|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * RAID-6 data recovery in dual failure mode based on the XC instruction. | 
|  | * | 
|  | * Copyright IBM Corp. 2016 | 
|  | * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/export.h> | 
|  | #include <linux/raid/pq.h> | 
|  |  | 
|  | static inline void xor_block(u8 *p1, u8 *p2) | 
|  | { | 
|  | typedef struct { u8 _[256]; } addrtype; | 
|  |  | 
|  | asm volatile( | 
|  | "	xc	0(256,%[p1]),0(%[p2])\n" | 
|  | : "+m" (*(addrtype *) p1) : "m" (*(addrtype *) p2), | 
|  | [p1] "a" (p1), [p2] "a" (p2) : "cc"); | 
|  | } | 
|  |  | 
|  | /* Recover two failed data blocks. */ | 
|  | static void raid6_2data_recov_s390xc(int disks, size_t bytes, int faila, | 
|  | int failb, void **ptrs) | 
|  | { | 
|  | u8 *p, *q, *dp, *dq; | 
|  | const u8 *pbmul;	/* P multiplier table for B data */ | 
|  | const u8 *qmul;		/* Q multiplier table (for both) */ | 
|  | int i; | 
|  |  | 
|  | p = (u8 *)ptrs[disks-2]; | 
|  | q = (u8 *)ptrs[disks-1]; | 
|  |  | 
|  | /* Compute syndrome with zero for the missing data pages | 
|  | Use the dead data pages as temporary storage for | 
|  | delta p and delta q */ | 
|  | dp = (u8 *)ptrs[faila]; | 
|  | ptrs[faila] = (void *)raid6_empty_zero_page; | 
|  | ptrs[disks-2] = dp; | 
|  | dq = (u8 *)ptrs[failb]; | 
|  | ptrs[failb] = (void *)raid6_empty_zero_page; | 
|  | ptrs[disks-1] = dq; | 
|  |  | 
|  | raid6_call.gen_syndrome(disks, bytes, ptrs); | 
|  |  | 
|  | /* Restore pointer table */ | 
|  | ptrs[faila]   = dp; | 
|  | ptrs[failb]   = dq; | 
|  | ptrs[disks-2] = p; | 
|  | ptrs[disks-1] = q; | 
|  |  | 
|  | /* Now, pick the proper data tables */ | 
|  | pbmul = raid6_gfmul[raid6_gfexi[failb-faila]]; | 
|  | qmul  = raid6_gfmul[raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]]]; | 
|  |  | 
|  | /* Now do it... */ | 
|  | while (bytes) { | 
|  | xor_block(dp, p); | 
|  | xor_block(dq, q); | 
|  | for (i = 0; i < 256; i++) | 
|  | dq[i] = pbmul[dp[i]] ^ qmul[dq[i]]; | 
|  | xor_block(dp, dq); | 
|  | p += 256; | 
|  | q += 256; | 
|  | dp += 256; | 
|  | dq += 256; | 
|  | bytes -= 256; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Recover failure of one data block plus the P block */ | 
|  | static void raid6_datap_recov_s390xc(int disks, size_t bytes, int faila, | 
|  | void **ptrs) | 
|  | { | 
|  | u8 *p, *q, *dq; | 
|  | const u8 *qmul;		/* Q multiplier table */ | 
|  | int i; | 
|  |  | 
|  | p = (u8 *)ptrs[disks-2]; | 
|  | q = (u8 *)ptrs[disks-1]; | 
|  |  | 
|  | /* Compute syndrome with zero for the missing data page | 
|  | Use the dead data page as temporary storage for delta q */ | 
|  | dq = (u8 *)ptrs[faila]; | 
|  | ptrs[faila] = (void *)raid6_empty_zero_page; | 
|  | ptrs[disks-1] = dq; | 
|  |  | 
|  | raid6_call.gen_syndrome(disks, bytes, ptrs); | 
|  |  | 
|  | /* Restore pointer table */ | 
|  | ptrs[faila]   = dq; | 
|  | ptrs[disks-1] = q; | 
|  |  | 
|  | /* Now, pick the proper data tables */ | 
|  | qmul  = raid6_gfmul[raid6_gfinv[raid6_gfexp[faila]]]; | 
|  |  | 
|  | /* Now do it... */ | 
|  | while (bytes) { | 
|  | xor_block(dq, q); | 
|  | for (i = 0; i < 256; i++) | 
|  | dq[i] = qmul[dq[i]]; | 
|  | xor_block(p, dq); | 
|  | p += 256; | 
|  | q += 256; | 
|  | dq += 256; | 
|  | bytes -= 256; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | const struct raid6_recov_calls raid6_recov_s390xc = { | 
|  | .data2 = raid6_2data_recov_s390xc, | 
|  | .datap = raid6_datap_recov_s390xc, | 
|  | .valid = NULL, | 
|  | .name = "s390xc", | 
|  | .priority = 1, | 
|  | }; |