|  | /* | 
|  | * PPC Huge TLB Page Support for Kernel. | 
|  | * | 
|  | * Copyright (C) 2003 David Gibson, IBM Corporation. | 
|  | * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor | 
|  | * | 
|  | * Based on the IA-32 version: | 
|  | * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/of_fdt.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/hugetlb.h> | 
|  | #include <asm/pte-walk.h> | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  |  | 
|  | #define PAGE_SHIFT_64K	16 | 
|  | #define PAGE_SHIFT_512K	19 | 
|  | #define PAGE_SHIFT_8M	23 | 
|  | #define PAGE_SHIFT_16M	24 | 
|  | #define PAGE_SHIFT_16G	34 | 
|  |  | 
|  | unsigned int HPAGE_SHIFT; | 
|  | EXPORT_SYMBOL(HPAGE_SHIFT); | 
|  |  | 
|  | #define hugepd_none(hpd)	(hpd_val(hpd) == 0) | 
|  |  | 
|  | pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) | 
|  | { | 
|  | /* | 
|  | * Only called for hugetlbfs pages, hence can ignore THP and the | 
|  | * irq disabled walk. | 
|  | */ | 
|  | return __find_linux_pte(mm->pgd, addr, NULL, NULL); | 
|  | } | 
|  |  | 
|  | static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, | 
|  | unsigned long address, unsigned pdshift, unsigned pshift) | 
|  | { | 
|  | struct kmem_cache *cachep; | 
|  | pte_t *new; | 
|  | int i; | 
|  | int num_hugepd; | 
|  |  | 
|  | if (pshift >= pdshift) { | 
|  | cachep = hugepte_cache; | 
|  | num_hugepd = 1 << (pshift - pdshift); | 
|  | } else { | 
|  | cachep = PGT_CACHE(pdshift - pshift); | 
|  | num_hugepd = 1; | 
|  | } | 
|  |  | 
|  | new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL)); | 
|  |  | 
|  | BUG_ON(pshift > HUGEPD_SHIFT_MASK); | 
|  | BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); | 
|  |  | 
|  | if (! new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Make sure other cpus find the hugepd set only after a | 
|  | * properly initialized page table is visible to them. | 
|  | * For more details look for comment in __pte_alloc(). | 
|  | */ | 
|  | smp_wmb(); | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  |  | 
|  | /* | 
|  | * We have multiple higher-level entries that point to the same | 
|  | * actual pte location.  Fill in each as we go and backtrack on error. | 
|  | * We need all of these so the DTLB pgtable walk code can find the | 
|  | * right higher-level entry without knowing if it's a hugepage or not. | 
|  | */ | 
|  | for (i = 0; i < num_hugepd; i++, hpdp++) { | 
|  | if (unlikely(!hugepd_none(*hpdp))) | 
|  | break; | 
|  | else { | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | *hpdp = __hugepd(__pa(new) | | 
|  | (shift_to_mmu_psize(pshift) << 2)); | 
|  | #elif defined(CONFIG_PPC_8xx) | 
|  | *hpdp = __hugepd(__pa(new) | | 
|  | (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M : | 
|  | _PMD_PAGE_512K) | _PMD_PRESENT); | 
|  | #else | 
|  | /* We use the old format for PPC_FSL_BOOK3E */ | 
|  | *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | /* If we bailed from the for loop early, an error occurred, clean up */ | 
|  | if (i < num_hugepd) { | 
|  | for (i = i - 1 ; i >= 0; i--, hpdp--) | 
|  | *hpdp = __hugepd(0); | 
|  | kmem_cache_free(cachep, new); | 
|  | } else { | 
|  | kmemleak_ignore(new); | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These macros define how to determine which level of the page table holds | 
|  | * the hpdp. | 
|  | */ | 
|  | #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) | 
|  | #define HUGEPD_PGD_SHIFT PGDIR_SHIFT | 
|  | #define HUGEPD_PUD_SHIFT PUD_SHIFT | 
|  | #else | 
|  | #define HUGEPD_PGD_SHIFT PUD_SHIFT | 
|  | #define HUGEPD_PUD_SHIFT PMD_SHIFT | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * At this point we do the placement change only for BOOK3S 64. This would | 
|  | * possibly work on other subarchs. | 
|  | */ | 
|  | pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) | 
|  | { | 
|  | pgd_t *pg; | 
|  | pud_t *pu; | 
|  | pmd_t *pm; | 
|  | hugepd_t *hpdp = NULL; | 
|  | unsigned pshift = __ffs(sz); | 
|  | unsigned pdshift = PGDIR_SHIFT; | 
|  |  | 
|  | addr &= ~(sz-1); | 
|  | pg = pgd_offset(mm, addr); | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | if (pshift == PGDIR_SHIFT) | 
|  | /* 16GB huge page */ | 
|  | return (pte_t *) pg; | 
|  | else if (pshift > PUD_SHIFT) | 
|  | /* | 
|  | * We need to use hugepd table | 
|  | */ | 
|  | hpdp = (hugepd_t *)pg; | 
|  | else { | 
|  | pdshift = PUD_SHIFT; | 
|  | pu = pud_alloc(mm, pg, addr); | 
|  | if (pshift == PUD_SHIFT) | 
|  | return (pte_t *)pu; | 
|  | else if (pshift > PMD_SHIFT) | 
|  | hpdp = (hugepd_t *)pu; | 
|  | else { | 
|  | pdshift = PMD_SHIFT; | 
|  | pm = pmd_alloc(mm, pu, addr); | 
|  | if (pshift == PMD_SHIFT) | 
|  | /* 16MB hugepage */ | 
|  | return (pte_t *)pm; | 
|  | else | 
|  | hpdp = (hugepd_t *)pm; | 
|  | } | 
|  | } | 
|  | #else | 
|  | if (pshift >= HUGEPD_PGD_SHIFT) { | 
|  | hpdp = (hugepd_t *)pg; | 
|  | } else { | 
|  | pdshift = PUD_SHIFT; | 
|  | pu = pud_alloc(mm, pg, addr); | 
|  | if (pshift >= HUGEPD_PUD_SHIFT) { | 
|  | hpdp = (hugepd_t *)pu; | 
|  | } else { | 
|  | pdshift = PMD_SHIFT; | 
|  | pm = pmd_alloc(mm, pu, addr); | 
|  | hpdp = (hugepd_t *)pm; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | if (!hpdp) | 
|  | return NULL; | 
|  |  | 
|  | BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); | 
|  |  | 
|  | if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) | 
|  | return NULL; | 
|  |  | 
|  | return hugepte_offset(*hpdp, addr, pdshift); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | /* | 
|  | * Tracks gpages after the device tree is scanned and before the | 
|  | * huge_boot_pages list is ready on pseries. | 
|  | */ | 
|  | #define MAX_NUMBER_GPAGES	1024 | 
|  | __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES]; | 
|  | __initdata static unsigned nr_gpages; | 
|  |  | 
|  | /* | 
|  | * Build list of addresses of gigantic pages.  This function is used in early | 
|  | * boot before the buddy allocator is setup. | 
|  | */ | 
|  | void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) | 
|  | { | 
|  | if (!addr) | 
|  | return; | 
|  | while (number_of_pages > 0) { | 
|  | gpage_freearray[nr_gpages] = addr; | 
|  | nr_gpages++; | 
|  | number_of_pages--; | 
|  | addr += page_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate) | 
|  | { | 
|  | struct huge_bootmem_page *m; | 
|  | if (nr_gpages == 0) | 
|  | return 0; | 
|  | m = phys_to_virt(gpage_freearray[--nr_gpages]); | 
|  | gpage_freearray[nr_gpages] = 0; | 
|  | list_add(&m->list, &huge_boot_pages); | 
|  | m->hstate = hstate; | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | int __init alloc_bootmem_huge_page(struct hstate *h) | 
|  | { | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled()) | 
|  | return pseries_alloc_bootmem_huge_page(h); | 
|  | #endif | 
|  | return __alloc_bootmem_huge_page(h); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) | 
|  | #define HUGEPD_FREELIST_SIZE \ | 
|  | ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) | 
|  |  | 
|  | struct hugepd_freelist { | 
|  | struct rcu_head	rcu; | 
|  | unsigned int index; | 
|  | void *ptes[0]; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); | 
|  |  | 
|  | static void hugepd_free_rcu_callback(struct rcu_head *head) | 
|  | { | 
|  | struct hugepd_freelist *batch = | 
|  | container_of(head, struct hugepd_freelist, rcu); | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < batch->index; i++) | 
|  | kmem_cache_free(hugepte_cache, batch->ptes[i]); | 
|  |  | 
|  | free_page((unsigned long)batch); | 
|  | } | 
|  |  | 
|  | static void hugepd_free(struct mmu_gather *tlb, void *hugepte) | 
|  | { | 
|  | struct hugepd_freelist **batchp; | 
|  |  | 
|  | batchp = &get_cpu_var(hugepd_freelist_cur); | 
|  |  | 
|  | if (atomic_read(&tlb->mm->mm_users) < 2 || | 
|  | mm_is_thread_local(tlb->mm)) { | 
|  | kmem_cache_free(hugepte_cache, hugepte); | 
|  | put_cpu_var(hugepd_freelist_cur); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (*batchp == NULL) { | 
|  | *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); | 
|  | (*batchp)->index = 0; | 
|  | } | 
|  |  | 
|  | (*batchp)->ptes[(*batchp)->index++] = hugepte; | 
|  | if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { | 
|  | call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); | 
|  | *batchp = NULL; | 
|  | } | 
|  | put_cpu_var(hugepd_freelist_cur); | 
|  | } | 
|  | #else | 
|  | static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {} | 
|  | #endif | 
|  |  | 
|  | static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, | 
|  | unsigned long start, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pte_t *hugepte = hugepd_page(*hpdp); | 
|  | int i; | 
|  |  | 
|  | unsigned long pdmask = ~((1UL << pdshift) - 1); | 
|  | unsigned int num_hugepd = 1; | 
|  | unsigned int shift = hugepd_shift(*hpdp); | 
|  |  | 
|  | /* Note: On fsl the hpdp may be the first of several */ | 
|  | if (shift > pdshift) | 
|  | num_hugepd = 1 << (shift - pdshift); | 
|  |  | 
|  | start &= pdmask; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= pdmask; | 
|  | if (! ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < num_hugepd; i++, hpdp++) | 
|  | *hpdp = __hugepd(0); | 
|  |  | 
|  | if (shift >= pdshift) | 
|  | hugepd_free(tlb, hugepte); | 
|  | else | 
|  | pgtable_free_tlb(tlb, hugepte, pdshift - shift); | 
|  | } | 
|  |  | 
|  | static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | start = addr; | 
|  | do { | 
|  | unsigned long more; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { | 
|  | /* | 
|  | * if it is not hugepd pointer, we should already find | 
|  | * it cleared. | 
|  | */ | 
|  | WARN_ON(!pmd_none_or_clear_bad(pmd)); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * Increment next by the size of the huge mapping since | 
|  | * there may be more than one entry at this level for a | 
|  | * single hugepage, but all of them point to | 
|  | * the same kmem cache that holds the hugepte. | 
|  | */ | 
|  | more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); | 
|  | if (more > next) | 
|  | next = more; | 
|  |  | 
|  | free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, | 
|  | addr, next, floor, ceiling); | 
|  | } while (addr = next, addr != end); | 
|  |  | 
|  | start &= PUD_MASK; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= PUD_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | pmd = pmd_offset(pud, start); | 
|  | pud_clear(pud); | 
|  | pmd_free_tlb(tlb, pmd, start); | 
|  | mm_dec_nr_pmds(tlb->mm); | 
|  | } | 
|  |  | 
|  | static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | start = addr; | 
|  | do { | 
|  | pud = pud_offset(pgd, addr); | 
|  | next = pud_addr_end(addr, end); | 
|  | if (!is_hugepd(__hugepd(pud_val(*pud)))) { | 
|  | if (pud_none_or_clear_bad(pud)) | 
|  | continue; | 
|  | hugetlb_free_pmd_range(tlb, pud, addr, next, floor, | 
|  | ceiling); | 
|  | } else { | 
|  | unsigned long more; | 
|  | /* | 
|  | * Increment next by the size of the huge mapping since | 
|  | * there may be more than one entry at this level for a | 
|  | * single hugepage, but all of them point to | 
|  | * the same kmem cache that holds the hugepte. | 
|  | */ | 
|  | more = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); | 
|  | if (more > next) | 
|  | next = more; | 
|  |  | 
|  | free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, | 
|  | addr, next, floor, ceiling); | 
|  | } | 
|  | } while (addr = next, addr != end); | 
|  |  | 
|  | start &= PGDIR_MASK; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= PGDIR_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | pud = pud_offset(pgd, start); | 
|  | pgd_clear(pgd); | 
|  | pud_free_tlb(tlb, pud, start); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function frees user-level page tables of a process. | 
|  | */ | 
|  | void hugetlb_free_pgd_range(struct mmu_gather *tlb, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  |  | 
|  | /* | 
|  | * Because there are a number of different possible pagetable | 
|  | * layouts for hugepage ranges, we limit knowledge of how | 
|  | * things should be laid out to the allocation path | 
|  | * (huge_pte_alloc(), above).  Everything else works out the | 
|  | * structure as it goes from information in the hugepd | 
|  | * pointers.  That means that we can't here use the | 
|  | * optimization used in the normal page free_pgd_range(), of | 
|  | * checking whether we're actually covering a large enough | 
|  | * range to have to do anything at the top level of the walk | 
|  | * instead of at the bottom. | 
|  | * | 
|  | * To make sense of this, you should probably go read the big | 
|  | * block comment at the top of the normal free_pgd_range(), | 
|  | * too. | 
|  | */ | 
|  |  | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | pgd = pgd_offset(tlb->mm, addr); | 
|  | if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { | 
|  | if (pgd_none_or_clear_bad(pgd)) | 
|  | continue; | 
|  | hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); | 
|  | } else { | 
|  | unsigned long more; | 
|  | /* | 
|  | * Increment next by the size of the huge mapping since | 
|  | * there may be more than one entry at the pgd level | 
|  | * for a single hugepage, but all of them point to the | 
|  | * same kmem cache that holds the hugepte. | 
|  | */ | 
|  | more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); | 
|  | if (more > next) | 
|  | next = more; | 
|  |  | 
|  | free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, | 
|  | addr, next, floor, ceiling); | 
|  | } | 
|  | } while (addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | struct page *follow_huge_pd(struct vm_area_struct *vma, | 
|  | unsigned long address, hugepd_t hpd, | 
|  | int flags, int pdshift) | 
|  | { | 
|  | pte_t *ptep; | 
|  | spinlock_t *ptl; | 
|  | struct page *page = NULL; | 
|  | unsigned long mask; | 
|  | int shift = hugepd_shift(hpd); | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  |  | 
|  | retry: | 
|  | ptl = &mm->page_table_lock; | 
|  | spin_lock(ptl); | 
|  |  | 
|  | ptep = hugepte_offset(hpd, address, pdshift); | 
|  | if (pte_present(*ptep)) { | 
|  | mask = (1UL << shift) - 1; | 
|  | page = pte_page(*ptep); | 
|  | page += ((address & mask) >> PAGE_SHIFT); | 
|  | if (flags & FOLL_GET) | 
|  | get_page(page); | 
|  | } else { | 
|  | if (is_hugetlb_entry_migration(*ptep)) { | 
|  | spin_unlock(ptl); | 
|  | __migration_entry_wait(mm, ptep, ptl); | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  | spin_unlock(ptl); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, | 
|  | unsigned long sz) | 
|  | { | 
|  | unsigned long __boundary = (addr + sz) & ~(sz-1); | 
|  | return (__boundary - 1 < end - 1) ? __boundary : end; | 
|  | } | 
|  |  | 
|  | int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift, | 
|  | unsigned long end, int write, struct page **pages, int *nr) | 
|  | { | 
|  | pte_t *ptep; | 
|  | unsigned long sz = 1UL << hugepd_shift(hugepd); | 
|  | unsigned long next; | 
|  |  | 
|  | ptep = hugepte_offset(hugepd, addr, pdshift); | 
|  | do { | 
|  | next = hugepte_addr_end(addr, end, sz); | 
|  | if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) | 
|  | return 0; | 
|  | } while (ptep++, addr = next, addr != end); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_MM_SLICES | 
|  | unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct hstate *hstate = hstate_file(file); | 
|  | int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); | 
|  |  | 
|  | #ifdef CONFIG_PPC_RADIX_MMU | 
|  | if (radix_enabled()) | 
|  | return radix__hugetlb_get_unmapped_area(file, addr, len, | 
|  | pgoff, flags); | 
|  | #endif | 
|  | return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | 
|  | { | 
|  | #ifdef CONFIG_PPC_MM_SLICES | 
|  | unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); | 
|  | /* With radix we don't use slice, so derive it from vma*/ | 
|  | if (!radix_enabled()) | 
|  | return 1UL << mmu_psize_to_shift(psize); | 
|  | #endif | 
|  | if (!is_vm_hugetlb_page(vma)) | 
|  | return PAGE_SIZE; | 
|  |  | 
|  | return huge_page_size(hstate_vma(vma)); | 
|  | } | 
|  |  | 
|  | static inline bool is_power_of_4(unsigned long x) | 
|  | { | 
|  | if (is_power_of_2(x)) | 
|  | return (__ilog2(x) % 2) ? false : true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int __init add_huge_page_size(unsigned long long size) | 
|  | { | 
|  | int shift = __ffs(size); | 
|  | int mmu_psize; | 
|  |  | 
|  | /* Check that it is a page size supported by the hardware and | 
|  | * that it fits within pagetable and slice limits. */ | 
|  | if (size <= PAGE_SIZE) | 
|  | return -EINVAL; | 
|  | #if defined(CONFIG_PPC_FSL_BOOK3E) | 
|  | if (!is_power_of_4(size)) | 
|  | return -EINVAL; | 
|  | #elif !defined(CONFIG_PPC_8xx) | 
|  | if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT)) | 
|  | return -EINVAL; | 
|  | #endif | 
|  |  | 
|  | if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | /* | 
|  | * We need to make sure that for different page sizes reported by | 
|  | * firmware we only add hugetlb support for page sizes that can be | 
|  | * supported by linux page table layout. | 
|  | * For now we have | 
|  | * Radix: 2M | 
|  | * Hash: 16M and 16G | 
|  | */ | 
|  | if (radix_enabled()) { | 
|  | if (mmu_psize != MMU_PAGE_2M) { | 
|  | if (cpu_has_feature(CPU_FTR_POWER9_DD1) || | 
|  | (mmu_psize != MMU_PAGE_1G)) | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G) | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); | 
|  |  | 
|  | /* Return if huge page size has already been setup */ | 
|  | if (size_to_hstate(size)) | 
|  | return 0; | 
|  |  | 
|  | hugetlb_add_hstate(shift - PAGE_SHIFT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init hugepage_setup_sz(char *str) | 
|  | { | 
|  | unsigned long long size; | 
|  |  | 
|  | size = memparse(str, &str); | 
|  |  | 
|  | if (add_huge_page_size(size) != 0) { | 
|  | hugetlb_bad_size(); | 
|  | pr_err("Invalid huge page size specified(%llu)\n", size); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("hugepagesz=", hugepage_setup_sz); | 
|  |  | 
|  | struct kmem_cache *hugepte_cache; | 
|  | static int __init hugetlbpage_init(void) | 
|  | { | 
|  | int psize; | 
|  |  | 
|  | #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx) | 
|  | if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE)) | 
|  | return -ENODEV; | 
|  | #endif | 
|  | for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { | 
|  | unsigned shift; | 
|  | unsigned pdshift; | 
|  |  | 
|  | if (!mmu_psize_defs[psize].shift) | 
|  | continue; | 
|  |  | 
|  | shift = mmu_psize_to_shift(psize); | 
|  |  | 
|  | if (add_huge_page_size(1ULL << shift) < 0) | 
|  | continue; | 
|  |  | 
|  | if (shift < HUGEPD_PUD_SHIFT) | 
|  | pdshift = PMD_SHIFT; | 
|  | else if (shift < HUGEPD_PGD_SHIFT) | 
|  | pdshift = PUD_SHIFT; | 
|  | else | 
|  | pdshift = PGDIR_SHIFT; | 
|  | /* | 
|  | * if we have pdshift and shift value same, we don't | 
|  | * use pgt cache for hugepd. | 
|  | */ | 
|  | if (pdshift > shift) | 
|  | pgtable_cache_add(pdshift - shift, NULL); | 
|  | #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) | 
|  | else if (!hugepte_cache) { | 
|  | /* | 
|  | * Create a kmem cache for hugeptes.  The bottom bits in | 
|  | * the pte have size information encoded in them, so | 
|  | * align them to allow this | 
|  | */ | 
|  | hugepte_cache = kmem_cache_create("hugepte-cache", | 
|  | sizeof(pte_t), | 
|  | HUGEPD_SHIFT_MASK + 1, | 
|  | 0, NULL); | 
|  | if (hugepte_cache == NULL) | 
|  | panic("%s: Unable to create kmem cache " | 
|  | "for hugeptes\n", __func__); | 
|  |  | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) | 
|  | /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */ | 
|  | if (mmu_psize_defs[MMU_PAGE_4M].shift) | 
|  | HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; | 
|  | else if (mmu_psize_defs[MMU_PAGE_512K].shift) | 
|  | HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift; | 
|  | #else | 
|  | /* Set default large page size. Currently, we pick 16M or 1M | 
|  | * depending on what is available | 
|  | */ | 
|  | if (mmu_psize_defs[MMU_PAGE_16M].shift) | 
|  | HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; | 
|  | else if (mmu_psize_defs[MMU_PAGE_1M].shift) | 
|  | HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; | 
|  | else if (mmu_psize_defs[MMU_PAGE_2M].shift) | 
|  | HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift; | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | arch_initcall(hugetlbpage_init); | 
|  |  | 
|  | void flush_dcache_icache_hugepage(struct page *page) | 
|  | { | 
|  | int i; | 
|  | void *start; | 
|  |  | 
|  | BUG_ON(!PageCompound(page)); | 
|  |  | 
|  | for (i = 0; i < (1UL << compound_order(page)); i++) { | 
|  | if (!PageHighMem(page)) { | 
|  | __flush_dcache_icache(page_address(page+i)); | 
|  | } else { | 
|  | start = kmap_atomic(page+i); | 
|  | __flush_dcache_icache(start); | 
|  | kunmap_atomic(start); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_HUGETLB_PAGE */ | 
|  |  | 
|  | /* | 
|  | * We have 4 cases for pgds and pmds: | 
|  | * (1) invalid (all zeroes) | 
|  | * (2) pointer to next table, as normal; bottom 6 bits == 0 | 
|  | * (3) leaf pte for huge page _PAGE_PTE set | 
|  | * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table | 
|  | * | 
|  | * So long as we atomically load page table pointers we are safe against teardown, | 
|  | * we can follow the address down to the the page and take a ref on it. | 
|  | * This function need to be called with interrupts disabled. We use this variant | 
|  | * when we have MSR[EE] = 0 but the paca->soft_enabled = 1 | 
|  | */ | 
|  | pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea, | 
|  | bool *is_thp, unsigned *hpage_shift) | 
|  | { | 
|  | pgd_t pgd, *pgdp; | 
|  | pud_t pud, *pudp; | 
|  | pmd_t pmd, *pmdp; | 
|  | pte_t *ret_pte; | 
|  | hugepd_t *hpdp = NULL; | 
|  | unsigned pdshift = PGDIR_SHIFT; | 
|  |  | 
|  | if (hpage_shift) | 
|  | *hpage_shift = 0; | 
|  |  | 
|  | if (is_thp) | 
|  | *is_thp = false; | 
|  |  | 
|  | pgdp = pgdir + pgd_index(ea); | 
|  | pgd  = READ_ONCE(*pgdp); | 
|  | /* | 
|  | * Always operate on the local stack value. This make sure the | 
|  | * value don't get updated by a parallel THP split/collapse, | 
|  | * page fault or a page unmap. The return pte_t * is still not | 
|  | * stable. So should be checked there for above conditions. | 
|  | */ | 
|  | if (pgd_none(pgd)) | 
|  | return NULL; | 
|  | else if (pgd_huge(pgd)) { | 
|  | ret_pte = (pte_t *) pgdp; | 
|  | goto out; | 
|  | } else if (is_hugepd(__hugepd(pgd_val(pgd)))) | 
|  | hpdp = (hugepd_t *)&pgd; | 
|  | else { | 
|  | /* | 
|  | * Even if we end up with an unmap, the pgtable will not | 
|  | * be freed, because we do an rcu free and here we are | 
|  | * irq disabled | 
|  | */ | 
|  | pdshift = PUD_SHIFT; | 
|  | pudp = pud_offset(&pgd, ea); | 
|  | pud  = READ_ONCE(*pudp); | 
|  |  | 
|  | if (pud_none(pud)) | 
|  | return NULL; | 
|  | else if (pud_huge(pud)) { | 
|  | ret_pte = (pte_t *) pudp; | 
|  | goto out; | 
|  | } else if (is_hugepd(__hugepd(pud_val(pud)))) | 
|  | hpdp = (hugepd_t *)&pud; | 
|  | else { | 
|  | pdshift = PMD_SHIFT; | 
|  | pmdp = pmd_offset(&pud, ea); | 
|  | pmd  = READ_ONCE(*pmdp); | 
|  | /* | 
|  | * A hugepage collapse is captured by pmd_none, because | 
|  | * it mark the pmd none and do a hpte invalidate. | 
|  | */ | 
|  | if (pmd_none(pmd)) | 
|  | return NULL; | 
|  |  | 
|  | if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) { | 
|  | if (is_thp) | 
|  | *is_thp = true; | 
|  | ret_pte = (pte_t *) pmdp; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (pmd_huge(pmd)) { | 
|  | ret_pte = (pte_t *) pmdp; | 
|  | goto out; | 
|  | } else if (is_hugepd(__hugepd(pmd_val(pmd)))) | 
|  | hpdp = (hugepd_t *)&pmd; | 
|  | else | 
|  | return pte_offset_kernel(&pmd, ea); | 
|  | } | 
|  | } | 
|  | if (!hpdp) | 
|  | return NULL; | 
|  |  | 
|  | ret_pte = hugepte_offset(*hpdp, ea, pdshift); | 
|  | pdshift = hugepd_shift(*hpdp); | 
|  | out: | 
|  | if (hpage_shift) | 
|  | *hpage_shift = pdshift; | 
|  | return ret_pte; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__find_linux_pte); | 
|  |  | 
|  | int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, | 
|  | unsigned long end, int write, struct page **pages, int *nr) | 
|  | { | 
|  | unsigned long pte_end; | 
|  | struct page *head, *page; | 
|  | pte_t pte; | 
|  | int refs; | 
|  |  | 
|  | pte_end = (addr + sz) & ~(sz-1); | 
|  | if (pte_end < end) | 
|  | end = pte_end; | 
|  |  | 
|  | pte = READ_ONCE(*ptep); | 
|  |  | 
|  | if (!pte_present(pte) || !pte_read(pte)) | 
|  | return 0; | 
|  | if (write && !pte_write(pte)) | 
|  | return 0; | 
|  |  | 
|  | /* hugepages are never "special" */ | 
|  | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | 
|  |  | 
|  | refs = 0; | 
|  | head = pte_page(pte); | 
|  |  | 
|  | page = head + ((addr & (sz-1)) >> PAGE_SHIFT); | 
|  | do { | 
|  | VM_BUG_ON(compound_head(page) != head); | 
|  | pages[*nr] = page; | 
|  | (*nr)++; | 
|  | page++; | 
|  | refs++; | 
|  | } while (addr += PAGE_SIZE, addr != end); | 
|  |  | 
|  | if (!page_cache_add_speculative(head, refs)) { | 
|  | *nr -= refs; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | 
|  | /* Could be optimized better */ | 
|  | *nr -= refs; | 
|  | while (refs--) | 
|  | put_page(head); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } |