|  | /* | 
|  | *  linux/arch/arm/vfp/vfp.h | 
|  | * | 
|  | *  Copyright (C) 2004 ARM Limited. | 
|  | *  Written by Deep Blue Solutions Limited. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) | 
|  | { | 
|  | if (shift) { | 
|  | if (shift < 32) | 
|  | val = val >> shift | ((val << (32 - shift)) != 0); | 
|  | else | 
|  | val = val != 0; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) | 
|  | { | 
|  | if (shift) { | 
|  | if (shift < 64) | 
|  | val = val >> shift | ((val << (64 - shift)) != 0); | 
|  | else | 
|  | val = val != 0; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static inline u32 vfp_hi64to32jamming(u64 val) | 
|  | { | 
|  | u32 v; | 
|  |  | 
|  | asm( | 
|  | "cmp	%Q1, #1		@ vfp_hi64to32jamming\n\t" | 
|  | "movcc	%0, %R1\n\t" | 
|  | "orrcs	%0, %R1, #1" | 
|  | : "=r" (v) : "r" (val) : "cc"); | 
|  |  | 
|  | return v; | 
|  | } | 
|  |  | 
|  | static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) | 
|  | { | 
|  | asm(	"adds	%Q0, %Q2, %Q4\n\t" | 
|  | "adcs	%R0, %R2, %R4\n\t" | 
|  | "adcs	%Q1, %Q3, %Q5\n\t" | 
|  | "adc	%R1, %R3, %R5" | 
|  | : "=r" (nl), "=r" (nh) | 
|  | : "0" (nl), "1" (nh), "r" (ml), "r" (mh) | 
|  | : "cc"); | 
|  | *resh = nh; | 
|  | *resl = nl; | 
|  | } | 
|  |  | 
|  | static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) | 
|  | { | 
|  | asm(	"subs	%Q0, %Q2, %Q4\n\t" | 
|  | "sbcs	%R0, %R2, %R4\n\t" | 
|  | "sbcs	%Q1, %Q3, %Q5\n\t" | 
|  | "sbc	%R1, %R3, %R5\n\t" | 
|  | : "=r" (nl), "=r" (nh) | 
|  | : "0" (nl), "1" (nh), "r" (ml), "r" (mh) | 
|  | : "cc"); | 
|  | *resh = nh; | 
|  | *resl = nl; | 
|  | } | 
|  |  | 
|  | static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m) | 
|  | { | 
|  | u32 nh, nl, mh, ml; | 
|  | u64 rh, rma, rmb, rl; | 
|  |  | 
|  | nl = n; | 
|  | ml = m; | 
|  | rl = (u64)nl * ml; | 
|  |  | 
|  | nh = n >> 32; | 
|  | rma = (u64)nh * ml; | 
|  |  | 
|  | mh = m >> 32; | 
|  | rmb = (u64)nl * mh; | 
|  | rma += rmb; | 
|  |  | 
|  | rh = (u64)nh * mh; | 
|  | rh += ((u64)(rma < rmb) << 32) + (rma >> 32); | 
|  |  | 
|  | rma <<= 32; | 
|  | rl += rma; | 
|  | rh += (rl < rma); | 
|  |  | 
|  | *resl = rl; | 
|  | *resh = rh; | 
|  | } | 
|  |  | 
|  | static inline void shift64left(u64 *resh, u64 *resl, u64 n) | 
|  | { | 
|  | *resh = n >> 63; | 
|  | *resl = n << 1; | 
|  | } | 
|  |  | 
|  | static inline u64 vfp_hi64multiply64(u64 n, u64 m) | 
|  | { | 
|  | u64 rh, rl; | 
|  | mul64to128(&rh, &rl, n, m); | 
|  | return rh | (rl != 0); | 
|  | } | 
|  |  | 
|  | static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) | 
|  | { | 
|  | u64 mh, ml, remh, reml, termh, terml, z; | 
|  |  | 
|  | if (nh >= m) | 
|  | return ~0ULL; | 
|  | mh = m >> 32; | 
|  | if (mh << 32 <= nh) { | 
|  | z = 0xffffffff00000000ULL; | 
|  | } else { | 
|  | z = nh; | 
|  | do_div(z, mh); | 
|  | z <<= 32; | 
|  | } | 
|  | mul64to128(&termh, &terml, m, z); | 
|  | sub128(&remh, &reml, nh, nl, termh, terml); | 
|  | ml = m << 32; | 
|  | while ((s64)remh < 0) { | 
|  | z -= 0x100000000ULL; | 
|  | add128(&remh, &reml, remh, reml, mh, ml); | 
|  | } | 
|  | remh = (remh << 32) | (reml >> 32); | 
|  | if (mh << 32 <= remh) { | 
|  | z |= 0xffffffff; | 
|  | } else { | 
|  | do_div(remh, mh); | 
|  | z |= remh; | 
|  | } | 
|  | return z; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Operations on unpacked elements | 
|  | */ | 
|  | #define vfp_sign_negate(sign)	(sign ^ 0x8000) | 
|  |  | 
|  | /* | 
|  | * Single-precision | 
|  | */ | 
|  | struct vfp_single { | 
|  | s16	exponent; | 
|  | u16	sign; | 
|  | u32	significand; | 
|  | }; | 
|  |  | 
|  | asmlinkage s32 vfp_get_float(unsigned int reg); | 
|  | asmlinkage void vfp_put_float(s32 val, unsigned int reg); | 
|  |  | 
|  | /* | 
|  | * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa | 
|  | * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent | 
|  | * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand | 
|  | *  which are not propagated to the float upon packing. | 
|  | */ | 
|  | #define VFP_SINGLE_MANTISSA_BITS	(23) | 
|  | #define VFP_SINGLE_EXPONENT_BITS	(8) | 
|  | #define VFP_SINGLE_LOW_BITS		(32 - VFP_SINGLE_MANTISSA_BITS - 2) | 
|  | #define VFP_SINGLE_LOW_BITS_MASK	((1 << VFP_SINGLE_LOW_BITS) - 1) | 
|  |  | 
|  | /* | 
|  | * The bit in an unpacked float which indicates that it is a quiet NaN | 
|  | */ | 
|  | #define VFP_SINGLE_SIGNIFICAND_QNAN	(1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS)) | 
|  |  | 
|  | /* | 
|  | * Operations on packed single-precision numbers | 
|  | */ | 
|  | #define vfp_single_packed_sign(v)	((v) & 0x80000000) | 
|  | #define vfp_single_packed_negate(v)	((v) ^ 0x80000000) | 
|  | #define vfp_single_packed_abs(v)	((v) & ~0x80000000) | 
|  | #define vfp_single_packed_exponent(v)	(((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1)) | 
|  | #define vfp_single_packed_mantissa(v)	((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1)) | 
|  |  | 
|  | /* | 
|  | * Unpack a single-precision float.  Note that this returns the magnitude | 
|  | * of the single-precision float mantissa with the 1. if necessary, | 
|  | * aligned to bit 30. | 
|  | */ | 
|  | static inline void vfp_single_unpack(struct vfp_single *s, s32 val) | 
|  | { | 
|  | u32 significand; | 
|  |  | 
|  | s->sign = vfp_single_packed_sign(val) >> 16, | 
|  | s->exponent = vfp_single_packed_exponent(val); | 
|  |  | 
|  | significand = (u32) val; | 
|  | significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2; | 
|  | if (s->exponent && s->exponent != 255) | 
|  | significand |= 0x40000000; | 
|  | s->significand = significand; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Re-pack a single-precision float.  This assumes that the float is | 
|  | * already normalised such that the MSB is bit 30, _not_ bit 31. | 
|  | */ | 
|  | static inline s32 vfp_single_pack(struct vfp_single *s) | 
|  | { | 
|  | u32 val; | 
|  | val = (s->sign << 16) + | 
|  | (s->exponent << VFP_SINGLE_MANTISSA_BITS) + | 
|  | (s->significand >> VFP_SINGLE_LOW_BITS); | 
|  | return (s32)val; | 
|  | } | 
|  |  | 
|  | #define VFP_NUMBER		(1<<0) | 
|  | #define VFP_ZERO		(1<<1) | 
|  | #define VFP_DENORMAL		(1<<2) | 
|  | #define VFP_INFINITY		(1<<3) | 
|  | #define VFP_NAN			(1<<4) | 
|  | #define VFP_NAN_SIGNAL		(1<<5) | 
|  |  | 
|  | #define VFP_QNAN		(VFP_NAN) | 
|  | #define VFP_SNAN		(VFP_NAN|VFP_NAN_SIGNAL) | 
|  |  | 
|  | static inline int vfp_single_type(struct vfp_single *s) | 
|  | { | 
|  | int type = VFP_NUMBER; | 
|  | if (s->exponent == 255) { | 
|  | if (s->significand == 0) | 
|  | type = VFP_INFINITY; | 
|  | else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN) | 
|  | type = VFP_QNAN; | 
|  | else | 
|  | type = VFP_SNAN; | 
|  | } else if (s->exponent == 0) { | 
|  | if (s->significand == 0) | 
|  | type |= VFP_ZERO; | 
|  | else | 
|  | type |= VFP_DENORMAL; | 
|  | } | 
|  | return type; | 
|  | } | 
|  |  | 
|  | #ifndef DEBUG | 
|  | #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except) | 
|  | u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions); | 
|  | #else | 
|  | u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Double-precision | 
|  | */ | 
|  | struct vfp_double { | 
|  | s16	exponent; | 
|  | u16	sign; | 
|  | u64	significand; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * VFP_REG_ZERO is a special register number for vfp_get_double | 
|  | * which returns (double)0.0.  This is useful for the compare with | 
|  | * zero instructions. | 
|  | */ | 
|  | #ifdef CONFIG_VFPv3 | 
|  | #define VFP_REG_ZERO	32 | 
|  | #else | 
|  | #define VFP_REG_ZERO	16 | 
|  | #endif | 
|  | asmlinkage u64 vfp_get_double(unsigned int reg); | 
|  | asmlinkage void vfp_put_double(u64 val, unsigned int reg); | 
|  |  | 
|  | #define VFP_DOUBLE_MANTISSA_BITS	(52) | 
|  | #define VFP_DOUBLE_EXPONENT_BITS	(11) | 
|  | #define VFP_DOUBLE_LOW_BITS		(64 - VFP_DOUBLE_MANTISSA_BITS - 2) | 
|  | #define VFP_DOUBLE_LOW_BITS_MASK	((1 << VFP_DOUBLE_LOW_BITS) - 1) | 
|  |  | 
|  | /* | 
|  | * The bit in an unpacked double which indicates that it is a quiet NaN | 
|  | */ | 
|  | #define VFP_DOUBLE_SIGNIFICAND_QNAN	(1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS)) | 
|  |  | 
|  | /* | 
|  | * Operations on packed single-precision numbers | 
|  | */ | 
|  | #define vfp_double_packed_sign(v)	((v) & (1ULL << 63)) | 
|  | #define vfp_double_packed_negate(v)	((v) ^ (1ULL << 63)) | 
|  | #define vfp_double_packed_abs(v)	((v) & ~(1ULL << 63)) | 
|  | #define vfp_double_packed_exponent(v)	(((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) | 
|  | #define vfp_double_packed_mantissa(v)	((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) | 
|  |  | 
|  | /* | 
|  | * Unpack a double-precision float.  Note that this returns the magnitude | 
|  | * of the double-precision float mantissa with the 1. if necessary, | 
|  | * aligned to bit 62. | 
|  | */ | 
|  | static inline void vfp_double_unpack(struct vfp_double *s, s64 val) | 
|  | { | 
|  | u64 significand; | 
|  |  | 
|  | s->sign = vfp_double_packed_sign(val) >> 48; | 
|  | s->exponent = vfp_double_packed_exponent(val); | 
|  |  | 
|  | significand = (u64) val; | 
|  | significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2; | 
|  | if (s->exponent && s->exponent != 2047) | 
|  | significand |= (1ULL << 62); | 
|  | s->significand = significand; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Re-pack a double-precision float.  This assumes that the float is | 
|  | * already normalised such that the MSB is bit 30, _not_ bit 31. | 
|  | */ | 
|  | static inline s64 vfp_double_pack(struct vfp_double *s) | 
|  | { | 
|  | u64 val; | 
|  | val = ((u64)s->sign << 48) + | 
|  | ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + | 
|  | (s->significand >> VFP_DOUBLE_LOW_BITS); | 
|  | return (s64)val; | 
|  | } | 
|  |  | 
|  | static inline int vfp_double_type(struct vfp_double *s) | 
|  | { | 
|  | int type = VFP_NUMBER; | 
|  | if (s->exponent == 2047) { | 
|  | if (s->significand == 0) | 
|  | type = VFP_INFINITY; | 
|  | else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN) | 
|  | type = VFP_QNAN; | 
|  | else | 
|  | type = VFP_SNAN; | 
|  | } else if (s->exponent == 0) { | 
|  | if (s->significand == 0) | 
|  | type |= VFP_ZERO; | 
|  | else | 
|  | type |= VFP_DENORMAL; | 
|  | } | 
|  | return type; | 
|  | } | 
|  |  | 
|  | u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); | 
|  |  | 
|  | u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand); | 
|  |  | 
|  | /* | 
|  | * A special flag to tell the normalisation code not to normalise. | 
|  | */ | 
|  | #define VFP_NAN_FLAG	0x100 | 
|  |  | 
|  | /* | 
|  | * A bit pattern used to indicate the initial (unset) value of the | 
|  | * exception mask, in case nothing handles an instruction.  This | 
|  | * doesn't include the NAN flag, which get masked out before | 
|  | * we check for an error. | 
|  | */ | 
|  | #define VFP_EXCEPTION_ERROR	((u32)-1 & ~VFP_NAN_FLAG) | 
|  |  | 
|  | /* | 
|  | * A flag to tell vfp instruction type. | 
|  | *  OP_SCALAR - this operation always operates in scalar mode | 
|  | *  OP_SD - the instruction exceptionally writes to a single precision result. | 
|  | *  OP_DD - the instruction exceptionally writes to a double precision result. | 
|  | *  OP_SM - the instruction exceptionally reads from a single precision operand. | 
|  | */ | 
|  | #define OP_SCALAR	(1 << 0) | 
|  | #define OP_SD		(1 << 1) | 
|  | #define OP_DD		(1 << 1) | 
|  | #define OP_SM		(1 << 2) | 
|  |  | 
|  | struct op { | 
|  | u32 (* const fn)(int dd, int dn, int dm, u32 fpscr); | 
|  | u32 flags; | 
|  | }; | 
|  |  | 
|  | asmlinkage void vfp_save_state(void *location, u32 fpexc); |