|  | /* | 
|  | * fs/f2fs/segment.c | 
|  | * | 
|  | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | 
|  | *             http://www.samsung.com/ | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/fs.h> | 
|  | #include <linux/f2fs_fs.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/sched/signal.h> | 
|  |  | 
|  | #include "f2fs.h" | 
|  | #include "segment.h" | 
|  | #include "node.h" | 
|  | #include "gc.h" | 
|  | #include "trace.h" | 
|  | #include <trace/events/f2fs.h> | 
|  |  | 
|  | #define __reverse_ffz(x) __reverse_ffs(~(x)) | 
|  |  | 
|  | static struct kmem_cache *discard_entry_slab; | 
|  | static struct kmem_cache *discard_cmd_slab; | 
|  | static struct kmem_cache *sit_entry_set_slab; | 
|  | static struct kmem_cache *inmem_entry_slab; | 
|  |  | 
|  | static unsigned long __reverse_ulong(unsigned char *str) | 
|  | { | 
|  | unsigned long tmp = 0; | 
|  | int shift = 24, idx = 0; | 
|  |  | 
|  | #if BITS_PER_LONG == 64 | 
|  | shift = 56; | 
|  | #endif | 
|  | while (shift >= 0) { | 
|  | tmp |= (unsigned long)str[idx++] << shift; | 
|  | shift -= BITS_PER_BYTE; | 
|  | } | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since | 
|  | * MSB and LSB are reversed in a byte by f2fs_set_bit. | 
|  | */ | 
|  | static inline unsigned long __reverse_ffs(unsigned long word) | 
|  | { | 
|  | int num = 0; | 
|  |  | 
|  | #if BITS_PER_LONG == 64 | 
|  | if ((word & 0xffffffff00000000UL) == 0) | 
|  | num += 32; | 
|  | else | 
|  | word >>= 32; | 
|  | #endif | 
|  | if ((word & 0xffff0000) == 0) | 
|  | num += 16; | 
|  | else | 
|  | word >>= 16; | 
|  |  | 
|  | if ((word & 0xff00) == 0) | 
|  | num += 8; | 
|  | else | 
|  | word >>= 8; | 
|  |  | 
|  | if ((word & 0xf0) == 0) | 
|  | num += 4; | 
|  | else | 
|  | word >>= 4; | 
|  |  | 
|  | if ((word & 0xc) == 0) | 
|  | num += 2; | 
|  | else | 
|  | word >>= 2; | 
|  |  | 
|  | if ((word & 0x2) == 0) | 
|  | num += 1; | 
|  | return num; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because | 
|  | * f2fs_set_bit makes MSB and LSB reversed in a byte. | 
|  | * @size must be integral times of unsigned long. | 
|  | * Example: | 
|  | *                             MSB <--> LSB | 
|  | *   f2fs_set_bit(0, bitmap) => 1000 0000 | 
|  | *   f2fs_set_bit(7, bitmap) => 0000 0001 | 
|  | */ | 
|  | static unsigned long __find_rev_next_bit(const unsigned long *addr, | 
|  | unsigned long size, unsigned long offset) | 
|  | { | 
|  | const unsigned long *p = addr + BIT_WORD(offset); | 
|  | unsigned long result = size; | 
|  | unsigned long tmp; | 
|  |  | 
|  | if (offset >= size) | 
|  | return size; | 
|  |  | 
|  | size -= (offset & ~(BITS_PER_LONG - 1)); | 
|  | offset %= BITS_PER_LONG; | 
|  |  | 
|  | while (1) { | 
|  | if (*p == 0) | 
|  | goto pass; | 
|  |  | 
|  | tmp = __reverse_ulong((unsigned char *)p); | 
|  |  | 
|  | tmp &= ~0UL >> offset; | 
|  | if (size < BITS_PER_LONG) | 
|  | tmp &= (~0UL << (BITS_PER_LONG - size)); | 
|  | if (tmp) | 
|  | goto found; | 
|  | pass: | 
|  | if (size <= BITS_PER_LONG) | 
|  | break; | 
|  | size -= BITS_PER_LONG; | 
|  | offset = 0; | 
|  | p++; | 
|  | } | 
|  | return result; | 
|  | found: | 
|  | return result - size + __reverse_ffs(tmp); | 
|  | } | 
|  |  | 
|  | static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, | 
|  | unsigned long size, unsigned long offset) | 
|  | { | 
|  | const unsigned long *p = addr + BIT_WORD(offset); | 
|  | unsigned long result = size; | 
|  | unsigned long tmp; | 
|  |  | 
|  | if (offset >= size) | 
|  | return size; | 
|  |  | 
|  | size -= (offset & ~(BITS_PER_LONG - 1)); | 
|  | offset %= BITS_PER_LONG; | 
|  |  | 
|  | while (1) { | 
|  | if (*p == ~0UL) | 
|  | goto pass; | 
|  |  | 
|  | tmp = __reverse_ulong((unsigned char *)p); | 
|  |  | 
|  | if (offset) | 
|  | tmp |= ~0UL << (BITS_PER_LONG - offset); | 
|  | if (size < BITS_PER_LONG) | 
|  | tmp |= ~0UL >> size; | 
|  | if (tmp != ~0UL) | 
|  | goto found; | 
|  | pass: | 
|  | if (size <= BITS_PER_LONG) | 
|  | break; | 
|  | size -= BITS_PER_LONG; | 
|  | offset = 0; | 
|  | p++; | 
|  | } | 
|  | return result; | 
|  | found: | 
|  | return result - size + __reverse_ffz(tmp); | 
|  | } | 
|  |  | 
|  | bool need_SSR(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); | 
|  | int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); | 
|  | int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); | 
|  |  | 
|  | if (test_opt(sbi, LFS)) | 
|  | return false; | 
|  | if (sbi->gc_thread && sbi->gc_thread->gc_urgent) | 
|  | return true; | 
|  |  | 
|  | return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + | 
|  | SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); | 
|  | } | 
|  |  | 
|  | void register_inmem_page(struct inode *inode, struct page *page) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
|  | struct f2fs_inode_info *fi = F2FS_I(inode); | 
|  | struct inmem_pages *new; | 
|  |  | 
|  | f2fs_trace_pid(page); | 
|  |  | 
|  | set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); | 
|  | SetPagePrivate(page); | 
|  |  | 
|  | new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); | 
|  |  | 
|  | /* add atomic page indices to the list */ | 
|  | new->page = page; | 
|  | INIT_LIST_HEAD(&new->list); | 
|  |  | 
|  | /* increase reference count with clean state */ | 
|  | mutex_lock(&fi->inmem_lock); | 
|  | get_page(page); | 
|  | list_add_tail(&new->list, &fi->inmem_pages); | 
|  | spin_lock(&sbi->inode_lock[ATOMIC_FILE]); | 
|  | if (list_empty(&fi->inmem_ilist)) | 
|  | list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); | 
|  | spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); | 
|  | inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); | 
|  | mutex_unlock(&fi->inmem_lock); | 
|  |  | 
|  | trace_f2fs_register_inmem_page(page, INMEM); | 
|  | } | 
|  |  | 
|  | static int __revoke_inmem_pages(struct inode *inode, | 
|  | struct list_head *head, bool drop, bool recover) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
|  | struct inmem_pages *cur, *tmp; | 
|  | int err = 0; | 
|  |  | 
|  | list_for_each_entry_safe(cur, tmp, head, list) { | 
|  | struct page *page = cur->page; | 
|  |  | 
|  | if (drop) | 
|  | trace_f2fs_commit_inmem_page(page, INMEM_DROP); | 
|  |  | 
|  | lock_page(page); | 
|  |  | 
|  | f2fs_wait_on_page_writeback(page, DATA, true); | 
|  |  | 
|  | if (recover) { | 
|  | struct dnode_of_data dn; | 
|  | struct node_info ni; | 
|  |  | 
|  | trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); | 
|  | retry: | 
|  | set_new_dnode(&dn, inode, NULL, NULL, 0); | 
|  | err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); | 
|  | if (err) { | 
|  | if (err == -ENOMEM) { | 
|  | congestion_wait(BLK_RW_ASYNC, HZ/50); | 
|  | cond_resched(); | 
|  | goto retry; | 
|  | } | 
|  | err = -EAGAIN; | 
|  | goto next; | 
|  | } | 
|  | get_node_info(sbi, dn.nid, &ni); | 
|  | if (cur->old_addr == NEW_ADDR) { | 
|  | invalidate_blocks(sbi, dn.data_blkaddr); | 
|  | f2fs_update_data_blkaddr(&dn, NEW_ADDR); | 
|  | } else | 
|  | f2fs_replace_block(sbi, &dn, dn.data_blkaddr, | 
|  | cur->old_addr, ni.version, true, true); | 
|  | f2fs_put_dnode(&dn); | 
|  | } | 
|  | next: | 
|  | /* we don't need to invalidate this in the sccessful status */ | 
|  | if (drop || recover) { | 
|  | ClearPageUptodate(page); | 
|  | clear_cold_data(page); | 
|  | } | 
|  | set_page_private(page, 0); | 
|  | ClearPagePrivate(page); | 
|  | f2fs_put_page(page, 1); | 
|  |  | 
|  | list_del(&cur->list); | 
|  | kmem_cache_free(inmem_entry_slab, cur); | 
|  | dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void drop_inmem_pages_all(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; | 
|  | struct inode *inode; | 
|  | struct f2fs_inode_info *fi; | 
|  | next: | 
|  | spin_lock(&sbi->inode_lock[ATOMIC_FILE]); | 
|  | if (list_empty(head)) { | 
|  | spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); | 
|  | return; | 
|  | } | 
|  | fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); | 
|  | inode = igrab(&fi->vfs_inode); | 
|  | spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); | 
|  |  | 
|  | if (inode) { | 
|  | drop_inmem_pages(inode); | 
|  | iput(inode); | 
|  | } | 
|  | congestion_wait(BLK_RW_ASYNC, HZ/50); | 
|  | cond_resched(); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | void drop_inmem_pages(struct inode *inode) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
|  | struct f2fs_inode_info *fi = F2FS_I(inode); | 
|  |  | 
|  | mutex_lock(&fi->inmem_lock); | 
|  | __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); | 
|  | spin_lock(&sbi->inode_lock[ATOMIC_FILE]); | 
|  | if (!list_empty(&fi->inmem_ilist)) | 
|  | list_del_init(&fi->inmem_ilist); | 
|  | spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); | 
|  | mutex_unlock(&fi->inmem_lock); | 
|  |  | 
|  | clear_inode_flag(inode, FI_ATOMIC_FILE); | 
|  | clear_inode_flag(inode, FI_HOT_DATA); | 
|  | stat_dec_atomic_write(inode); | 
|  | } | 
|  |  | 
|  | void drop_inmem_page(struct inode *inode, struct page *page) | 
|  | { | 
|  | struct f2fs_inode_info *fi = F2FS_I(inode); | 
|  | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
|  | struct list_head *head = &fi->inmem_pages; | 
|  | struct inmem_pages *cur = NULL; | 
|  |  | 
|  | f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); | 
|  |  | 
|  | mutex_lock(&fi->inmem_lock); | 
|  | list_for_each_entry(cur, head, list) { | 
|  | if (cur->page == page) | 
|  | break; | 
|  | } | 
|  |  | 
|  | f2fs_bug_on(sbi, !cur || cur->page != page); | 
|  | list_del(&cur->list); | 
|  | mutex_unlock(&fi->inmem_lock); | 
|  |  | 
|  | dec_page_count(sbi, F2FS_INMEM_PAGES); | 
|  | kmem_cache_free(inmem_entry_slab, cur); | 
|  |  | 
|  | ClearPageUptodate(page); | 
|  | set_page_private(page, 0); | 
|  | ClearPagePrivate(page); | 
|  | f2fs_put_page(page, 0); | 
|  |  | 
|  | trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); | 
|  | } | 
|  |  | 
|  | static int __commit_inmem_pages(struct inode *inode, | 
|  | struct list_head *revoke_list) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
|  | struct f2fs_inode_info *fi = F2FS_I(inode); | 
|  | struct inmem_pages *cur, *tmp; | 
|  | struct f2fs_io_info fio = { | 
|  | .sbi = sbi, | 
|  | .ino = inode->i_ino, | 
|  | .type = DATA, | 
|  | .op = REQ_OP_WRITE, | 
|  | .op_flags = REQ_SYNC | REQ_PRIO, | 
|  | .io_type = FS_DATA_IO, | 
|  | }; | 
|  | pgoff_t last_idx = ULONG_MAX; | 
|  | int err = 0; | 
|  |  | 
|  | list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { | 
|  | struct page *page = cur->page; | 
|  |  | 
|  | lock_page(page); | 
|  | if (page->mapping == inode->i_mapping) { | 
|  | trace_f2fs_commit_inmem_page(page, INMEM); | 
|  |  | 
|  | set_page_dirty(page); | 
|  | f2fs_wait_on_page_writeback(page, DATA, true); | 
|  | if (clear_page_dirty_for_io(page)) { | 
|  | inode_dec_dirty_pages(inode); | 
|  | remove_dirty_inode(inode); | 
|  | } | 
|  | retry: | 
|  | fio.page = page; | 
|  | fio.old_blkaddr = NULL_ADDR; | 
|  | fio.encrypted_page = NULL; | 
|  | fio.need_lock = LOCK_DONE; | 
|  | err = do_write_data_page(&fio); | 
|  | if (err) { | 
|  | if (err == -ENOMEM) { | 
|  | congestion_wait(BLK_RW_ASYNC, HZ/50); | 
|  | cond_resched(); | 
|  | goto retry; | 
|  | } | 
|  | unlock_page(page); | 
|  | break; | 
|  | } | 
|  | /* record old blkaddr for revoking */ | 
|  | cur->old_addr = fio.old_blkaddr; | 
|  | last_idx = page->index; | 
|  | } | 
|  | unlock_page(page); | 
|  | list_move_tail(&cur->list, revoke_list); | 
|  | } | 
|  |  | 
|  | if (last_idx != ULONG_MAX) | 
|  | f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA); | 
|  |  | 
|  | if (!err) | 
|  | __revoke_inmem_pages(inode, revoke_list, false, false); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int commit_inmem_pages(struct inode *inode) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
|  | struct f2fs_inode_info *fi = F2FS_I(inode); | 
|  | struct list_head revoke_list; | 
|  | int err; | 
|  |  | 
|  | INIT_LIST_HEAD(&revoke_list); | 
|  | f2fs_balance_fs(sbi, true); | 
|  | f2fs_lock_op(sbi); | 
|  |  | 
|  | set_inode_flag(inode, FI_ATOMIC_COMMIT); | 
|  |  | 
|  | mutex_lock(&fi->inmem_lock); | 
|  | err = __commit_inmem_pages(inode, &revoke_list); | 
|  | if (err) { | 
|  | int ret; | 
|  | /* | 
|  | * try to revoke all committed pages, but still we could fail | 
|  | * due to no memory or other reason, if that happened, EAGAIN | 
|  | * will be returned, which means in such case, transaction is | 
|  | * already not integrity, caller should use journal to do the | 
|  | * recovery or rewrite & commit last transaction. For other | 
|  | * error number, revoking was done by filesystem itself. | 
|  | */ | 
|  | ret = __revoke_inmem_pages(inode, &revoke_list, false, true); | 
|  | if (ret) | 
|  | err = ret; | 
|  |  | 
|  | /* drop all uncommitted pages */ | 
|  | __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); | 
|  | } | 
|  | spin_lock(&sbi->inode_lock[ATOMIC_FILE]); | 
|  | if (!list_empty(&fi->inmem_ilist)) | 
|  | list_del_init(&fi->inmem_ilist); | 
|  | spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); | 
|  | mutex_unlock(&fi->inmem_lock); | 
|  |  | 
|  | clear_inode_flag(inode, FI_ATOMIC_COMMIT); | 
|  |  | 
|  | f2fs_unlock_op(sbi); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function balances dirty node and dentry pages. | 
|  | * In addition, it controls garbage collection. | 
|  | */ | 
|  | void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) | 
|  | { | 
|  | #ifdef CONFIG_F2FS_FAULT_INJECTION | 
|  | if (time_to_inject(sbi, FAULT_CHECKPOINT)) { | 
|  | f2fs_show_injection_info(FAULT_CHECKPOINT); | 
|  | f2fs_stop_checkpoint(sbi, false); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* balance_fs_bg is able to be pending */ | 
|  | if (need && excess_cached_nats(sbi)) | 
|  | f2fs_balance_fs_bg(sbi); | 
|  |  | 
|  | /* | 
|  | * We should do GC or end up with checkpoint, if there are so many dirty | 
|  | * dir/node pages without enough free segments. | 
|  | */ | 
|  | if (has_not_enough_free_secs(sbi, 0, 0)) { | 
|  | mutex_lock(&sbi->gc_mutex); | 
|  | f2fs_gc(sbi, false, false, NULL_SEGNO); | 
|  | } | 
|  | } | 
|  |  | 
|  | void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) | 
|  | return; | 
|  |  | 
|  | /* try to shrink extent cache when there is no enough memory */ | 
|  | if (!available_free_memory(sbi, EXTENT_CACHE)) | 
|  | f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); | 
|  |  | 
|  | /* check the # of cached NAT entries */ | 
|  | if (!available_free_memory(sbi, NAT_ENTRIES)) | 
|  | try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); | 
|  |  | 
|  | if (!available_free_memory(sbi, FREE_NIDS)) | 
|  | try_to_free_nids(sbi, MAX_FREE_NIDS); | 
|  | else | 
|  | build_free_nids(sbi, false, false); | 
|  |  | 
|  | if (!is_idle(sbi) && !excess_dirty_nats(sbi)) | 
|  | return; | 
|  |  | 
|  | /* checkpoint is the only way to shrink partial cached entries */ | 
|  | if (!available_free_memory(sbi, NAT_ENTRIES) || | 
|  | !available_free_memory(sbi, INO_ENTRIES) || | 
|  | excess_prefree_segs(sbi) || | 
|  | excess_dirty_nats(sbi) || | 
|  | f2fs_time_over(sbi, CP_TIME)) { | 
|  | if (test_opt(sbi, DATA_FLUSH)) { | 
|  | struct blk_plug plug; | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | sync_dirty_inodes(sbi, FILE_INODE); | 
|  | blk_finish_plug(&plug); | 
|  | } | 
|  | f2fs_sync_fs(sbi->sb, true); | 
|  | stat_inc_bg_cp_count(sbi->stat_info); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __submit_flush_wait(struct f2fs_sb_info *sbi, | 
|  | struct block_device *bdev) | 
|  | { | 
|  | struct bio *bio = f2fs_bio_alloc(sbi, 0, true); | 
|  | int ret; | 
|  |  | 
|  | bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; | 
|  | bio_set_dev(bio, bdev); | 
|  | ret = submit_bio_wait(bio); | 
|  | bio_put(bio); | 
|  |  | 
|  | trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), | 
|  | test_opt(sbi, FLUSH_MERGE), ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) | 
|  | { | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | if (!sbi->s_ndevs) | 
|  | return __submit_flush_wait(sbi, sbi->sb->s_bdev); | 
|  |  | 
|  | for (i = 0; i < sbi->s_ndevs; i++) { | 
|  | if (!is_dirty_device(sbi, ino, i, FLUSH_INO)) | 
|  | continue; | 
|  | ret = __submit_flush_wait(sbi, FDEV(i).bdev); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int issue_flush_thread(void *data) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = data; | 
|  | struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; | 
|  | wait_queue_head_t *q = &fcc->flush_wait_queue; | 
|  | repeat: | 
|  | if (kthread_should_stop()) | 
|  | return 0; | 
|  |  | 
|  | sb_start_intwrite(sbi->sb); | 
|  |  | 
|  | if (!llist_empty(&fcc->issue_list)) { | 
|  | struct flush_cmd *cmd, *next; | 
|  | int ret; | 
|  |  | 
|  | fcc->dispatch_list = llist_del_all(&fcc->issue_list); | 
|  | fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); | 
|  |  | 
|  | cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); | 
|  |  | 
|  | ret = submit_flush_wait(sbi, cmd->ino); | 
|  | atomic_inc(&fcc->issued_flush); | 
|  |  | 
|  | llist_for_each_entry_safe(cmd, next, | 
|  | fcc->dispatch_list, llnode) { | 
|  | cmd->ret = ret; | 
|  | complete(&cmd->wait); | 
|  | } | 
|  | fcc->dispatch_list = NULL; | 
|  | } | 
|  |  | 
|  | sb_end_intwrite(sbi->sb); | 
|  |  | 
|  | wait_event_interruptible(*q, | 
|  | kthread_should_stop() || !llist_empty(&fcc->issue_list)); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) | 
|  | { | 
|  | struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; | 
|  | struct flush_cmd cmd; | 
|  | int ret; | 
|  |  | 
|  | if (test_opt(sbi, NOBARRIER)) | 
|  | return 0; | 
|  |  | 
|  | if (!test_opt(sbi, FLUSH_MERGE)) { | 
|  | ret = submit_flush_wait(sbi, ino); | 
|  | atomic_inc(&fcc->issued_flush); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) { | 
|  | ret = submit_flush_wait(sbi, ino); | 
|  | atomic_dec(&fcc->issing_flush); | 
|  |  | 
|  | atomic_inc(&fcc->issued_flush); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | cmd.ino = ino; | 
|  | init_completion(&cmd.wait); | 
|  |  | 
|  | llist_add(&cmd.llnode, &fcc->issue_list); | 
|  |  | 
|  | /* update issue_list before we wake up issue_flush thread */ | 
|  | smp_mb(); | 
|  |  | 
|  | if (waitqueue_active(&fcc->flush_wait_queue)) | 
|  | wake_up(&fcc->flush_wait_queue); | 
|  |  | 
|  | if (fcc->f2fs_issue_flush) { | 
|  | wait_for_completion(&cmd.wait); | 
|  | atomic_dec(&fcc->issing_flush); | 
|  | } else { | 
|  | struct llist_node *list; | 
|  |  | 
|  | list = llist_del_all(&fcc->issue_list); | 
|  | if (!list) { | 
|  | wait_for_completion(&cmd.wait); | 
|  | atomic_dec(&fcc->issing_flush); | 
|  | } else { | 
|  | struct flush_cmd *tmp, *next; | 
|  |  | 
|  | ret = submit_flush_wait(sbi, ino); | 
|  |  | 
|  | llist_for_each_entry_safe(tmp, next, list, llnode) { | 
|  | if (tmp == &cmd) { | 
|  | cmd.ret = ret; | 
|  | atomic_dec(&fcc->issing_flush); | 
|  | continue; | 
|  | } | 
|  | tmp->ret = ret; | 
|  | complete(&tmp->wait); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return cmd.ret; | 
|  | } | 
|  |  | 
|  | int create_flush_cmd_control(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | dev_t dev = sbi->sb->s_bdev->bd_dev; | 
|  | struct flush_cmd_control *fcc; | 
|  | int err = 0; | 
|  |  | 
|  | if (SM_I(sbi)->fcc_info) { | 
|  | fcc = SM_I(sbi)->fcc_info; | 
|  | if (fcc->f2fs_issue_flush) | 
|  | return err; | 
|  | goto init_thread; | 
|  | } | 
|  |  | 
|  | fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); | 
|  | if (!fcc) | 
|  | return -ENOMEM; | 
|  | atomic_set(&fcc->issued_flush, 0); | 
|  | atomic_set(&fcc->issing_flush, 0); | 
|  | init_waitqueue_head(&fcc->flush_wait_queue); | 
|  | init_llist_head(&fcc->issue_list); | 
|  | SM_I(sbi)->fcc_info = fcc; | 
|  | if (!test_opt(sbi, FLUSH_MERGE)) | 
|  | return err; | 
|  |  | 
|  | init_thread: | 
|  | fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, | 
|  | "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); | 
|  | if (IS_ERR(fcc->f2fs_issue_flush)) { | 
|  | err = PTR_ERR(fcc->f2fs_issue_flush); | 
|  | kfree(fcc); | 
|  | SM_I(sbi)->fcc_info = NULL; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) | 
|  | { | 
|  | struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; | 
|  |  | 
|  | if (fcc && fcc->f2fs_issue_flush) { | 
|  | struct task_struct *flush_thread = fcc->f2fs_issue_flush; | 
|  |  | 
|  | fcc->f2fs_issue_flush = NULL; | 
|  | kthread_stop(flush_thread); | 
|  | } | 
|  | if (free) { | 
|  | kfree(fcc); | 
|  | SM_I(sbi)->fcc_info = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | int ret = 0, i; | 
|  |  | 
|  | if (!sbi->s_ndevs) | 
|  | return 0; | 
|  |  | 
|  | for (i = 1; i < sbi->s_ndevs; i++) { | 
|  | if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) | 
|  | continue; | 
|  | ret = __submit_flush_wait(sbi, FDEV(i).bdev); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | spin_lock(&sbi->dev_lock); | 
|  | f2fs_clear_bit(i, (char *)&sbi->dirty_device); | 
|  | spin_unlock(&sbi->dev_lock); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, | 
|  | enum dirty_type dirty_type) | 
|  | { | 
|  | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
|  |  | 
|  | /* need not be added */ | 
|  | if (IS_CURSEG(sbi, segno)) | 
|  | return; | 
|  |  | 
|  | if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) | 
|  | dirty_i->nr_dirty[dirty_type]++; | 
|  |  | 
|  | if (dirty_type == DIRTY) { | 
|  | struct seg_entry *sentry = get_seg_entry(sbi, segno); | 
|  | enum dirty_type t = sentry->type; | 
|  |  | 
|  | if (unlikely(t >= DIRTY)) { | 
|  | f2fs_bug_on(sbi, 1); | 
|  | return; | 
|  | } | 
|  | if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) | 
|  | dirty_i->nr_dirty[t]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, | 
|  | enum dirty_type dirty_type) | 
|  | { | 
|  | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
|  |  | 
|  | if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) | 
|  | dirty_i->nr_dirty[dirty_type]--; | 
|  |  | 
|  | if (dirty_type == DIRTY) { | 
|  | struct seg_entry *sentry = get_seg_entry(sbi, segno); | 
|  | enum dirty_type t = sentry->type; | 
|  |  | 
|  | if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) | 
|  | dirty_i->nr_dirty[t]--; | 
|  |  | 
|  | if (get_valid_blocks(sbi, segno, true) == 0) | 
|  | clear_bit(GET_SEC_FROM_SEG(sbi, segno), | 
|  | dirty_i->victim_secmap); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Should not occur error such as -ENOMEM. | 
|  | * Adding dirty entry into seglist is not critical operation. | 
|  | * If a given segment is one of current working segments, it won't be added. | 
|  | */ | 
|  | static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) | 
|  | { | 
|  | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
|  | unsigned short valid_blocks; | 
|  |  | 
|  | if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&dirty_i->seglist_lock); | 
|  |  | 
|  | valid_blocks = get_valid_blocks(sbi, segno, false); | 
|  |  | 
|  | if (valid_blocks == 0) { | 
|  | __locate_dirty_segment(sbi, segno, PRE); | 
|  | __remove_dirty_segment(sbi, segno, DIRTY); | 
|  | } else if (valid_blocks < sbi->blocks_per_seg) { | 
|  | __locate_dirty_segment(sbi, segno, DIRTY); | 
|  | } else { | 
|  | /* Recovery routine with SSR needs this */ | 
|  | __remove_dirty_segment(sbi, segno, DIRTY); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&dirty_i->seglist_lock); | 
|  | } | 
|  |  | 
|  | static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, | 
|  | struct block_device *bdev, block_t lstart, | 
|  | block_t start, block_t len) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | struct list_head *pend_list; | 
|  | struct discard_cmd *dc; | 
|  |  | 
|  | f2fs_bug_on(sbi, !len); | 
|  |  | 
|  | pend_list = &dcc->pend_list[plist_idx(len)]; | 
|  |  | 
|  | dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); | 
|  | INIT_LIST_HEAD(&dc->list); | 
|  | dc->bdev = bdev; | 
|  | dc->lstart = lstart; | 
|  | dc->start = start; | 
|  | dc->len = len; | 
|  | dc->ref = 0; | 
|  | dc->state = D_PREP; | 
|  | dc->error = 0; | 
|  | init_completion(&dc->wait); | 
|  | list_add_tail(&dc->list, pend_list); | 
|  | atomic_inc(&dcc->discard_cmd_cnt); | 
|  | dcc->undiscard_blks += len; | 
|  |  | 
|  | return dc; | 
|  | } | 
|  |  | 
|  | static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, | 
|  | struct block_device *bdev, block_t lstart, | 
|  | block_t start, block_t len, | 
|  | struct rb_node *parent, struct rb_node **p) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | struct discard_cmd *dc; | 
|  |  | 
|  | dc = __create_discard_cmd(sbi, bdev, lstart, start, len); | 
|  |  | 
|  | rb_link_node(&dc->rb_node, parent, p); | 
|  | rb_insert_color(&dc->rb_node, &dcc->root); | 
|  |  | 
|  | return dc; | 
|  | } | 
|  |  | 
|  | static void __detach_discard_cmd(struct discard_cmd_control *dcc, | 
|  | struct discard_cmd *dc) | 
|  | { | 
|  | if (dc->state == D_DONE) | 
|  | atomic_dec(&dcc->issing_discard); | 
|  |  | 
|  | list_del(&dc->list); | 
|  | rb_erase(&dc->rb_node, &dcc->root); | 
|  | dcc->undiscard_blks -= dc->len; | 
|  |  | 
|  | kmem_cache_free(discard_cmd_slab, dc); | 
|  |  | 
|  | atomic_dec(&dcc->discard_cmd_cnt); | 
|  | } | 
|  |  | 
|  | static void __remove_discard_cmd(struct f2fs_sb_info *sbi, | 
|  | struct discard_cmd *dc) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  |  | 
|  | trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); | 
|  |  | 
|  | f2fs_bug_on(sbi, dc->ref); | 
|  |  | 
|  | if (dc->error == -EOPNOTSUPP) | 
|  | dc->error = 0; | 
|  |  | 
|  | if (dc->error) | 
|  | f2fs_msg(sbi->sb, KERN_INFO, | 
|  | "Issue discard(%u, %u, %u) failed, ret: %d", | 
|  | dc->lstart, dc->start, dc->len, dc->error); | 
|  | __detach_discard_cmd(dcc, dc); | 
|  | } | 
|  |  | 
|  | static void f2fs_submit_discard_endio(struct bio *bio) | 
|  | { | 
|  | struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; | 
|  |  | 
|  | dc->error = blk_status_to_errno(bio->bi_status); | 
|  | dc->state = D_DONE; | 
|  | complete_all(&dc->wait); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static void __check_sit_bitmap(struct f2fs_sb_info *sbi, | 
|  | block_t start, block_t end) | 
|  | { | 
|  | #ifdef CONFIG_F2FS_CHECK_FS | 
|  | struct seg_entry *sentry; | 
|  | unsigned int segno; | 
|  | block_t blk = start; | 
|  | unsigned long offset, size, max_blocks = sbi->blocks_per_seg; | 
|  | unsigned long *map; | 
|  |  | 
|  | while (blk < end) { | 
|  | segno = GET_SEGNO(sbi, blk); | 
|  | sentry = get_seg_entry(sbi, segno); | 
|  | offset = GET_BLKOFF_FROM_SEG0(sbi, blk); | 
|  |  | 
|  | if (end < START_BLOCK(sbi, segno + 1)) | 
|  | size = GET_BLKOFF_FROM_SEG0(sbi, end); | 
|  | else | 
|  | size = max_blocks; | 
|  | map = (unsigned long *)(sentry->cur_valid_map); | 
|  | offset = __find_rev_next_bit(map, size, offset); | 
|  | f2fs_bug_on(sbi, offset != size); | 
|  | blk = START_BLOCK(sbi, segno + 1); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void __init_discard_policy(struct f2fs_sb_info *sbi, | 
|  | struct discard_policy *dpolicy, | 
|  | int discard_type, unsigned int granularity) | 
|  | { | 
|  | /* common policy */ | 
|  | dpolicy->type = discard_type; | 
|  | dpolicy->sync = true; | 
|  | dpolicy->granularity = granularity; | 
|  |  | 
|  | dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; | 
|  | dpolicy->io_aware_gran = MAX_PLIST_NUM; | 
|  |  | 
|  | if (discard_type == DPOLICY_BG) { | 
|  | dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; | 
|  | dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; | 
|  | dpolicy->io_aware = true; | 
|  | dpolicy->sync = false; | 
|  | if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { | 
|  | dpolicy->granularity = 1; | 
|  | dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; | 
|  | } | 
|  | } else if (discard_type == DPOLICY_FORCE) { | 
|  | dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; | 
|  | dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; | 
|  | dpolicy->io_aware = false; | 
|  | } else if (discard_type == DPOLICY_FSTRIM) { | 
|  | dpolicy->io_aware = false; | 
|  | } else if (discard_type == DPOLICY_UMOUNT) { | 
|  | dpolicy->io_aware = false; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ | 
|  | static void __submit_discard_cmd(struct f2fs_sb_info *sbi, | 
|  | struct discard_policy *dpolicy, | 
|  | struct discard_cmd *dc) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? | 
|  | &(dcc->fstrim_list) : &(dcc->wait_list); | 
|  | struct bio *bio = NULL; | 
|  | int flag = dpolicy->sync ? REQ_SYNC : 0; | 
|  |  | 
|  | if (dc->state != D_PREP) | 
|  | return; | 
|  |  | 
|  | trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len); | 
|  |  | 
|  | dc->error = __blkdev_issue_discard(dc->bdev, | 
|  | SECTOR_FROM_BLOCK(dc->start), | 
|  | SECTOR_FROM_BLOCK(dc->len), | 
|  | GFP_NOFS, 0, &bio); | 
|  | if (!dc->error) { | 
|  | /* should keep before submission to avoid D_DONE right away */ | 
|  | dc->state = D_SUBMIT; | 
|  | atomic_inc(&dcc->issued_discard); | 
|  | atomic_inc(&dcc->issing_discard); | 
|  | if (bio) { | 
|  | bio->bi_private = dc; | 
|  | bio->bi_end_io = f2fs_submit_discard_endio; | 
|  | bio->bi_opf |= flag; | 
|  | submit_bio(bio); | 
|  | list_move_tail(&dc->list, wait_list); | 
|  | __check_sit_bitmap(sbi, dc->start, dc->start + dc->len); | 
|  |  | 
|  | f2fs_update_iostat(sbi, FS_DISCARD, 1); | 
|  | } | 
|  | } else { | 
|  | __remove_discard_cmd(sbi, dc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi, | 
|  | struct block_device *bdev, block_t lstart, | 
|  | block_t start, block_t len, | 
|  | struct rb_node **insert_p, | 
|  | struct rb_node *insert_parent) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | struct rb_node **p; | 
|  | struct rb_node *parent = NULL; | 
|  | struct discard_cmd *dc = NULL; | 
|  |  | 
|  | if (insert_p && insert_parent) { | 
|  | parent = insert_parent; | 
|  | p = insert_p; | 
|  | goto do_insert; | 
|  | } | 
|  |  | 
|  | p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart); | 
|  | do_insert: | 
|  | dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p); | 
|  | if (!dc) | 
|  | return NULL; | 
|  |  | 
|  | return dc; | 
|  | } | 
|  |  | 
|  | static void __relocate_discard_cmd(struct discard_cmd_control *dcc, | 
|  | struct discard_cmd *dc) | 
|  | { | 
|  | list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); | 
|  | } | 
|  |  | 
|  | static void __punch_discard_cmd(struct f2fs_sb_info *sbi, | 
|  | struct discard_cmd *dc, block_t blkaddr) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | struct discard_info di = dc->di; | 
|  | bool modified = false; | 
|  |  | 
|  | if (dc->state == D_DONE || dc->len == 1) { | 
|  | __remove_discard_cmd(sbi, dc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dcc->undiscard_blks -= di.len; | 
|  |  | 
|  | if (blkaddr > di.lstart) { | 
|  | dc->len = blkaddr - dc->lstart; | 
|  | dcc->undiscard_blks += dc->len; | 
|  | __relocate_discard_cmd(dcc, dc); | 
|  | modified = true; | 
|  | } | 
|  |  | 
|  | if (blkaddr < di.lstart + di.len - 1) { | 
|  | if (modified) { | 
|  | __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, | 
|  | di.start + blkaddr + 1 - di.lstart, | 
|  | di.lstart + di.len - 1 - blkaddr, | 
|  | NULL, NULL); | 
|  | } else { | 
|  | dc->lstart++; | 
|  | dc->len--; | 
|  | dc->start++; | 
|  | dcc->undiscard_blks += dc->len; | 
|  | __relocate_discard_cmd(dcc, dc); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __update_discard_tree_range(struct f2fs_sb_info *sbi, | 
|  | struct block_device *bdev, block_t lstart, | 
|  | block_t start, block_t len) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | struct discard_cmd *prev_dc = NULL, *next_dc = NULL; | 
|  | struct discard_cmd *dc; | 
|  | struct discard_info di = {0}; | 
|  | struct rb_node **insert_p = NULL, *insert_parent = NULL; | 
|  | block_t end = lstart + len; | 
|  |  | 
|  | mutex_lock(&dcc->cmd_lock); | 
|  |  | 
|  | dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root, | 
|  | NULL, lstart, | 
|  | (struct rb_entry **)&prev_dc, | 
|  | (struct rb_entry **)&next_dc, | 
|  | &insert_p, &insert_parent, true); | 
|  | if (dc) | 
|  | prev_dc = dc; | 
|  |  | 
|  | if (!prev_dc) { | 
|  | di.lstart = lstart; | 
|  | di.len = next_dc ? next_dc->lstart - lstart : len; | 
|  | di.len = min(di.len, len); | 
|  | di.start = start; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | struct rb_node *node; | 
|  | bool merged = false; | 
|  | struct discard_cmd *tdc = NULL; | 
|  |  | 
|  | if (prev_dc) { | 
|  | di.lstart = prev_dc->lstart + prev_dc->len; | 
|  | if (di.lstart < lstart) | 
|  | di.lstart = lstart; | 
|  | if (di.lstart >= end) | 
|  | break; | 
|  |  | 
|  | if (!next_dc || next_dc->lstart > end) | 
|  | di.len = end - di.lstart; | 
|  | else | 
|  | di.len = next_dc->lstart - di.lstart; | 
|  | di.start = start + di.lstart - lstart; | 
|  | } | 
|  |  | 
|  | if (!di.len) | 
|  | goto next; | 
|  |  | 
|  | if (prev_dc && prev_dc->state == D_PREP && | 
|  | prev_dc->bdev == bdev && | 
|  | __is_discard_back_mergeable(&di, &prev_dc->di)) { | 
|  | prev_dc->di.len += di.len; | 
|  | dcc->undiscard_blks += di.len; | 
|  | __relocate_discard_cmd(dcc, prev_dc); | 
|  | di = prev_dc->di; | 
|  | tdc = prev_dc; | 
|  | merged = true; | 
|  | } | 
|  |  | 
|  | if (next_dc && next_dc->state == D_PREP && | 
|  | next_dc->bdev == bdev && | 
|  | __is_discard_front_mergeable(&di, &next_dc->di)) { | 
|  | next_dc->di.lstart = di.lstart; | 
|  | next_dc->di.len += di.len; | 
|  | next_dc->di.start = di.start; | 
|  | dcc->undiscard_blks += di.len; | 
|  | __relocate_discard_cmd(dcc, next_dc); | 
|  | if (tdc) | 
|  | __remove_discard_cmd(sbi, tdc); | 
|  | merged = true; | 
|  | } | 
|  |  | 
|  | if (!merged) { | 
|  | __insert_discard_tree(sbi, bdev, di.lstart, di.start, | 
|  | di.len, NULL, NULL); | 
|  | } | 
|  | next: | 
|  | prev_dc = next_dc; | 
|  | if (!prev_dc) | 
|  | break; | 
|  |  | 
|  | node = rb_next(&prev_dc->rb_node); | 
|  | next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&dcc->cmd_lock); | 
|  | } | 
|  |  | 
|  | static int __queue_discard_cmd(struct f2fs_sb_info *sbi, | 
|  | struct block_device *bdev, block_t blkstart, block_t blklen) | 
|  | { | 
|  | block_t lblkstart = blkstart; | 
|  |  | 
|  | trace_f2fs_queue_discard(bdev, blkstart, blklen); | 
|  |  | 
|  | if (f2fs_is_multi_device(sbi)) { | 
|  | int devi = f2fs_target_device_index(sbi, blkstart); | 
|  |  | 
|  | blkstart -= FDEV(devi).start_blk; | 
|  | } | 
|  | __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __issue_discard_cmd(struct f2fs_sb_info *sbi, | 
|  | struct discard_policy *dpolicy) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | struct list_head *pend_list; | 
|  | struct discard_cmd *dc, *tmp; | 
|  | struct blk_plug plug; | 
|  | int i, iter = 0, issued = 0; | 
|  | bool io_interrupted = false; | 
|  |  | 
|  | for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { | 
|  | if (i + 1 < dpolicy->granularity) | 
|  | break; | 
|  | pend_list = &dcc->pend_list[i]; | 
|  |  | 
|  | mutex_lock(&dcc->cmd_lock); | 
|  | if (list_empty(pend_list)) | 
|  | goto next; | 
|  | f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root)); | 
|  | blk_start_plug(&plug); | 
|  | list_for_each_entry_safe(dc, tmp, pend_list, list) { | 
|  | f2fs_bug_on(sbi, dc->state != D_PREP); | 
|  |  | 
|  | if (dpolicy->io_aware && i < dpolicy->io_aware_gran && | 
|  | !is_idle(sbi)) { | 
|  | io_interrupted = true; | 
|  | goto skip; | 
|  | } | 
|  |  | 
|  | __submit_discard_cmd(sbi, dpolicy, dc); | 
|  | issued++; | 
|  | skip: | 
|  | if (++iter >= dpolicy->max_requests) | 
|  | break; | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  | next: | 
|  | mutex_unlock(&dcc->cmd_lock); | 
|  |  | 
|  | if (iter >= dpolicy->max_requests) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!issued && io_interrupted) | 
|  | issued = -1; | 
|  |  | 
|  | return issued; | 
|  | } | 
|  |  | 
|  | static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | struct list_head *pend_list; | 
|  | struct discard_cmd *dc, *tmp; | 
|  | int i; | 
|  | bool dropped = false; | 
|  |  | 
|  | mutex_lock(&dcc->cmd_lock); | 
|  | for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { | 
|  | pend_list = &dcc->pend_list[i]; | 
|  | list_for_each_entry_safe(dc, tmp, pend_list, list) { | 
|  | f2fs_bug_on(sbi, dc->state != D_PREP); | 
|  | __remove_discard_cmd(sbi, dc); | 
|  | dropped = true; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&dcc->cmd_lock); | 
|  |  | 
|  | return dropped; | 
|  | } | 
|  |  | 
|  | void drop_discard_cmd(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | __drop_discard_cmd(sbi); | 
|  | } | 
|  |  | 
|  | static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, | 
|  | struct discard_cmd *dc) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | unsigned int len = 0; | 
|  |  | 
|  | wait_for_completion_io(&dc->wait); | 
|  | mutex_lock(&dcc->cmd_lock); | 
|  | f2fs_bug_on(sbi, dc->state != D_DONE); | 
|  | dc->ref--; | 
|  | if (!dc->ref) { | 
|  | if (!dc->error) | 
|  | len = dc->len; | 
|  | __remove_discard_cmd(sbi, dc); | 
|  | } | 
|  | mutex_unlock(&dcc->cmd_lock); | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, | 
|  | struct discard_policy *dpolicy, | 
|  | block_t start, block_t end) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? | 
|  | &(dcc->fstrim_list) : &(dcc->wait_list); | 
|  | struct discard_cmd *dc, *tmp; | 
|  | bool need_wait; | 
|  | unsigned int trimmed = 0; | 
|  |  | 
|  | next: | 
|  | need_wait = false; | 
|  |  | 
|  | mutex_lock(&dcc->cmd_lock); | 
|  | list_for_each_entry_safe(dc, tmp, wait_list, list) { | 
|  | if (dc->lstart + dc->len <= start || end <= dc->lstart) | 
|  | continue; | 
|  | if (dc->len < dpolicy->granularity) | 
|  | continue; | 
|  | if (dc->state == D_DONE && !dc->ref) { | 
|  | wait_for_completion_io(&dc->wait); | 
|  | if (!dc->error) | 
|  | trimmed += dc->len; | 
|  | __remove_discard_cmd(sbi, dc); | 
|  | } else { | 
|  | dc->ref++; | 
|  | need_wait = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&dcc->cmd_lock); | 
|  |  | 
|  | if (need_wait) { | 
|  | trimmed += __wait_one_discard_bio(sbi, dc); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | return trimmed; | 
|  | } | 
|  |  | 
|  | static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi, | 
|  | struct discard_policy *dpolicy) | 
|  | { | 
|  | struct discard_policy dp; | 
|  |  | 
|  | if (dpolicy) { | 
|  | __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* wait all */ | 
|  | __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); | 
|  | __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); | 
|  | __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); | 
|  | __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); | 
|  | } | 
|  |  | 
|  | /* This should be covered by global mutex, &sit_i->sentry_lock */ | 
|  | static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | struct discard_cmd *dc; | 
|  | bool need_wait = false; | 
|  |  | 
|  | mutex_lock(&dcc->cmd_lock); | 
|  | dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr); | 
|  | if (dc) { | 
|  | if (dc->state == D_PREP) { | 
|  | __punch_discard_cmd(sbi, dc, blkaddr); | 
|  | } else { | 
|  | dc->ref++; | 
|  | need_wait = true; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&dcc->cmd_lock); | 
|  |  | 
|  | if (need_wait) | 
|  | __wait_one_discard_bio(sbi, dc); | 
|  | } | 
|  |  | 
|  | void stop_discard_thread(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  |  | 
|  | if (dcc && dcc->f2fs_issue_discard) { | 
|  | struct task_struct *discard_thread = dcc->f2fs_issue_discard; | 
|  |  | 
|  | dcc->f2fs_issue_discard = NULL; | 
|  | kthread_stop(discard_thread); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This comes from f2fs_put_super */ | 
|  | bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | struct discard_policy dpolicy; | 
|  | bool dropped; | 
|  |  | 
|  | __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, | 
|  | dcc->discard_granularity); | 
|  | __issue_discard_cmd(sbi, &dpolicy); | 
|  | dropped = __drop_discard_cmd(sbi); | 
|  |  | 
|  | /* just to make sure there is no pending discard commands */ | 
|  | __wait_all_discard_cmd(sbi, NULL); | 
|  | return dropped; | 
|  | } | 
|  |  | 
|  | static int issue_discard_thread(void *data) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = data; | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | wait_queue_head_t *q = &dcc->discard_wait_queue; | 
|  | struct discard_policy dpolicy; | 
|  | unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; | 
|  | int issued; | 
|  |  | 
|  | set_freezable(); | 
|  |  | 
|  | do { | 
|  | __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, | 
|  | dcc->discard_granularity); | 
|  |  | 
|  | wait_event_interruptible_timeout(*q, | 
|  | kthread_should_stop() || freezing(current) || | 
|  | dcc->discard_wake, | 
|  | msecs_to_jiffies(wait_ms)); | 
|  | if (try_to_freeze()) | 
|  | continue; | 
|  | if (f2fs_readonly(sbi->sb)) | 
|  | continue; | 
|  | if (kthread_should_stop()) | 
|  | return 0; | 
|  |  | 
|  | if (dcc->discard_wake) | 
|  | dcc->discard_wake = 0; | 
|  |  | 
|  | if (sbi->gc_thread && sbi->gc_thread->gc_urgent) | 
|  | __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); | 
|  |  | 
|  | sb_start_intwrite(sbi->sb); | 
|  |  | 
|  | issued = __issue_discard_cmd(sbi, &dpolicy); | 
|  | if (issued) { | 
|  | __wait_all_discard_cmd(sbi, &dpolicy); | 
|  | wait_ms = dpolicy.min_interval; | 
|  | } else { | 
|  | wait_ms = dpolicy.max_interval; | 
|  | } | 
|  |  | 
|  | sb_end_intwrite(sbi->sb); | 
|  |  | 
|  | } while (!kthread_should_stop()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_ZONED | 
|  | static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, | 
|  | struct block_device *bdev, block_t blkstart, block_t blklen) | 
|  | { | 
|  | sector_t sector, nr_sects; | 
|  | block_t lblkstart = blkstart; | 
|  | int devi = 0; | 
|  |  | 
|  | if (f2fs_is_multi_device(sbi)) { | 
|  | devi = f2fs_target_device_index(sbi, blkstart); | 
|  | blkstart -= FDEV(devi).start_blk; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to know the type of the zone: for conventional zones, | 
|  | * use regular discard if the drive supports it. For sequential | 
|  | * zones, reset the zone write pointer. | 
|  | */ | 
|  | switch (get_blkz_type(sbi, bdev, blkstart)) { | 
|  |  | 
|  | case BLK_ZONE_TYPE_CONVENTIONAL: | 
|  | if (!blk_queue_discard(bdev_get_queue(bdev))) | 
|  | return 0; | 
|  | return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); | 
|  | case BLK_ZONE_TYPE_SEQWRITE_REQ: | 
|  | case BLK_ZONE_TYPE_SEQWRITE_PREF: | 
|  | sector = SECTOR_FROM_BLOCK(blkstart); | 
|  | nr_sects = SECTOR_FROM_BLOCK(blklen); | 
|  |  | 
|  | if (sector & (bdev_zone_sectors(bdev) - 1) || | 
|  | nr_sects != bdev_zone_sectors(bdev)) { | 
|  | f2fs_msg(sbi->sb, KERN_INFO, | 
|  | "(%d) %s: Unaligned discard attempted (block %x + %x)", | 
|  | devi, sbi->s_ndevs ? FDEV(devi).path: "", | 
|  | blkstart, blklen); | 
|  | return -EIO; | 
|  | } | 
|  | trace_f2fs_issue_reset_zone(bdev, blkstart); | 
|  | return blkdev_reset_zones(bdev, sector, | 
|  | nr_sects, GFP_NOFS); | 
|  | default: | 
|  | /* Unknown zone type: broken device ? */ | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int __issue_discard_async(struct f2fs_sb_info *sbi, | 
|  | struct block_device *bdev, block_t blkstart, block_t blklen) | 
|  | { | 
|  | #ifdef CONFIG_BLK_DEV_ZONED | 
|  | if (f2fs_sb_has_blkzoned(sbi->sb) && | 
|  | bdev_zoned_model(bdev) != BLK_ZONED_NONE) | 
|  | return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); | 
|  | #endif | 
|  | return __queue_discard_cmd(sbi, bdev, blkstart, blklen); | 
|  | } | 
|  |  | 
|  | static int f2fs_issue_discard(struct f2fs_sb_info *sbi, | 
|  | block_t blkstart, block_t blklen) | 
|  | { | 
|  | sector_t start = blkstart, len = 0; | 
|  | struct block_device *bdev; | 
|  | struct seg_entry *se; | 
|  | unsigned int offset; | 
|  | block_t i; | 
|  | int err = 0; | 
|  |  | 
|  | bdev = f2fs_target_device(sbi, blkstart, NULL); | 
|  |  | 
|  | for (i = blkstart; i < blkstart + blklen; i++, len++) { | 
|  | if (i != start) { | 
|  | struct block_device *bdev2 = | 
|  | f2fs_target_device(sbi, i, NULL); | 
|  |  | 
|  | if (bdev2 != bdev) { | 
|  | err = __issue_discard_async(sbi, bdev, | 
|  | start, len); | 
|  | if (err) | 
|  | return err; | 
|  | bdev = bdev2; | 
|  | start = i; | 
|  | len = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); | 
|  | offset = GET_BLKOFF_FROM_SEG0(sbi, i); | 
|  |  | 
|  | if (!f2fs_test_and_set_bit(offset, se->discard_map)) | 
|  | sbi->discard_blks--; | 
|  | } | 
|  |  | 
|  | if (len) | 
|  | err = __issue_discard_async(sbi, bdev, start, len); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, | 
|  | bool check_only) | 
|  | { | 
|  | int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); | 
|  | int max_blocks = sbi->blocks_per_seg; | 
|  | struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); | 
|  | unsigned long *cur_map = (unsigned long *)se->cur_valid_map; | 
|  | unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; | 
|  | unsigned long *discard_map = (unsigned long *)se->discard_map; | 
|  | unsigned long *dmap = SIT_I(sbi)->tmp_map; | 
|  | unsigned int start = 0, end = -1; | 
|  | bool force = (cpc->reason & CP_DISCARD); | 
|  | struct discard_entry *de = NULL; | 
|  | struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; | 
|  | int i; | 
|  |  | 
|  | if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) | 
|  | return false; | 
|  |  | 
|  | if (!force) { | 
|  | if (!test_opt(sbi, DISCARD) || !se->valid_blocks || | 
|  | SM_I(sbi)->dcc_info->nr_discards >= | 
|  | SM_I(sbi)->dcc_info->max_discards) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ | 
|  | for (i = 0; i < entries; i++) | 
|  | dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : | 
|  | (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; | 
|  |  | 
|  | while (force || SM_I(sbi)->dcc_info->nr_discards <= | 
|  | SM_I(sbi)->dcc_info->max_discards) { | 
|  | start = __find_rev_next_bit(dmap, max_blocks, end + 1); | 
|  | if (start >= max_blocks) | 
|  | break; | 
|  |  | 
|  | end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); | 
|  | if (force && start && end != max_blocks | 
|  | && (end - start) < cpc->trim_minlen) | 
|  | continue; | 
|  |  | 
|  | if (check_only) | 
|  | return true; | 
|  |  | 
|  | if (!de) { | 
|  | de = f2fs_kmem_cache_alloc(discard_entry_slab, | 
|  | GFP_F2FS_ZERO); | 
|  | de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); | 
|  | list_add_tail(&de->list, head); | 
|  | } | 
|  |  | 
|  | for (i = start; i < end; i++) | 
|  | __set_bit_le(i, (void *)de->discard_map); | 
|  |  | 
|  | SM_I(sbi)->dcc_info->nr_discards += end - start; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void release_discard_addrs(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); | 
|  | struct discard_entry *entry, *this; | 
|  |  | 
|  | /* drop caches */ | 
|  | list_for_each_entry_safe(entry, this, head, list) { | 
|  | list_del(&entry->list); | 
|  | kmem_cache_free(discard_entry_slab, entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Should call clear_prefree_segments after checkpoint is done. | 
|  | */ | 
|  | static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
|  | unsigned int segno; | 
|  |  | 
|  | mutex_lock(&dirty_i->seglist_lock); | 
|  | for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) | 
|  | __set_test_and_free(sbi, segno); | 
|  | mutex_unlock(&dirty_i->seglist_lock); | 
|  | } | 
|  |  | 
|  | void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | struct list_head *head = &dcc->entry_list; | 
|  | struct discard_entry *entry, *this; | 
|  | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
|  | unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; | 
|  | unsigned int start = 0, end = -1; | 
|  | unsigned int secno, start_segno; | 
|  | bool force = (cpc->reason & CP_DISCARD); | 
|  |  | 
|  | mutex_lock(&dirty_i->seglist_lock); | 
|  |  | 
|  | while (1) { | 
|  | int i; | 
|  | start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); | 
|  | if (start >= MAIN_SEGS(sbi)) | 
|  | break; | 
|  | end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), | 
|  | start + 1); | 
|  |  | 
|  | for (i = start; i < end; i++) | 
|  | clear_bit(i, prefree_map); | 
|  |  | 
|  | dirty_i->nr_dirty[PRE] -= end - start; | 
|  |  | 
|  | if (!test_opt(sbi, DISCARD)) | 
|  | continue; | 
|  |  | 
|  | if (force && start >= cpc->trim_start && | 
|  | (end - 1) <= cpc->trim_end) | 
|  | continue; | 
|  |  | 
|  | if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { | 
|  | f2fs_issue_discard(sbi, START_BLOCK(sbi, start), | 
|  | (end - start) << sbi->log_blocks_per_seg); | 
|  | continue; | 
|  | } | 
|  | next: | 
|  | secno = GET_SEC_FROM_SEG(sbi, start); | 
|  | start_segno = GET_SEG_FROM_SEC(sbi, secno); | 
|  | if (!IS_CURSEC(sbi, secno) && | 
|  | !get_valid_blocks(sbi, start, true)) | 
|  | f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), | 
|  | sbi->segs_per_sec << sbi->log_blocks_per_seg); | 
|  |  | 
|  | start = start_segno + sbi->segs_per_sec; | 
|  | if (start < end) | 
|  | goto next; | 
|  | else | 
|  | end = start - 1; | 
|  | } | 
|  | mutex_unlock(&dirty_i->seglist_lock); | 
|  |  | 
|  | /* send small discards */ | 
|  | list_for_each_entry_safe(entry, this, head, list) { | 
|  | unsigned int cur_pos = 0, next_pos, len, total_len = 0; | 
|  | bool is_valid = test_bit_le(0, entry->discard_map); | 
|  |  | 
|  | find_next: | 
|  | if (is_valid) { | 
|  | next_pos = find_next_zero_bit_le(entry->discard_map, | 
|  | sbi->blocks_per_seg, cur_pos); | 
|  | len = next_pos - cur_pos; | 
|  |  | 
|  | if (f2fs_sb_has_blkzoned(sbi->sb) || | 
|  | (force && len < cpc->trim_minlen)) | 
|  | goto skip; | 
|  |  | 
|  | f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, | 
|  | len); | 
|  | total_len += len; | 
|  | } else { | 
|  | next_pos = find_next_bit_le(entry->discard_map, | 
|  | sbi->blocks_per_seg, cur_pos); | 
|  | } | 
|  | skip: | 
|  | cur_pos = next_pos; | 
|  | is_valid = !is_valid; | 
|  |  | 
|  | if (cur_pos < sbi->blocks_per_seg) | 
|  | goto find_next; | 
|  |  | 
|  | list_del(&entry->list); | 
|  | dcc->nr_discards -= total_len; | 
|  | kmem_cache_free(discard_entry_slab, entry); | 
|  | } | 
|  |  | 
|  | wake_up_discard_thread(sbi, false); | 
|  | } | 
|  |  | 
|  | static int create_discard_cmd_control(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | dev_t dev = sbi->sb->s_bdev->bd_dev; | 
|  | struct discard_cmd_control *dcc; | 
|  | int err = 0, i; | 
|  |  | 
|  | if (SM_I(sbi)->dcc_info) { | 
|  | dcc = SM_I(sbi)->dcc_info; | 
|  | goto init_thread; | 
|  | } | 
|  |  | 
|  | dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); | 
|  | if (!dcc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; | 
|  | INIT_LIST_HEAD(&dcc->entry_list); | 
|  | for (i = 0; i < MAX_PLIST_NUM; i++) | 
|  | INIT_LIST_HEAD(&dcc->pend_list[i]); | 
|  | INIT_LIST_HEAD(&dcc->wait_list); | 
|  | INIT_LIST_HEAD(&dcc->fstrim_list); | 
|  | mutex_init(&dcc->cmd_lock); | 
|  | atomic_set(&dcc->issued_discard, 0); | 
|  | atomic_set(&dcc->issing_discard, 0); | 
|  | atomic_set(&dcc->discard_cmd_cnt, 0); | 
|  | dcc->nr_discards = 0; | 
|  | dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; | 
|  | dcc->undiscard_blks = 0; | 
|  | dcc->root = RB_ROOT; | 
|  |  | 
|  | init_waitqueue_head(&dcc->discard_wait_queue); | 
|  | SM_I(sbi)->dcc_info = dcc; | 
|  | init_thread: | 
|  | dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, | 
|  | "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); | 
|  | if (IS_ERR(dcc->f2fs_issue_discard)) { | 
|  | err = PTR_ERR(dcc->f2fs_issue_discard); | 
|  | kfree(dcc); | 
|  | SM_I(sbi)->dcc_info = NULL; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  |  | 
|  | if (!dcc) | 
|  | return; | 
|  |  | 
|  | stop_discard_thread(sbi); | 
|  |  | 
|  | kfree(dcc); | 
|  | SM_I(sbi)->dcc_info = NULL; | 
|  | } | 
|  |  | 
|  | static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) | 
|  | { | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  |  | 
|  | if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { | 
|  | sit_i->dirty_sentries++; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, | 
|  | unsigned int segno, int modified) | 
|  | { | 
|  | struct seg_entry *se = get_seg_entry(sbi, segno); | 
|  | se->type = type; | 
|  | if (modified) | 
|  | __mark_sit_entry_dirty(sbi, segno); | 
|  | } | 
|  |  | 
|  | static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) | 
|  | { | 
|  | struct seg_entry *se; | 
|  | unsigned int segno, offset; | 
|  | long int new_vblocks; | 
|  | bool exist; | 
|  | #ifdef CONFIG_F2FS_CHECK_FS | 
|  | bool mir_exist; | 
|  | #endif | 
|  |  | 
|  | segno = GET_SEGNO(sbi, blkaddr); | 
|  |  | 
|  | se = get_seg_entry(sbi, segno); | 
|  | new_vblocks = se->valid_blocks + del; | 
|  | offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); | 
|  |  | 
|  | f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || | 
|  | (new_vblocks > sbi->blocks_per_seg))); | 
|  |  | 
|  | se->valid_blocks = new_vblocks; | 
|  | se->mtime = get_mtime(sbi); | 
|  | SIT_I(sbi)->max_mtime = se->mtime; | 
|  |  | 
|  | /* Update valid block bitmap */ | 
|  | if (del > 0) { | 
|  | exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); | 
|  | #ifdef CONFIG_F2FS_CHECK_FS | 
|  | mir_exist = f2fs_test_and_set_bit(offset, | 
|  | se->cur_valid_map_mir); | 
|  | if (unlikely(exist != mir_exist)) { | 
|  | f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " | 
|  | "when setting bitmap, blk:%u, old bit:%d", | 
|  | blkaddr, exist); | 
|  | f2fs_bug_on(sbi, 1); | 
|  | } | 
|  | #endif | 
|  | if (unlikely(exist)) { | 
|  | f2fs_msg(sbi->sb, KERN_ERR, | 
|  | "Bitmap was wrongly set, blk:%u", blkaddr); | 
|  | f2fs_bug_on(sbi, 1); | 
|  | se->valid_blocks--; | 
|  | del = 0; | 
|  | } | 
|  |  | 
|  | if (f2fs_discard_en(sbi) && | 
|  | !f2fs_test_and_set_bit(offset, se->discard_map)) | 
|  | sbi->discard_blks--; | 
|  |  | 
|  | /* don't overwrite by SSR to keep node chain */ | 
|  | if (IS_NODESEG(se->type)) { | 
|  | if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) | 
|  | se->ckpt_valid_blocks++; | 
|  | } | 
|  | } else { | 
|  | exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); | 
|  | #ifdef CONFIG_F2FS_CHECK_FS | 
|  | mir_exist = f2fs_test_and_clear_bit(offset, | 
|  | se->cur_valid_map_mir); | 
|  | if (unlikely(exist != mir_exist)) { | 
|  | f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " | 
|  | "when clearing bitmap, blk:%u, old bit:%d", | 
|  | blkaddr, exist); | 
|  | f2fs_bug_on(sbi, 1); | 
|  | } | 
|  | #endif | 
|  | if (unlikely(!exist)) { | 
|  | f2fs_msg(sbi->sb, KERN_ERR, | 
|  | "Bitmap was wrongly cleared, blk:%u", blkaddr); | 
|  | f2fs_bug_on(sbi, 1); | 
|  | se->valid_blocks++; | 
|  | del = 0; | 
|  | } | 
|  |  | 
|  | if (f2fs_discard_en(sbi) && | 
|  | f2fs_test_and_clear_bit(offset, se->discard_map)) | 
|  | sbi->discard_blks++; | 
|  | } | 
|  | if (!f2fs_test_bit(offset, se->ckpt_valid_map)) | 
|  | se->ckpt_valid_blocks += del; | 
|  |  | 
|  | __mark_sit_entry_dirty(sbi, segno); | 
|  |  | 
|  | /* update total number of valid blocks to be written in ckpt area */ | 
|  | SIT_I(sbi)->written_valid_blocks += del; | 
|  |  | 
|  | if (sbi->segs_per_sec > 1) | 
|  | get_sec_entry(sbi, segno)->valid_blocks += del; | 
|  | } | 
|  |  | 
|  | void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) | 
|  | { | 
|  | unsigned int segno = GET_SEGNO(sbi, addr); | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  |  | 
|  | f2fs_bug_on(sbi, addr == NULL_ADDR); | 
|  | if (addr == NEW_ADDR) | 
|  | return; | 
|  |  | 
|  | /* add it into sit main buffer */ | 
|  | down_write(&sit_i->sentry_lock); | 
|  |  | 
|  | update_sit_entry(sbi, addr, -1); | 
|  |  | 
|  | /* add it into dirty seglist */ | 
|  | locate_dirty_segment(sbi, segno); | 
|  |  | 
|  | up_write(&sit_i->sentry_lock); | 
|  | } | 
|  |  | 
|  | bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) | 
|  | { | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  | unsigned int segno, offset; | 
|  | struct seg_entry *se; | 
|  | bool is_cp = false; | 
|  |  | 
|  | if (!is_valid_data_blkaddr(sbi, blkaddr)) | 
|  | return true; | 
|  |  | 
|  | down_read(&sit_i->sentry_lock); | 
|  |  | 
|  | segno = GET_SEGNO(sbi, blkaddr); | 
|  | se = get_seg_entry(sbi, segno); | 
|  | offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); | 
|  |  | 
|  | if (f2fs_test_bit(offset, se->ckpt_valid_map)) | 
|  | is_cp = true; | 
|  |  | 
|  | up_read(&sit_i->sentry_lock); | 
|  |  | 
|  | return is_cp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function should be resided under the curseg_mutex lock | 
|  | */ | 
|  | static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, | 
|  | struct f2fs_summary *sum) | 
|  | { | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, type); | 
|  | void *addr = curseg->sum_blk; | 
|  | addr += curseg->next_blkoff * sizeof(struct f2fs_summary); | 
|  | memcpy(addr, sum, sizeof(struct f2fs_summary)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the number of current summary pages for writing | 
|  | */ | 
|  | int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) | 
|  | { | 
|  | int valid_sum_count = 0; | 
|  | int i, sum_in_page; | 
|  |  | 
|  | for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | 
|  | if (sbi->ckpt->alloc_type[i] == SSR) | 
|  | valid_sum_count += sbi->blocks_per_seg; | 
|  | else { | 
|  | if (for_ra) | 
|  | valid_sum_count += le16_to_cpu( | 
|  | F2FS_CKPT(sbi)->cur_data_blkoff[i]); | 
|  | else | 
|  | valid_sum_count += curseg_blkoff(sbi, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - | 
|  | SUM_FOOTER_SIZE) / SUMMARY_SIZE; | 
|  | if (valid_sum_count <= sum_in_page) | 
|  | return 1; | 
|  | else if ((valid_sum_count - sum_in_page) <= | 
|  | (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) | 
|  | return 2; | 
|  | return 3; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caller should put this summary page | 
|  | */ | 
|  | struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) | 
|  | { | 
|  | return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); | 
|  | } | 
|  |  | 
|  | void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) | 
|  | { | 
|  | struct page *page = grab_meta_page(sbi, blk_addr); | 
|  |  | 
|  | memcpy(page_address(page), src, PAGE_SIZE); | 
|  | set_page_dirty(page); | 
|  | f2fs_put_page(page, 1); | 
|  | } | 
|  |  | 
|  | static void write_sum_page(struct f2fs_sb_info *sbi, | 
|  | struct f2fs_summary_block *sum_blk, block_t blk_addr) | 
|  | { | 
|  | update_meta_page(sbi, (void *)sum_blk, blk_addr); | 
|  | } | 
|  |  | 
|  | static void write_current_sum_page(struct f2fs_sb_info *sbi, | 
|  | int type, block_t blk_addr) | 
|  | { | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, type); | 
|  | struct page *page = grab_meta_page(sbi, blk_addr); | 
|  | struct f2fs_summary_block *src = curseg->sum_blk; | 
|  | struct f2fs_summary_block *dst; | 
|  |  | 
|  | dst = (struct f2fs_summary_block *)page_address(page); | 
|  |  | 
|  | mutex_lock(&curseg->curseg_mutex); | 
|  |  | 
|  | down_read(&curseg->journal_rwsem); | 
|  | memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); | 
|  | up_read(&curseg->journal_rwsem); | 
|  |  | 
|  | memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); | 
|  | memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); | 
|  |  | 
|  | mutex_unlock(&curseg->curseg_mutex); | 
|  |  | 
|  | set_page_dirty(page); | 
|  | f2fs_put_page(page, 1); | 
|  | } | 
|  |  | 
|  | static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) | 
|  | { | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, type); | 
|  | unsigned int segno = curseg->segno + 1; | 
|  | struct free_segmap_info *free_i = FREE_I(sbi); | 
|  |  | 
|  | if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) | 
|  | return !test_bit(segno, free_i->free_segmap); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a new segment from the free segments bitmap to right order | 
|  | * This function should be returned with success, otherwise BUG | 
|  | */ | 
|  | static void get_new_segment(struct f2fs_sb_info *sbi, | 
|  | unsigned int *newseg, bool new_sec, int dir) | 
|  | { | 
|  | struct free_segmap_info *free_i = FREE_I(sbi); | 
|  | unsigned int segno, secno, zoneno; | 
|  | unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; | 
|  | unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); | 
|  | unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); | 
|  | unsigned int left_start = hint; | 
|  | bool init = true; | 
|  | int go_left = 0; | 
|  | int i; | 
|  |  | 
|  | spin_lock(&free_i->segmap_lock); | 
|  |  | 
|  | if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { | 
|  | segno = find_next_zero_bit(free_i->free_segmap, | 
|  | GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); | 
|  | if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) | 
|  | goto got_it; | 
|  | } | 
|  | find_other_zone: | 
|  | secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); | 
|  | if (secno >= MAIN_SECS(sbi)) { | 
|  | if (dir == ALLOC_RIGHT) { | 
|  | secno = find_next_zero_bit(free_i->free_secmap, | 
|  | MAIN_SECS(sbi), 0); | 
|  | f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); | 
|  | } else { | 
|  | go_left = 1; | 
|  | left_start = hint - 1; | 
|  | } | 
|  | } | 
|  | if (go_left == 0) | 
|  | goto skip_left; | 
|  |  | 
|  | while (test_bit(left_start, free_i->free_secmap)) { | 
|  | if (left_start > 0) { | 
|  | left_start--; | 
|  | continue; | 
|  | } | 
|  | left_start = find_next_zero_bit(free_i->free_secmap, | 
|  | MAIN_SECS(sbi), 0); | 
|  | f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); | 
|  | break; | 
|  | } | 
|  | secno = left_start; | 
|  | skip_left: | 
|  | segno = GET_SEG_FROM_SEC(sbi, secno); | 
|  | zoneno = GET_ZONE_FROM_SEC(sbi, secno); | 
|  |  | 
|  | /* give up on finding another zone */ | 
|  | if (!init) | 
|  | goto got_it; | 
|  | if (sbi->secs_per_zone == 1) | 
|  | goto got_it; | 
|  | if (zoneno == old_zoneno) | 
|  | goto got_it; | 
|  | if (dir == ALLOC_LEFT) { | 
|  | if (!go_left && zoneno + 1 >= total_zones) | 
|  | goto got_it; | 
|  | if (go_left && zoneno == 0) | 
|  | goto got_it; | 
|  | } | 
|  | for (i = 0; i < NR_CURSEG_TYPE; i++) | 
|  | if (CURSEG_I(sbi, i)->zone == zoneno) | 
|  | break; | 
|  |  | 
|  | if (i < NR_CURSEG_TYPE) { | 
|  | /* zone is in user, try another */ | 
|  | if (go_left) | 
|  | hint = zoneno * sbi->secs_per_zone - 1; | 
|  | else if (zoneno + 1 >= total_zones) | 
|  | hint = 0; | 
|  | else | 
|  | hint = (zoneno + 1) * sbi->secs_per_zone; | 
|  | init = false; | 
|  | goto find_other_zone; | 
|  | } | 
|  | got_it: | 
|  | /* set it as dirty segment in free segmap */ | 
|  | f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); | 
|  | __set_inuse(sbi, segno); | 
|  | *newseg = segno; | 
|  | spin_unlock(&free_i->segmap_lock); | 
|  | } | 
|  |  | 
|  | static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) | 
|  | { | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, type); | 
|  | struct summary_footer *sum_footer; | 
|  |  | 
|  | curseg->segno = curseg->next_segno; | 
|  | curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); | 
|  | curseg->next_blkoff = 0; | 
|  | curseg->next_segno = NULL_SEGNO; | 
|  |  | 
|  | sum_footer = &(curseg->sum_blk->footer); | 
|  | memset(sum_footer, 0, sizeof(struct summary_footer)); | 
|  | if (IS_DATASEG(type)) | 
|  | SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); | 
|  | if (IS_NODESEG(type)) | 
|  | SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); | 
|  | __set_sit_entry_type(sbi, type, curseg->segno, modified); | 
|  | } | 
|  |  | 
|  | static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) | 
|  | { | 
|  | /* if segs_per_sec is large than 1, we need to keep original policy. */ | 
|  | if (sbi->segs_per_sec != 1) | 
|  | return CURSEG_I(sbi, type)->segno; | 
|  |  | 
|  | if (test_opt(sbi, NOHEAP) && | 
|  | (type == CURSEG_HOT_DATA || IS_NODESEG(type))) | 
|  | return 0; | 
|  |  | 
|  | if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) | 
|  | return SIT_I(sbi)->last_victim[ALLOC_NEXT]; | 
|  |  | 
|  | /* find segments from 0 to reuse freed segments */ | 
|  | if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) | 
|  | return 0; | 
|  |  | 
|  | return CURSEG_I(sbi, type)->segno; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a current working segment. | 
|  | * This function always allocates a free segment in LFS manner. | 
|  | */ | 
|  | static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) | 
|  | { | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, type); | 
|  | unsigned int segno = curseg->segno; | 
|  | int dir = ALLOC_LEFT; | 
|  |  | 
|  | write_sum_page(sbi, curseg->sum_blk, | 
|  | GET_SUM_BLOCK(sbi, segno)); | 
|  | if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) | 
|  | dir = ALLOC_RIGHT; | 
|  |  | 
|  | if (test_opt(sbi, NOHEAP)) | 
|  | dir = ALLOC_RIGHT; | 
|  |  | 
|  | segno = __get_next_segno(sbi, type); | 
|  | get_new_segment(sbi, &segno, new_sec, dir); | 
|  | curseg->next_segno = segno; | 
|  | reset_curseg(sbi, type, 1); | 
|  | curseg->alloc_type = LFS; | 
|  | } | 
|  |  | 
|  | static void __next_free_blkoff(struct f2fs_sb_info *sbi, | 
|  | struct curseg_info *seg, block_t start) | 
|  | { | 
|  | struct seg_entry *se = get_seg_entry(sbi, seg->segno); | 
|  | int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); | 
|  | unsigned long *target_map = SIT_I(sbi)->tmp_map; | 
|  | unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; | 
|  | unsigned long *cur_map = (unsigned long *)se->cur_valid_map; | 
|  | int i, pos; | 
|  |  | 
|  | for (i = 0; i < entries; i++) | 
|  | target_map[i] = ckpt_map[i] | cur_map[i]; | 
|  |  | 
|  | pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); | 
|  |  | 
|  | seg->next_blkoff = pos; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a segment is written by LFS manner, next block offset is just obtained | 
|  | * by increasing the current block offset. However, if a segment is written by | 
|  | * SSR manner, next block offset obtained by calling __next_free_blkoff | 
|  | */ | 
|  | static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, | 
|  | struct curseg_info *seg) | 
|  | { | 
|  | if (seg->alloc_type == SSR) | 
|  | __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); | 
|  | else | 
|  | seg->next_blkoff++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function always allocates a used segment(from dirty seglist) by SSR | 
|  | * manner, so it should recover the existing segment information of valid blocks | 
|  | */ | 
|  | static void change_curseg(struct f2fs_sb_info *sbi, int type) | 
|  | { | 
|  | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, type); | 
|  | unsigned int new_segno = curseg->next_segno; | 
|  | struct f2fs_summary_block *sum_node; | 
|  | struct page *sum_page; | 
|  |  | 
|  | write_sum_page(sbi, curseg->sum_blk, | 
|  | GET_SUM_BLOCK(sbi, curseg->segno)); | 
|  | __set_test_and_inuse(sbi, new_segno); | 
|  |  | 
|  | mutex_lock(&dirty_i->seglist_lock); | 
|  | __remove_dirty_segment(sbi, new_segno, PRE); | 
|  | __remove_dirty_segment(sbi, new_segno, DIRTY); | 
|  | mutex_unlock(&dirty_i->seglist_lock); | 
|  |  | 
|  | reset_curseg(sbi, type, 1); | 
|  | curseg->alloc_type = SSR; | 
|  | __next_free_blkoff(sbi, curseg, 0); | 
|  |  | 
|  | sum_page = get_sum_page(sbi, new_segno); | 
|  | sum_node = (struct f2fs_summary_block *)page_address(sum_page); | 
|  | memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); | 
|  | f2fs_put_page(sum_page, 1); | 
|  | } | 
|  |  | 
|  | static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) | 
|  | { | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, type); | 
|  | const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; | 
|  | unsigned segno = NULL_SEGNO; | 
|  | int i, cnt; | 
|  | bool reversed = false; | 
|  |  | 
|  | /* need_SSR() already forces to do this */ | 
|  | if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { | 
|  | curseg->next_segno = segno; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* For node segments, let's do SSR more intensively */ | 
|  | if (IS_NODESEG(type)) { | 
|  | if (type >= CURSEG_WARM_NODE) { | 
|  | reversed = true; | 
|  | i = CURSEG_COLD_NODE; | 
|  | } else { | 
|  | i = CURSEG_HOT_NODE; | 
|  | } | 
|  | cnt = NR_CURSEG_NODE_TYPE; | 
|  | } else { | 
|  | if (type >= CURSEG_WARM_DATA) { | 
|  | reversed = true; | 
|  | i = CURSEG_COLD_DATA; | 
|  | } else { | 
|  | i = CURSEG_HOT_DATA; | 
|  | } | 
|  | cnt = NR_CURSEG_DATA_TYPE; | 
|  | } | 
|  |  | 
|  | for (; cnt-- > 0; reversed ? i-- : i++) { | 
|  | if (i == type) | 
|  | continue; | 
|  | if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { | 
|  | curseg->next_segno = segno; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * flush out current segment and replace it with new segment | 
|  | * This function should be returned with success, otherwise BUG | 
|  | */ | 
|  | static void allocate_segment_by_default(struct f2fs_sb_info *sbi, | 
|  | int type, bool force) | 
|  | { | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, type); | 
|  |  | 
|  | if (force) | 
|  | new_curseg(sbi, type, true); | 
|  | else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && | 
|  | type == CURSEG_WARM_NODE) | 
|  | new_curseg(sbi, type, false); | 
|  | else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) | 
|  | new_curseg(sbi, type, false); | 
|  | else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) | 
|  | change_curseg(sbi, type); | 
|  | else | 
|  | new_curseg(sbi, type, false); | 
|  |  | 
|  | stat_inc_seg_type(sbi, curseg); | 
|  | } | 
|  |  | 
|  | void allocate_new_segments(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct curseg_info *curseg; | 
|  | unsigned int old_segno; | 
|  | int i; | 
|  |  | 
|  | down_write(&SIT_I(sbi)->sentry_lock); | 
|  |  | 
|  | for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | 
|  | curseg = CURSEG_I(sbi, i); | 
|  | old_segno = curseg->segno; | 
|  | SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); | 
|  | locate_dirty_segment(sbi, old_segno); | 
|  | } | 
|  |  | 
|  | up_write(&SIT_I(sbi)->sentry_lock); | 
|  | } | 
|  |  | 
|  | static const struct segment_allocation default_salloc_ops = { | 
|  | .allocate_segment = allocate_segment_by_default, | 
|  | }; | 
|  |  | 
|  | bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc) | 
|  | { | 
|  | __u64 trim_start = cpc->trim_start; | 
|  | bool has_candidate = false; | 
|  |  | 
|  | down_write(&SIT_I(sbi)->sentry_lock); | 
|  | for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { | 
|  | if (add_discard_addrs(sbi, cpc, true)) { | 
|  | has_candidate = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | up_write(&SIT_I(sbi)->sentry_lock); | 
|  |  | 
|  | cpc->trim_start = trim_start; | 
|  | return has_candidate; | 
|  | } | 
|  |  | 
|  | static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi, | 
|  | struct discard_policy *dpolicy, | 
|  | unsigned int start, unsigned int end) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | struct discard_cmd *prev_dc = NULL, *next_dc = NULL; | 
|  | struct rb_node **insert_p = NULL, *insert_parent = NULL; | 
|  | struct discard_cmd *dc; | 
|  | struct blk_plug plug; | 
|  | int issued; | 
|  |  | 
|  | next: | 
|  | issued = 0; | 
|  |  | 
|  | mutex_lock(&dcc->cmd_lock); | 
|  | f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root)); | 
|  |  | 
|  | dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root, | 
|  | NULL, start, | 
|  | (struct rb_entry **)&prev_dc, | 
|  | (struct rb_entry **)&next_dc, | 
|  | &insert_p, &insert_parent, true); | 
|  | if (!dc) | 
|  | dc = next_dc; | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  |  | 
|  | while (dc && dc->lstart <= end) { | 
|  | struct rb_node *node; | 
|  |  | 
|  | if (dc->len < dpolicy->granularity) | 
|  | goto skip; | 
|  |  | 
|  | if (dc->state != D_PREP) { | 
|  | list_move_tail(&dc->list, &dcc->fstrim_list); | 
|  | goto skip; | 
|  | } | 
|  |  | 
|  | __submit_discard_cmd(sbi, dpolicy, dc); | 
|  |  | 
|  | if (++issued >= dpolicy->max_requests) { | 
|  | start = dc->lstart + dc->len; | 
|  |  | 
|  | blk_finish_plug(&plug); | 
|  | mutex_unlock(&dcc->cmd_lock); | 
|  | __wait_all_discard_cmd(sbi, NULL); | 
|  | congestion_wait(BLK_RW_ASYNC, HZ/50); | 
|  | goto next; | 
|  | } | 
|  | skip: | 
|  | node = rb_next(&dc->rb_node); | 
|  | dc = rb_entry_safe(node, struct discard_cmd, rb_node); | 
|  |  | 
|  | if (fatal_signal_pending(current)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | blk_finish_plug(&plug); | 
|  | mutex_unlock(&dcc->cmd_lock); | 
|  | } | 
|  |  | 
|  | int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) | 
|  | { | 
|  | __u64 start = F2FS_BYTES_TO_BLK(range->start); | 
|  | __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; | 
|  | unsigned int start_segno, end_segno; | 
|  | block_t start_block, end_block; | 
|  | struct cp_control cpc; | 
|  | struct discard_policy dpolicy; | 
|  | unsigned long long trimmed = 0; | 
|  | int err = 0; | 
|  |  | 
|  | if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (end <= MAIN_BLKADDR(sbi)) | 
|  | goto out; | 
|  |  | 
|  | if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { | 
|  | f2fs_msg(sbi->sb, KERN_WARNING, | 
|  | "Found FS corruption, run fsck to fix."); | 
|  | err = -EFSCORRUPTED; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* start/end segment number in main_area */ | 
|  | start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); | 
|  | end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : | 
|  | GET_SEGNO(sbi, end); | 
|  |  | 
|  | cpc.reason = CP_DISCARD; | 
|  | cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); | 
|  | cpc.trim_start = start_segno; | 
|  | cpc.trim_end = end_segno; | 
|  |  | 
|  | if (sbi->discard_blks == 0) | 
|  | goto out; | 
|  |  | 
|  | mutex_lock(&sbi->gc_mutex); | 
|  | err = write_checkpoint(sbi, &cpc); | 
|  | mutex_unlock(&sbi->gc_mutex); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | start_block = START_BLOCK(sbi, start_segno); | 
|  | end_block = START_BLOCK(sbi, end_segno + 1); | 
|  |  | 
|  | __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); | 
|  | __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block); | 
|  |  | 
|  | /* | 
|  | * We filed discard candidates, but actually we don't need to wait for | 
|  | * all of them, since they'll be issued in idle time along with runtime | 
|  | * discard option. User configuration looks like using runtime discard | 
|  | * or periodic fstrim instead of it. | 
|  | */ | 
|  | if (!test_opt(sbi, DISCARD)) { | 
|  | trimmed = __wait_discard_cmd_range(sbi, &dpolicy, | 
|  | start_block, end_block); | 
|  | range->len = F2FS_BLK_TO_BYTES(trimmed); | 
|  | } | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) | 
|  | { | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, type); | 
|  | if (curseg->next_blkoff < sbi->blocks_per_seg) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int rw_hint_to_seg_type(enum rw_hint hint) | 
|  | { | 
|  | switch (hint) { | 
|  | case WRITE_LIFE_SHORT: | 
|  | return CURSEG_HOT_DATA; | 
|  | case WRITE_LIFE_EXTREME: | 
|  | return CURSEG_COLD_DATA; | 
|  | default: | 
|  | return CURSEG_WARM_DATA; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This returns write hints for each segment type. This hints will be | 
|  | * passed down to block layer. There are mapping tables which depend on | 
|  | * the mount option 'whint_mode'. | 
|  | * | 
|  | * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. | 
|  | * | 
|  | * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. | 
|  | * | 
|  | * User                  F2FS                     Block | 
|  | * ----                  ----                     ----- | 
|  | *                       META                     WRITE_LIFE_NOT_SET | 
|  | *                       HOT_NODE                 " | 
|  | *                       WARM_NODE                " | 
|  | *                       COLD_NODE                " | 
|  | * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME | 
|  | * extension list        "                        " | 
|  | * | 
|  | * -- buffered io | 
|  | * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME | 
|  | * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT | 
|  | * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET | 
|  | * WRITE_LIFE_NONE       "                        " | 
|  | * WRITE_LIFE_MEDIUM     "                        " | 
|  | * WRITE_LIFE_LONG       "                        " | 
|  | * | 
|  | * -- direct io | 
|  | * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME | 
|  | * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT | 
|  | * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET | 
|  | * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE | 
|  | * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM | 
|  | * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG | 
|  | * | 
|  | * 3) whint_mode=fs-based. F2FS passes down hints with its policy. | 
|  | * | 
|  | * User                  F2FS                     Block | 
|  | * ----                  ----                     ----- | 
|  | *                       META                     WRITE_LIFE_MEDIUM; | 
|  | *                       HOT_NODE                 WRITE_LIFE_NOT_SET | 
|  | *                       WARM_NODE                " | 
|  | *                       COLD_NODE                WRITE_LIFE_NONE | 
|  | * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME | 
|  | * extension list        "                        " | 
|  | * | 
|  | * -- buffered io | 
|  | * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME | 
|  | * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT | 
|  | * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG | 
|  | * WRITE_LIFE_NONE       "                        " | 
|  | * WRITE_LIFE_MEDIUM     "                        " | 
|  | * WRITE_LIFE_LONG       "                        " | 
|  | * | 
|  | * -- direct io | 
|  | * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME | 
|  | * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT | 
|  | * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET | 
|  | * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE | 
|  | * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM | 
|  | * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG | 
|  | */ | 
|  |  | 
|  | enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi, | 
|  | enum page_type type, enum temp_type temp) | 
|  | { | 
|  | if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { | 
|  | if (type == DATA) { | 
|  | if (temp == WARM) | 
|  | return WRITE_LIFE_NOT_SET; | 
|  | else if (temp == HOT) | 
|  | return WRITE_LIFE_SHORT; | 
|  | else if (temp == COLD) | 
|  | return WRITE_LIFE_EXTREME; | 
|  | } else { | 
|  | return WRITE_LIFE_NOT_SET; | 
|  | } | 
|  | } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { | 
|  | if (type == DATA) { | 
|  | if (temp == WARM) | 
|  | return WRITE_LIFE_LONG; | 
|  | else if (temp == HOT) | 
|  | return WRITE_LIFE_SHORT; | 
|  | else if (temp == COLD) | 
|  | return WRITE_LIFE_EXTREME; | 
|  | } else if (type == NODE) { | 
|  | if (temp == WARM || temp == HOT) | 
|  | return WRITE_LIFE_NOT_SET; | 
|  | else if (temp == COLD) | 
|  | return WRITE_LIFE_NONE; | 
|  | } else if (type == META) { | 
|  | return WRITE_LIFE_MEDIUM; | 
|  | } | 
|  | } | 
|  | return WRITE_LIFE_NOT_SET; | 
|  | } | 
|  |  | 
|  | static int __get_segment_type_2(struct f2fs_io_info *fio) | 
|  | { | 
|  | if (fio->type == DATA) | 
|  | return CURSEG_HOT_DATA; | 
|  | else | 
|  | return CURSEG_HOT_NODE; | 
|  | } | 
|  |  | 
|  | static int __get_segment_type_4(struct f2fs_io_info *fio) | 
|  | { | 
|  | if (fio->type == DATA) { | 
|  | struct inode *inode = fio->page->mapping->host; | 
|  |  | 
|  | if (S_ISDIR(inode->i_mode)) | 
|  | return CURSEG_HOT_DATA; | 
|  | else | 
|  | return CURSEG_COLD_DATA; | 
|  | } else { | 
|  | if (IS_DNODE(fio->page) && is_cold_node(fio->page)) | 
|  | return CURSEG_WARM_NODE; | 
|  | else | 
|  | return CURSEG_COLD_NODE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __get_segment_type_6(struct f2fs_io_info *fio) | 
|  | { | 
|  | if (fio->type == DATA) { | 
|  | struct inode *inode = fio->page->mapping->host; | 
|  |  | 
|  | if (is_cold_data(fio->page) || file_is_cold(inode)) | 
|  | return CURSEG_COLD_DATA; | 
|  | if (file_is_hot(inode) || | 
|  | is_inode_flag_set(inode, FI_HOT_DATA)) | 
|  | return CURSEG_HOT_DATA; | 
|  | return rw_hint_to_seg_type(inode->i_write_hint); | 
|  | } else { | 
|  | if (IS_DNODE(fio->page)) | 
|  | return is_cold_node(fio->page) ? CURSEG_WARM_NODE : | 
|  | CURSEG_HOT_NODE; | 
|  | return CURSEG_COLD_NODE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __get_segment_type(struct f2fs_io_info *fio) | 
|  | { | 
|  | int type = 0; | 
|  |  | 
|  | switch (F2FS_OPTION(fio->sbi).active_logs) { | 
|  | case 2: | 
|  | type = __get_segment_type_2(fio); | 
|  | break; | 
|  | case 4: | 
|  | type = __get_segment_type_4(fio); | 
|  | break; | 
|  | case 6: | 
|  | type = __get_segment_type_6(fio); | 
|  | break; | 
|  | default: | 
|  | f2fs_bug_on(fio->sbi, true); | 
|  | } | 
|  |  | 
|  | if (IS_HOT(type)) | 
|  | fio->temp = HOT; | 
|  | else if (IS_WARM(type)) | 
|  | fio->temp = WARM; | 
|  | else | 
|  | fio->temp = COLD; | 
|  | return type; | 
|  | } | 
|  |  | 
|  | void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, | 
|  | block_t old_blkaddr, block_t *new_blkaddr, | 
|  | struct f2fs_summary *sum, int type, | 
|  | struct f2fs_io_info *fio, bool add_list) | 
|  | { | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, type); | 
|  |  | 
|  | down_read(&SM_I(sbi)->curseg_lock); | 
|  |  | 
|  | mutex_lock(&curseg->curseg_mutex); | 
|  | down_write(&sit_i->sentry_lock); | 
|  |  | 
|  | *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); | 
|  |  | 
|  | f2fs_wait_discard_bio(sbi, *new_blkaddr); | 
|  |  | 
|  | /* | 
|  | * __add_sum_entry should be resided under the curseg_mutex | 
|  | * because, this function updates a summary entry in the | 
|  | * current summary block. | 
|  | */ | 
|  | __add_sum_entry(sbi, type, sum); | 
|  |  | 
|  | __refresh_next_blkoff(sbi, curseg); | 
|  |  | 
|  | stat_inc_block_count(sbi, curseg); | 
|  |  | 
|  | /* | 
|  | * SIT information should be updated before segment allocation, | 
|  | * since SSR needs latest valid block information. | 
|  | */ | 
|  | update_sit_entry(sbi, *new_blkaddr, 1); | 
|  | if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) | 
|  | update_sit_entry(sbi, old_blkaddr, -1); | 
|  |  | 
|  | if (!__has_curseg_space(sbi, type)) | 
|  | sit_i->s_ops->allocate_segment(sbi, type, false); | 
|  |  | 
|  | /* | 
|  | * segment dirty status should be updated after segment allocation, | 
|  | * so we just need to update status only one time after previous | 
|  | * segment being closed. | 
|  | */ | 
|  | locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); | 
|  | locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); | 
|  |  | 
|  | up_write(&sit_i->sentry_lock); | 
|  |  | 
|  | if (page && IS_NODESEG(type)) { | 
|  | fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); | 
|  |  | 
|  | f2fs_inode_chksum_set(sbi, page); | 
|  | } | 
|  |  | 
|  | if (add_list) { | 
|  | struct f2fs_bio_info *io; | 
|  |  | 
|  | INIT_LIST_HEAD(&fio->list); | 
|  | fio->in_list = true; | 
|  | io = sbi->write_io[fio->type] + fio->temp; | 
|  | spin_lock(&io->io_lock); | 
|  | list_add_tail(&fio->list, &io->io_list); | 
|  | spin_unlock(&io->io_lock); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&curseg->curseg_mutex); | 
|  |  | 
|  | up_read(&SM_I(sbi)->curseg_lock); | 
|  | } | 
|  |  | 
|  | static void update_device_state(struct f2fs_io_info *fio) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = fio->sbi; | 
|  | unsigned int devidx; | 
|  |  | 
|  | if (!sbi->s_ndevs) | 
|  | return; | 
|  |  | 
|  | devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); | 
|  |  | 
|  | /* update device state for fsync */ | 
|  | set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); | 
|  |  | 
|  | /* update device state for checkpoint */ | 
|  | if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { | 
|  | spin_lock(&sbi->dev_lock); | 
|  | f2fs_set_bit(devidx, (char *)&sbi->dirty_device); | 
|  | spin_unlock(&sbi->dev_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) | 
|  | { | 
|  | int type = __get_segment_type(fio); | 
|  | int err; | 
|  |  | 
|  | reallocate: | 
|  | allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, | 
|  | &fio->new_blkaddr, sum, type, fio, true); | 
|  |  | 
|  | /* writeout dirty page into bdev */ | 
|  | err = f2fs_submit_page_write(fio); | 
|  | if (err == -EAGAIN) { | 
|  | fio->old_blkaddr = fio->new_blkaddr; | 
|  | goto reallocate; | 
|  | } else if (!err) { | 
|  | update_device_state(fio); | 
|  | } | 
|  | } | 
|  |  | 
|  | void write_meta_page(struct f2fs_sb_info *sbi, struct page *page, | 
|  | enum iostat_type io_type) | 
|  | { | 
|  | struct f2fs_io_info fio = { | 
|  | .sbi = sbi, | 
|  | .type = META, | 
|  | .temp = HOT, | 
|  | .op = REQ_OP_WRITE, | 
|  | .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, | 
|  | .old_blkaddr = page->index, | 
|  | .new_blkaddr = page->index, | 
|  | .page = page, | 
|  | .encrypted_page = NULL, | 
|  | .in_list = false, | 
|  | }; | 
|  |  | 
|  | if (unlikely(page->index >= MAIN_BLKADDR(sbi))) | 
|  | fio.op_flags &= ~REQ_META; | 
|  |  | 
|  | set_page_writeback(page); | 
|  | ClearPageError(page); | 
|  | f2fs_submit_page_write(&fio); | 
|  |  | 
|  | f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); | 
|  | } | 
|  |  | 
|  | void write_node_page(unsigned int nid, struct f2fs_io_info *fio) | 
|  | { | 
|  | struct f2fs_summary sum; | 
|  |  | 
|  | set_summary(&sum, nid, 0, 0); | 
|  | do_write_page(&sum, fio); | 
|  |  | 
|  | f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); | 
|  | } | 
|  |  | 
|  | void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = fio->sbi; | 
|  | struct f2fs_summary sum; | 
|  | struct node_info ni; | 
|  |  | 
|  | f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); | 
|  | get_node_info(sbi, dn->nid, &ni); | 
|  | set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); | 
|  | do_write_page(&sum, fio); | 
|  | f2fs_update_data_blkaddr(dn, fio->new_blkaddr); | 
|  |  | 
|  | f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); | 
|  | } | 
|  |  | 
|  | int rewrite_data_page(struct f2fs_io_info *fio) | 
|  | { | 
|  | int err; | 
|  | struct f2fs_sb_info *sbi = fio->sbi; | 
|  |  | 
|  | fio->new_blkaddr = fio->old_blkaddr; | 
|  | /* i/o temperature is needed for passing down write hints */ | 
|  | __get_segment_type(fio); | 
|  |  | 
|  | f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi, | 
|  | GET_SEGNO(sbi, fio->new_blkaddr))->type)); | 
|  |  | 
|  | stat_inc_inplace_blocks(fio->sbi); | 
|  |  | 
|  | err = f2fs_submit_page_bio(fio); | 
|  | if (!err) | 
|  | update_device_state(fio); | 
|  |  | 
|  | f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, | 
|  | unsigned int segno) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { | 
|  | if (CURSEG_I(sbi, i)->segno == segno) | 
|  | break; | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, | 
|  | block_t old_blkaddr, block_t new_blkaddr, | 
|  | bool recover_curseg, bool recover_newaddr) | 
|  | { | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  | struct curseg_info *curseg; | 
|  | unsigned int segno, old_cursegno; | 
|  | struct seg_entry *se; | 
|  | int type; | 
|  | unsigned short old_blkoff; | 
|  |  | 
|  | segno = GET_SEGNO(sbi, new_blkaddr); | 
|  | se = get_seg_entry(sbi, segno); | 
|  | type = se->type; | 
|  |  | 
|  | down_write(&SM_I(sbi)->curseg_lock); | 
|  |  | 
|  | if (!recover_curseg) { | 
|  | /* for recovery flow */ | 
|  | if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { | 
|  | if (old_blkaddr == NULL_ADDR) | 
|  | type = CURSEG_COLD_DATA; | 
|  | else | 
|  | type = CURSEG_WARM_DATA; | 
|  | } | 
|  | } else { | 
|  | if (IS_CURSEG(sbi, segno)) { | 
|  | /* se->type is volatile as SSR allocation */ | 
|  | type = __f2fs_get_curseg(sbi, segno); | 
|  | f2fs_bug_on(sbi, type == NO_CHECK_TYPE); | 
|  | } else { | 
|  | type = CURSEG_WARM_DATA; | 
|  | } | 
|  | } | 
|  |  | 
|  | f2fs_bug_on(sbi, !IS_DATASEG(type)); | 
|  | curseg = CURSEG_I(sbi, type); | 
|  |  | 
|  | mutex_lock(&curseg->curseg_mutex); | 
|  | down_write(&sit_i->sentry_lock); | 
|  |  | 
|  | old_cursegno = curseg->segno; | 
|  | old_blkoff = curseg->next_blkoff; | 
|  |  | 
|  | /* change the current segment */ | 
|  | if (segno != curseg->segno) { | 
|  | curseg->next_segno = segno; | 
|  | change_curseg(sbi, type); | 
|  | } | 
|  |  | 
|  | curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); | 
|  | __add_sum_entry(sbi, type, sum); | 
|  |  | 
|  | if (!recover_curseg || recover_newaddr) | 
|  | update_sit_entry(sbi, new_blkaddr, 1); | 
|  | if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) | 
|  | update_sit_entry(sbi, old_blkaddr, -1); | 
|  |  | 
|  | locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); | 
|  | locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); | 
|  |  | 
|  | locate_dirty_segment(sbi, old_cursegno); | 
|  |  | 
|  | if (recover_curseg) { | 
|  | if (old_cursegno != curseg->segno) { | 
|  | curseg->next_segno = old_cursegno; | 
|  | change_curseg(sbi, type); | 
|  | } | 
|  | curseg->next_blkoff = old_blkoff; | 
|  | } | 
|  |  | 
|  | up_write(&sit_i->sentry_lock); | 
|  | mutex_unlock(&curseg->curseg_mutex); | 
|  | up_write(&SM_I(sbi)->curseg_lock); | 
|  | } | 
|  |  | 
|  | void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, | 
|  | block_t old_addr, block_t new_addr, | 
|  | unsigned char version, bool recover_curseg, | 
|  | bool recover_newaddr) | 
|  | { | 
|  | struct f2fs_summary sum; | 
|  |  | 
|  | set_summary(&sum, dn->nid, dn->ofs_in_node, version); | 
|  |  | 
|  | __f2fs_replace_block(sbi, &sum, old_addr, new_addr, | 
|  | recover_curseg, recover_newaddr); | 
|  |  | 
|  | f2fs_update_data_blkaddr(dn, new_addr); | 
|  | } | 
|  |  | 
|  | void f2fs_wait_on_page_writeback(struct page *page, | 
|  | enum page_type type, bool ordered) | 
|  | { | 
|  | if (PageWriteback(page)) { | 
|  | struct f2fs_sb_info *sbi = F2FS_P_SB(page); | 
|  |  | 
|  | f2fs_submit_merged_write_cond(sbi, page->mapping->host, | 
|  | 0, page->index, type); | 
|  | if (ordered) | 
|  | wait_on_page_writeback(page); | 
|  | else | 
|  | wait_for_stable_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr) | 
|  | { | 
|  | struct page *cpage; | 
|  |  | 
|  | if (!is_valid_data_blkaddr(sbi, blkaddr)) | 
|  | return; | 
|  |  | 
|  | cpage = find_lock_page(META_MAPPING(sbi), blkaddr); | 
|  | if (cpage) { | 
|  | f2fs_wait_on_page_writeback(cpage, DATA, true); | 
|  | f2fs_put_page(cpage, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void read_compacted_summaries(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | 
|  | struct curseg_info *seg_i; | 
|  | unsigned char *kaddr; | 
|  | struct page *page; | 
|  | block_t start; | 
|  | int i, j, offset; | 
|  |  | 
|  | start = start_sum_block(sbi); | 
|  |  | 
|  | page = get_meta_page(sbi, start++); | 
|  | kaddr = (unsigned char *)page_address(page); | 
|  |  | 
|  | /* Step 1: restore nat cache */ | 
|  | seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); | 
|  | memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); | 
|  |  | 
|  | /* Step 2: restore sit cache */ | 
|  | seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); | 
|  | memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); | 
|  | offset = 2 * SUM_JOURNAL_SIZE; | 
|  |  | 
|  | /* Step 3: restore summary entries */ | 
|  | for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | 
|  | unsigned short blk_off; | 
|  | unsigned int segno; | 
|  |  | 
|  | seg_i = CURSEG_I(sbi, i); | 
|  | segno = le32_to_cpu(ckpt->cur_data_segno[i]); | 
|  | blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); | 
|  | seg_i->next_segno = segno; | 
|  | reset_curseg(sbi, i, 0); | 
|  | seg_i->alloc_type = ckpt->alloc_type[i]; | 
|  | seg_i->next_blkoff = blk_off; | 
|  |  | 
|  | if (seg_i->alloc_type == SSR) | 
|  | blk_off = sbi->blocks_per_seg; | 
|  |  | 
|  | for (j = 0; j < blk_off; j++) { | 
|  | struct f2fs_summary *s; | 
|  | s = (struct f2fs_summary *)(kaddr + offset); | 
|  | seg_i->sum_blk->entries[j] = *s; | 
|  | offset += SUMMARY_SIZE; | 
|  | if (offset + SUMMARY_SIZE <= PAGE_SIZE - | 
|  | SUM_FOOTER_SIZE) | 
|  | continue; | 
|  |  | 
|  | f2fs_put_page(page, 1); | 
|  | page = NULL; | 
|  |  | 
|  | page = get_meta_page(sbi, start++); | 
|  | kaddr = (unsigned char *)page_address(page); | 
|  | offset = 0; | 
|  | } | 
|  | } | 
|  | f2fs_put_page(page, 1); | 
|  | } | 
|  |  | 
|  | static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) | 
|  | { | 
|  | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | 
|  | struct f2fs_summary_block *sum; | 
|  | struct curseg_info *curseg; | 
|  | struct page *new; | 
|  | unsigned short blk_off; | 
|  | unsigned int segno = 0; | 
|  | block_t blk_addr = 0; | 
|  |  | 
|  | /* get segment number and block addr */ | 
|  | if (IS_DATASEG(type)) { | 
|  | segno = le32_to_cpu(ckpt->cur_data_segno[type]); | 
|  | blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - | 
|  | CURSEG_HOT_DATA]); | 
|  | if (__exist_node_summaries(sbi)) | 
|  | blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); | 
|  | else | 
|  | blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); | 
|  | } else { | 
|  | segno = le32_to_cpu(ckpt->cur_node_segno[type - | 
|  | CURSEG_HOT_NODE]); | 
|  | blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - | 
|  | CURSEG_HOT_NODE]); | 
|  | if (__exist_node_summaries(sbi)) | 
|  | blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, | 
|  | type - CURSEG_HOT_NODE); | 
|  | else | 
|  | blk_addr = GET_SUM_BLOCK(sbi, segno); | 
|  | } | 
|  |  | 
|  | new = get_meta_page(sbi, blk_addr); | 
|  | sum = (struct f2fs_summary_block *)page_address(new); | 
|  |  | 
|  | if (IS_NODESEG(type)) { | 
|  | if (__exist_node_summaries(sbi)) { | 
|  | struct f2fs_summary *ns = &sum->entries[0]; | 
|  | int i; | 
|  | for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { | 
|  | ns->version = 0; | 
|  | ns->ofs_in_node = 0; | 
|  | } | 
|  | } else { | 
|  | restore_node_summary(sbi, segno, sum); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* set uncompleted segment to curseg */ | 
|  | curseg = CURSEG_I(sbi, type); | 
|  | mutex_lock(&curseg->curseg_mutex); | 
|  |  | 
|  | /* update journal info */ | 
|  | down_write(&curseg->journal_rwsem); | 
|  | memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); | 
|  | up_write(&curseg->journal_rwsem); | 
|  |  | 
|  | memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); | 
|  | memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); | 
|  | curseg->next_segno = segno; | 
|  | reset_curseg(sbi, type, 0); | 
|  | curseg->alloc_type = ckpt->alloc_type[type]; | 
|  | curseg->next_blkoff = blk_off; | 
|  | mutex_unlock(&curseg->curseg_mutex); | 
|  | f2fs_put_page(new, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int restore_curseg_summaries(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; | 
|  | struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; | 
|  | int type = CURSEG_HOT_DATA; | 
|  | int err; | 
|  |  | 
|  | if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { | 
|  | int npages = npages_for_summary_flush(sbi, true); | 
|  |  | 
|  | if (npages >= 2) | 
|  | ra_meta_pages(sbi, start_sum_block(sbi), npages, | 
|  | META_CP, true); | 
|  |  | 
|  | /* restore for compacted data summary */ | 
|  | read_compacted_summaries(sbi); | 
|  | type = CURSEG_HOT_NODE; | 
|  | } | 
|  |  | 
|  | if (__exist_node_summaries(sbi)) | 
|  | ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), | 
|  | NR_CURSEG_TYPE - type, META_CP, true); | 
|  |  | 
|  | for (; type <= CURSEG_COLD_NODE; type++) { | 
|  | err = read_normal_summaries(sbi, type); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* sanity check for summary blocks */ | 
|  | if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || | 
|  | sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned char *kaddr; | 
|  | struct f2fs_summary *summary; | 
|  | struct curseg_info *seg_i; | 
|  | int written_size = 0; | 
|  | int i, j; | 
|  |  | 
|  | page = grab_meta_page(sbi, blkaddr++); | 
|  | kaddr = (unsigned char *)page_address(page); | 
|  |  | 
|  | /* Step 1: write nat cache */ | 
|  | seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); | 
|  | memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); | 
|  | written_size += SUM_JOURNAL_SIZE; | 
|  |  | 
|  | /* Step 2: write sit cache */ | 
|  | seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); | 
|  | memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); | 
|  | written_size += SUM_JOURNAL_SIZE; | 
|  |  | 
|  | /* Step 3: write summary entries */ | 
|  | for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | 
|  | unsigned short blkoff; | 
|  | seg_i = CURSEG_I(sbi, i); | 
|  | if (sbi->ckpt->alloc_type[i] == SSR) | 
|  | blkoff = sbi->blocks_per_seg; | 
|  | else | 
|  | blkoff = curseg_blkoff(sbi, i); | 
|  |  | 
|  | for (j = 0; j < blkoff; j++) { | 
|  | if (!page) { | 
|  | page = grab_meta_page(sbi, blkaddr++); | 
|  | kaddr = (unsigned char *)page_address(page); | 
|  | written_size = 0; | 
|  | } | 
|  | summary = (struct f2fs_summary *)(kaddr + written_size); | 
|  | *summary = seg_i->sum_blk->entries[j]; | 
|  | written_size += SUMMARY_SIZE; | 
|  |  | 
|  | if (written_size + SUMMARY_SIZE <= PAGE_SIZE - | 
|  | SUM_FOOTER_SIZE) | 
|  | continue; | 
|  |  | 
|  | set_page_dirty(page); | 
|  | f2fs_put_page(page, 1); | 
|  | page = NULL; | 
|  | } | 
|  | } | 
|  | if (page) { | 
|  | set_page_dirty(page); | 
|  | f2fs_put_page(page, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_normal_summaries(struct f2fs_sb_info *sbi, | 
|  | block_t blkaddr, int type) | 
|  | { | 
|  | int i, end; | 
|  | if (IS_DATASEG(type)) | 
|  | end = type + NR_CURSEG_DATA_TYPE; | 
|  | else | 
|  | end = type + NR_CURSEG_NODE_TYPE; | 
|  |  | 
|  | for (i = type; i < end; i++) | 
|  | write_current_sum_page(sbi, i, blkaddr + (i - type)); | 
|  | } | 
|  |  | 
|  | void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) | 
|  | { | 
|  | if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) | 
|  | write_compacted_summaries(sbi, start_blk); | 
|  | else | 
|  | write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); | 
|  | } | 
|  |  | 
|  | void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) | 
|  | { | 
|  | write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); | 
|  | } | 
|  |  | 
|  | int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, | 
|  | unsigned int val, int alloc) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (type == NAT_JOURNAL) { | 
|  | for (i = 0; i < nats_in_cursum(journal); i++) { | 
|  | if (le32_to_cpu(nid_in_journal(journal, i)) == val) | 
|  | return i; | 
|  | } | 
|  | if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) | 
|  | return update_nats_in_cursum(journal, 1); | 
|  | } else if (type == SIT_JOURNAL) { | 
|  | for (i = 0; i < sits_in_cursum(journal); i++) | 
|  | if (le32_to_cpu(segno_in_journal(journal, i)) == val) | 
|  | return i; | 
|  | if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) | 
|  | return update_sits_in_cursum(journal, 1); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, | 
|  | unsigned int segno) | 
|  | { | 
|  | return get_meta_page(sbi, current_sit_addr(sbi, segno)); | 
|  | } | 
|  |  | 
|  | static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, | 
|  | unsigned int start) | 
|  | { | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  | struct page *page; | 
|  | pgoff_t src_off, dst_off; | 
|  |  | 
|  | src_off = current_sit_addr(sbi, start); | 
|  | dst_off = next_sit_addr(sbi, src_off); | 
|  |  | 
|  | page = grab_meta_page(sbi, dst_off); | 
|  | seg_info_to_sit_page(sbi, page, start); | 
|  |  | 
|  | set_page_dirty(page); | 
|  | set_to_next_sit(sit_i, start); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct sit_entry_set *grab_sit_entry_set(void) | 
|  | { | 
|  | struct sit_entry_set *ses = | 
|  | f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); | 
|  |  | 
|  | ses->entry_cnt = 0; | 
|  | INIT_LIST_HEAD(&ses->set_list); | 
|  | return ses; | 
|  | } | 
|  |  | 
|  | static void release_sit_entry_set(struct sit_entry_set *ses) | 
|  | { | 
|  | list_del(&ses->set_list); | 
|  | kmem_cache_free(sit_entry_set_slab, ses); | 
|  | } | 
|  |  | 
|  | static void adjust_sit_entry_set(struct sit_entry_set *ses, | 
|  | struct list_head *head) | 
|  | { | 
|  | struct sit_entry_set *next = ses; | 
|  |  | 
|  | if (list_is_last(&ses->set_list, head)) | 
|  | return; | 
|  |  | 
|  | list_for_each_entry_continue(next, head, set_list) | 
|  | if (ses->entry_cnt <= next->entry_cnt) | 
|  | break; | 
|  |  | 
|  | list_move_tail(&ses->set_list, &next->set_list); | 
|  | } | 
|  |  | 
|  | static void add_sit_entry(unsigned int segno, struct list_head *head) | 
|  | { | 
|  | struct sit_entry_set *ses; | 
|  | unsigned int start_segno = START_SEGNO(segno); | 
|  |  | 
|  | list_for_each_entry(ses, head, set_list) { | 
|  | if (ses->start_segno == start_segno) { | 
|  | ses->entry_cnt++; | 
|  | adjust_sit_entry_set(ses, head); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | ses = grab_sit_entry_set(); | 
|  |  | 
|  | ses->start_segno = start_segno; | 
|  | ses->entry_cnt++; | 
|  | list_add(&ses->set_list, head); | 
|  | } | 
|  |  | 
|  | static void add_sits_in_set(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct f2fs_sm_info *sm_info = SM_I(sbi); | 
|  | struct list_head *set_list = &sm_info->sit_entry_set; | 
|  | unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; | 
|  | unsigned int segno; | 
|  |  | 
|  | for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) | 
|  | add_sit_entry(segno, set_list); | 
|  | } | 
|  |  | 
|  | static void remove_sits_in_journal(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); | 
|  | struct f2fs_journal *journal = curseg->journal; | 
|  | int i; | 
|  |  | 
|  | down_write(&curseg->journal_rwsem); | 
|  | for (i = 0; i < sits_in_cursum(journal); i++) { | 
|  | unsigned int segno; | 
|  | bool dirtied; | 
|  |  | 
|  | segno = le32_to_cpu(segno_in_journal(journal, i)); | 
|  | dirtied = __mark_sit_entry_dirty(sbi, segno); | 
|  |  | 
|  | if (!dirtied) | 
|  | add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); | 
|  | } | 
|  | update_sits_in_cursum(journal, -i); | 
|  | up_write(&curseg->journal_rwsem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * CP calls this function, which flushes SIT entries including sit_journal, | 
|  | * and moves prefree segs to free segs. | 
|  | */ | 
|  | void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) | 
|  | { | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  | unsigned long *bitmap = sit_i->dirty_sentries_bitmap; | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); | 
|  | struct f2fs_journal *journal = curseg->journal; | 
|  | struct sit_entry_set *ses, *tmp; | 
|  | struct list_head *head = &SM_I(sbi)->sit_entry_set; | 
|  | bool to_journal = true; | 
|  | struct seg_entry *se; | 
|  |  | 
|  | down_write(&sit_i->sentry_lock); | 
|  |  | 
|  | if (!sit_i->dirty_sentries) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * add and account sit entries of dirty bitmap in sit entry | 
|  | * set temporarily | 
|  | */ | 
|  | add_sits_in_set(sbi); | 
|  |  | 
|  | /* | 
|  | * if there are no enough space in journal to store dirty sit | 
|  | * entries, remove all entries from journal and add and account | 
|  | * them in sit entry set. | 
|  | */ | 
|  | if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) | 
|  | remove_sits_in_journal(sbi); | 
|  |  | 
|  | /* | 
|  | * there are two steps to flush sit entries: | 
|  | * #1, flush sit entries to journal in current cold data summary block. | 
|  | * #2, flush sit entries to sit page. | 
|  | */ | 
|  | list_for_each_entry_safe(ses, tmp, head, set_list) { | 
|  | struct page *page = NULL; | 
|  | struct f2fs_sit_block *raw_sit = NULL; | 
|  | unsigned int start_segno = ses->start_segno; | 
|  | unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, | 
|  | (unsigned long)MAIN_SEGS(sbi)); | 
|  | unsigned int segno = start_segno; | 
|  |  | 
|  | if (to_journal && | 
|  | !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) | 
|  | to_journal = false; | 
|  |  | 
|  | if (to_journal) { | 
|  | down_write(&curseg->journal_rwsem); | 
|  | } else { | 
|  | page = get_next_sit_page(sbi, start_segno); | 
|  | raw_sit = page_address(page); | 
|  | } | 
|  |  | 
|  | /* flush dirty sit entries in region of current sit set */ | 
|  | for_each_set_bit_from(segno, bitmap, end) { | 
|  | int offset, sit_offset; | 
|  |  | 
|  | se = get_seg_entry(sbi, segno); | 
|  |  | 
|  | /* add discard candidates */ | 
|  | if (!(cpc->reason & CP_DISCARD)) { | 
|  | cpc->trim_start = segno; | 
|  | add_discard_addrs(sbi, cpc, false); | 
|  | } | 
|  |  | 
|  | if (to_journal) { | 
|  | offset = lookup_journal_in_cursum(journal, | 
|  | SIT_JOURNAL, segno, 1); | 
|  | f2fs_bug_on(sbi, offset < 0); | 
|  | segno_in_journal(journal, offset) = | 
|  | cpu_to_le32(segno); | 
|  | seg_info_to_raw_sit(se, | 
|  | &sit_in_journal(journal, offset)); | 
|  | } else { | 
|  | sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); | 
|  | seg_info_to_raw_sit(se, | 
|  | &raw_sit->entries[sit_offset]); | 
|  | } | 
|  |  | 
|  | __clear_bit(segno, bitmap); | 
|  | sit_i->dirty_sentries--; | 
|  | ses->entry_cnt--; | 
|  | } | 
|  |  | 
|  | if (to_journal) | 
|  | up_write(&curseg->journal_rwsem); | 
|  | else | 
|  | f2fs_put_page(page, 1); | 
|  |  | 
|  | f2fs_bug_on(sbi, ses->entry_cnt); | 
|  | release_sit_entry_set(ses); | 
|  | } | 
|  |  | 
|  | f2fs_bug_on(sbi, !list_empty(head)); | 
|  | f2fs_bug_on(sbi, sit_i->dirty_sentries); | 
|  | out: | 
|  | if (cpc->reason & CP_DISCARD) { | 
|  | __u64 trim_start = cpc->trim_start; | 
|  |  | 
|  | for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) | 
|  | add_discard_addrs(sbi, cpc, false); | 
|  |  | 
|  | cpc->trim_start = trim_start; | 
|  | } | 
|  | up_write(&sit_i->sentry_lock); | 
|  |  | 
|  | set_prefree_as_free_segments(sbi); | 
|  | } | 
|  |  | 
|  | static int build_sit_info(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); | 
|  | struct sit_info *sit_i; | 
|  | unsigned int sit_segs, start; | 
|  | char *src_bitmap; | 
|  | unsigned int bitmap_size; | 
|  |  | 
|  | /* allocate memory for SIT information */ | 
|  | sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); | 
|  | if (!sit_i) | 
|  | return -ENOMEM; | 
|  |  | 
|  | SM_I(sbi)->sit_info = sit_i; | 
|  |  | 
|  | sit_i->sentries = f2fs_kvzalloc(sbi, MAIN_SEGS(sbi) * | 
|  | sizeof(struct seg_entry), GFP_KERNEL); | 
|  | if (!sit_i->sentries) | 
|  | return -ENOMEM; | 
|  |  | 
|  | bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); | 
|  | sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size, | 
|  | GFP_KERNEL); | 
|  | if (!sit_i->dirty_sentries_bitmap) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (start = 0; start < MAIN_SEGS(sbi); start++) { | 
|  | sit_i->sentries[start].cur_valid_map | 
|  | = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); | 
|  | sit_i->sentries[start].ckpt_valid_map | 
|  | = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); | 
|  | if (!sit_i->sentries[start].cur_valid_map || | 
|  | !sit_i->sentries[start].ckpt_valid_map) | 
|  | return -ENOMEM; | 
|  |  | 
|  | #ifdef CONFIG_F2FS_CHECK_FS | 
|  | sit_i->sentries[start].cur_valid_map_mir | 
|  | = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); | 
|  | if (!sit_i->sentries[start].cur_valid_map_mir) | 
|  | return -ENOMEM; | 
|  | #endif | 
|  |  | 
|  | if (f2fs_discard_en(sbi)) { | 
|  | sit_i->sentries[start].discard_map | 
|  | = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, | 
|  | GFP_KERNEL); | 
|  | if (!sit_i->sentries[start].discard_map) | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); | 
|  | if (!sit_i->tmp_map) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (sbi->segs_per_sec > 1) { | 
|  | sit_i->sec_entries = f2fs_kvzalloc(sbi, MAIN_SECS(sbi) * | 
|  | sizeof(struct sec_entry), GFP_KERNEL); | 
|  | if (!sit_i->sec_entries) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* get information related with SIT */ | 
|  | sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; | 
|  |  | 
|  | /* setup SIT bitmap from ckeckpoint pack */ | 
|  | bitmap_size = __bitmap_size(sbi, SIT_BITMAP); | 
|  | src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); | 
|  |  | 
|  | sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); | 
|  | if (!sit_i->sit_bitmap) | 
|  | return -ENOMEM; | 
|  |  | 
|  | #ifdef CONFIG_F2FS_CHECK_FS | 
|  | sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); | 
|  | if (!sit_i->sit_bitmap_mir) | 
|  | return -ENOMEM; | 
|  | #endif | 
|  |  | 
|  | /* init SIT information */ | 
|  | sit_i->s_ops = &default_salloc_ops; | 
|  |  | 
|  | sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); | 
|  | sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; | 
|  | sit_i->written_valid_blocks = 0; | 
|  | sit_i->bitmap_size = bitmap_size; | 
|  | sit_i->dirty_sentries = 0; | 
|  | sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; | 
|  | sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); | 
|  | sit_i->mounted_time = ktime_get_real_seconds(); | 
|  | init_rwsem(&sit_i->sentry_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int build_free_segmap(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct free_segmap_info *free_i; | 
|  | unsigned int bitmap_size, sec_bitmap_size; | 
|  |  | 
|  | /* allocate memory for free segmap information */ | 
|  | free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); | 
|  | if (!free_i) | 
|  | return -ENOMEM; | 
|  |  | 
|  | SM_I(sbi)->free_info = free_i; | 
|  |  | 
|  | bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); | 
|  | free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); | 
|  | if (!free_i->free_segmap) | 
|  | return -ENOMEM; | 
|  |  | 
|  | sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); | 
|  | free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); | 
|  | if (!free_i->free_secmap) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* set all segments as dirty temporarily */ | 
|  | memset(free_i->free_segmap, 0xff, bitmap_size); | 
|  | memset(free_i->free_secmap, 0xff, sec_bitmap_size); | 
|  |  | 
|  | /* init free segmap information */ | 
|  | free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); | 
|  | free_i->free_segments = 0; | 
|  | free_i->free_sections = 0; | 
|  | spin_lock_init(&free_i->segmap_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int build_curseg(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct curseg_info *array; | 
|  | int i; | 
|  |  | 
|  | array = f2fs_kzalloc(sbi, sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL); | 
|  | if (!array) | 
|  | return -ENOMEM; | 
|  |  | 
|  | SM_I(sbi)->curseg_array = array; | 
|  |  | 
|  | for (i = 0; i < NR_CURSEG_TYPE; i++) { | 
|  | mutex_init(&array[i].curseg_mutex); | 
|  | array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); | 
|  | if (!array[i].sum_blk) | 
|  | return -ENOMEM; | 
|  | init_rwsem(&array[i].journal_rwsem); | 
|  | array[i].journal = f2fs_kzalloc(sbi, | 
|  | sizeof(struct f2fs_journal), GFP_KERNEL); | 
|  | if (!array[i].journal) | 
|  | return -ENOMEM; | 
|  | array[i].segno = NULL_SEGNO; | 
|  | array[i].next_blkoff = 0; | 
|  | } | 
|  | return restore_curseg_summaries(sbi); | 
|  | } | 
|  |  | 
|  | static int build_sit_entries(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); | 
|  | struct f2fs_journal *journal = curseg->journal; | 
|  | struct seg_entry *se; | 
|  | struct f2fs_sit_entry sit; | 
|  | int sit_blk_cnt = SIT_BLK_CNT(sbi); | 
|  | unsigned int i, start, end; | 
|  | unsigned int readed, start_blk = 0; | 
|  | int err = 0; | 
|  | block_t total_node_blocks = 0; | 
|  |  | 
|  | do { | 
|  | readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, | 
|  | META_SIT, true); | 
|  |  | 
|  | start = start_blk * sit_i->sents_per_block; | 
|  | end = (start_blk + readed) * sit_i->sents_per_block; | 
|  |  | 
|  | for (; start < end && start < MAIN_SEGS(sbi); start++) { | 
|  | struct f2fs_sit_block *sit_blk; | 
|  | struct page *page; | 
|  |  | 
|  | se = &sit_i->sentries[start]; | 
|  | page = get_current_sit_page(sbi, start); | 
|  | sit_blk = (struct f2fs_sit_block *)page_address(page); | 
|  | sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; | 
|  | f2fs_put_page(page, 1); | 
|  |  | 
|  | err = check_block_count(sbi, start, &sit); | 
|  | if (err) | 
|  | return err; | 
|  | seg_info_from_raw_sit(se, &sit); | 
|  | if (IS_NODESEG(se->type)) | 
|  | total_node_blocks += se->valid_blocks; | 
|  |  | 
|  | /* build discard map only one time */ | 
|  | if (f2fs_discard_en(sbi)) { | 
|  | if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { | 
|  | memset(se->discard_map, 0xff, | 
|  | SIT_VBLOCK_MAP_SIZE); | 
|  | } else { | 
|  | memcpy(se->discard_map, | 
|  | se->cur_valid_map, | 
|  | SIT_VBLOCK_MAP_SIZE); | 
|  | sbi->discard_blks += | 
|  | sbi->blocks_per_seg - | 
|  | se->valid_blocks; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sbi->segs_per_sec > 1) | 
|  | get_sec_entry(sbi, start)->valid_blocks += | 
|  | se->valid_blocks; | 
|  | } | 
|  | start_blk += readed; | 
|  | } while (start_blk < sit_blk_cnt); | 
|  |  | 
|  | down_read(&curseg->journal_rwsem); | 
|  | for (i = 0; i < sits_in_cursum(journal); i++) { | 
|  | unsigned int old_valid_blocks; | 
|  |  | 
|  | start = le32_to_cpu(segno_in_journal(journal, i)); | 
|  | if (start >= MAIN_SEGS(sbi)) { | 
|  | f2fs_msg(sbi->sb, KERN_ERR, | 
|  | "Wrong journal entry on segno %u", | 
|  | start); | 
|  | set_sbi_flag(sbi, SBI_NEED_FSCK); | 
|  | err = -EFSCORRUPTED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | se = &sit_i->sentries[start]; | 
|  | sit = sit_in_journal(journal, i); | 
|  |  | 
|  | old_valid_blocks = se->valid_blocks; | 
|  | if (IS_NODESEG(se->type)) | 
|  | total_node_blocks -= old_valid_blocks; | 
|  |  | 
|  | err = check_block_count(sbi, start, &sit); | 
|  | if (err) | 
|  | break; | 
|  | seg_info_from_raw_sit(se, &sit); | 
|  | if (IS_NODESEG(se->type)) | 
|  | total_node_blocks += se->valid_blocks; | 
|  |  | 
|  | if (f2fs_discard_en(sbi)) { | 
|  | if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { | 
|  | memset(se->discard_map, 0xff, | 
|  | SIT_VBLOCK_MAP_SIZE); | 
|  | } else { | 
|  | memcpy(se->discard_map, se->cur_valid_map, | 
|  | SIT_VBLOCK_MAP_SIZE); | 
|  | sbi->discard_blks += old_valid_blocks - | 
|  | se->valid_blocks; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sbi->segs_per_sec > 1) | 
|  | get_sec_entry(sbi, start)->valid_blocks += | 
|  | se->valid_blocks - old_valid_blocks; | 
|  | } | 
|  | up_read(&curseg->journal_rwsem); | 
|  |  | 
|  | if (!err && total_node_blocks != valid_node_count(sbi)) { | 
|  | f2fs_msg(sbi->sb, KERN_ERR, | 
|  | "SIT is corrupted node# %u vs %u", | 
|  | total_node_blocks, valid_node_count(sbi)); | 
|  | set_sbi_flag(sbi, SBI_NEED_FSCK); | 
|  | err = -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void init_free_segmap(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | unsigned int start; | 
|  | int type; | 
|  |  | 
|  | for (start = 0; start < MAIN_SEGS(sbi); start++) { | 
|  | struct seg_entry *sentry = get_seg_entry(sbi, start); | 
|  | if (!sentry->valid_blocks) | 
|  | __set_free(sbi, start); | 
|  | else | 
|  | SIT_I(sbi)->written_valid_blocks += | 
|  | sentry->valid_blocks; | 
|  | } | 
|  |  | 
|  | /* set use the current segments */ | 
|  | for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { | 
|  | struct curseg_info *curseg_t = CURSEG_I(sbi, type); | 
|  | __set_test_and_inuse(sbi, curseg_t->segno); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void init_dirty_segmap(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
|  | struct free_segmap_info *free_i = FREE_I(sbi); | 
|  | unsigned int segno = 0, offset = 0; | 
|  | unsigned short valid_blocks; | 
|  |  | 
|  | while (1) { | 
|  | /* find dirty segment based on free segmap */ | 
|  | segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); | 
|  | if (segno >= MAIN_SEGS(sbi)) | 
|  | break; | 
|  | offset = segno + 1; | 
|  | valid_blocks = get_valid_blocks(sbi, segno, false); | 
|  | if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) | 
|  | continue; | 
|  | if (valid_blocks > sbi->blocks_per_seg) { | 
|  | f2fs_bug_on(sbi, 1); | 
|  | continue; | 
|  | } | 
|  | mutex_lock(&dirty_i->seglist_lock); | 
|  | __locate_dirty_segment(sbi, segno, DIRTY); | 
|  | mutex_unlock(&dirty_i->seglist_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int init_victim_secmap(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
|  | unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); | 
|  |  | 
|  | dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); | 
|  | if (!dirty_i->victim_secmap) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int build_dirty_segmap(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct dirty_seglist_info *dirty_i; | 
|  | unsigned int bitmap_size, i; | 
|  |  | 
|  | /* allocate memory for dirty segments list information */ | 
|  | dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), | 
|  | GFP_KERNEL); | 
|  | if (!dirty_i) | 
|  | return -ENOMEM; | 
|  |  | 
|  | SM_I(sbi)->dirty_info = dirty_i; | 
|  | mutex_init(&dirty_i->seglist_lock); | 
|  |  | 
|  | bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); | 
|  |  | 
|  | for (i = 0; i < NR_DIRTY_TYPE; i++) { | 
|  | dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, | 
|  | GFP_KERNEL); | 
|  | if (!dirty_i->dirty_segmap[i]) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | init_dirty_segmap(sbi); | 
|  | return init_victim_secmap(sbi); | 
|  | } | 
|  |  | 
|  | static int sanity_check_curseg(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; | 
|  | * In LFS curseg, all blkaddr after .next_blkoff should be unused. | 
|  | */ | 
|  | for (i = 0; i < NO_CHECK_TYPE; i++) { | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, i); | 
|  | struct seg_entry *se = get_seg_entry(sbi, curseg->segno); | 
|  | unsigned int blkofs = curseg->next_blkoff; | 
|  |  | 
|  | if (f2fs_test_bit(blkofs, se->cur_valid_map)) | 
|  | goto out; | 
|  |  | 
|  | if (curseg->alloc_type == SSR) | 
|  | continue; | 
|  |  | 
|  | for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { | 
|  | if (!f2fs_test_bit(blkofs, se->cur_valid_map)) | 
|  | continue; | 
|  | out: | 
|  | f2fs_msg(sbi->sb, KERN_ERR, | 
|  | "Current segment's next free block offset is " | 
|  | "inconsistent with bitmap, logtype:%u, " | 
|  | "segno:%u, type:%u, next_blkoff:%u, blkofs:%u", | 
|  | i, curseg->segno, curseg->alloc_type, | 
|  | curseg->next_blkoff, blkofs); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update min, max modified time for cost-benefit GC algorithm | 
|  | */ | 
|  | static void init_min_max_mtime(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  | unsigned int segno; | 
|  |  | 
|  | down_write(&sit_i->sentry_lock); | 
|  |  | 
|  | sit_i->min_mtime = LLONG_MAX; | 
|  |  | 
|  | for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { | 
|  | unsigned int i; | 
|  | unsigned long long mtime = 0; | 
|  |  | 
|  | for (i = 0; i < sbi->segs_per_sec; i++) | 
|  | mtime += get_seg_entry(sbi, segno + i)->mtime; | 
|  |  | 
|  | mtime = div_u64(mtime, sbi->segs_per_sec); | 
|  |  | 
|  | if (sit_i->min_mtime > mtime) | 
|  | sit_i->min_mtime = mtime; | 
|  | } | 
|  | sit_i->max_mtime = get_mtime(sbi); | 
|  | up_write(&sit_i->sentry_lock); | 
|  | } | 
|  |  | 
|  | int build_segment_manager(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); | 
|  | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | 
|  | struct f2fs_sm_info *sm_info; | 
|  | int err; | 
|  |  | 
|  | sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); | 
|  | if (!sm_info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* init sm info */ | 
|  | sbi->sm_info = sm_info; | 
|  | sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); | 
|  | sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); | 
|  | sm_info->segment_count = le32_to_cpu(raw_super->segment_count); | 
|  | sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); | 
|  | sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); | 
|  | sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); | 
|  | sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); | 
|  | sm_info->rec_prefree_segments = sm_info->main_segments * | 
|  | DEF_RECLAIM_PREFREE_SEGMENTS / 100; | 
|  | if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) | 
|  | sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; | 
|  |  | 
|  | if (!test_opt(sbi, LFS)) | 
|  | sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; | 
|  | sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; | 
|  | sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; | 
|  | sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; | 
|  | sm_info->min_ssr_sections = reserved_sections(sbi); | 
|  |  | 
|  | INIT_LIST_HEAD(&sm_info->sit_entry_set); | 
|  |  | 
|  | init_rwsem(&sm_info->curseg_lock); | 
|  |  | 
|  | if (!f2fs_readonly(sbi->sb)) { | 
|  | err = create_flush_cmd_control(sbi); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = create_discard_cmd_control(sbi); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = build_sit_info(sbi); | 
|  | if (err) | 
|  | return err; | 
|  | err = build_free_segmap(sbi); | 
|  | if (err) | 
|  | return err; | 
|  | err = build_curseg(sbi); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* reinit free segmap based on SIT */ | 
|  | err = build_sit_entries(sbi); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | init_free_segmap(sbi); | 
|  | err = build_dirty_segmap(sbi); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = sanity_check_curseg(sbi); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | init_min_max_mtime(sbi); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void discard_dirty_segmap(struct f2fs_sb_info *sbi, | 
|  | enum dirty_type dirty_type) | 
|  | { | 
|  | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
|  |  | 
|  | mutex_lock(&dirty_i->seglist_lock); | 
|  | kvfree(dirty_i->dirty_segmap[dirty_type]); | 
|  | dirty_i->nr_dirty[dirty_type] = 0; | 
|  | mutex_unlock(&dirty_i->seglist_lock); | 
|  | } | 
|  |  | 
|  | static void destroy_victim_secmap(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
|  | kvfree(dirty_i->victim_secmap); | 
|  | } | 
|  |  | 
|  | static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
|  | int i; | 
|  |  | 
|  | if (!dirty_i) | 
|  | return; | 
|  |  | 
|  | /* discard pre-free/dirty segments list */ | 
|  | for (i = 0; i < NR_DIRTY_TYPE; i++) | 
|  | discard_dirty_segmap(sbi, i); | 
|  |  | 
|  | destroy_victim_secmap(sbi); | 
|  | SM_I(sbi)->dirty_info = NULL; | 
|  | kfree(dirty_i); | 
|  | } | 
|  |  | 
|  | static void destroy_curseg(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct curseg_info *array = SM_I(sbi)->curseg_array; | 
|  | int i; | 
|  |  | 
|  | if (!array) | 
|  | return; | 
|  | SM_I(sbi)->curseg_array = NULL; | 
|  | for (i = 0; i < NR_CURSEG_TYPE; i++) { | 
|  | kfree(array[i].sum_blk); | 
|  | kfree(array[i].journal); | 
|  | } | 
|  | kfree(array); | 
|  | } | 
|  |  | 
|  | static void destroy_free_segmap(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct free_segmap_info *free_i = SM_I(sbi)->free_info; | 
|  | if (!free_i) | 
|  | return; | 
|  | SM_I(sbi)->free_info = NULL; | 
|  | kvfree(free_i->free_segmap); | 
|  | kvfree(free_i->free_secmap); | 
|  | kfree(free_i); | 
|  | } | 
|  |  | 
|  | static void destroy_sit_info(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  | unsigned int start; | 
|  |  | 
|  | if (!sit_i) | 
|  | return; | 
|  |  | 
|  | if (sit_i->sentries) { | 
|  | for (start = 0; start < MAIN_SEGS(sbi); start++) { | 
|  | kfree(sit_i->sentries[start].cur_valid_map); | 
|  | #ifdef CONFIG_F2FS_CHECK_FS | 
|  | kfree(sit_i->sentries[start].cur_valid_map_mir); | 
|  | #endif | 
|  | kfree(sit_i->sentries[start].ckpt_valid_map); | 
|  | kfree(sit_i->sentries[start].discard_map); | 
|  | } | 
|  | } | 
|  | kfree(sit_i->tmp_map); | 
|  |  | 
|  | kvfree(sit_i->sentries); | 
|  | kvfree(sit_i->sec_entries); | 
|  | kvfree(sit_i->dirty_sentries_bitmap); | 
|  |  | 
|  | SM_I(sbi)->sit_info = NULL; | 
|  | kfree(sit_i->sit_bitmap); | 
|  | #ifdef CONFIG_F2FS_CHECK_FS | 
|  | kfree(sit_i->sit_bitmap_mir); | 
|  | #endif | 
|  | kfree(sit_i); | 
|  | } | 
|  |  | 
|  | void destroy_segment_manager(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct f2fs_sm_info *sm_info = SM_I(sbi); | 
|  |  | 
|  | if (!sm_info) | 
|  | return; | 
|  | destroy_flush_cmd_control(sbi, true); | 
|  | destroy_discard_cmd_control(sbi); | 
|  | destroy_dirty_segmap(sbi); | 
|  | destroy_curseg(sbi); | 
|  | destroy_free_segmap(sbi); | 
|  | destroy_sit_info(sbi); | 
|  | sbi->sm_info = NULL; | 
|  | kfree(sm_info); | 
|  | } | 
|  |  | 
|  | int __init create_segment_manager_caches(void) | 
|  | { | 
|  | discard_entry_slab = f2fs_kmem_cache_create("discard_entry", | 
|  | sizeof(struct discard_entry)); | 
|  | if (!discard_entry_slab) | 
|  | goto fail; | 
|  |  | 
|  | discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", | 
|  | sizeof(struct discard_cmd)); | 
|  | if (!discard_cmd_slab) | 
|  | goto destroy_discard_entry; | 
|  |  | 
|  | sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", | 
|  | sizeof(struct sit_entry_set)); | 
|  | if (!sit_entry_set_slab) | 
|  | goto destroy_discard_cmd; | 
|  |  | 
|  | inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", | 
|  | sizeof(struct inmem_pages)); | 
|  | if (!inmem_entry_slab) | 
|  | goto destroy_sit_entry_set; | 
|  | return 0; | 
|  |  | 
|  | destroy_sit_entry_set: | 
|  | kmem_cache_destroy(sit_entry_set_slab); | 
|  | destroy_discard_cmd: | 
|  | kmem_cache_destroy(discard_cmd_slab); | 
|  | destroy_discard_entry: | 
|  | kmem_cache_destroy(discard_entry_slab); | 
|  | fail: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | void destroy_segment_manager_caches(void) | 
|  | { | 
|  | kmem_cache_destroy(sit_entry_set_slab); | 
|  | kmem_cache_destroy(discard_cmd_slab); | 
|  | kmem_cache_destroy(discard_entry_slab); | 
|  | kmem_cache_destroy(inmem_entry_slab); | 
|  | } |