prior to hand-crafted asm function | 
 |  * returns in the middle of functions. | 
 |  */ | 
 | void kasan_unpoison_stack_above_sp_to(const void *watermark) | 
 | { | 
 | 	const void *sp = __builtin_frame_address(0); | 
 | 	size_t size = watermark - sp; | 
 |  | 
 | 	if (WARN_ON(sp > watermark)) | 
 | 		return; | 
 | 	kasan_unpoison_shadow(sp, size); | 
 | } | 
 |  | 
 | /* | 
 |  * All functions below always inlined so compiler could | 
 |  * perform better optimizations in each of __asan_loadX/__assn_storeX | 
 |  * depending on memory access size X. | 
 |  */ | 
 |  | 
 | static __always_inline bool memory_is_poisoned_1(unsigned long addr) | 
 | { | 
 | 	s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr); | 
 |  | 
 | 	if (unlikely(shadow_value)) { | 
 | 		s8 last_accessible_byte = addr & KASAN_SHADOW_MASK; | 
 | 		return unlikely(last_accessible_byte >= shadow_value); | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr, | 
 | 						unsigned long size) | 
 | { | 
 | 	u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr); | 
 |  | 
 | 	/* | 
 | 	 * Access crosses 8(shadow size)-byte boundary. Such access maps | 
 | 	 * into 2 shadow bytes, so we need to check them both. | 
 | 	 */ | 
 | 	if (unlikely(((addr + size - 1) & KASAN_SHADOW_MASK) < size - 1)) | 
 | 		return *shadow_addr || memory_is_poisoned_1(addr + size - 1); | 
 |  | 
 | 	return memory_is_poisoned_1(addr + size - 1); | 
 | } | 
 |  | 
 | static __always_inline bool memory_is_poisoned_16(unsigned long addr) | 
 | { | 
 | 	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr); | 
 |  | 
 | 	/* Unaligned 16-bytes access maps into 3 shadow bytes. */ | 
 | 	if (unlikely(!IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE))) | 
 | 		return *shadow_addr || memory_is_poisoned_1(addr + 15); | 
 |  | 
 | 	return *shadow_addr; | 
 | } | 
 |  | 
 | static __always_inline unsigned long bytes_is_nonzero(const u8 *start, | 
 | 					size_t size) | 
 | { | 
 | 	while (size) { | 
 | 		if (unlikely(*start)) | 
 | 			return (unsigned long)start; | 
 | 		start++; | 
 | 		size--; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __always_inline unsigned long memory_is_nonzero(const void *start, | 
 | 						const void *end) | 
 | { | 
 | 	unsigned int words; | 
 | 	unsigned long ret; | 
 | 	unsigned int prefix = (unsigned long)start % 8; | 
 |  | 
 | 	if (end - start <= 16) | 
 | 		return bytes_is_nonzero(start, end - start); | 
 |  | 
 | 	if (prefix) { | 
 | 		prefix = 8 - prefix; | 
 | 		ret = bytes_is_nonzero(start, prefix); | 
 | 		if (unlikely(ret)) | 
 | 			return ret; | 
 | 		start += prefix; | 
 | 	} | 
 |  | 
 | 	words = (end - start) / 8; | 
 | 	while (words) { | 
 | 		if (unlikely(*(u64 *)start)) | 
 | 			return bytes_is_nonzero(start, 8); | 
 | 		start += 8; | 
 | 		words--; | 
 | 	} | 
 |  | 
 | 	return bytes_is_nonzero(start, (end - start) % 8); | 
 | } | 
 |  | 
 | static __always_inline bool memory_is_poisoned_n(unsigned long addr, | 
 | 						size_t size) | 
 | { | 
 | 	unsigned long ret; | 
 |  | 
 | 	ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr), | 
 | 			kasan_mem_to_shadow((void *)addr + size - 1) + 1); | 
 |  | 
 | 	if (unlikely(ret)) { | 
 | 		unsigned long last_byte = addr + size - 1; | 
 | 		s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte); | 
 |  | 
 | 		if (unlikely(ret != (unsigned long)last_shadow || | 
 | 			((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow))) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size) | 
 | { | 
 | 	if (__builtin_constant_p(size)) { | 
 | 		switch (size) { | 
 | 		case 1: | 
 | 			return memory_is_poisoned_1(addr); | 
 | 		case 2: | 
 | 		case 4: | 
 | 		case 8: | 
 | 			return memory_is_poisoned_2_4_8(addr, size); | 
 | 		case 16: | 
 | 			return memory_is_poisoned_16(addr); | 
 | 		default: | 
 | 			BUILD_BUG(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return memory_is_poisoned_n(addr, size); | 
 | } | 
 |  | 
 | static __always_inline void check_memory_region_inline(unsigned long addr, | 
 | 						size_t size, bool write, | 
 | 						unsigned long ret_ip) | 
 | { | 
 | 	if (unlikely(size == 0)) | 
 | 		return; | 
 |  | 
 | 	if (unlikely((void *)addr < | 
 | 		kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) { | 
 | 		kasan_report(addr, size, write, ret_ip); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (likely(!memory_is_poisoned(addr, size))) | 
 | 		return; | 
 |  | 
 | 	kasan_report(addr, size, write, ret_ip); | 
 | } | 
 |  | 
 | static void check_memory_region(unsigned long addr, | 
 | 				size_t size, bool write, | 
 | 				unsigned long ret_ip) | 
 | { | 
 | 	check_memory_region_inline(addr, size, write, ret_ip); | 
 | } | 
 |  | 
 | void kasan_check_read(const volatile void *p, unsigned int size) | 
 | { | 
 | 	check_memory_region((unsigned long)p, size, false, _RET_IP_); | 
 | } | 
 | EXPORT_SYMBOL(kasan_check_read); | 
 |  | 
 | void kasan_check_write(const volatile void *p, unsigned int size) | 
 | { | 
 | 	check_memory_region((unsigned long)p, size, true, _RET_IP_); | 
 | } | 
 | EXPORT_SYMBOL(kasan_check_write); | 
 |  | 
 | #undef memset | 
 | void *memset(void *addr, int c, size_t len) | 
 | { | 
 | 	check_memory_region((unsigned long)addr, len, true, _RET_IP_); | 
 |  | 
 | 	return __memset(addr, c, len); | 
 | } | 
 |  | 
 | #undef memmove | 
 | void *memmove(void *dest, const void *src, size_t len) | 
 | { | 
 | 	check_memory_region((unsigned long)src, len, false, _RET_IP_); | 
 | 	check_memory_region((unsigned long)dest, len, true, _RET_IP_); | 
 |  | 
 | 	return __memmove(dest, src, len); | 
 | } | 
 |  | 
 | #undef memcpy | 
 | void *memcpy(void *dest, const void *src, size_t len) | 
 | { | 
 | 	check_memory_region((unsigned long)src, len, false, _RET_IP_); | 
 | 	check_memory_region((unsigned long)dest, len, true, _RET_IP_); | 
 |  | 
 | 	return __memcpy(dest, src, len); | 
 | } | 
 |  | 
 | void kasan_alloc_pages(struct page *page, unsigned int order) | 
 | { | 
 | 	if (likely(!PageHighMem(page))) | 
 | 		kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order); | 
 | } | 
 |  | 
 | void kasan_free_pages(struct page *page, unsigned int order) | 
 | { | 
 | 	if (likely(!PageHighMem(page))) | 
 | 		kasan_poison_shadow(page_address(page), | 
 | 				PAGE_SIZE << order, | 
 | 				KASAN_FREE_PAGE); | 
 | } | 
 |  | 
 | /* | 
 |  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. | 
 |  * For larger allocations larger redzones are used. | 
 |  */ | 
 | static size_t optimal_redzone(size_t object_size) | 
 | { | 
 | 	int rz = | 
 | 		object_size <= 64        - 16   ? 16 : | 
 | 		object_size <= 128       - 32   ? 32 : | 
 | 		object_size <= 512       - 64   ? 64 : | 
 | 		object_size <= 4096      - 128  ? 128 : | 
 | 		object_size <= (1 << 14) - 256  ? 256 : | 
 | 		object_size <= (1 << 15) - 512  ? 512 : | 
 | 		object_size <= (1 << 16) - 1024 ? 1024 : 2048; | 
 | 	return rz; | 
 | } | 
 |  | 
 | void kasan_cache_create(struct kmem_cache *cache, size_t *size, | 
 | 			unsigned long *flags) | 
 | { | 
 | 	int redzone_adjust; | 
 | 	int orig_size = *size; | 
 |  | 
 | 	/* Add alloc meta. */ | 
 | 	cache->kasan_info.alloc_meta_offset = *size; | 
 | 	*size += sizeof(struct kasan_alloc_meta); | 
 |  | 
 | 	/* Add free meta. */ | 
 | 	if (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor || | 
 | 	    cache->object_size < sizeof(struct kasan_free_meta)) { | 
 | 		cache->kasan_info.free_meta_offset = *size; | 
 | 		*size += sizeof(struct kasan_free_meta); | 
 | 	} | 
 | 	redzone_adjust = optimal_redzone(cache->object_size) - | 
 | 		(*size - cache->object_size); | 
 |  | 
 | 	if (redzone_adjust > 0) | 
 | 		*size += redzone_adjust; | 
 |  | 
 | 	*size = min(KMALLOC_MAX_SIZE, max(*size, cache->object_size + | 
 | 					optimal_redzone(cache->object_size))); | 
 |  | 
 | 	/* | 
 | 	 * If the metadata doesn't fit, don't enable KASAN at all. | 
 | 	 */ | 
 | 	if (*size <= cache->kasan_info.alloc_meta_offset || | 
 | 			*size <= cache->kasan_info.free_meta_offset) { | 
 | 		cache->kasan_info.alloc_meta_offset = 0; | 
 | 		cache->kasan_info.free_meta_offset = 0; | 
 | 		*size = orig_size; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	*flags |= SLAB_KASAN; | 
 | } | 
 |  | 
 | void kasan_cache_shrink(struct kmem_cache *cache) | 
 | { | 
 | 	quarantine_remove_cache(cache); | 
 | } | 
 |  | 
 | void kasan_cache_shutdown(struct kmem_cache *cache) | 
 | { | 
 | 	quarantine_remove_cache(cache); | 
 | } | 
 |  | 
 | size_t kasan_metadata_size(struct kmem_cache *cache) | 
 | { | 
 | 	return (cache->kasan_info.alloc_meta_offset ? | 
 | 		sizeof(struct kasan_alloc_meta) : 0) + | 
 | 		(cache->kasan_info.free_meta_offset ? | 
 | 		sizeof(struct kasan_free_meta) : 0); | 
 | } | 
 |  | 
 | void kasan_poison_slab(struct page *page) | 
 | { | 
 | 	kasan_poison_shadow(page_address(page), | 
 | 			PAGE_SIZE << compound_order(page), | 
 | 			KASAN_KMALLOC_REDZONE); | 
 | } | 
 |  | 
 | void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) | 
 | { | 
 | 	kasan_unpoison_shadow(object, cache->object_size); | 
 | } | 
 |  | 
 | void kasan_poison_object_data(struct kmem_cache *cache, void *object) | 
 | { | 
 | 	kasan_poison_shadow(object, | 
 | 			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE), | 
 | 			KASAN_KMALLOC_REDZONE); | 
 | } | 
 |  | 
 | static inline int in_irqentry_text(unsigned long ptr) | 
 | { | 
 | 	return (ptr >= (unsigned long)&__irqentry_text_start && | 
 | 		ptr < (unsigned long)&__irqentry_text_end) || | 
 | 		(ptr >= (unsigned long)&__softirqentry_text_start && | 
 | 		 ptr < (unsigned long)&__softirqentry_text_end); | 
 | } | 
 |  | 
 | static inline void filter_irq_stacks(struct stack_trace *trace) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!trace->nr_entries) | 
 | 		return; | 
 | 	for (i = 0; i < trace->nr_entries; i++) | 
 | 		if (in_irqentry_text(trace->entries[i])) { | 
 | 			/* Include the irqentry function into the stack. */ | 
 | 			trace->nr_entries = i + 1; | 
 | 			break; | 
 | 		} | 
 | } | 
 |  | 
 | static inline depot_stack_handle_t save_stack(gfp_t flags) | 
 | { | 
 | 	unsigned long entries[KASAN_STACK_DEPTH]; | 
 | 	struct stack_trace trace = { | 
 | 		.nr_entries = 0, | 
 | 		.entries = entries, | 
 | 		.max_entries = KASAN_STACK_DEPTH, | 
 | 		.skip = 0 | 
 | 	}; | 
 |  | 
 | 	save_stack_trace(&trace); | 
 | 	filter_irq_stacks(&trace); | 
 | 	if (trace.nr_entries != 0 && | 
 | 	    trace.entries[trace.nr_entries-1] == ULONG_MAX) | 
 | 		trace.nr_entries--; | 
 |  | 
 | 	return depot_save_stack(&trace, flags); | 
 | } | 
 |  | 
 | static inline void set_track(struct kasan_track *track, gfp_t flags) | 
 | { | 
 | 	track->pid = current->pid; | 
 | 	track->stack = save_stack(flags); | 
 | } | 
 |  | 
 | struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, | 
 | 					const void *object) | 
 | { | 
 | 	BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32); | 
 | 	return (void *)object + cache->kasan_info.alloc_meta_offset; | 
 | } | 
 |  | 
 | struct kasan_free_meta *get_free_info(struct kmem_cache *cache, | 
 | 				      const void *object) | 
 | { | 
 | 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); | 
 | 	return (void *)object + cache->kasan_info.free_meta_offset; | 
 | } | 
 |  | 
 | void kasan_init_slab_obj(struct kmem_cache *cache, const void *object) | 
 | { | 
 | 	struct kasan_alloc_meta *alloc_info; | 
 |  | 
 | 	if (!(cache->flags & SLAB_KASAN)) | 
 | 		return; | 
 |  | 
 | 	alloc_info = get_alloc_info(cache, object); | 
 | 	__memset(alloc_info, 0, sizeof(*alloc_info)); | 
 | } | 
 |  | 
 | void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags) | 
 | { | 
 | 	kasan_kmalloc(cache, object, cache->object_size, flags); | 
 | } | 
 |  | 
 | static void kasan_poison_slab_free(struct kmem_cache *cache, void *object) | 
 | { | 
 | 	unsigned long size = cache->object_size; | 
 | 	unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE); | 
 |  | 
 | 	/* RCU slabs could be legally used after free within the RCU period */ | 
 | 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) | 
 | 		return; | 
 |  | 
 | 	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE); | 
 | } | 
 |  | 
 | bool kasan_slab_free(struct kmem_cache *cache, void *object) | 
 | { | 
 | 	s8 shadow_byte; | 
 |  | 
 | 	/* RCU slabs could be legally used after free within the RCU period */ | 
 | 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) | 
 | 		return false; | 
 |  | 
 | 	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object)); | 
 | 	if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) { | 
 | 		kasan_report_double_free(cache, object, | 
 | 				__builtin_return_address(1)); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	kasan_poison_slab_free(cache, object); | 
 |  | 
 | 	if (unlikely(!(cache->flags & SLAB_KASAN))) | 
 | 		return false; | 
 |  | 
 | 	set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT); | 
 | 	quarantine_put(get_free_info(cache, object), cache); | 
 | 	return true; | 
 | } | 
 |  | 
 | void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size, | 
 | 		   gfp_t flags) | 
 | { | 
 | 	unsigned long redzone_start; | 
 | 	unsigned long redzone_end; | 
 |  | 
 | 	if (gfpflags_allow_blocking(flags)) | 
 | 		quarantine_reduce(); | 
 |  | 
 | 	if (unlikely(object == NULL)) | 
 | 		return; | 
 |  | 
 | 	redzone_start = round_up((unsigned long)(object + size), | 
 | 				KASAN_SHADOW_SCALE_SIZE); | 
 | 	redzone_end = round_up((unsigned long)object + cache->object_size, | 
 | 				KASAN_SHADOW_SCALE_SIZE); | 
 |  | 
 | 	kasan_unpoison_shadow(object, size); | 
 | 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, | 
 | 		KASAN_KMALLOC_REDZONE); | 
 |  | 
 | 	if (cache->flags & SLAB_KASAN) | 
 | 		set_track(&get_alloc_info(cache, object)->alloc_track, flags); | 
 | } | 
 | EXPORT_SYMBOL(kasan_kmalloc); | 
 |  | 
 | void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned long redzone_start; | 
 | 	unsigned long redzone_end; | 
 |  | 
 | 	if (gfpflags_allow_blocking(flags)) | 
 | 		quarantine_reduce(); | 
 |  | 
 | 	if (unlikely(ptr == NULL)) | 
 | 		return; | 
 |  | 
 | 	page = virt_to_page(ptr); | 
 | 	redzone_start = round_up((unsigned long)(ptr + size), | 
 | 				KASAN_SHADOW_SCALE_SIZE); | 
 | 	redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page)); | 
 |  | 
 | 	kasan_unpoison_shadow(ptr, size); | 
 | 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, | 
 | 		KASAN_PAGE_REDZONE); | 
 | } | 
 |  | 
 | void kasan_krealloc(const void *object, size_t size, gfp_t flags) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	if (unlikely(object == ZERO_SIZE_PTR)) | 
 | 		return; | 
 |  | 
 | 	page = virt_to_head_page(object); | 
 |  | 
 | 	if (unlikely(!PageSlab(page))) | 
 | 		kasan_kmalloc_large(object, size, flags); | 
 | 	else | 
 | 		kasan_kmalloc(page->slab_cache, object, size, flags); | 
 | } | 
 |  | 
 | void kasan_poison_kfree(void *ptr) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = virt_to_head_page(ptr); | 
 |  | 
 | 	if (unlikely(!PageSlab(page))) | 
 | 		kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page), | 
 | 				KASAN_FREE_PAGE); | 
 | 	else | 
 | 		kasan_poison_slab_free(page->slab_cache, ptr); | 
 | } | 
 |  | 
 | void kasan_kfree_large(const void *ptr) | 
 | { | 
 | 	struct page *page = virt_to_page(ptr); | 
 |  | 
 | 	kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page), | 
 | 			KASAN_FREE_PAGE); | 
 | } | 
 |  | 
 | int kasan_module_alloc(void *addr, size_t size) | 
 | { | 
 | 	void *ret; | 
 | 	size_t scaled_size; | 
 | 	size_t shadow_size; | 
 | 	unsigned long shadow_start; | 
 |  | 
 | 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr); | 
 | 	scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT; | 
 | 	shadow_size = round_up(scaled_size, PAGE_SIZE); | 
 |  | 
 | 	if (WARN_ON(!PAGE_ALIGNED(shadow_start))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start, | 
 | 			shadow_start + shadow_size, | 
 | 			GFP_KERNEL | __GFP_ZERO, | 
 | 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, | 
 | 			__builtin_return_address(0)); | 
 |  | 
 | 	if (ret) { | 
 | 		find_vm_area(addr)->flags |= VM_KASAN; | 
 | 		kmemleak_ignore(ret); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void kasan_free_shadow(const struct vm_struct *vm) | 
 | { | 
 | 	if (vm->flags & VM_KASAN) | 
 | 		vfree(kasan_mem_to_shadow(vm->addr)); | 
 | } | 
 |  | 
 | static void register_global(struct kasan_global *global) | 
 | { | 
 | 	size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE); | 
 |  | 
 | 	kasan_unpoison_shadow(global->beg, global->size); | 
 |  | 
 | 	kasan_poison_shadow(global->beg + aligned_size, | 
 | 		global->size_with_redzone - aligned_size, | 
 | 		KASAN_GLOBAL_REDZONE); | 
 | } | 
 |  | 
 | void __asan_register_globals(struct kasan_global *globals, size_t size) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < size; i++) | 
 | 		register_global(&globals[i]); | 
 | } | 
 | EXPORT_SYMBOL(__asan_register_globals); | 
 |  | 
 | void __asan_unregister_globals(struct kasan_global *globals, size_t size) | 
 | { | 
 | } | 
 | EXPORT_SYMBOL(__asan_unregister_globals); | 
 |  | 
 | #define DEFINE_ASAN_LOAD_STORE(size)					\ | 
 | 	void __asan_load##size(unsigned long addr)			\ | 
 | 	{								\ | 
 | 		check_memory_region_inline(addr, size, false, _RET_IP_);\ | 
 | 	}								\ | 
 | 	EXPORT_SYMBOL(__asan_load##size);				\ | 
 | 	__alias(__asan_load##size)					\ | 
 | 	void __asan_load##size##_noabort(unsigned long);		\ | 
 | 	EXPORT_SYMBOL(__asan_load##size##_noabort);			\ | 
 | 	void __asan_store##size(unsigned long addr)			\ | 
 | 	{								\ | 
 | 		check_memory_region_inline(addr, size, true, _RET_IP_);	\ | 
 | 	}								\ | 
 | 	EXPORT_SYMBOL(__asan_store##size);				\ | 
 | 	__alias(__asan_store##size)					\ | 
 | 	void __asan_store##size##_noabort(unsigned long);		\ | 
 | 	EXPORT_SYMBOL(__asan_store##size##_noabort) | 
 |  | 
 | DEFINE_ASAN_LOAD_STORE(1); | 
 | DEFINE_ASAN_LOAD_STORE(2); | 
 | DEFINE_ASAN_LOAD_STORE(4); | 
 | DEFINE_ASAN_LOAD_STORE(8); | 
 | DEFINE_ASAN_LOAD_STORE(16); | 
 |  | 
 | void __asan_loadN(unsigned long addr, size_t size) | 
 | { | 
 | 	check_memory_region(addr, size, false, _RET_IP_); | 
 | } | 
 | EXPORT_SYMBOL(__asan_loadN); | 
 |  | 
 | __alias(__asan_loadN) | 
 | void __asan_loadN_noabort(unsigned long, size_t); | 
 | EXPORT_SYMBOL(__asan_loadN_noabort); | 
 |  | 
 | void __asan_storeN(unsigned long addr, size_t size) | 
 | { | 
 | 	check_memory_region(addr, size, true, _RET_IP_); | 
 | } | 
 | EXPORT_SYMBOL(__asan_storeN); | 
 |  | 
 | __alias(__asan_storeN) | 
 | void __asan_storeN_noabort(unsigned long, size_t); | 
 | EXPORT_SYMBOL(__asan_storeN_noabort); | 
 |  | 
 | /* to shut up compiler complaints */ | 
 | void __asan_handle_no_return(void) {} | 
 | EXPORT_SYMBOL(__asan_handle_no_return); | 
 |  | 
 | /* Emitted by compiler to poison large objects when they go out of scope. */ | 
 | void __asan_poison_stack_memory(const void *addr, size_t size) | 
 | { | 
 | 	/* | 
 | 	 * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded | 
 | 	 * by redzones, so we simply round up size to simplify logic. | 
 | 	 */ | 
 | 	kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE), | 
 | 			    KASAN_USE_AFTER_SCOPE); | 
 | } | 
 | EXPORT_SYMBOL(__asan_poison_stack_memory); | 
 |  | 
 | /* Emitted by compiler to unpoison large objects when they go into scope. */ | 
 | void __asan_unpoison_stack_memory(const void *addr, size_t size) | 
 | { | 
 | 	kasan_unpoison_shadow(addr, size); | 
 | } | 
 | EXPORT_SYMBOL(__asan_unpoison_stack_memory); | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | static bool shadow_mapped(unsigned long addr) | 
 | { | 
 | 	pgd_t *pgd = pgd_offset_k(addr); | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 |  | 
 | 	if (pgd_none(*pgd)) | 
 | 		return false; | 
 | 	p4d = p4d_offset(pgd, addr); | 
 | 	if (p4d_none(*p4d)) | 
 | 		return false; | 
 | 	pud = pud_offset(p4d, addr); | 
 | 	if (pud_none(*pud)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * We can't use pud_large() or pud_huge(), the first one is | 
 | 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse | 
 | 	 * pud_bad(), if pud is bad then it's bad because it's huge. | 
 | 	 */ | 
 | 	if (pud_bad(*pud)) | 
 | 		return true; | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	if (pmd_none(*pmd)) | 
 | 		return false; | 
 |  | 
 | 	if (pmd_bad(*pmd)) | 
 | 		return true; | 
 | 	pte = pte_offset_kernel(pmd, addr); | 
 | 	return !pte_none(*pte); | 
 | } | 
 |  | 
 | static int __meminit kasan_mem_notifier(struct notifier_block *nb, | 
 | 			unsigned long action, void *data) | 
 | { | 
 | 	struct memory_notify *mem_data = data; | 
 | 	unsigned long nr_shadow_pages, start_kaddr, shadow_start; | 
 | 	unsigned long shadow_end, shadow_size; | 
 |  | 
 | 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; | 
 | 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); | 
 | 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); | 
 | 	shadow_size = nr_shadow_pages << PAGE_SHIFT; | 
 | 	shadow_end = shadow_start + shadow_size; | 
 |  | 
 | 	if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) || | 
 | 		WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT))) | 
 | 		return NOTIFY_BAD; | 
 |  | 
 | 	switch (action) { | 
 | 	case MEM_GOING_ONLINE: { | 
 | 		void *ret; | 
 |  | 
 | 		/* | 
 | 		 * If shadow is mapped already than it must have been mapped | 
 | 		 * during the boot. This could happen if we onlining previously | 
 | 		 * offlined memory. | 
 | 		 */ | 
 | 		if (shadow_mapped(shadow_start)) | 
 | 			return NOTIFY_OK; | 
 |  | 
 | 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, | 
 | 					shadow_end, GFP_KERNEL, | 
 | 					PAGE_KERNEL, VM_NO_GUARD, | 
 | 					pfn_to_nid(mem_data->start_pfn), | 
 | 					__builtin_return_address(0)); | 
 | 		if (!ret) | 
 | 			return NOTIFY_BAD; | 
 |  | 
 | 		kmemleak_ignore(ret); | 
 | 		return NOTIFY_OK; | 
 | 	} | 
 | 	case MEM_CANCEL_ONLINE: | 
 | 	case MEM_OFFLINE: { | 
 | 		struct vm_struct *vm; | 
 |  | 
 | 		/* | 
 | 		 * shadow_start was either mapped during boot by kasan_init() | 
 | 		 * or during memory online by __vmalloc_node_range(). | 
 | 		 * In the latter case we can use vfree() to free shadow. | 
 | 		 * Non-NULL result of the find_vm_area() will tell us if | 
 | 		 * that was the second case. | 
 | 		 * | 
 | 		 * Currently it's not possible to free shadow mapped | 
 | 		 * during boot by kasan_init(). It's because the code | 
 | 		 * to do that hasn't been written yet. So we'll just | 
 | 		 * leak the memory. | 
 | 		 */ | 
 | 		vm = find_vm_area((void *)shadow_start); | 
 | 		if (vm) | 
 | 			vfree((void *)shadow_start); | 
 | 	} | 
 | 	} | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static int __init kasan_memhotplug_init(void) | 
 | { | 
 | 	hotplug_memory_notifier(kasan_mem_notifier, 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | core_initcall(kasan_memhotplug_init); | 
 | #endif |