|  | #include <linux/extable.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/sched/debug.h> | 
|  | #include <xen/xen.h> | 
|  |  | 
|  | #include <asm/fpu/internal.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/kdebug.h> | 
|  |  | 
|  | typedef bool (*ex_handler_t)(const struct exception_table_entry *, | 
|  | struct pt_regs *, int); | 
|  |  | 
|  | static inline unsigned long | 
|  | ex_fixup_addr(const struct exception_table_entry *x) | 
|  | { | 
|  | return (unsigned long)&x->fixup + x->fixup; | 
|  | } | 
|  | static inline ex_handler_t | 
|  | ex_fixup_handler(const struct exception_table_entry *x) | 
|  | { | 
|  | return (ex_handler_t)((unsigned long)&x->handler + x->handler); | 
|  | } | 
|  |  | 
|  | bool ex_handler_default(const struct exception_table_entry *fixup, | 
|  | struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | regs->ip = ex_fixup_addr(fixup); | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL(ex_handler_default); | 
|  |  | 
|  | bool ex_handler_fault(const struct exception_table_entry *fixup, | 
|  | struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | regs->ip = ex_fixup_addr(fixup); | 
|  | regs->ax = trapnr; | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ex_handler_fault); | 
|  |  | 
|  | /* | 
|  | * Handler for UD0 exception following a failed test against the | 
|  | * result of a refcount inc/dec/add/sub. | 
|  | */ | 
|  | bool ex_handler_refcount(const struct exception_table_entry *fixup, | 
|  | struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | /* First unconditionally saturate the refcount. */ | 
|  | *(int *)regs->cx = INT_MIN / 2; | 
|  |  | 
|  | /* | 
|  | * Strictly speaking, this reports the fixup destination, not | 
|  | * the fault location, and not the actually overflowing | 
|  | * instruction, which is the instruction before the "js", but | 
|  | * since that instruction could be a variety of lengths, just | 
|  | * report the location after the overflow, which should be close | 
|  | * enough for finding the overflow, as it's at least back in | 
|  | * the function, having returned from .text.unlikely. | 
|  | */ | 
|  | regs->ip = ex_fixup_addr(fixup); | 
|  |  | 
|  | /* | 
|  | * This function has been called because either a negative refcount | 
|  | * value was seen by any of the refcount functions, or a zero | 
|  | * refcount value was seen by refcount_dec(). | 
|  | * | 
|  | * If we crossed from INT_MAX to INT_MIN, OF (Overflow Flag: result | 
|  | * wrapped around) will be set. Additionally, seeing the refcount | 
|  | * reach 0 will set ZF (Zero Flag: result was zero). In each of | 
|  | * these cases we want a report, since it's a boundary condition. | 
|  | * The SF case is not reported since it indicates post-boundary | 
|  | * manipulations below zero or above INT_MAX. And if none of the | 
|  | * flags are set, something has gone very wrong, so report it. | 
|  | */ | 
|  | if (regs->flags & (X86_EFLAGS_OF | X86_EFLAGS_ZF)) { | 
|  | bool zero = regs->flags & X86_EFLAGS_ZF; | 
|  |  | 
|  | refcount_error_report(regs, zero ? "hit zero" : "overflow"); | 
|  | } else if ((regs->flags & X86_EFLAGS_SF) == 0) { | 
|  | /* Report if none of OF, ZF, nor SF are set. */ | 
|  | refcount_error_report(regs, "unexpected saturation"); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL(ex_handler_refcount); | 
|  |  | 
|  | /* | 
|  | * Handler for when we fail to restore a task's FPU state.  We should never get | 
|  | * here because the FPU state of a task using the FPU (task->thread.fpu.state) | 
|  | * should always be valid.  However, past bugs have allowed userspace to set | 
|  | * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn(). | 
|  | * These caused XRSTOR to fail when switching to the task, leaking the FPU | 
|  | * registers of the task previously executing on the CPU.  Mitigate this class | 
|  | * of vulnerability by restoring from the initial state (essentially, zeroing | 
|  | * out all the FPU registers) if we can't restore from the task's FPU state. | 
|  | */ | 
|  | bool ex_handler_fprestore(const struct exception_table_entry *fixup, | 
|  | struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | regs->ip = ex_fixup_addr(fixup); | 
|  |  | 
|  | WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.", | 
|  | (void *)instruction_pointer(regs)); | 
|  |  | 
|  | __copy_kernel_to_fpregs(&init_fpstate, -1); | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ex_handler_fprestore); | 
|  |  | 
|  | bool ex_handler_ext(const struct exception_table_entry *fixup, | 
|  | struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | /* Special hack for uaccess_err */ | 
|  | current->thread.uaccess_err = 1; | 
|  | regs->ip = ex_fixup_addr(fixup); | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL(ex_handler_ext); | 
|  |  | 
|  | bool ex_handler_rdmsr_unsafe(const struct exception_table_entry *fixup, | 
|  | struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | if (pr_warn_once("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pF)\n", | 
|  | (unsigned int)regs->cx, regs->ip, (void *)regs->ip)) | 
|  | show_stack_regs(regs); | 
|  |  | 
|  | /* Pretend that the read succeeded and returned 0. */ | 
|  | regs->ip = ex_fixup_addr(fixup); | 
|  | regs->ax = 0; | 
|  | regs->dx = 0; | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL(ex_handler_rdmsr_unsafe); | 
|  |  | 
|  | bool ex_handler_wrmsr_unsafe(const struct exception_table_entry *fixup, | 
|  | struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | if (pr_warn_once("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pF)\n", | 
|  | (unsigned int)regs->cx, (unsigned int)regs->dx, | 
|  | (unsigned int)regs->ax,  regs->ip, (void *)regs->ip)) | 
|  | show_stack_regs(regs); | 
|  |  | 
|  | /* Pretend that the write succeeded. */ | 
|  | regs->ip = ex_fixup_addr(fixup); | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL(ex_handler_wrmsr_unsafe); | 
|  |  | 
|  | bool ex_handler_clear_fs(const struct exception_table_entry *fixup, | 
|  | struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | if (static_cpu_has(X86_BUG_NULL_SEG)) | 
|  | asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS)); | 
|  | asm volatile ("mov %0, %%fs" : : "rm" (0)); | 
|  | return ex_handler_default(fixup, regs, trapnr); | 
|  | } | 
|  | EXPORT_SYMBOL(ex_handler_clear_fs); | 
|  |  | 
|  | bool ex_has_fault_handler(unsigned long ip) | 
|  | { | 
|  | const struct exception_table_entry *e; | 
|  | ex_handler_t handler; | 
|  |  | 
|  | e = search_exception_tables(ip); | 
|  | if (!e) | 
|  | return false; | 
|  | handler = ex_fixup_handler(e); | 
|  |  | 
|  | return handler == ex_handler_fault; | 
|  | } | 
|  |  | 
|  | int fixup_exception(struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | const struct exception_table_entry *e; | 
|  | ex_handler_t handler; | 
|  |  | 
|  | #ifdef CONFIG_PNPBIOS | 
|  | if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) { | 
|  | extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp; | 
|  | extern u32 pnp_bios_is_utter_crap; | 
|  | pnp_bios_is_utter_crap = 1; | 
|  | printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n"); | 
|  | __asm__ volatile( | 
|  | "movl %0, %%esp\n\t" | 
|  | "jmp *%1\n\t" | 
|  | : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip)); | 
|  | panic("do_trap: can't hit this"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | e = search_exception_tables(regs->ip); | 
|  | if (!e) | 
|  | return 0; | 
|  |  | 
|  | handler = ex_fixup_handler(e); | 
|  | return handler(e, regs, trapnr); | 
|  | } | 
|  |  | 
|  | extern unsigned int early_recursion_flag; | 
|  |  | 
|  | /* Restricted version used during very early boot */ | 
|  | void __init early_fixup_exception(struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | /* Ignore early NMIs. */ | 
|  | if (trapnr == X86_TRAP_NMI) | 
|  | return; | 
|  |  | 
|  | if (early_recursion_flag > 2) | 
|  | goto halt_loop; | 
|  |  | 
|  | /* | 
|  | * Old CPUs leave the high bits of CS on the stack | 
|  | * undefined.  I'm not sure which CPUs do this, but at least | 
|  | * the 486 DX works this way. | 
|  | * Xen pv domains are not using the default __KERNEL_CS. | 
|  | */ | 
|  | if (!xen_pv_domain() && regs->cs != __KERNEL_CS) | 
|  | goto fail; | 
|  |  | 
|  | /* | 
|  | * The full exception fixup machinery is available as soon as | 
|  | * the early IDT is loaded.  This means that it is the | 
|  | * responsibility of extable users to either function correctly | 
|  | * when handlers are invoked early or to simply avoid causing | 
|  | * exceptions before they're ready to handle them. | 
|  | * | 
|  | * This is better than filtering which handlers can be used, | 
|  | * because refusing to call a handler here is guaranteed to | 
|  | * result in a hard-to-debug panic. | 
|  | * | 
|  | * Keep in mind that not all vectors actually get here.  Early | 
|  | * fage faults, for example, are special. | 
|  | */ | 
|  | if (fixup_exception(regs, trapnr)) | 
|  | return; | 
|  |  | 
|  | if (fixup_bug(regs, trapnr)) | 
|  | return; | 
|  |  | 
|  | fail: | 
|  | early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n", | 
|  | (unsigned)trapnr, (unsigned long)regs->cs, regs->ip, | 
|  | regs->orig_ax, read_cr2()); | 
|  |  | 
|  | show_regs(regs); | 
|  |  | 
|  | halt_loop: | 
|  | while (true) | 
|  | halt(); | 
|  | } |