|  | #include <linux/gfp.h> | 
|  | #include <linux/initrd.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/bootmem.h>	/* for max_low_pfn */ | 
|  | #include <linux/swapfile.h> | 
|  | #include <linux/swapops.h> | 
|  |  | 
|  | #include <asm/set_memory.h> | 
|  | #include <asm/e820/api.h> | 
|  | #include <asm/init.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/page_types.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/proto.h> | 
|  | #include <asm/dma.h>		/* for MAX_DMA_PFN */ | 
|  | #include <asm/microcode.h> | 
|  | #include <asm/kaslr.h> | 
|  | #include <asm/hypervisor.h> | 
|  | #include <asm/cpufeature.h> | 
|  | #include <asm/pti.h> | 
|  |  | 
|  | /* | 
|  | * We need to define the tracepoints somewhere, and tlb.c | 
|  | * is only compied when SMP=y. | 
|  | */ | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/tlb.h> | 
|  |  | 
|  | #include "mm_internal.h" | 
|  |  | 
|  | /* | 
|  | * Tables translating between page_cache_type_t and pte encoding. | 
|  | * | 
|  | * The default values are defined statically as minimal supported mode; | 
|  | * WC and WT fall back to UC-.  pat_init() updates these values to support | 
|  | * more cache modes, WC and WT, when it is safe to do so.  See pat_init() | 
|  | * for the details.  Note, __early_ioremap() used during early boot-time | 
|  | * takes pgprot_t (pte encoding) and does not use these tables. | 
|  | * | 
|  | *   Index into __cachemode2pte_tbl[] is the cachemode. | 
|  | * | 
|  | *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte | 
|  | *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2. | 
|  | */ | 
|  | uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = { | 
|  | [_PAGE_CACHE_MODE_WB      ]	= 0         | 0        , | 
|  | [_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD, | 
|  | [_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD, | 
|  | [_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD, | 
|  | [_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD, | 
|  | [_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD, | 
|  | }; | 
|  | EXPORT_SYMBOL(__cachemode2pte_tbl); | 
|  |  | 
|  | uint8_t __pte2cachemode_tbl[8] = { | 
|  | [__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB, | 
|  | [__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS, | 
|  | [__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS, | 
|  | [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC, | 
|  | [__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB, | 
|  | [__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, | 
|  | [__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, | 
|  | [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC, | 
|  | }; | 
|  | EXPORT_SYMBOL(__pte2cachemode_tbl); | 
|  |  | 
|  | static unsigned long __initdata pgt_buf_start; | 
|  | static unsigned long __initdata pgt_buf_end; | 
|  | static unsigned long __initdata pgt_buf_top; | 
|  |  | 
|  | static unsigned long min_pfn_mapped; | 
|  |  | 
|  | static bool __initdata can_use_brk_pgt = true; | 
|  |  | 
|  | /* | 
|  | * Pages returned are already directly mapped. | 
|  | * | 
|  | * Changing that is likely to break Xen, see commit: | 
|  | * | 
|  | *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve | 
|  | * | 
|  | * for detailed information. | 
|  | */ | 
|  | __ref void *alloc_low_pages(unsigned int num) | 
|  | { | 
|  | unsigned long pfn; | 
|  | int i; | 
|  |  | 
|  | if (after_bootmem) { | 
|  | unsigned int order; | 
|  |  | 
|  | order = get_order((unsigned long)num << PAGE_SHIFT); | 
|  | return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); | 
|  | } | 
|  |  | 
|  | if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) { | 
|  | unsigned long ret; | 
|  | if (min_pfn_mapped >= max_pfn_mapped) | 
|  | panic("alloc_low_pages: ran out of memory"); | 
|  | ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT, | 
|  | max_pfn_mapped << PAGE_SHIFT, | 
|  | PAGE_SIZE * num , PAGE_SIZE); | 
|  | if (!ret) | 
|  | panic("alloc_low_pages: can not alloc memory"); | 
|  | memblock_reserve(ret, PAGE_SIZE * num); | 
|  | pfn = ret >> PAGE_SHIFT; | 
|  | } else { | 
|  | pfn = pgt_buf_end; | 
|  | pgt_buf_end += num; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num; i++) { | 
|  | void *adr; | 
|  |  | 
|  | adr = __va((pfn + i) << PAGE_SHIFT); | 
|  | clear_page(adr); | 
|  | } | 
|  |  | 
|  | return __va(pfn << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS. | 
|  | * With KASLR memory randomization, depending on the machine e820 memory | 
|  | * and the PUD alignment. We may need twice more pages when KASLR memory | 
|  | * randomization is enabled. | 
|  | */ | 
|  | #ifndef CONFIG_RANDOMIZE_MEMORY | 
|  | #define INIT_PGD_PAGE_COUNT      6 | 
|  | #else | 
|  | #define INIT_PGD_PAGE_COUNT      12 | 
|  | #endif | 
|  | #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE) | 
|  | RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); | 
|  | void  __init early_alloc_pgt_buf(void) | 
|  | { | 
|  | unsigned long tables = INIT_PGT_BUF_SIZE; | 
|  | phys_addr_t base; | 
|  |  | 
|  | base = __pa(extend_brk(tables, PAGE_SIZE)); | 
|  |  | 
|  | pgt_buf_start = base >> PAGE_SHIFT; | 
|  | pgt_buf_end = pgt_buf_start; | 
|  | pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | int after_bootmem; | 
|  |  | 
|  | early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES); | 
|  |  | 
|  | struct map_range { | 
|  | unsigned long start; | 
|  | unsigned long end; | 
|  | unsigned page_size_mask; | 
|  | }; | 
|  |  | 
|  | static int page_size_mask; | 
|  |  | 
|  | static void enable_global_pages(void) | 
|  | { | 
|  | if (!static_cpu_has(X86_FEATURE_PTI)) | 
|  | __supported_pte_mask |= _PAGE_GLOBAL; | 
|  | } | 
|  |  | 
|  | static void __init probe_page_size_mask(void) | 
|  | { | 
|  | /* | 
|  | * For pagealloc debugging, identity mapping will use small pages. | 
|  | * This will simplify cpa(), which otherwise needs to support splitting | 
|  | * large pages into small in interrupt context, etc. | 
|  | */ | 
|  | if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled()) | 
|  | page_size_mask |= 1 << PG_LEVEL_2M; | 
|  | else | 
|  | direct_gbpages = 0; | 
|  |  | 
|  | /* Enable PSE if available */ | 
|  | if (boot_cpu_has(X86_FEATURE_PSE)) | 
|  | cr4_set_bits_and_update_boot(X86_CR4_PSE); | 
|  |  | 
|  | /* Enable PGE if available */ | 
|  | __supported_pte_mask &= ~_PAGE_GLOBAL; | 
|  | if (boot_cpu_has(X86_FEATURE_PGE)) { | 
|  | cr4_set_bits_and_update_boot(X86_CR4_PGE); | 
|  | enable_global_pages(); | 
|  | } | 
|  |  | 
|  | /* Enable 1 GB linear kernel mappings if available: */ | 
|  | if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) { | 
|  | printk(KERN_INFO "Using GB pages for direct mapping\n"); | 
|  | page_size_mask |= 1 << PG_LEVEL_1G; | 
|  | } else { | 
|  | direct_gbpages = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void setup_pcid(void) | 
|  | { | 
|  | if (!IS_ENABLED(CONFIG_X86_64)) | 
|  | return; | 
|  |  | 
|  | if (!boot_cpu_has(X86_FEATURE_PCID)) | 
|  | return; | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_PGE)) { | 
|  | /* | 
|  | * This can't be cr4_set_bits_and_update_boot() -- the | 
|  | * trampoline code can't handle CR4.PCIDE and it wouldn't | 
|  | * do any good anyway.  Despite the name, | 
|  | * cr4_set_bits_and_update_boot() doesn't actually cause | 
|  | * the bits in question to remain set all the way through | 
|  | * the secondary boot asm. | 
|  | * | 
|  | * Instead, we brute-force it and set CR4.PCIDE manually in | 
|  | * start_secondary(). | 
|  | */ | 
|  | cr4_set_bits(X86_CR4_PCIDE); | 
|  |  | 
|  | /* | 
|  | * INVPCID's single-context modes (2/3) only work if we set | 
|  | * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable | 
|  | * on systems that have X86_CR4_PCIDE clear, or that have | 
|  | * no INVPCID support at all. | 
|  | */ | 
|  | if (boot_cpu_has(X86_FEATURE_INVPCID)) | 
|  | setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE); | 
|  | } else { | 
|  | /* | 
|  | * flush_tlb_all(), as currently implemented, won't work if | 
|  | * PCID is on but PGE is not.  Since that combination | 
|  | * doesn't exist on real hardware, there's no reason to try | 
|  | * to fully support it, but it's polite to avoid corrupting | 
|  | * data if we're on an improperly configured VM. | 
|  | */ | 
|  | setup_clear_cpu_cap(X86_FEATURE_PCID); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | #define NR_RANGE_MR 3 | 
|  | #else /* CONFIG_X86_64 */ | 
|  | #define NR_RANGE_MR 5 | 
|  | #endif | 
|  |  | 
|  | static int __meminit save_mr(struct map_range *mr, int nr_range, | 
|  | unsigned long start_pfn, unsigned long end_pfn, | 
|  | unsigned long page_size_mask) | 
|  | { | 
|  | if (start_pfn < end_pfn) { | 
|  | if (nr_range >= NR_RANGE_MR) | 
|  | panic("run out of range for init_memory_mapping\n"); | 
|  | mr[nr_range].start = start_pfn<<PAGE_SHIFT; | 
|  | mr[nr_range].end   = end_pfn<<PAGE_SHIFT; | 
|  | mr[nr_range].page_size_mask = page_size_mask; | 
|  | nr_range++; | 
|  | } | 
|  |  | 
|  | return nr_range; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * adjust the page_size_mask for small range to go with | 
|  | *	big page size instead small one if nearby are ram too. | 
|  | */ | 
|  | static void __ref adjust_range_page_size_mask(struct map_range *mr, | 
|  | int nr_range) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nr_range; i++) { | 
|  | if ((page_size_mask & (1<<PG_LEVEL_2M)) && | 
|  | !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) { | 
|  | unsigned long start = round_down(mr[i].start, PMD_SIZE); | 
|  | unsigned long end = round_up(mr[i].end, PMD_SIZE); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | if ((end >> PAGE_SHIFT) > max_low_pfn) | 
|  | continue; | 
|  | #endif | 
|  |  | 
|  | if (memblock_is_region_memory(start, end - start)) | 
|  | mr[i].page_size_mask |= 1<<PG_LEVEL_2M; | 
|  | } | 
|  | if ((page_size_mask & (1<<PG_LEVEL_1G)) && | 
|  | !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) { | 
|  | unsigned long start = round_down(mr[i].start, PUD_SIZE); | 
|  | unsigned long end = round_up(mr[i].end, PUD_SIZE); | 
|  |  | 
|  | if (memblock_is_region_memory(start, end - start)) | 
|  | mr[i].page_size_mask |= 1<<PG_LEVEL_1G; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static const char *page_size_string(struct map_range *mr) | 
|  | { | 
|  | static const char str_1g[] = "1G"; | 
|  | static const char str_2m[] = "2M"; | 
|  | static const char str_4m[] = "4M"; | 
|  | static const char str_4k[] = "4k"; | 
|  |  | 
|  | if (mr->page_size_mask & (1<<PG_LEVEL_1G)) | 
|  | return str_1g; | 
|  | /* | 
|  | * 32-bit without PAE has a 4M large page size. | 
|  | * PG_LEVEL_2M is misnamed, but we can at least | 
|  | * print out the right size in the string. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_X86_32) && | 
|  | !IS_ENABLED(CONFIG_X86_PAE) && | 
|  | mr->page_size_mask & (1<<PG_LEVEL_2M)) | 
|  | return str_4m; | 
|  |  | 
|  | if (mr->page_size_mask & (1<<PG_LEVEL_2M)) | 
|  | return str_2m; | 
|  |  | 
|  | return str_4k; | 
|  | } | 
|  |  | 
|  | static int __meminit split_mem_range(struct map_range *mr, int nr_range, | 
|  | unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long start_pfn, end_pfn, limit_pfn; | 
|  | unsigned long pfn; | 
|  | int i; | 
|  |  | 
|  | limit_pfn = PFN_DOWN(end); | 
|  |  | 
|  | /* head if not big page alignment ? */ | 
|  | pfn = start_pfn = PFN_DOWN(start); | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* | 
|  | * Don't use a large page for the first 2/4MB of memory | 
|  | * because there are often fixed size MTRRs in there | 
|  | * and overlapping MTRRs into large pages can cause | 
|  | * slowdowns. | 
|  | */ | 
|  | if (pfn == 0) | 
|  | end_pfn = PFN_DOWN(PMD_SIZE); | 
|  | else | 
|  | end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); | 
|  | #else /* CONFIG_X86_64 */ | 
|  | end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); | 
|  | #endif | 
|  | if (end_pfn > limit_pfn) | 
|  | end_pfn = limit_pfn; | 
|  | if (start_pfn < end_pfn) { | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); | 
|  | pfn = end_pfn; | 
|  | } | 
|  |  | 
|  | /* big page (2M) range */ | 
|  | start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); | 
|  | #ifdef CONFIG_X86_32 | 
|  | end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); | 
|  | #else /* CONFIG_X86_64 */ | 
|  | end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); | 
|  | if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE))) | 
|  | end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); | 
|  | #endif | 
|  |  | 
|  | if (start_pfn < end_pfn) { | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, | 
|  | page_size_mask & (1<<PG_LEVEL_2M)); | 
|  | pfn = end_pfn; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* big page (1G) range */ | 
|  | start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); | 
|  | end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE)); | 
|  | if (start_pfn < end_pfn) { | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, | 
|  | page_size_mask & | 
|  | ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); | 
|  | pfn = end_pfn; | 
|  | } | 
|  |  | 
|  | /* tail is not big page (1G) alignment */ | 
|  | start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); | 
|  | end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); | 
|  | if (start_pfn < end_pfn) { | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, | 
|  | page_size_mask & (1<<PG_LEVEL_2M)); | 
|  | pfn = end_pfn; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* tail is not big page (2M) alignment */ | 
|  | start_pfn = pfn; | 
|  | end_pfn = limit_pfn; | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); | 
|  |  | 
|  | if (!after_bootmem) | 
|  | adjust_range_page_size_mask(mr, nr_range); | 
|  |  | 
|  | /* try to merge same page size and continuous */ | 
|  | for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { | 
|  | unsigned long old_start; | 
|  | if (mr[i].end != mr[i+1].start || | 
|  | mr[i].page_size_mask != mr[i+1].page_size_mask) | 
|  | continue; | 
|  | /* move it */ | 
|  | old_start = mr[i].start; | 
|  | memmove(&mr[i], &mr[i+1], | 
|  | (nr_range - 1 - i) * sizeof(struct map_range)); | 
|  | mr[i--].start = old_start; | 
|  | nr_range--; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr_range; i++) | 
|  | pr_debug(" [mem %#010lx-%#010lx] page %s\n", | 
|  | mr[i].start, mr[i].end - 1, | 
|  | page_size_string(&mr[i])); | 
|  |  | 
|  | return nr_range; | 
|  | } | 
|  |  | 
|  | struct range pfn_mapped[E820_MAX_ENTRIES]; | 
|  | int nr_pfn_mapped; | 
|  |  | 
|  | static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) | 
|  | { | 
|  | nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES, | 
|  | nr_pfn_mapped, start_pfn, end_pfn); | 
|  | nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES); | 
|  |  | 
|  | max_pfn_mapped = max(max_pfn_mapped, end_pfn); | 
|  |  | 
|  | if (start_pfn < (1UL<<(32-PAGE_SHIFT))) | 
|  | max_low_pfn_mapped = max(max_low_pfn_mapped, | 
|  | min(end_pfn, 1UL<<(32-PAGE_SHIFT))); | 
|  | } | 
|  |  | 
|  | bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nr_pfn_mapped; i++) | 
|  | if ((start_pfn >= pfn_mapped[i].start) && | 
|  | (end_pfn <= pfn_mapped[i].end)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup the direct mapping of the physical memory at PAGE_OFFSET. | 
|  | * This runs before bootmem is initialized and gets pages directly from | 
|  | * the physical memory. To access them they are temporarily mapped. | 
|  | */ | 
|  | unsigned long __ref init_memory_mapping(unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | struct map_range mr[NR_RANGE_MR]; | 
|  | unsigned long ret = 0; | 
|  | int nr_range, i; | 
|  |  | 
|  | pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n", | 
|  | start, end - 1); | 
|  |  | 
|  | memset(mr, 0, sizeof(mr)); | 
|  | nr_range = split_mem_range(mr, 0, start, end); | 
|  |  | 
|  | for (i = 0; i < nr_range; i++) | 
|  | ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, | 
|  | mr[i].page_size_mask); | 
|  |  | 
|  | add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); | 
|  |  | 
|  | return ret >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to iterate through the E820 memory map and create direct mappings | 
|  | * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply | 
|  | * create direct mappings for all pfns from [0 to max_low_pfn) and | 
|  | * [4GB to max_pfn) because of possible memory holes in high addresses | 
|  | * that cannot be marked as UC by fixed/variable range MTRRs. | 
|  | * Depending on the alignment of E820 ranges, this may possibly result | 
|  | * in using smaller size (i.e. 4K instead of 2M or 1G) page tables. | 
|  | * | 
|  | * init_mem_mapping() calls init_range_memory_mapping() with big range. | 
|  | * That range would have hole in the middle or ends, and only ram parts | 
|  | * will be mapped in init_range_memory_mapping(). | 
|  | */ | 
|  | static unsigned long __init init_range_memory_mapping( | 
|  | unsigned long r_start, | 
|  | unsigned long r_end) | 
|  | { | 
|  | unsigned long start_pfn, end_pfn; | 
|  | unsigned long mapped_ram_size = 0; | 
|  | int i; | 
|  |  | 
|  | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { | 
|  | u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end); | 
|  | u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end); | 
|  | if (start >= end) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * if it is overlapping with brk pgt, we need to | 
|  | * alloc pgt buf from memblock instead. | 
|  | */ | 
|  | can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >= | 
|  | min(end, (u64)pgt_buf_top<<PAGE_SHIFT); | 
|  | init_memory_mapping(start, end); | 
|  | mapped_ram_size += end - start; | 
|  | can_use_brk_pgt = true; | 
|  | } | 
|  |  | 
|  | return mapped_ram_size; | 
|  | } | 
|  |  | 
|  | static unsigned long __init get_new_step_size(unsigned long step_size) | 
|  | { | 
|  | /* | 
|  | * Initial mapped size is PMD_SIZE (2M). | 
|  | * We can not set step_size to be PUD_SIZE (1G) yet. | 
|  | * In worse case, when we cross the 1G boundary, and | 
|  | * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k) | 
|  | * to map 1G range with PTE. Hence we use one less than the | 
|  | * difference of page table level shifts. | 
|  | * | 
|  | * Don't need to worry about overflow in the top-down case, on 32bit, | 
|  | * when step_size is 0, round_down() returns 0 for start, and that | 
|  | * turns it into 0x100000000ULL. | 
|  | * In the bottom-up case, round_up(x, 0) returns 0 though too, which | 
|  | * needs to be taken into consideration by the code below. | 
|  | */ | 
|  | return step_size << (PMD_SHIFT - PAGE_SHIFT - 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memory_map_top_down - Map [map_start, map_end) top down | 
|  | * @map_start: start address of the target memory range | 
|  | * @map_end: end address of the target memory range | 
|  | * | 
|  | * This function will setup direct mapping for memory range | 
|  | * [map_start, map_end) in top-down. That said, the page tables | 
|  | * will be allocated at the end of the memory, and we map the | 
|  | * memory in top-down. | 
|  | */ | 
|  | static void __init memory_map_top_down(unsigned long map_start, | 
|  | unsigned long map_end) | 
|  | { | 
|  | unsigned long real_end, start, last_start; | 
|  | unsigned long step_size; | 
|  | unsigned long addr; | 
|  | unsigned long mapped_ram_size = 0; | 
|  |  | 
|  | /* xen has big range in reserved near end of ram, skip it at first.*/ | 
|  | addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE); | 
|  | real_end = addr + PMD_SIZE; | 
|  |  | 
|  | /* step_size need to be small so pgt_buf from BRK could cover it */ | 
|  | step_size = PMD_SIZE; | 
|  | max_pfn_mapped = 0; /* will get exact value next */ | 
|  | min_pfn_mapped = real_end >> PAGE_SHIFT; | 
|  | last_start = start = real_end; | 
|  |  | 
|  | /* | 
|  | * We start from the top (end of memory) and go to the bottom. | 
|  | * The memblock_find_in_range() gets us a block of RAM from the | 
|  | * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages | 
|  | * for page table. | 
|  | */ | 
|  | while (last_start > map_start) { | 
|  | if (last_start > step_size) { | 
|  | start = round_down(last_start - 1, step_size); | 
|  | if (start < map_start) | 
|  | start = map_start; | 
|  | } else | 
|  | start = map_start; | 
|  | mapped_ram_size += init_range_memory_mapping(start, | 
|  | last_start); | 
|  | last_start = start; | 
|  | min_pfn_mapped = last_start >> PAGE_SHIFT; | 
|  | if (mapped_ram_size >= step_size) | 
|  | step_size = get_new_step_size(step_size); | 
|  | } | 
|  |  | 
|  | if (real_end < map_end) | 
|  | init_range_memory_mapping(real_end, map_end); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memory_map_bottom_up - Map [map_start, map_end) bottom up | 
|  | * @map_start: start address of the target memory range | 
|  | * @map_end: end address of the target memory range | 
|  | * | 
|  | * This function will setup direct mapping for memory range | 
|  | * [map_start, map_end) in bottom-up. Since we have limited the | 
|  | * bottom-up allocation above the kernel, the page tables will | 
|  | * be allocated just above the kernel and we map the memory | 
|  | * in [map_start, map_end) in bottom-up. | 
|  | */ | 
|  | static void __init memory_map_bottom_up(unsigned long map_start, | 
|  | unsigned long map_end) | 
|  | { | 
|  | unsigned long next, start; | 
|  | unsigned long mapped_ram_size = 0; | 
|  | /* step_size need to be small so pgt_buf from BRK could cover it */ | 
|  | unsigned long step_size = PMD_SIZE; | 
|  |  | 
|  | start = map_start; | 
|  | min_pfn_mapped = start >> PAGE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * We start from the bottom (@map_start) and go to the top (@map_end). | 
|  | * The memblock_find_in_range() gets us a block of RAM from the | 
|  | * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages | 
|  | * for page table. | 
|  | */ | 
|  | while (start < map_end) { | 
|  | if (step_size && map_end - start > step_size) { | 
|  | next = round_up(start + 1, step_size); | 
|  | if (next > map_end) | 
|  | next = map_end; | 
|  | } else { | 
|  | next = map_end; | 
|  | } | 
|  |  | 
|  | mapped_ram_size += init_range_memory_mapping(start, next); | 
|  | start = next; | 
|  |  | 
|  | if (mapped_ram_size >= step_size) | 
|  | step_size = get_new_step_size(step_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init init_mem_mapping(void) | 
|  | { | 
|  | unsigned long end; | 
|  |  | 
|  | pti_check_boottime_disable(); | 
|  | probe_page_size_mask(); | 
|  | setup_pcid(); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | end = max_pfn << PAGE_SHIFT; | 
|  | #else | 
|  | end = max_low_pfn << PAGE_SHIFT; | 
|  | #endif | 
|  |  | 
|  | /* the ISA range is always mapped regardless of memory holes */ | 
|  | init_memory_mapping(0, ISA_END_ADDRESS); | 
|  |  | 
|  | /* Init the trampoline, possibly with KASLR memory offset */ | 
|  | init_trampoline(); | 
|  |  | 
|  | /* | 
|  | * If the allocation is in bottom-up direction, we setup direct mapping | 
|  | * in bottom-up, otherwise we setup direct mapping in top-down. | 
|  | */ | 
|  | if (memblock_bottom_up()) { | 
|  | unsigned long kernel_end = __pa_symbol(_end); | 
|  |  | 
|  | /* | 
|  | * we need two separate calls here. This is because we want to | 
|  | * allocate page tables above the kernel. So we first map | 
|  | * [kernel_end, end) to make memory above the kernel be mapped | 
|  | * as soon as possible. And then use page tables allocated above | 
|  | * the kernel to map [ISA_END_ADDRESS, kernel_end). | 
|  | */ | 
|  | memory_map_bottom_up(kernel_end, end); | 
|  | memory_map_bottom_up(ISA_END_ADDRESS, kernel_end); | 
|  | } else { | 
|  | memory_map_top_down(ISA_END_ADDRESS, end); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (max_pfn > max_low_pfn) { | 
|  | /* can we preseve max_low_pfn ?*/ | 
|  | max_low_pfn = max_pfn; | 
|  | } | 
|  | #else | 
|  | early_ioremap_page_table_range_init(); | 
|  | #endif | 
|  |  | 
|  | load_cr3(swapper_pg_dir); | 
|  | __flush_tlb_all(); | 
|  |  | 
|  | x86_init.hyper.init_mem_mapping(); | 
|  |  | 
|  | early_memtest(0, max_pfn_mapped << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * devmem_is_allowed() checks to see if /dev/mem access to a certain address | 
|  | * is valid. The argument is a physical page number. | 
|  | * | 
|  | * On x86, access has to be given to the first megabyte of RAM because that | 
|  | * area traditionally contains BIOS code and data regions used by X, dosemu, | 
|  | * and similar apps. Since they map the entire memory range, the whole range | 
|  | * must be allowed (for mapping), but any areas that would otherwise be | 
|  | * disallowed are flagged as being "zero filled" instead of rejected. | 
|  | * Access has to be given to non-kernel-ram areas as well, these contain the | 
|  | * PCI mmio resources as well as potential bios/acpi data regions. | 
|  | */ | 
|  | int devmem_is_allowed(unsigned long pagenr) | 
|  | { | 
|  | if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE, | 
|  | IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE) | 
|  | != REGION_DISJOINT) { | 
|  | /* | 
|  | * For disallowed memory regions in the low 1MB range, | 
|  | * request that the page be shown as all zeros. | 
|  | */ | 
|  | if (pagenr < 256) | 
|  | return 2; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This must follow RAM test, since System RAM is considered a | 
|  | * restricted resource under CONFIG_STRICT_IOMEM. | 
|  | */ | 
|  | if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) { | 
|  | /* Low 1MB bypasses iomem restrictions. */ | 
|  | if (pagenr < 256) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void free_init_pages(char *what, unsigned long begin, unsigned long end) | 
|  | { | 
|  | unsigned long begin_aligned, end_aligned; | 
|  |  | 
|  | /* Make sure boundaries are page aligned */ | 
|  | begin_aligned = PAGE_ALIGN(begin); | 
|  | end_aligned   = end & PAGE_MASK; | 
|  |  | 
|  | if (WARN_ON(begin_aligned != begin || end_aligned != end)) { | 
|  | begin = begin_aligned; | 
|  | end   = end_aligned; | 
|  | } | 
|  |  | 
|  | if (begin >= end) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If debugging page accesses then do not free this memory but | 
|  | * mark them not present - any buggy init-section access will | 
|  | * create a kernel page fault: | 
|  | */ | 
|  | if (debug_pagealloc_enabled()) { | 
|  | pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n", | 
|  | begin, end - 1); | 
|  | set_memory_np(begin, (end - begin) >> PAGE_SHIFT); | 
|  | } else { | 
|  | /* | 
|  | * We just marked the kernel text read only above, now that | 
|  | * we are going to free part of that, we need to make that | 
|  | * writeable and non-executable first. | 
|  | */ | 
|  | set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); | 
|  | set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); | 
|  |  | 
|  | free_reserved_area((void *)begin, (void *)end, | 
|  | POISON_FREE_INITMEM, what); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __ref free_initmem(void) | 
|  | { | 
|  | e820__reallocate_tables(); | 
|  |  | 
|  | free_init_pages("unused kernel", | 
|  | (unsigned long)(&__init_begin), | 
|  | (unsigned long)(&__init_end)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | void __init free_initrd_mem(unsigned long start, unsigned long end) | 
|  | { | 
|  | /* | 
|  | * end could be not aligned, and We can not align that, | 
|  | * decompresser could be confused by aligned initrd_end | 
|  | * We already reserve the end partial page before in | 
|  | *   - i386_start_kernel() | 
|  | *   - x86_64_start_kernel() | 
|  | *   - relocate_initrd() | 
|  | * So here We can do PAGE_ALIGN() safely to get partial page to be freed | 
|  | */ | 
|  | free_init_pages("initrd", start, PAGE_ALIGN(end)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Calculate the precise size of the DMA zone (first 16 MB of RAM), | 
|  | * and pass it to the MM layer - to help it set zone watermarks more | 
|  | * accurately. | 
|  | * | 
|  | * Done on 64-bit systems only for the time being, although 32-bit systems | 
|  | * might benefit from this as well. | 
|  | */ | 
|  | void __init memblock_find_dma_reserve(void) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | u64 nr_pages = 0, nr_free_pages = 0; | 
|  | unsigned long start_pfn, end_pfn; | 
|  | phys_addr_t start_addr, end_addr; | 
|  | int i; | 
|  | u64 u; | 
|  |  | 
|  | /* | 
|  | * Iterate over all memory ranges (free and reserved ones alike), | 
|  | * to calculate the total number of pages in the first 16 MB of RAM: | 
|  | */ | 
|  | nr_pages = 0; | 
|  | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { | 
|  | start_pfn = min(start_pfn, MAX_DMA_PFN); | 
|  | end_pfn   = min(end_pfn,   MAX_DMA_PFN); | 
|  |  | 
|  | nr_pages += end_pfn - start_pfn; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Iterate over free memory ranges to calculate the number of free | 
|  | * pages in the DMA zone, while not counting potential partial | 
|  | * pages at the beginning or the end of the range: | 
|  | */ | 
|  | nr_free_pages = 0; | 
|  | for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { | 
|  | start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN); | 
|  | end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN); | 
|  |  | 
|  | if (start_pfn < end_pfn) | 
|  | nr_free_pages += end_pfn - start_pfn; | 
|  | } | 
|  |  | 
|  | set_dma_reserve(nr_pages - nr_free_pages); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void __init zone_sizes_init(void) | 
|  | { | 
|  | unsigned long max_zone_pfns[MAX_NR_ZONES]; | 
|  |  | 
|  | memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn); | 
|  | #endif | 
|  | #ifdef CONFIG_ZONE_DMA32 | 
|  | max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn); | 
|  | #endif | 
|  | max_zone_pfns[ZONE_NORMAL]	= max_low_pfn; | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | max_zone_pfns[ZONE_HIGHMEM]	= max_pfn; | 
|  | #endif | 
|  |  | 
|  | free_area_init_nodes(max_zone_pfns); | 
|  | } | 
|  |  | 
|  | __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { | 
|  | .loaded_mm = &init_mm, | 
|  | .next_asid = 1, | 
|  | .cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */ | 
|  | }; | 
|  | EXPORT_PER_CPU_SYMBOL(cpu_tlbstate); | 
|  |  | 
|  | void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache) | 
|  | { | 
|  | /* entry 0 MUST be WB (hardwired to speed up translations) */ | 
|  | BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB); | 
|  |  | 
|  | __cachemode2pte_tbl[cache] = __cm_idx2pte(entry); | 
|  | __pte2cachemode_tbl[entry] = cache; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SWAP | 
|  | unsigned long max_swapfile_size(void) | 
|  | { | 
|  | unsigned long pages; | 
|  |  | 
|  | pages = generic_max_swapfile_size(); | 
|  |  | 
|  | if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) { | 
|  | /* Limit the swap file size to MAX_PA/2 for L1TF workaround */ | 
|  | unsigned long long l1tf_limit = l1tf_pfn_limit(); | 
|  | /* | 
|  | * We encode swap offsets also with 3 bits below those for pfn | 
|  | * which makes the usable limit higher. | 
|  | */ | 
|  | #if CONFIG_PGTABLE_LEVELS > 2 | 
|  | l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT; | 
|  | #endif | 
|  | pages = min_t(unsigned long long, l1tf_limit, pages); | 
|  | } | 
|  | return pages; | 
|  | } | 
|  | #endif |