blob: c1049913d3cf34370c58c6eed5c4e313481b38ce [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/compiler.h>
26#include <linux/kernel.h>
27#include <linux/kasan.h>
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
33#include <linux/ratelimit.h>
34#include <linux/oom.h>
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/memremap.h>
46#include <linux/stop_machine.h>
47#include <linux/sort.h>
48#include <linux/pfn.h>
49#include <linux/backing-dev.h>
50#include <linux/fault-inject.h>
51#include <linux/page-isolation.h>
52#include <linux/page_ext.h>
53#include <linux/debugobjects.h>
54#include <linux/kmemleak.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <trace/events/oom.h>
58#include <linux/prefetch.h>
59#include <linux/mm_inline.h>
60#include <linux/migrate.h>
61#include <linux/hugetlb.h>
62#include <linux/sched/rt.h>
63#include <linux/sched/mm.h>
64#include <linux/page_owner.h>
65#include <linux/kthread.h>
66#include <linux/memcontrol.h>
67#include <linux/ftrace.h>
68#include <linux/lockdep.h>
69#include <linux/nmi.h>
70
71#include <asm/sections.h>
72#include <asm/tlbflush.h>
73#include <asm/div64.h>
74#include "internal.h"
75
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
78#define MIN_PERCPU_PAGELIST_FRACTION (8)
79
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
85#ifdef CONFIG_HAVE_MEMORYLESS_NODES
86/*
87 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
88 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
89 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
90 * defined in <linux/topology.h>.
91 */
92DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
93EXPORT_PER_CPU_SYMBOL(_numa_mem_);
94int _node_numa_mem_[MAX_NUMNODES];
95#endif
96
97/* work_structs for global per-cpu drains */
98DEFINE_MUTEX(pcpu_drain_mutex);
99DEFINE_PER_CPU(struct work_struct, pcpu_drain);
100
101#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
102volatile unsigned long latent_entropy __latent_entropy;
103EXPORT_SYMBOL(latent_entropy);
104#endif
105
106/*
107 * Array of node states.
108 */
109nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
110 [N_POSSIBLE] = NODE_MASK_ALL,
111 [N_ONLINE] = { { [0] = 1UL } },
112#ifndef CONFIG_NUMA
113 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
114#ifdef CONFIG_HIGHMEM
115 [N_HIGH_MEMORY] = { { [0] = 1UL } },
116#endif
117 [N_MEMORY] = { { [0] = 1UL } },
118 [N_CPU] = { { [0] = 1UL } },
119#endif /* NUMA */
120};
121EXPORT_SYMBOL(node_states);
122
123/* Protect totalram_pages and zone->managed_pages */
124static DEFINE_SPINLOCK(managed_page_count_lock);
125
126unsigned long totalram_pages __read_mostly;
127unsigned long totalreserve_pages __read_mostly;
128unsigned long totalcma_pages __read_mostly;
129
130int percpu_pagelist_fraction;
131gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
132
133/*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141static inline int get_pcppage_migratetype(struct page *page)
142{
143 return page->index;
144}
145
146static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147{
148 page->index = migratetype;
149}
150
151#ifdef CONFIG_PM_SLEEP
152/*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
160
161static gfp_t saved_gfp_mask;
162
163void pm_restore_gfp_mask(void)
164{
165 WARN_ON(!mutex_is_locked(&pm_mutex));
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
170}
171
172void pm_restrict_gfp_mask(void)
173{
174 WARN_ON(!mutex_is_locked(&pm_mutex));
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
178}
179
180bool pm_suspended_storage(void)
181{
182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 return false;
184 return true;
185}
186#endif /* CONFIG_PM_SLEEP */
187
188#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189unsigned int pageblock_order __read_mostly;
190#endif
191
192static void __free_pages_ok(struct page *page, unsigned int order);
193
194/*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
204 */
205int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206#ifdef CONFIG_ZONE_DMA
207 256,
208#endif
209#ifdef CONFIG_ZONE_DMA32
210 256,
211#endif
212#ifdef CONFIG_HIGHMEM
213 32,
214#endif
215 32,
216};
217
218EXPORT_SYMBOL(totalram_pages);
219
220static char * const zone_names[MAX_NR_ZONES] = {
221#ifdef CONFIG_ZONE_DMA
222 "DMA",
223#endif
224#ifdef CONFIG_ZONE_DMA32
225 "DMA32",
226#endif
227 "Normal",
228#ifdef CONFIG_HIGHMEM
229 "HighMem",
230#endif
231 "Movable",
232#ifdef CONFIG_ZONE_DEVICE
233 "Device",
234#endif
235};
236
237char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242#ifdef CONFIG_CMA
243 "CMA",
244#endif
245#ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247#endif
248};
249
250compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253#ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255#endif
256#ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258#endif
259};
260
261/*
262 * Try to keep at least this much lowmem free. Do not allow normal
263 * allocations below this point, only high priority ones. Automatically
264 * tuned according to the amount of memory in the system.
265 */
266int min_free_kbytes = 1024;
267int user_min_free_kbytes = -1;
268int watermark_scale_factor = 10;
269
270/*
271 * Extra memory for the system to try freeing. Used to temporarily
272 * free memory, to make space for new workloads. Anyone can allocate
273 * down to the min watermarks controlled by min_free_kbytes above.
274 */
275int extra_free_kbytes = 0;
276
277static unsigned long __meminitdata nr_kernel_pages;
278static unsigned long __meminitdata nr_all_pages;
279static unsigned long __meminitdata dma_reserve;
280
281#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
282static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
283static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
284static unsigned long __initdata required_kernelcore;
285static unsigned long __initdata required_movablecore;
286static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
287static bool mirrored_kernelcore;
288
289/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
290int movable_zone;
291EXPORT_SYMBOL(movable_zone);
292#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
293
294#if MAX_NUMNODES > 1
295int nr_node_ids __read_mostly = MAX_NUMNODES;
296int nr_online_nodes __read_mostly = 1;
297EXPORT_SYMBOL(nr_node_ids);
298EXPORT_SYMBOL(nr_online_nodes);
299#endif
300
301int page_group_by_mobility_disabled __read_mostly;
302
303#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
304
305/*
306 * Determine how many pages need to be initialized durig early boot
307 * (non-deferred initialization).
308 * The value of first_deferred_pfn will be set later, once non-deferred pages
309 * are initialized, but for now set it ULONG_MAX.
310 */
311static inline void reset_deferred_meminit(pg_data_t *pgdat)
312{
313 phys_addr_t start_addr, end_addr;
314 unsigned long max_pgcnt;
315 unsigned long reserved;
316
317 /*
318 * Initialise at least 2G of a node but also take into account that
319 * two large system hashes that can take up 1GB for 0.25TB/node.
320 */
321 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
322 (pgdat->node_spanned_pages >> 8));
323
324 /*
325 * Compensate the all the memblock reservations (e.g. crash kernel)
326 * from the initial estimation to make sure we will initialize enough
327 * memory to boot.
328 */
329 start_addr = PFN_PHYS(pgdat->node_start_pfn);
330 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
331 reserved = memblock_reserved_memory_within(start_addr, end_addr);
332 max_pgcnt += PHYS_PFN(reserved);
333
334 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
335 pgdat->first_deferred_pfn = ULONG_MAX;
336}
337
338/* Returns true if the struct page for the pfn is uninitialised */
339static inline bool __meminit early_page_uninitialised(unsigned long pfn)
340{
341 int nid = early_pfn_to_nid(pfn);
342
343 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
344 return true;
345
346 return false;
347}
348
349/*
350 * Returns false when the remaining initialisation should be deferred until
351 * later in the boot cycle when it can be parallelised.
352 */
353static inline bool update_defer_init(pg_data_t *pgdat,
354 unsigned long pfn, unsigned long zone_end,
355 unsigned long *nr_initialised)
356{
357 /* Always populate low zones for address-contrained allocations */
358 if (zone_end < pgdat_end_pfn(pgdat))
359 return true;
360 (*nr_initialised)++;
361 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
362 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
363 pgdat->first_deferred_pfn = pfn;
364 return false;
365 }
366
367 return true;
368}
369#else
370static inline void reset_deferred_meminit(pg_data_t *pgdat)
371{
372}
373
374static inline bool early_page_uninitialised(unsigned long pfn)
375{
376 return false;
377}
378
379static inline bool update_defer_init(pg_data_t *pgdat,
380 unsigned long pfn, unsigned long zone_end,
381 unsigned long *nr_initialised)
382{
383 return true;
384}
385#endif
386
387/* Return a pointer to the bitmap storing bits affecting a block of pages */
388static inline unsigned long *get_pageblock_bitmap(struct page *page,
389 unsigned long pfn)
390{
391#ifdef CONFIG_SPARSEMEM
392 return __pfn_to_section(pfn)->pageblock_flags;
393#else
394 return page_zone(page)->pageblock_flags;
395#endif /* CONFIG_SPARSEMEM */
396}
397
398static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
399{
400#ifdef CONFIG_SPARSEMEM
401 pfn &= (PAGES_PER_SECTION-1);
402 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
403#else
404 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
405 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
406#endif /* CONFIG_SPARSEMEM */
407}
408
409/**
410 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
411 * @page: The page within the block of interest
412 * @pfn: The target page frame number
413 * @end_bitidx: The last bit of interest to retrieve
414 * @mask: mask of bits that the caller is interested in
415 *
416 * Return: pageblock_bits flags
417 */
418static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
419 unsigned long pfn,
420 unsigned long end_bitidx,
421 unsigned long mask)
422{
423 unsigned long *bitmap;
424 unsigned long bitidx, word_bitidx;
425 unsigned long word;
426
427 bitmap = get_pageblock_bitmap(page, pfn);
428 bitidx = pfn_to_bitidx(page, pfn);
429 word_bitidx = bitidx / BITS_PER_LONG;
430 bitidx &= (BITS_PER_LONG-1);
431
432 word = bitmap[word_bitidx];
433 bitidx += end_bitidx;
434 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
435}
436
437unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
438 unsigned long end_bitidx,
439 unsigned long mask)
440{
441 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
442}
443
444static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
445{
446 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
447}
448
449/**
450 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
451 * @page: The page within the block of interest
452 * @flags: The flags to set
453 * @pfn: The target page frame number
454 * @end_bitidx: The last bit of interest
455 * @mask: mask of bits that the caller is interested in
456 */
457void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
458 unsigned long pfn,
459 unsigned long end_bitidx,
460 unsigned long mask)
461{
462 unsigned long *bitmap;
463 unsigned long bitidx, word_bitidx;
464 unsigned long old_word, word;
465
466 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
467
468 bitmap = get_pageblock_bitmap(page, pfn);
469 bitidx = pfn_to_bitidx(page, pfn);
470 word_bitidx = bitidx / BITS_PER_LONG;
471 bitidx &= (BITS_PER_LONG-1);
472
473 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
474
475 bitidx += end_bitidx;
476 mask <<= (BITS_PER_LONG - bitidx - 1);
477 flags <<= (BITS_PER_LONG - bitidx - 1);
478
479 word = READ_ONCE(bitmap[word_bitidx]);
480 for (;;) {
481 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
482 if (word == old_word)
483 break;
484 word = old_word;
485 }
486}
487
488void set_pageblock_migratetype(struct page *page, int migratetype)
489{
490 if (unlikely(page_group_by_mobility_disabled &&
491 migratetype < MIGRATE_PCPTYPES))
492 migratetype = MIGRATE_UNMOVABLE;
493
494 set_pageblock_flags_group(page, (unsigned long)migratetype,
495 PB_migrate, PB_migrate_end);
496}
497
498#ifdef CONFIG_DEBUG_VM
499static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
500{
501 int ret = 0;
502 unsigned seq;
503 unsigned long pfn = page_to_pfn(page);
504 unsigned long sp, start_pfn;
505
506 do {
507 seq = zone_span_seqbegin(zone);
508 start_pfn = zone->zone_start_pfn;
509 sp = zone->spanned_pages;
510 if (!zone_spans_pfn(zone, pfn))
511 ret = 1;
512 } while (zone_span_seqretry(zone, seq));
513
514 if (ret)
515 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
516 pfn, zone_to_nid(zone), zone->name,
517 start_pfn, start_pfn + sp);
518
519 return ret;
520}
521
522static int page_is_consistent(struct zone *zone, struct page *page)
523{
524 if (!pfn_valid_within(page_to_pfn(page)))
525 return 0;
526 if (zone != page_zone(page))
527 return 0;
528
529 return 1;
530}
531/*
532 * Temporary debugging check for pages not lying within a given zone.
533 */
534static int __maybe_unused bad_range(struct zone *zone, struct page *page)
535{
536 if (page_outside_zone_boundaries(zone, page))
537 return 1;
538 if (!page_is_consistent(zone, page))
539 return 1;
540
541 return 0;
542}
543#else
544static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
545{
546 return 0;
547}
548#endif
549
550static void bad_page(struct page *page, const char *reason,
551 unsigned long bad_flags)
552{
553 static unsigned long resume;
554 static unsigned long nr_shown;
555 static unsigned long nr_unshown;
556
557 /*
558 * Allow a burst of 60 reports, then keep quiet for that minute;
559 * or allow a steady drip of one report per second.
560 */
561 if (nr_shown == 60) {
562 if (time_before(jiffies, resume)) {
563 nr_unshown++;
564 goto out;
565 }
566 if (nr_unshown) {
567 pr_alert(
568 "BUG: Bad page state: %lu messages suppressed\n",
569 nr_unshown);
570 nr_unshown = 0;
571 }
572 nr_shown = 0;
573 }
574 if (nr_shown++ == 0)
575 resume = jiffies + 60 * HZ;
576
577 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
578 current->comm, page_to_pfn(page));
579 __dump_page(page, reason);
580 bad_flags &= page->flags;
581 if (bad_flags)
582 pr_alert("bad because of flags: %#lx(%pGp)\n",
583 bad_flags, &bad_flags);
584 dump_page_owner(page);
585
586 print_modules();
587 dump_stack();
588out:
589 /* Leave bad fields for debug, except PageBuddy could make trouble */
590 page_mapcount_reset(page); /* remove PageBuddy */
591 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
592}
593
594/*
595 * Higher-order pages are called "compound pages". They are structured thusly:
596 *
597 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
598 *
599 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
600 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
601 *
602 * The first tail page's ->compound_dtor holds the offset in array of compound
603 * page destructors. See compound_page_dtors.
604 *
605 * The first tail page's ->compound_order holds the order of allocation.
606 * This usage means that zero-order pages may not be compound.
607 */
608
609void free_compound_page(struct page *page)
610{
611 __free_pages_ok(page, compound_order(page));
612}
613
614void prep_compound_page(struct page *page, unsigned int order)
615{
616 int i;
617 int nr_pages = 1 << order;
618
619 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
620 set_compound_order(page, order);
621 __SetPageHead(page);
622 for (i = 1; i < nr_pages; i++) {
623 struct page *p = page + i;
624 set_page_count(p, 0);
625 p->mapping = TAIL_MAPPING;
626 set_compound_head(p, page);
627 }
628 atomic_set(compound_mapcount_ptr(page), -1);
629}
630
631#ifdef CONFIG_DEBUG_PAGEALLOC
632unsigned int _debug_guardpage_minorder;
633bool _debug_pagealloc_enabled __read_mostly
634 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
635EXPORT_SYMBOL(_debug_pagealloc_enabled);
636bool _debug_guardpage_enabled __read_mostly;
637
638static int __init early_debug_pagealloc(char *buf)
639{
640 if (!buf)
641 return -EINVAL;
642 return kstrtobool(buf, &_debug_pagealloc_enabled);
643}
644early_param("debug_pagealloc", early_debug_pagealloc);
645
646static bool need_debug_guardpage(void)
647{
648 /* If we don't use debug_pagealloc, we don't need guard page */
649 if (!debug_pagealloc_enabled())
650 return false;
651
652 if (!debug_guardpage_minorder())
653 return false;
654
655 return true;
656}
657
658static void init_debug_guardpage(void)
659{
660 if (!debug_pagealloc_enabled())
661 return;
662
663 if (!debug_guardpage_minorder())
664 return;
665
666 _debug_guardpage_enabled = true;
667}
668
669struct page_ext_operations debug_guardpage_ops = {
670 .need = need_debug_guardpage,
671 .init = init_debug_guardpage,
672};
673
674static int __init debug_guardpage_minorder_setup(char *buf)
675{
676 unsigned long res;
677
678 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
679 pr_err("Bad debug_guardpage_minorder value\n");
680 return 0;
681 }
682 _debug_guardpage_minorder = res;
683 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
684 return 0;
685}
686early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
687
688static inline bool set_page_guard(struct zone *zone, struct page *page,
689 unsigned int order, int migratetype)
690{
691 struct page_ext *page_ext;
692
693 if (!debug_guardpage_enabled())
694 return false;
695
696 if (order >= debug_guardpage_minorder())
697 return false;
698
699 page_ext = lookup_page_ext(page);
700 if (unlikely(!page_ext))
701 return false;
702
703 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
704
705 INIT_LIST_HEAD(&page->lru);
706 set_page_private(page, order);
707 /* Guard pages are not available for any usage */
708 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
709
710 return true;
711}
712
713static inline void clear_page_guard(struct zone *zone, struct page *page,
714 unsigned int order, int migratetype)
715{
716 struct page_ext *page_ext;
717
718 if (!debug_guardpage_enabled())
719 return;
720
721 page_ext = lookup_page_ext(page);
722 if (unlikely(!page_ext))
723 return;
724
725 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
726
727 set_page_private(page, 0);
728 if (!is_migrate_isolate(migratetype))
729 __mod_zone_freepage_state(zone, (1 << order), migratetype);
730}
731#else
732struct page_ext_operations debug_guardpage_ops;
733static inline bool set_page_guard(struct zone *zone, struct page *page,
734 unsigned int order, int migratetype) { return false; }
735static inline void clear_page_guard(struct zone *zone, struct page *page,
736 unsigned int order, int migratetype) {}
737#endif
738
739static inline void set_page_order(struct page *page, unsigned int order)
740{
741 set_page_private(page, order);
742 __SetPageBuddy(page);
743}
744
745static inline void rmv_page_order(struct page *page)
746{
747 __ClearPageBuddy(page);
748 set_page_private(page, 0);
749}
750
751/*
752 * This function checks whether a page is free && is the buddy
753 * we can do coalesce a page and its buddy if
754 * (a) the buddy is not in a hole (check before calling!) &&
755 * (b) the buddy is in the buddy system &&
756 * (c) a page and its buddy have the same order &&
757 * (d) a page and its buddy are in the same zone.
758 *
759 * For recording whether a page is in the buddy system, we set ->_mapcount
760 * PAGE_BUDDY_MAPCOUNT_VALUE.
761 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
762 * serialized by zone->lock.
763 *
764 * For recording page's order, we use page_private(page).
765 */
766static inline int page_is_buddy(struct page *page, struct page *buddy,
767 unsigned int order)
768{
769 if (page_is_guard(buddy) && page_order(buddy) == order) {
770 if (page_zone_id(page) != page_zone_id(buddy))
771 return 0;
772
773 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
774
775 return 1;
776 }
777
778 if (PageBuddy(buddy) && page_order(buddy) == order) {
779 /*
780 * zone check is done late to avoid uselessly
781 * calculating zone/node ids for pages that could
782 * never merge.
783 */
784 if (page_zone_id(page) != page_zone_id(buddy))
785 return 0;
786
787 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
788
789 return 1;
790 }
791 return 0;
792}
793
794/*
795 * Freeing function for a buddy system allocator.
796 *
797 * The concept of a buddy system is to maintain direct-mapped table
798 * (containing bit values) for memory blocks of various "orders".
799 * The bottom level table contains the map for the smallest allocatable
800 * units of memory (here, pages), and each level above it describes
801 * pairs of units from the levels below, hence, "buddies".
802 * At a high level, all that happens here is marking the table entry
803 * at the bottom level available, and propagating the changes upward
804 * as necessary, plus some accounting needed to play nicely with other
805 * parts of the VM system.
806 * At each level, we keep a list of pages, which are heads of continuous
807 * free pages of length of (1 << order) and marked with _mapcount
808 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
809 * field.
810 * So when we are allocating or freeing one, we can derive the state of the
811 * other. That is, if we allocate a small block, and both were
812 * free, the remainder of the region must be split into blocks.
813 * If a block is freed, and its buddy is also free, then this
814 * triggers coalescing into a block of larger size.
815 *
816 * -- nyc
817 */
818
819static inline void __free_one_page(struct page *page,
820 unsigned long pfn,
821 struct zone *zone, unsigned int order,
822 int migratetype)
823{
824 unsigned long combined_pfn;
825 unsigned long uninitialized_var(buddy_pfn);
826 struct page *buddy;
827 unsigned int max_order;
828
829 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
830
831 VM_BUG_ON(!zone_is_initialized(zone));
832 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
833
834 VM_BUG_ON(migratetype == -1);
835 if (likely(!is_migrate_isolate(migratetype)))
836 __mod_zone_freepage_state(zone, 1 << order, migratetype);
837
838 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
839 VM_BUG_ON_PAGE(bad_range(zone, page), page);
840
841continue_merging:
842 while (order < max_order - 1) {
843 buddy_pfn = __find_buddy_pfn(pfn, order);
844 buddy = page + (buddy_pfn - pfn);
845
846 if (!pfn_valid_within(buddy_pfn))
847 goto done_merging;
848 if (!page_is_buddy(page, buddy, order))
849 goto done_merging;
850 /*
851 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
852 * merge with it and move up one order.
853 */
854 if (page_is_guard(buddy)) {
855 clear_page_guard(zone, buddy, order, migratetype);
856 } else {
857 list_del(&buddy->lru);
858 zone->free_area[order].nr_free--;
859 rmv_page_order(buddy);
860 }
861 combined_pfn = buddy_pfn & pfn;
862 page = page + (combined_pfn - pfn);
863 pfn = combined_pfn;
864 order++;
865 }
866 if (max_order < MAX_ORDER) {
867 /* If we are here, it means order is >= pageblock_order.
868 * We want to prevent merge between freepages on isolate
869 * pageblock and normal pageblock. Without this, pageblock
870 * isolation could cause incorrect freepage or CMA accounting.
871 *
872 * We don't want to hit this code for the more frequent
873 * low-order merging.
874 */
875 if (unlikely(has_isolate_pageblock(zone))) {
876 int buddy_mt;
877
878 buddy_pfn = __find_buddy_pfn(pfn, order);
879 buddy = page + (buddy_pfn - pfn);
880 buddy_mt = get_pageblock_migratetype(buddy);
881
882 if (migratetype != buddy_mt
883 && (is_migrate_isolate(migratetype) ||
884 is_migrate_isolate(buddy_mt)))
885 goto done_merging;
886 }
887 max_order++;
888 goto continue_merging;
889 }
890
891done_merging:
892 set_page_order(page, order);
893
894 /*
895 * If this is not the largest possible page, check if the buddy
896 * of the next-highest order is free. If it is, it's possible
897 * that pages are being freed that will coalesce soon. In case,
898 * that is happening, add the free page to the tail of the list
899 * so it's less likely to be used soon and more likely to be merged
900 * as a higher order page
901 */
902 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
903 struct page *higher_page, *higher_buddy;
904 combined_pfn = buddy_pfn & pfn;
905 higher_page = page + (combined_pfn - pfn);
906 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
907 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
908 if (pfn_valid_within(buddy_pfn) &&
909 page_is_buddy(higher_page, higher_buddy, order + 1)) {
910 list_add_tail(&page->lru,
911 &zone->free_area[order].free_list[migratetype]);
912 goto out;
913 }
914 }
915
916 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
917out:
918 zone->free_area[order].nr_free++;
919}
920
921/*
922 * A bad page could be due to a number of fields. Instead of multiple branches,
923 * try and check multiple fields with one check. The caller must do a detailed
924 * check if necessary.
925 */
926static inline bool page_expected_state(struct page *page,
927 unsigned long check_flags)
928{
929 if (unlikely(atomic_read(&page->_mapcount) != -1))
930 return false;
931
932 if (unlikely((unsigned long)page->mapping |
933 page_ref_count(page) |
934#ifdef CONFIG_MEMCG
935 (unsigned long)page->mem_cgroup |
936#endif
937 (page->flags & check_flags)))
938 return false;
939
940 return true;
941}
942
943static void free_pages_check_bad(struct page *page)
944{
945 const char *bad_reason;
946 unsigned long bad_flags;
947
948 bad_reason = NULL;
949 bad_flags = 0;
950
951 if (unlikely(atomic_read(&page->_mapcount) != -1))
952 bad_reason = "nonzero mapcount";
953 if (unlikely(page->mapping != NULL))
954 bad_reason = "non-NULL mapping";
955 if (unlikely(page_ref_count(page) != 0))
956 bad_reason = "nonzero _refcount";
957 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
958 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
959 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
960 }
961#ifdef CONFIG_MEMCG
962 if (unlikely(page->mem_cgroup))
963 bad_reason = "page still charged to cgroup";
964#endif
965 bad_page(page, bad_reason, bad_flags);
966}
967
968static inline int free_pages_check(struct page *page)
969{
970 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
971 return 0;
972
973 /* Something has gone sideways, find it */
974 free_pages_check_bad(page);
975 return 1;
976}
977
978static int free_tail_pages_check(struct page *head_page, struct page *page)
979{
980 int ret = 1;
981
982 /*
983 * We rely page->lru.next never has bit 0 set, unless the page
984 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
985 */
986 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
987
988 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
989 ret = 0;
990 goto out;
991 }
992 switch (page - head_page) {
993 case 1:
994 /* the first tail page: ->mapping is compound_mapcount() */
995 if (unlikely(compound_mapcount(page))) {
996 bad_page(page, "nonzero compound_mapcount", 0);
997 goto out;
998 }
999 break;
1000 case 2:
1001 /*
1002 * the second tail page: ->mapping is
1003 * page_deferred_list().next -- ignore value.
1004 */
1005 break;
1006 default:
1007 if (page->mapping != TAIL_MAPPING) {
1008 bad_page(page, "corrupted mapping in tail page", 0);
1009 goto out;
1010 }
1011 break;
1012 }
1013 if (unlikely(!PageTail(page))) {
1014 bad_page(page, "PageTail not set", 0);
1015 goto out;
1016 }
1017 if (unlikely(compound_head(page) != head_page)) {
1018 bad_page(page, "compound_head not consistent", 0);
1019 goto out;
1020 }
1021 ret = 0;
1022out:
1023 page->mapping = NULL;
1024 clear_compound_head(page);
1025 return ret;
1026}
1027
1028static __always_inline bool free_pages_prepare(struct page *page,
1029 unsigned int order, bool check_free)
1030{
1031 int bad = 0;
1032
1033 VM_BUG_ON_PAGE(PageTail(page), page);
1034
1035 trace_mm_page_free(page, order);
1036
1037 /*
1038 * Check tail pages before head page information is cleared to
1039 * avoid checking PageCompound for order-0 pages.
1040 */
1041 if (unlikely(order)) {
1042 bool compound = PageCompound(page);
1043 int i;
1044
1045 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1046
1047 if (compound)
1048 ClearPageDoubleMap(page);
1049 for (i = 1; i < (1 << order); i++) {
1050 if (compound)
1051 bad += free_tail_pages_check(page, page + i);
1052 if (unlikely(free_pages_check(page + i))) {
1053 bad++;
1054 continue;
1055 }
1056 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1057 }
1058 }
1059 if (PageMappingFlags(page))
1060 page->mapping = NULL;
1061 if (memcg_kmem_enabled() && PageKmemcg(page))
1062 memcg_kmem_uncharge(page, order);
1063 if (check_free)
1064 bad += free_pages_check(page);
1065 if (bad)
1066 return false;
1067
1068 page_cpupid_reset_last(page);
1069 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1070 reset_page_owner(page, order);
1071
1072 if (!PageHighMem(page)) {
1073 debug_check_no_locks_freed(page_address(page),
1074 PAGE_SIZE << order);
1075 debug_check_no_obj_freed(page_address(page),
1076 PAGE_SIZE << order);
1077 }
1078 arch_free_page(page, order);
1079 kernel_poison_pages(page, 1 << order, 0);
1080 kernel_map_pages(page, 1 << order, 0);
1081 kasan_free_pages(page, order);
1082
1083 return true;
1084}
1085
1086#ifdef CONFIG_DEBUG_VM
1087static inline bool free_pcp_prepare(struct page *page)
1088{
1089 return free_pages_prepare(page, 0, true);
1090}
1091
1092static inline bool bulkfree_pcp_prepare(struct page *page)
1093{
1094 return false;
1095}
1096#else
1097static bool free_pcp_prepare(struct page *page)
1098{
1099 return free_pages_prepare(page, 0, false);
1100}
1101
1102static bool bulkfree_pcp_prepare(struct page *page)
1103{
1104 return free_pages_check(page);
1105}
1106#endif /* CONFIG_DEBUG_VM */
1107
1108/*
1109 * Frees a number of pages from the PCP lists
1110 * Assumes all pages on list are in same zone, and of same order.
1111 * count is the number of pages to free.
1112 *
1113 * If the zone was previously in an "all pages pinned" state then look to
1114 * see if this freeing clears that state.
1115 *
1116 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1117 * pinned" detection logic.
1118 */
1119static void free_pcppages_bulk(struct zone *zone, int count,
1120 struct per_cpu_pages *pcp)
1121{
1122 int migratetype = 0;
1123 int batch_free = 0;
1124 bool isolated_pageblocks;
1125
1126 spin_lock(&zone->lock);
1127 isolated_pageblocks = has_isolate_pageblock(zone);
1128
1129 /*
1130 * Ensure proper count is passed which otherwise would stuck in the
1131 * below while (list_empty(list)) loop.
1132 */
1133 count = min(pcp->count, count);
1134 while (count) {
1135 struct page *page;
1136 struct list_head *list;
1137
1138 /*
1139 * Remove pages from lists in a round-robin fashion. A
1140 * batch_free count is maintained that is incremented when an
1141 * empty list is encountered. This is so more pages are freed
1142 * off fuller lists instead of spinning excessively around empty
1143 * lists
1144 */
1145 do {
1146 batch_free++;
1147 if (++migratetype == MIGRATE_PCPTYPES)
1148 migratetype = 0;
1149 list = &pcp->lists[migratetype];
1150 } while (list_empty(list));
1151
1152 /* This is the only non-empty list. Free them all. */
1153 if (batch_free == MIGRATE_PCPTYPES)
1154 batch_free = count;
1155
1156 do {
1157 int mt; /* migratetype of the to-be-freed page */
1158
1159 page = list_last_entry(list, struct page, lru);
1160 /* must delete as __free_one_page list manipulates */
1161 list_del(&page->lru);
1162
1163 mt = get_pcppage_migratetype(page);
1164 /* MIGRATE_ISOLATE page should not go to pcplists */
1165 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1166 /* Pageblock could have been isolated meanwhile */
1167 if (unlikely(isolated_pageblocks))
1168 mt = get_pageblock_migratetype(page);
1169
1170 if (bulkfree_pcp_prepare(page))
1171 continue;
1172
1173 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1174 trace_mm_page_pcpu_drain(page, 0, mt);
1175 } while (--count && --batch_free && !list_empty(list));
1176 }
1177 spin_unlock(&zone->lock);
1178}
1179
1180static void free_one_page(struct zone *zone,
1181 struct page *page, unsigned long pfn,
1182 unsigned int order,
1183 int migratetype)
1184{
1185 spin_lock(&zone->lock);
1186 if (unlikely(has_isolate_pageblock(zone) ||
1187 is_migrate_isolate(migratetype))) {
1188 migratetype = get_pfnblock_migratetype(page, pfn);
1189 }
1190 __free_one_page(page, pfn, zone, order, migratetype);
1191 spin_unlock(&zone->lock);
1192}
1193
1194static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1195 unsigned long zone, int nid)
1196{
1197 set_page_links(page, zone, nid, pfn);
1198 init_page_count(page);
1199 page_mapcount_reset(page);
1200 page_cpupid_reset_last(page);
1201
1202 INIT_LIST_HEAD(&page->lru);
1203#ifdef WANT_PAGE_VIRTUAL
1204 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1205 if (!is_highmem_idx(zone))
1206 set_page_address(page, __va(pfn << PAGE_SHIFT));
1207#endif
1208}
1209
1210static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1211 int nid)
1212{
1213 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1214}
1215
1216#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1217static void __meminit init_reserved_page(unsigned long pfn)
1218{
1219 pg_data_t *pgdat;
1220 int nid, zid;
1221
1222 if (!early_page_uninitialised(pfn))
1223 return;
1224
1225 nid = early_pfn_to_nid(pfn);
1226 pgdat = NODE_DATA(nid);
1227
1228 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1229 struct zone *zone = &pgdat->node_zones[zid];
1230
1231 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1232 break;
1233 }
1234 __init_single_pfn(pfn, zid, nid);
1235}
1236#else
1237static inline void init_reserved_page(unsigned long pfn)
1238{
1239}
1240#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1241
1242/*
1243 * Initialised pages do not have PageReserved set. This function is
1244 * called for each range allocated by the bootmem allocator and
1245 * marks the pages PageReserved. The remaining valid pages are later
1246 * sent to the buddy page allocator.
1247 */
1248void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1249{
1250 unsigned long start_pfn = PFN_DOWN(start);
1251 unsigned long end_pfn = PFN_UP(end);
1252
1253 for (; start_pfn < end_pfn; start_pfn++) {
1254 if (pfn_valid(start_pfn)) {
1255 struct page *page = pfn_to_page(start_pfn);
1256
1257 init_reserved_page(start_pfn);
1258
1259 /* Avoid false-positive PageTail() */
1260 INIT_LIST_HEAD(&page->lru);
1261
1262 SetPageReserved(page);
1263 }
1264 }
1265}
1266
1267static void __free_pages_ok(struct page *page, unsigned int order)
1268{
1269 unsigned long flags;
1270 int migratetype;
1271 unsigned long pfn = page_to_pfn(page);
1272
1273 if (!free_pages_prepare(page, order, true))
1274 return;
1275
1276 migratetype = get_pfnblock_migratetype(page, pfn);
1277 local_irq_save(flags);
1278 __count_vm_events(PGFREE, 1 << order);
1279 free_one_page(page_zone(page), page, pfn, order, migratetype);
1280 local_irq_restore(flags);
1281}
1282
1283static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1284{
1285 unsigned int nr_pages = 1 << order;
1286 struct page *p = page;
1287 unsigned int loop;
1288
1289 prefetchw(p);
1290 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1291 prefetchw(p + 1);
1292 __ClearPageReserved(p);
1293 set_page_count(p, 0);
1294 }
1295 __ClearPageReserved(p);
1296 set_page_count(p, 0);
1297
1298 page_zone(page)->managed_pages += nr_pages;
1299 set_page_refcounted(page);
1300 __free_pages(page, order);
1301}
1302
1303#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1304 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1305
1306static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1307
1308int __meminit early_pfn_to_nid(unsigned long pfn)
1309{
1310 static DEFINE_SPINLOCK(early_pfn_lock);
1311 int nid;
1312
1313 spin_lock(&early_pfn_lock);
1314 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1315 if (nid < 0)
1316 nid = first_online_node;
1317 spin_unlock(&early_pfn_lock);
1318
1319 return nid;
1320}
1321#endif
1322
1323#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1324static inline bool __meminit __maybe_unused
1325meminit_pfn_in_nid(unsigned long pfn, int node,
1326 struct mminit_pfnnid_cache *state)
1327{
1328 int nid;
1329
1330 nid = __early_pfn_to_nid(pfn, state);
1331 if (nid >= 0 && nid != node)
1332 return false;
1333 return true;
1334}
1335
1336/* Only safe to use early in boot when initialisation is single-threaded */
1337static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1338{
1339 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1340}
1341
1342#else
1343
1344static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1345{
1346 return true;
1347}
1348static inline bool __meminit __maybe_unused
1349meminit_pfn_in_nid(unsigned long pfn, int node,
1350 struct mminit_pfnnid_cache *state)
1351{
1352 return true;
1353}
1354#endif
1355
1356
1357void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1358 unsigned int order)
1359{
1360 if (early_page_uninitialised(pfn))
1361 return;
1362 return __free_pages_boot_core(page, order);
1363}
1364
1365/*
1366 * Check that the whole (or subset of) a pageblock given by the interval of
1367 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1368 * with the migration of free compaction scanner. The scanners then need to
1369 * use only pfn_valid_within() check for arches that allow holes within
1370 * pageblocks.
1371 *
1372 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1373 *
1374 * It's possible on some configurations to have a setup like node0 node1 node0
1375 * i.e. it's possible that all pages within a zones range of pages do not
1376 * belong to a single zone. We assume that a border between node0 and node1
1377 * can occur within a single pageblock, but not a node0 node1 node0
1378 * interleaving within a single pageblock. It is therefore sufficient to check
1379 * the first and last page of a pageblock and avoid checking each individual
1380 * page in a pageblock.
1381 */
1382struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1383 unsigned long end_pfn, struct zone *zone)
1384{
1385 struct page *start_page;
1386 struct page *end_page;
1387
1388 /* end_pfn is one past the range we are checking */
1389 end_pfn--;
1390
1391 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1392 return NULL;
1393
1394 start_page = pfn_to_online_page(start_pfn);
1395 if (!start_page)
1396 return NULL;
1397
1398 if (page_zone(start_page) != zone)
1399 return NULL;
1400
1401 end_page = pfn_to_page(end_pfn);
1402
1403 /* This gives a shorter code than deriving page_zone(end_page) */
1404 if (page_zone_id(start_page) != page_zone_id(end_page))
1405 return NULL;
1406
1407 return start_page;
1408}
1409
1410void set_zone_contiguous(struct zone *zone)
1411{
1412 unsigned long block_start_pfn = zone->zone_start_pfn;
1413 unsigned long block_end_pfn;
1414
1415 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1416 for (; block_start_pfn < zone_end_pfn(zone);
1417 block_start_pfn = block_end_pfn,
1418 block_end_pfn += pageblock_nr_pages) {
1419
1420 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1421
1422 if (!__pageblock_pfn_to_page(block_start_pfn,
1423 block_end_pfn, zone))
1424 return;
1425 cond_resched();
1426 }
1427
1428 /* We confirm that there is no hole */
1429 zone->contiguous = true;
1430}
1431
1432void clear_zone_contiguous(struct zone *zone)
1433{
1434 zone->contiguous = false;
1435}
1436
1437#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1438static void __init deferred_free_range(struct page *page,
1439 unsigned long pfn, int nr_pages)
1440{
1441 int i;
1442
1443 if (!page)
1444 return;
1445
1446 /* Free a large naturally-aligned chunk if possible */
1447 if (nr_pages == pageblock_nr_pages &&
1448 (pfn & (pageblock_nr_pages - 1)) == 0) {
1449 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1450 __free_pages_boot_core(page, pageblock_order);
1451 return;
1452 }
1453
1454 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1455 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1456 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1457 __free_pages_boot_core(page, 0);
1458 }
1459}
1460
1461/* Completion tracking for deferred_init_memmap() threads */
1462static atomic_t pgdat_init_n_undone __initdata;
1463static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1464
1465static inline void __init pgdat_init_report_one_done(void)
1466{
1467 if (atomic_dec_and_test(&pgdat_init_n_undone))
1468 complete(&pgdat_init_all_done_comp);
1469}
1470
1471/* Initialise remaining memory on a node */
1472static int __init deferred_init_memmap(void *data)
1473{
1474 pg_data_t *pgdat = data;
1475 int nid = pgdat->node_id;
1476 struct mminit_pfnnid_cache nid_init_state = { };
1477 unsigned long start = jiffies;
1478 unsigned long nr_pages = 0;
1479 unsigned long walk_start, walk_end;
1480 int i, zid;
1481 struct zone *zone;
1482 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1483 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1484
1485 if (first_init_pfn == ULONG_MAX) {
1486 pgdat_init_report_one_done();
1487 return 0;
1488 }
1489
1490 /* Bind memory initialisation thread to a local node if possible */
1491 if (!cpumask_empty(cpumask))
1492 set_cpus_allowed_ptr(current, cpumask);
1493
1494 /* Sanity check boundaries */
1495 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1496 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1497 pgdat->first_deferred_pfn = ULONG_MAX;
1498
1499 /* Only the highest zone is deferred so find it */
1500 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1501 zone = pgdat->node_zones + zid;
1502 if (first_init_pfn < zone_end_pfn(zone))
1503 break;
1504 }
1505
1506 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1507 unsigned long pfn, end_pfn;
1508 struct page *page = NULL;
1509 struct page *free_base_page = NULL;
1510 unsigned long free_base_pfn = 0;
1511 int nr_to_free = 0;
1512
1513 end_pfn = min(walk_end, zone_end_pfn(zone));
1514 pfn = first_init_pfn;
1515 if (pfn < walk_start)
1516 pfn = walk_start;
1517 if (pfn < zone->zone_start_pfn)
1518 pfn = zone->zone_start_pfn;
1519
1520 for (; pfn < end_pfn; pfn++) {
1521 if (!pfn_valid_within(pfn))
1522 goto free_range;
1523
1524 /*
1525 * Ensure pfn_valid is checked every
1526 * pageblock_nr_pages for memory holes
1527 */
1528 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1529 if (!pfn_valid(pfn)) {
1530 page = NULL;
1531 goto free_range;
1532 }
1533 }
1534
1535 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1536 page = NULL;
1537 goto free_range;
1538 }
1539
1540 /* Minimise pfn page lookups and scheduler checks */
1541 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1542 page++;
1543 } else {
1544 nr_pages += nr_to_free;
1545 deferred_free_range(free_base_page,
1546 free_base_pfn, nr_to_free);
1547 free_base_page = NULL;
1548 free_base_pfn = nr_to_free = 0;
1549
1550 page = pfn_to_page(pfn);
1551 cond_resched();
1552 }
1553
1554 if (page->flags) {
1555 VM_BUG_ON(page_zone(page) != zone);
1556 goto free_range;
1557 }
1558
1559 __init_single_page(page, pfn, zid, nid);
1560 if (!free_base_page) {
1561 free_base_page = page;
1562 free_base_pfn = pfn;
1563 nr_to_free = 0;
1564 }
1565 nr_to_free++;
1566
1567 /* Where possible, batch up pages for a single free */
1568 continue;
1569free_range:
1570 /* Free the current block of pages to allocator */
1571 nr_pages += nr_to_free;
1572 deferred_free_range(free_base_page, free_base_pfn,
1573 nr_to_free);
1574 free_base_page = NULL;
1575 free_base_pfn = nr_to_free = 0;
1576 }
1577 /* Free the last block of pages to allocator */
1578 nr_pages += nr_to_free;
1579 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1580
1581 first_init_pfn = max(end_pfn, first_init_pfn);
1582 }
1583
1584 /* Sanity check that the next zone really is unpopulated */
1585 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1586
1587 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1588 jiffies_to_msecs(jiffies - start));
1589
1590 pgdat_init_report_one_done();
1591 return 0;
1592}
1593#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1594
1595void __init page_alloc_init_late(void)
1596{
1597 struct zone *zone;
1598
1599#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1600 int nid;
1601
1602 /* There will be num_node_state(N_MEMORY) threads */
1603 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1604 for_each_node_state(nid, N_MEMORY) {
1605 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1606 }
1607
1608 /* Block until all are initialised */
1609 wait_for_completion(&pgdat_init_all_done_comp);
1610
1611 /* Reinit limits that are based on free pages after the kernel is up */
1612 files_maxfiles_init();
1613#endif
1614#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1615 /* Discard memblock private memory */
1616 memblock_discard();
1617#endif
1618
1619 for_each_populated_zone(zone)
1620 set_zone_contiguous(zone);
1621}
1622
1623#ifdef CONFIG_CMA
1624/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1625void __init init_cma_reserved_pageblock(struct page *page)
1626{
1627 unsigned i = pageblock_nr_pages;
1628 struct page *p = page;
1629
1630 do {
1631 __ClearPageReserved(p);
1632 set_page_count(p, 0);
1633 } while (++p, --i);
1634
1635 set_pageblock_migratetype(page, MIGRATE_CMA);
1636
1637 if (pageblock_order >= MAX_ORDER) {
1638 i = pageblock_nr_pages;
1639 p = page;
1640 do {
1641 set_page_refcounted(p);
1642 __free_pages(p, MAX_ORDER - 1);
1643 p += MAX_ORDER_NR_PAGES;
1644 } while (i -= MAX_ORDER_NR_PAGES);
1645 } else {
1646 set_page_refcounted(page);
1647 __free_pages(page, pageblock_order);
1648 }
1649
1650 adjust_managed_page_count(page, pageblock_nr_pages);
1651}
1652#endif
1653
1654/*
1655 * The order of subdivision here is critical for the IO subsystem.
1656 * Please do not alter this order without good reasons and regression
1657 * testing. Specifically, as large blocks of memory are subdivided,
1658 * the order in which smaller blocks are delivered depends on the order
1659 * they're subdivided in this function. This is the primary factor
1660 * influencing the order in which pages are delivered to the IO
1661 * subsystem according to empirical testing, and this is also justified
1662 * by considering the behavior of a buddy system containing a single
1663 * large block of memory acted on by a series of small allocations.
1664 * This behavior is a critical factor in sglist merging's success.
1665 *
1666 * -- nyc
1667 */
1668static inline void expand(struct zone *zone, struct page *page,
1669 int low, int high, struct free_area *area,
1670 int migratetype)
1671{
1672 unsigned long size = 1 << high;
1673
1674 while (high > low) {
1675 area--;
1676 high--;
1677 size >>= 1;
1678 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1679
1680 /*
1681 * Mark as guard pages (or page), that will allow to
1682 * merge back to allocator when buddy will be freed.
1683 * Corresponding page table entries will not be touched,
1684 * pages will stay not present in virtual address space
1685 */
1686 if (set_page_guard(zone, &page[size], high, migratetype))
1687 continue;
1688
1689 list_add(&page[size].lru, &area->free_list[migratetype]);
1690 area->nr_free++;
1691 set_page_order(&page[size], high);
1692 }
1693}
1694
1695static void check_new_page_bad(struct page *page)
1696{
1697 const char *bad_reason = NULL;
1698 unsigned long bad_flags = 0;
1699
1700 if (unlikely(atomic_read(&page->_mapcount) != -1))
1701 bad_reason = "nonzero mapcount";
1702 if (unlikely(page->mapping != NULL))
1703 bad_reason = "non-NULL mapping";
1704 if (unlikely(page_ref_count(page) != 0))
1705 bad_reason = "nonzero _count";
1706 if (unlikely(page->flags & __PG_HWPOISON)) {
1707 bad_reason = "HWPoisoned (hardware-corrupted)";
1708 bad_flags = __PG_HWPOISON;
1709 /* Don't complain about hwpoisoned pages */
1710 page_mapcount_reset(page); /* remove PageBuddy */
1711 return;
1712 }
1713 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1714 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1715 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1716 }
1717#ifdef CONFIG_MEMCG
1718 if (unlikely(page->mem_cgroup))
1719 bad_reason = "page still charged to cgroup";
1720#endif
1721 bad_page(page, bad_reason, bad_flags);
1722}
1723
1724/*
1725 * This page is about to be returned from the page allocator
1726 */
1727static inline int check_new_page(struct page *page)
1728{
1729 if (likely(page_expected_state(page,
1730 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1731 return 0;
1732
1733 check_new_page_bad(page);
1734 return 1;
1735}
1736
1737static inline bool free_pages_prezeroed(void)
1738{
1739 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1740 page_poisoning_enabled();
1741}
1742
1743#ifdef CONFIG_DEBUG_VM
1744static bool check_pcp_refill(struct page *page)
1745{
1746 return false;
1747}
1748
1749static bool check_new_pcp(struct page *page)
1750{
1751 return check_new_page(page);
1752}
1753#else
1754static bool check_pcp_refill(struct page *page)
1755{
1756 return check_new_page(page);
1757}
1758static bool check_new_pcp(struct page *page)
1759{
1760 return false;
1761}
1762#endif /* CONFIG_DEBUG_VM */
1763
1764static bool check_new_pages(struct page *page, unsigned int order)
1765{
1766 int i;
1767 for (i = 0; i < (1 << order); i++) {
1768 struct page *p = page + i;
1769
1770 if (unlikely(check_new_page(p)))
1771 return true;
1772 }
1773
1774 return false;
1775}
1776
1777inline void post_alloc_hook(struct page *page, unsigned int order,
1778 gfp_t gfp_flags)
1779{
1780 set_page_private(page, 0);
1781 set_page_refcounted(page);
1782
1783 arch_alloc_page(page, order);
1784 kernel_map_pages(page, 1 << order, 1);
1785 kasan_alloc_pages(page, order);
1786 kernel_poison_pages(page, 1 << order, 1);
1787 set_page_owner(page, order, gfp_flags);
1788}
1789
1790static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1791 unsigned int alloc_flags)
1792{
1793 int i;
1794
1795 post_alloc_hook(page, order, gfp_flags);
1796
1797 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1798 for (i = 0; i < (1 << order); i++)
1799 clear_highpage(page + i);
1800
1801 if (order && (gfp_flags & __GFP_COMP))
1802 prep_compound_page(page, order);
1803
1804 /*
1805 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1806 * allocate the page. The expectation is that the caller is taking
1807 * steps that will free more memory. The caller should avoid the page
1808 * being used for !PFMEMALLOC purposes.
1809 */
1810 if (alloc_flags & ALLOC_NO_WATERMARKS)
1811 set_page_pfmemalloc(page);
1812 else
1813 clear_page_pfmemalloc(page);
1814}
1815
1816/*
1817 * Go through the free lists for the given migratetype and remove
1818 * the smallest available page from the freelists
1819 */
1820static inline
1821struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1822 int migratetype)
1823{
1824 unsigned int current_order;
1825 struct free_area *area;
1826 struct page *page;
1827
1828 /* Find a page of the appropriate size in the preferred list */
1829 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1830 area = &(zone->free_area[current_order]);
1831 page = list_first_entry_or_null(&area->free_list[migratetype],
1832 struct page, lru);
1833 if (!page)
1834 continue;
1835 list_del(&page->lru);
1836 rmv_page_order(page);
1837 area->nr_free--;
1838 expand(zone, page, order, current_order, area, migratetype);
1839 set_pcppage_migratetype(page, migratetype);
1840 return page;
1841 }
1842
1843 return NULL;
1844}
1845
1846
1847/*
1848 * This array describes the order lists are fallen back to when
1849 * the free lists for the desirable migrate type are depleted
1850 */
1851static int fallbacks[MIGRATE_TYPES][4] = {
1852 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1853 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1854 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1855#ifdef CONFIG_CMA
1856 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1857#endif
1858#ifdef CONFIG_MEMORY_ISOLATION
1859 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1860#endif
1861};
1862
1863#ifdef CONFIG_CMA
1864static struct page *__rmqueue_cma_fallback(struct zone *zone,
1865 unsigned int order)
1866{
1867 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1868}
1869#else
1870static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1871 unsigned int order) { return NULL; }
1872#endif
1873
1874/*
1875 * Move the free pages in a range to the free lists of the requested type.
1876 * Note that start_page and end_pages are not aligned on a pageblock
1877 * boundary. If alignment is required, use move_freepages_block()
1878 */
1879static int move_freepages(struct zone *zone,
1880 struct page *start_page, struct page *end_page,
1881 int migratetype, int *num_movable)
1882{
1883 struct page *page;
1884 unsigned int order;
1885 int pages_moved = 0;
1886
1887#ifndef CONFIG_HOLES_IN_ZONE
1888 /*
1889 * page_zone is not safe to call in this context when
1890 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1891 * anyway as we check zone boundaries in move_freepages_block().
1892 * Remove at a later date when no bug reports exist related to
1893 * grouping pages by mobility
1894 */
1895 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1896#endif
1897
1898 if (num_movable)
1899 *num_movable = 0;
1900
1901 for (page = start_page; page <= end_page;) {
1902 if (!pfn_valid_within(page_to_pfn(page))) {
1903 page++;
1904 continue;
1905 }
1906
1907 /* Make sure we are not inadvertently changing nodes */
1908 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1909
1910 if (!PageBuddy(page)) {
1911 /*
1912 * We assume that pages that could be isolated for
1913 * migration are movable. But we don't actually try
1914 * isolating, as that would be expensive.
1915 */
1916 if (num_movable &&
1917 (PageLRU(page) || __PageMovable(page)))
1918 (*num_movable)++;
1919
1920 page++;
1921 continue;
1922 }
1923
1924 order = page_order(page);
1925 list_move(&page->lru,
1926 &zone->free_area[order].free_list[migratetype]);
1927 page += 1 << order;
1928 pages_moved += 1 << order;
1929 }
1930
1931 return pages_moved;
1932}
1933
1934int move_freepages_block(struct zone *zone, struct page *page,
1935 int migratetype, int *num_movable)
1936{
1937 unsigned long start_pfn, end_pfn;
1938 struct page *start_page, *end_page;
1939
1940 start_pfn = page_to_pfn(page);
1941 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1942 start_page = pfn_to_page(start_pfn);
1943 end_page = start_page + pageblock_nr_pages - 1;
1944 end_pfn = start_pfn + pageblock_nr_pages - 1;
1945
1946 /* Do not cross zone boundaries */
1947 if (!zone_spans_pfn(zone, start_pfn))
1948 start_page = page;
1949 if (!zone_spans_pfn(zone, end_pfn))
1950 return 0;
1951
1952 return move_freepages(zone, start_page, end_page, migratetype,
1953 num_movable);
1954}
1955
1956static void change_pageblock_range(struct page *pageblock_page,
1957 int start_order, int migratetype)
1958{
1959 int nr_pageblocks = 1 << (start_order - pageblock_order);
1960
1961 while (nr_pageblocks--) {
1962 set_pageblock_migratetype(pageblock_page, migratetype);
1963 pageblock_page += pageblock_nr_pages;
1964 }
1965}
1966
1967/*
1968 * When we are falling back to another migratetype during allocation, try to
1969 * steal extra free pages from the same pageblocks to satisfy further
1970 * allocations, instead of polluting multiple pageblocks.
1971 *
1972 * If we are stealing a relatively large buddy page, it is likely there will
1973 * be more free pages in the pageblock, so try to steal them all. For
1974 * reclaimable and unmovable allocations, we steal regardless of page size,
1975 * as fragmentation caused by those allocations polluting movable pageblocks
1976 * is worse than movable allocations stealing from unmovable and reclaimable
1977 * pageblocks.
1978 */
1979static bool can_steal_fallback(unsigned int order, int start_mt)
1980{
1981 /*
1982 * Leaving this order check is intended, although there is
1983 * relaxed order check in next check. The reason is that
1984 * we can actually steal whole pageblock if this condition met,
1985 * but, below check doesn't guarantee it and that is just heuristic
1986 * so could be changed anytime.
1987 */
1988 if (order >= pageblock_order)
1989 return true;
1990
1991 if (order >= pageblock_order / 2 ||
1992 start_mt == MIGRATE_RECLAIMABLE ||
1993 start_mt == MIGRATE_UNMOVABLE ||
1994 page_group_by_mobility_disabled)
1995 return true;
1996
1997 return false;
1998}
1999
2000/*
2001 * This function implements actual steal behaviour. If order is large enough,
2002 * we can steal whole pageblock. If not, we first move freepages in this
2003 * pageblock to our migratetype and determine how many already-allocated pages
2004 * are there in the pageblock with a compatible migratetype. If at least half
2005 * of pages are free or compatible, we can change migratetype of the pageblock
2006 * itself, so pages freed in the future will be put on the correct free list.
2007 */
2008static void steal_suitable_fallback(struct zone *zone, struct page *page,
2009 int start_type, bool whole_block)
2010{
2011 unsigned int current_order = page_order(page);
2012 struct free_area *area;
2013 int free_pages, movable_pages, alike_pages;
2014 int old_block_type;
2015
2016 old_block_type = get_pageblock_migratetype(page);
2017
2018 /*
2019 * This can happen due to races and we want to prevent broken
2020 * highatomic accounting.
2021 */
2022 if (is_migrate_highatomic(old_block_type))
2023 goto single_page;
2024
2025 /* Take ownership for orders >= pageblock_order */
2026 if (current_order >= pageblock_order) {
2027 change_pageblock_range(page, current_order, start_type);
2028 goto single_page;
2029 }
2030
2031 /* We are not allowed to try stealing from the whole block */
2032 if (!whole_block)
2033 goto single_page;
2034
2035 free_pages = move_freepages_block(zone, page, start_type,
2036 &movable_pages);
2037 /*
2038 * Determine how many pages are compatible with our allocation.
2039 * For movable allocation, it's the number of movable pages which
2040 * we just obtained. For other types it's a bit more tricky.
2041 */
2042 if (start_type == MIGRATE_MOVABLE) {
2043 alike_pages = movable_pages;
2044 } else {
2045 /*
2046 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2047 * to MOVABLE pageblock, consider all non-movable pages as
2048 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2049 * vice versa, be conservative since we can't distinguish the
2050 * exact migratetype of non-movable pages.
2051 */
2052 if (old_block_type == MIGRATE_MOVABLE)
2053 alike_pages = pageblock_nr_pages
2054 - (free_pages + movable_pages);
2055 else
2056 alike_pages = 0;
2057 }
2058
2059 /* moving whole block can fail due to zone boundary conditions */
2060 if (!free_pages)
2061 goto single_page;
2062
2063 /*
2064 * If a sufficient number of pages in the block are either free or of
2065 * comparable migratability as our allocation, claim the whole block.
2066 */
2067 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2068 page_group_by_mobility_disabled)
2069 set_pageblock_migratetype(page, start_type);
2070
2071 return;
2072
2073single_page:
2074 area = &zone->free_area[current_order];
2075 list_move(&page->lru, &area->free_list[start_type]);
2076}
2077
2078/*
2079 * Check whether there is a suitable fallback freepage with requested order.
2080 * If only_stealable is true, this function returns fallback_mt only if
2081 * we can steal other freepages all together. This would help to reduce
2082 * fragmentation due to mixed migratetype pages in one pageblock.
2083 */
2084int find_suitable_fallback(struct free_area *area, unsigned int order,
2085 int migratetype, bool only_stealable, bool *can_steal)
2086{
2087 int i;
2088 int fallback_mt;
2089
2090 if (area->nr_free == 0)
2091 return -1;
2092
2093 *can_steal = false;
2094 for (i = 0;; i++) {
2095 fallback_mt = fallbacks[migratetype][i];
2096 if (fallback_mt == MIGRATE_TYPES)
2097 break;
2098
2099 if (list_empty(&area->free_list[fallback_mt]))
2100 continue;
2101
2102 if (can_steal_fallback(order, migratetype))
2103 *can_steal = true;
2104
2105 if (!only_stealable)
2106 return fallback_mt;
2107
2108 if (*can_steal)
2109 return fallback_mt;
2110 }
2111
2112 return -1;
2113}
2114
2115/*
2116 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2117 * there are no empty page blocks that contain a page with a suitable order
2118 */
2119static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2120 unsigned int alloc_order)
2121{
2122 int mt;
2123 unsigned long max_managed, flags;
2124
2125 /*
2126 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2127 * Check is race-prone but harmless.
2128 */
2129 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2130 if (zone->nr_reserved_highatomic >= max_managed)
2131 return;
2132
2133 spin_lock_irqsave(&zone->lock, flags);
2134
2135 /* Recheck the nr_reserved_highatomic limit under the lock */
2136 if (zone->nr_reserved_highatomic >= max_managed)
2137 goto out_unlock;
2138
2139 /* Yoink! */
2140 mt = get_pageblock_migratetype(page);
2141 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2142 && !is_migrate_cma(mt)) {
2143 zone->nr_reserved_highatomic += pageblock_nr_pages;
2144 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2145 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2146 }
2147
2148out_unlock:
2149 spin_unlock_irqrestore(&zone->lock, flags);
2150}
2151
2152/*
2153 * Used when an allocation is about to fail under memory pressure. This
2154 * potentially hurts the reliability of high-order allocations when under
2155 * intense memory pressure but failed atomic allocations should be easier
2156 * to recover from than an OOM.
2157 *
2158 * If @force is true, try to unreserve a pageblock even though highatomic
2159 * pageblock is exhausted.
2160 */
2161static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2162 bool force)
2163{
2164 struct zonelist *zonelist = ac->zonelist;
2165 unsigned long flags;
2166 struct zoneref *z;
2167 struct zone *zone;
2168 struct page *page;
2169 int order;
2170 bool ret;
2171
2172 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2173 ac->nodemask) {
2174 /*
2175 * Preserve at least one pageblock unless memory pressure
2176 * is really high.
2177 */
2178 if (!force && zone->nr_reserved_highatomic <=
2179 pageblock_nr_pages)
2180 continue;
2181
2182 spin_lock_irqsave(&zone->lock, flags);
2183 for (order = 0; order < MAX_ORDER; order++) {
2184 struct free_area *area = &(zone->free_area[order]);
2185
2186 page = list_first_entry_or_null(
2187 &area->free_list[MIGRATE_HIGHATOMIC],
2188 struct page, lru);
2189 if (!page)
2190 continue;
2191
2192 /*
2193 * In page freeing path, migratetype change is racy so
2194 * we can counter several free pages in a pageblock
2195 * in this loop althoug we changed the pageblock type
2196 * from highatomic to ac->migratetype. So we should
2197 * adjust the count once.
2198 */
2199 if (is_migrate_highatomic_page(page)) {
2200 /*
2201 * It should never happen but changes to
2202 * locking could inadvertently allow a per-cpu
2203 * drain to add pages to MIGRATE_HIGHATOMIC
2204 * while unreserving so be safe and watch for
2205 * underflows.
2206 */
2207 zone->nr_reserved_highatomic -= min(
2208 pageblock_nr_pages,
2209 zone->nr_reserved_highatomic);
2210 }
2211
2212 /*
2213 * Convert to ac->migratetype and avoid the normal
2214 * pageblock stealing heuristics. Minimally, the caller
2215 * is doing the work and needs the pages. More
2216 * importantly, if the block was always converted to
2217 * MIGRATE_UNMOVABLE or another type then the number
2218 * of pageblocks that cannot be completely freed
2219 * may increase.
2220 */
2221 set_pageblock_migratetype(page, ac->migratetype);
2222 ret = move_freepages_block(zone, page, ac->migratetype,
2223 NULL);
2224 if (ret) {
2225 spin_unlock_irqrestore(&zone->lock, flags);
2226 return ret;
2227 }
2228 }
2229 spin_unlock_irqrestore(&zone->lock, flags);
2230 }
2231
2232 return false;
2233}
2234
2235/*
2236 * Try finding a free buddy page on the fallback list and put it on the free
2237 * list of requested migratetype, possibly along with other pages from the same
2238 * block, depending on fragmentation avoidance heuristics. Returns true if
2239 * fallback was found so that __rmqueue_smallest() can grab it.
2240 *
2241 * The use of signed ints for order and current_order is a deliberate
2242 * deviation from the rest of this file, to make the for loop
2243 * condition simpler.
2244 */
2245static inline bool
2246__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2247{
2248 struct free_area *area;
2249 int current_order;
2250 struct page *page;
2251 int fallback_mt;
2252 bool can_steal;
2253
2254 /*
2255 * Find the largest available free page in the other list. This roughly
2256 * approximates finding the pageblock with the most free pages, which
2257 * would be too costly to do exactly.
2258 */
2259 for (current_order = MAX_ORDER - 1; current_order >= order;
2260 --current_order) {
2261 area = &(zone->free_area[current_order]);
2262 fallback_mt = find_suitable_fallback(area, current_order,
2263 start_migratetype, false, &can_steal);
2264 if (fallback_mt == -1)
2265 continue;
2266
2267 /*
2268 * We cannot steal all free pages from the pageblock and the
2269 * requested migratetype is movable. In that case it's better to
2270 * steal and split the smallest available page instead of the
2271 * largest available page, because even if the next movable
2272 * allocation falls back into a different pageblock than this
2273 * one, it won't cause permanent fragmentation.
2274 */
2275 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2276 && current_order > order)
2277 goto find_smallest;
2278
2279 goto do_steal;
2280 }
2281
2282 return false;
2283
2284find_smallest:
2285 for (current_order = order; current_order < MAX_ORDER;
2286 current_order++) {
2287 area = &(zone->free_area[current_order]);
2288 fallback_mt = find_suitable_fallback(area, current_order,
2289 start_migratetype, false, &can_steal);
2290 if (fallback_mt != -1)
2291 break;
2292 }
2293
2294 /*
2295 * This should not happen - we already found a suitable fallback
2296 * when looking for the largest page.
2297 */
2298 VM_BUG_ON(current_order == MAX_ORDER);
2299
2300do_steal:
2301 page = list_first_entry(&area->free_list[fallback_mt],
2302 struct page, lru);
2303
2304 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2305
2306 trace_mm_page_alloc_extfrag(page, order, current_order,
2307 start_migratetype, fallback_mt);
2308
2309 return true;
2310
2311}
2312
2313/*
2314 * Do the hard work of removing an element from the buddy allocator.
2315 * Call me with the zone->lock already held.
2316 */
2317static struct page *__rmqueue(struct zone *zone, unsigned int order,
2318 int migratetype)
2319{
2320 struct page *page;
2321
2322retry:
2323 page = __rmqueue_smallest(zone, order, migratetype);
2324 if (unlikely(!page)) {
2325 if (migratetype == MIGRATE_MOVABLE)
2326 page = __rmqueue_cma_fallback(zone, order);
2327
2328 if (!page && __rmqueue_fallback(zone, order, migratetype))
2329 goto retry;
2330 }
2331
2332 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2333 return page;
2334}
2335
2336/*
2337 * Obtain a specified number of elements from the buddy allocator, all under
2338 * a single hold of the lock, for efficiency. Add them to the supplied list.
2339 * Returns the number of new pages which were placed at *list.
2340 */
2341static int rmqueue_bulk(struct zone *zone, unsigned int order,
2342 unsigned long count, struct list_head *list,
2343 int migratetype, bool cold)
2344{
2345 int i, alloced = 0;
2346
2347 spin_lock(&zone->lock);
2348 for (i = 0; i < count; ++i) {
2349 struct page *page = __rmqueue(zone, order, migratetype);
2350 if (unlikely(page == NULL))
2351 break;
2352
2353 if (unlikely(check_pcp_refill(page)))
2354 continue;
2355
2356 /*
2357 * Split buddy pages returned by expand() are received here
2358 * in physical page order. The page is added to the callers and
2359 * list and the list head then moves forward. From the callers
2360 * perspective, the linked list is ordered by page number in
2361 * some conditions. This is useful for IO devices that can
2362 * merge IO requests if the physical pages are ordered
2363 * properly.
2364 */
2365 if (likely(!cold))
2366 list_add(&page->lru, list);
2367 else
2368 list_add_tail(&page->lru, list);
2369 list = &page->lru;
2370 alloced++;
2371 if (is_migrate_cma(get_pcppage_migratetype(page)))
2372 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2373 -(1 << order));
2374 }
2375
2376 /*
2377 * i pages were removed from the buddy list even if some leak due
2378 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2379 * on i. Do not confuse with 'alloced' which is the number of
2380 * pages added to the pcp list.
2381 */
2382 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2383 spin_unlock(&zone->lock);
2384 return alloced;
2385}
2386
2387#ifdef CONFIG_NUMA
2388/*
2389 * Called from the vmstat counter updater to drain pagesets of this
2390 * currently executing processor on remote nodes after they have
2391 * expired.
2392 *
2393 * Note that this function must be called with the thread pinned to
2394 * a single processor.
2395 */
2396void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2397{
2398 unsigned long flags;
2399 int to_drain, batch;
2400
2401 local_irq_save(flags);
2402 batch = READ_ONCE(pcp->batch);
2403 to_drain = min(pcp->count, batch);
2404 if (to_drain > 0) {
2405 free_pcppages_bulk(zone, to_drain, pcp);
2406 pcp->count -= to_drain;
2407 }
2408 local_irq_restore(flags);
2409}
2410#endif
2411
2412/*
2413 * Drain pcplists of the indicated processor and zone.
2414 *
2415 * The processor must either be the current processor and the
2416 * thread pinned to the current processor or a processor that
2417 * is not online.
2418 */
2419static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2420{
2421 unsigned long flags;
2422 struct per_cpu_pageset *pset;
2423 struct per_cpu_pages *pcp;
2424
2425 local_irq_save(flags);
2426 pset = per_cpu_ptr(zone->pageset, cpu);
2427
2428 pcp = &pset->pcp;
2429 if (pcp->count) {
2430 free_pcppages_bulk(zone, pcp->count, pcp);
2431 pcp->count = 0;
2432 }
2433 local_irq_restore(flags);
2434}
2435
2436/*
2437 * Drain pcplists of all zones on the indicated processor.
2438 *
2439 * The processor must either be the current processor and the
2440 * thread pinned to the current processor or a processor that
2441 * is not online.
2442 */
2443static void drain_pages(unsigned int cpu)
2444{
2445 struct zone *zone;
2446
2447 for_each_populated_zone(zone) {
2448 drain_pages_zone(cpu, zone);
2449 }
2450}
2451
2452/*
2453 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2454 *
2455 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2456 * the single zone's pages.
2457 */
2458void drain_local_pages(struct zone *zone)
2459{
2460 int cpu = smp_processor_id();
2461
2462 if (zone)
2463 drain_pages_zone(cpu, zone);
2464 else
2465 drain_pages(cpu);
2466}
2467
2468static void drain_local_pages_wq(struct work_struct *work)
2469{
2470 /*
2471 * drain_all_pages doesn't use proper cpu hotplug protection so
2472 * we can race with cpu offline when the WQ can move this from
2473 * a cpu pinned worker to an unbound one. We can operate on a different
2474 * cpu which is allright but we also have to make sure to not move to
2475 * a different one.
2476 */
2477 preempt_disable();
2478 drain_local_pages(NULL);
2479 preempt_enable();
2480}
2481
2482/*
2483 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2484 *
2485 * When zone parameter is non-NULL, spill just the single zone's pages.
2486 *
2487 * Note that this can be extremely slow as the draining happens in a workqueue.
2488 */
2489void drain_all_pages(struct zone *zone)
2490{
2491 int cpu;
2492
2493 /*
2494 * Allocate in the BSS so we wont require allocation in
2495 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2496 */
2497 static cpumask_t cpus_with_pcps;
2498
2499 /*
2500 * Make sure nobody triggers this path before mm_percpu_wq is fully
2501 * initialized.
2502 */
2503 if (WARN_ON_ONCE(!mm_percpu_wq))
2504 return;
2505
2506 /*
2507 * Do not drain if one is already in progress unless it's specific to
2508 * a zone. Such callers are primarily CMA and memory hotplug and need
2509 * the drain to be complete when the call returns.
2510 */
2511 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2512 if (!zone)
2513 return;
2514 mutex_lock(&pcpu_drain_mutex);
2515 }
2516
2517 /*
2518 * We don't care about racing with CPU hotplug event
2519 * as offline notification will cause the notified
2520 * cpu to drain that CPU pcps and on_each_cpu_mask
2521 * disables preemption as part of its processing
2522 */
2523 for_each_online_cpu(cpu) {
2524 struct per_cpu_pageset *pcp;
2525 struct zone *z;
2526 bool has_pcps = false;
2527
2528 if (zone) {
2529 pcp = per_cpu_ptr(zone->pageset, cpu);
2530 if (pcp->pcp.count)
2531 has_pcps = true;
2532 } else {
2533 for_each_populated_zone(z) {
2534 pcp = per_cpu_ptr(z->pageset, cpu);
2535 if (pcp->pcp.count) {
2536 has_pcps = true;
2537 break;
2538 }
2539 }
2540 }
2541
2542 if (has_pcps)
2543 cpumask_set_cpu(cpu, &cpus_with_pcps);
2544 else
2545 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2546 }
2547
2548 for_each_cpu(cpu, &cpus_with_pcps) {
2549 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2550 INIT_WORK(work, drain_local_pages_wq);
2551 queue_work_on(cpu, mm_percpu_wq, work);
2552 }
2553 for_each_cpu(cpu, &cpus_with_pcps)
2554 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2555
2556 mutex_unlock(&pcpu_drain_mutex);
2557}
2558
2559#ifdef CONFIG_HIBERNATION
2560
2561/*
2562 * Touch the watchdog for every WD_PAGE_COUNT pages.
2563 */
2564#define WD_PAGE_COUNT (128*1024)
2565
2566void mark_free_pages(struct zone *zone)
2567{
2568 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2569 unsigned long flags;
2570 unsigned int order, t;
2571 struct page *page;
2572
2573 if (zone_is_empty(zone))
2574 return;
2575
2576 spin_lock_irqsave(&zone->lock, flags);
2577
2578 max_zone_pfn = zone_end_pfn(zone);
2579 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2580 if (pfn_valid(pfn)) {
2581 page = pfn_to_page(pfn);
2582
2583 if (!--page_count) {
2584 touch_nmi_watchdog();
2585 page_count = WD_PAGE_COUNT;
2586 }
2587
2588 if (page_zone(page) != zone)
2589 continue;
2590
2591 if (!swsusp_page_is_forbidden(page))
2592 swsusp_unset_page_free(page);
2593 }
2594
2595 for_each_migratetype_order(order, t) {
2596 list_for_each_entry(page,
2597 &zone->free_area[order].free_list[t], lru) {
2598 unsigned long i;
2599
2600 pfn = page_to_pfn(page);
2601 for (i = 0; i < (1UL << order); i++) {
2602 if (!--page_count) {
2603 touch_nmi_watchdog();
2604 page_count = WD_PAGE_COUNT;
2605 }
2606 swsusp_set_page_free(pfn_to_page(pfn + i));
2607 }
2608 }
2609 }
2610 spin_unlock_irqrestore(&zone->lock, flags);
2611}
2612#endif /* CONFIG_PM */
2613
2614/*
2615 * Free a 0-order page
2616 * cold == true ? free a cold page : free a hot page
2617 */
2618void free_hot_cold_page(struct page *page, bool cold)
2619{
2620 struct zone *zone = page_zone(page);
2621 struct per_cpu_pages *pcp;
2622 unsigned long flags;
2623 unsigned long pfn = page_to_pfn(page);
2624 int migratetype;
2625
2626 if (!free_pcp_prepare(page))
2627 return;
2628
2629 migratetype = get_pfnblock_migratetype(page, pfn);
2630 set_pcppage_migratetype(page, migratetype);
2631 local_irq_save(flags);
2632 __count_vm_event(PGFREE);
2633
2634 /*
2635 * We only track unmovable, reclaimable and movable on pcp lists.
2636 * Free ISOLATE pages back to the allocator because they are being
2637 * offlined but treat HIGHATOMIC as movable pages so we can get those
2638 * areas back if necessary. Otherwise, we may have to free
2639 * excessively into the page allocator
2640 */
2641 if (migratetype >= MIGRATE_PCPTYPES) {
2642 if (unlikely(is_migrate_isolate(migratetype))) {
2643 free_one_page(zone, page, pfn, 0, migratetype);
2644 goto out;
2645 }
2646 migratetype = MIGRATE_MOVABLE;
2647 }
2648
2649 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2650 if (!cold)
2651 list_add(&page->lru, &pcp->lists[migratetype]);
2652 else
2653 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2654 pcp->count++;
2655 if (pcp->count >= pcp->high) {
2656 unsigned long batch = READ_ONCE(pcp->batch);
2657 free_pcppages_bulk(zone, batch, pcp);
2658 pcp->count -= batch;
2659 }
2660
2661out:
2662 local_irq_restore(flags);
2663}
2664
2665/*
2666 * Free a list of 0-order pages
2667 */
2668void free_hot_cold_page_list(struct list_head *list, bool cold)
2669{
2670 struct page *page, *next;
2671
2672 list_for_each_entry_safe(page, next, list, lru) {
2673 trace_mm_page_free_batched(page, cold);
2674 free_hot_cold_page(page, cold);
2675 }
2676}
2677
2678/*
2679 * split_page takes a non-compound higher-order page, and splits it into
2680 * n (1<<order) sub-pages: page[0..n]
2681 * Each sub-page must be freed individually.
2682 *
2683 * Note: this is probably too low level an operation for use in drivers.
2684 * Please consult with lkml before using this in your driver.
2685 */
2686void split_page(struct page *page, unsigned int order)
2687{
2688 int i;
2689
2690 VM_BUG_ON_PAGE(PageCompound(page), page);
2691 VM_BUG_ON_PAGE(!page_count(page), page);
2692
2693 for (i = 1; i < (1 << order); i++)
2694 set_page_refcounted(page + i);
2695 split_page_owner(page, order);
2696}
2697EXPORT_SYMBOL_GPL(split_page);
2698
2699int __isolate_free_page(struct page *page, unsigned int order)
2700{
2701 unsigned long watermark;
2702 struct zone *zone;
2703 int mt;
2704
2705 BUG_ON(!PageBuddy(page));
2706
2707 zone = page_zone(page);
2708 mt = get_pageblock_migratetype(page);
2709
2710 if (!is_migrate_isolate(mt)) {
2711 /*
2712 * Obey watermarks as if the page was being allocated. We can
2713 * emulate a high-order watermark check with a raised order-0
2714 * watermark, because we already know our high-order page
2715 * exists.
2716 */
2717 watermark = min_wmark_pages(zone) + (1UL << order);
2718 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2719 return 0;
2720
2721 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2722 }
2723
2724 /* Remove page from free list */
2725 list_del(&page->lru);
2726 zone->free_area[order].nr_free--;
2727 rmv_page_order(page);
2728
2729 /*
2730 * Set the pageblock if the isolated page is at least half of a
2731 * pageblock
2732 */
2733 if (order >= pageblock_order - 1) {
2734 struct page *endpage = page + (1 << order) - 1;
2735 for (; page < endpage; page += pageblock_nr_pages) {
2736 int mt = get_pageblock_migratetype(page);
2737 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2738 && !is_migrate_highatomic(mt))
2739 set_pageblock_migratetype(page,
2740 MIGRATE_MOVABLE);
2741 }
2742 }
2743
2744
2745 return 1UL << order;
2746}
2747
2748/*
2749 * Update NUMA hit/miss statistics
2750 *
2751 * Must be called with interrupts disabled.
2752 */
2753static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2754{
2755#ifdef CONFIG_NUMA
2756 enum numa_stat_item local_stat = NUMA_LOCAL;
2757
2758 if (z->node != numa_node_id())
2759 local_stat = NUMA_OTHER;
2760
2761 if (z->node == preferred_zone->node)
2762 __inc_numa_state(z, NUMA_HIT);
2763 else {
2764 __inc_numa_state(z, NUMA_MISS);
2765 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2766 }
2767 __inc_numa_state(z, local_stat);
2768#endif
2769}
2770
2771/* Remove page from the per-cpu list, caller must protect the list */
2772static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2773 bool cold, struct per_cpu_pages *pcp,
2774 struct list_head *list)
2775{
2776 struct page *page;
2777
2778 do {
2779 if (list_empty(list)) {
2780 pcp->count += rmqueue_bulk(zone, 0,
2781 pcp->batch, list,
2782 migratetype, cold);
2783 if (unlikely(list_empty(list)))
2784 return NULL;
2785 }
2786
2787 if (cold)
2788 page = list_last_entry(list, struct page, lru);
2789 else
2790 page = list_first_entry(list, struct page, lru);
2791
2792 list_del(&page->lru);
2793 pcp->count--;
2794 } while (check_new_pcp(page));
2795
2796 return page;
2797}
2798
2799/* Lock and remove page from the per-cpu list */
2800static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2801 struct zone *zone, unsigned int order,
2802 gfp_t gfp_flags, int migratetype)
2803{
2804 struct per_cpu_pages *pcp;
2805 struct list_head *list;
2806 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2807 struct page *page;
2808 unsigned long flags;
2809
2810 local_irq_save(flags);
2811 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2812 list = &pcp->lists[migratetype];
2813 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2814 if (page) {
2815 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2816 zone_statistics(preferred_zone, zone);
2817 }
2818 local_irq_restore(flags);
2819 return page;
2820}
2821
2822/*
2823 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2824 */
2825static inline
2826struct page *rmqueue(struct zone *preferred_zone,
2827 struct zone *zone, unsigned int order,
2828 gfp_t gfp_flags, unsigned int alloc_flags,
2829 int migratetype)
2830{
2831 unsigned long flags;
2832 struct page *page;
2833
2834 if (likely(order == 0)) {
2835 page = rmqueue_pcplist(preferred_zone, zone, order,
2836 gfp_flags, migratetype);
2837 goto out;
2838 }
2839
2840 /*
2841 * We most definitely don't want callers attempting to
2842 * allocate greater than order-1 page units with __GFP_NOFAIL.
2843 */
2844 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2845 spin_lock_irqsave(&zone->lock, flags);
2846
2847 do {
2848 page = NULL;
2849 if (alloc_flags & ALLOC_HARDER) {
2850 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2851 if (page)
2852 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2853 }
2854 if (!page)
2855 page = __rmqueue(zone, order, migratetype);
2856 } while (page && check_new_pages(page, order));
2857 spin_unlock(&zone->lock);
2858 if (!page)
2859 goto failed;
2860 __mod_zone_freepage_state(zone, -(1 << order),
2861 get_pcppage_migratetype(page));
2862
2863 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2864 zone_statistics(preferred_zone, zone);
2865 local_irq_restore(flags);
2866
2867out:
2868 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2869 return page;
2870
2871failed:
2872 local_irq_restore(flags);
2873 return NULL;
2874}
2875
2876#ifdef CONFIG_FAIL_PAGE_ALLOC
2877
2878static struct {
2879 struct fault_attr attr;
2880
2881 bool ignore_gfp_highmem;
2882 bool ignore_gfp_reclaim;
2883 u32 min_order;
2884} fail_page_alloc = {
2885 .attr = FAULT_ATTR_INITIALIZER,
2886 .ignore_gfp_reclaim = true,
2887 .ignore_gfp_highmem = true,
2888 .min_order = 1,
2889};
2890
2891static int __init setup_fail_page_alloc(char *str)
2892{
2893 return setup_fault_attr(&fail_page_alloc.attr, str);
2894}
2895__setup("fail_page_alloc=", setup_fail_page_alloc);
2896
2897static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2898{
2899 if (order < fail_page_alloc.min_order)
2900 return false;
2901 if (gfp_mask & __GFP_NOFAIL)
2902 return false;
2903 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2904 return false;
2905 if (fail_page_alloc.ignore_gfp_reclaim &&
2906 (gfp_mask & __GFP_DIRECT_RECLAIM))
2907 return false;
2908
2909 return should_fail(&fail_page_alloc.attr, 1 << order);
2910}
2911
2912#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2913
2914static int __init fail_page_alloc_debugfs(void)
2915{
2916 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2917 struct dentry *dir;
2918
2919 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2920 &fail_page_alloc.attr);
2921 if (IS_ERR(dir))
2922 return PTR_ERR(dir);
2923
2924 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2925 &fail_page_alloc.ignore_gfp_reclaim))
2926 goto fail;
2927 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2928 &fail_page_alloc.ignore_gfp_highmem))
2929 goto fail;
2930 if (!debugfs_create_u32("min-order", mode, dir,
2931 &fail_page_alloc.min_order))
2932 goto fail;
2933
2934 return 0;
2935fail:
2936 debugfs_remove_recursive(dir);
2937
2938 return -ENOMEM;
2939}
2940
2941late_initcall(fail_page_alloc_debugfs);
2942
2943#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2944
2945#else /* CONFIG_FAIL_PAGE_ALLOC */
2946
2947static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2948{
2949 return false;
2950}
2951
2952#endif /* CONFIG_FAIL_PAGE_ALLOC */
2953
2954/*
2955 * Return true if free base pages are above 'mark'. For high-order checks it
2956 * will return true of the order-0 watermark is reached and there is at least
2957 * one free page of a suitable size. Checking now avoids taking the zone lock
2958 * to check in the allocation paths if no pages are free.
2959 */
2960bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2961 int classzone_idx, unsigned int alloc_flags,
2962 long free_pages)
2963{
2964 long min = mark;
2965 int o;
2966 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
2967
2968 /* free_pages may go negative - that's OK */
2969 free_pages -= (1 << order) - 1;
2970
2971 if (alloc_flags & ALLOC_HIGH)
2972 min -= min / 2;
2973
2974 /*
2975 * If the caller does not have rights to ALLOC_HARDER then subtract
2976 * the high-atomic reserves. This will over-estimate the size of the
2977 * atomic reserve but it avoids a search.
2978 */
2979 if (likely(!alloc_harder)) {
2980 free_pages -= z->nr_reserved_highatomic;
2981 } else {
2982 /*
2983 * OOM victims can try even harder than normal ALLOC_HARDER
2984 * users on the grounds that it's definitely going to be in
2985 * the exit path shortly and free memory. Any allocation it
2986 * makes during the free path will be small and short-lived.
2987 */
2988 if (alloc_flags & ALLOC_OOM)
2989 min -= min / 2;
2990 else
2991 min -= min / 4;
2992 }
2993
2994
2995#ifdef CONFIG_CMA
2996 /* If allocation can't use CMA areas don't use free CMA pages */
2997 if (!(alloc_flags & ALLOC_CMA))
2998 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2999#endif
3000
3001 /*
3002 * Check watermarks for an order-0 allocation request. If these
3003 * are not met, then a high-order request also cannot go ahead
3004 * even if a suitable page happened to be free.
3005 */
3006 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3007 return false;
3008
3009 /* If this is an order-0 request then the watermark is fine */
3010 if (!order)
3011 return true;
3012
3013 /* For a high-order request, check at least one suitable page is free */
3014 for (o = order; o < MAX_ORDER; o++) {
3015 struct free_area *area = &z->free_area[o];
3016 int mt;
3017
3018 if (!area->nr_free)
3019 continue;
3020
3021 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3022 if (!list_empty(&area->free_list[mt]))
3023 return true;
3024 }
3025
3026#ifdef CONFIG_CMA
3027 if ((alloc_flags & ALLOC_CMA) &&
3028 !list_empty(&area->free_list[MIGRATE_CMA])) {
3029 return true;
3030 }
3031#endif
3032 if (alloc_harder &&
3033 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3034 return true;
3035 }
3036 return false;
3037}
3038
3039bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3040 int classzone_idx, unsigned int alloc_flags)
3041{
3042 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3043 zone_page_state(z, NR_FREE_PAGES));
3044}
3045
3046static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3047 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3048{
3049 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3050 long cma_pages = 0;
3051
3052#ifdef CONFIG_CMA
3053 /* If allocation can't use CMA areas don't use free CMA pages */
3054 if (!(alloc_flags & ALLOC_CMA))
3055 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3056#endif
3057
3058 /*
3059 * Fast check for order-0 only. If this fails then the reserves
3060 * need to be calculated. There is a corner case where the check
3061 * passes but only the high-order atomic reserve are free. If
3062 * the caller is !atomic then it'll uselessly search the free
3063 * list. That corner case is then slower but it is harmless.
3064 */
3065 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3066 return true;
3067
3068 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3069 free_pages);
3070}
3071
3072bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3073 unsigned long mark, int classzone_idx)
3074{
3075 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3076
3077 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3078 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3079
3080 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3081 free_pages);
3082}
3083
3084#ifdef CONFIG_NUMA
3085static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3086{
3087 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3088 RECLAIM_DISTANCE;
3089}
3090#else /* CONFIG_NUMA */
3091static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3092{
3093 return true;
3094}
3095#endif /* CONFIG_NUMA */
3096
3097/*
3098 * get_page_from_freelist goes through the zonelist trying to allocate
3099 * a page.
3100 */
3101static struct page *
3102get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3103 const struct alloc_context *ac)
3104{
3105 struct zoneref *z = ac->preferred_zoneref;
3106 struct zone *zone;
3107 struct pglist_data *last_pgdat_dirty_limit = NULL;
3108
3109 /*
3110 * Scan zonelist, looking for a zone with enough free.
3111 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3112 */
3113 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3114 ac->nodemask) {
3115 struct page *page;
3116 unsigned long mark;
3117
3118 if (cpusets_enabled() &&
3119 (alloc_flags & ALLOC_CPUSET) &&
3120 !__cpuset_zone_allowed(zone, gfp_mask))
3121 continue;
3122 /*
3123 * When allocating a page cache page for writing, we
3124 * want to get it from a node that is within its dirty
3125 * limit, such that no single node holds more than its
3126 * proportional share of globally allowed dirty pages.
3127 * The dirty limits take into account the node's
3128 * lowmem reserves and high watermark so that kswapd
3129 * should be able to balance it without having to
3130 * write pages from its LRU list.
3131 *
3132 * XXX: For now, allow allocations to potentially
3133 * exceed the per-node dirty limit in the slowpath
3134 * (spread_dirty_pages unset) before going into reclaim,
3135 * which is important when on a NUMA setup the allowed
3136 * nodes are together not big enough to reach the
3137 * global limit. The proper fix for these situations
3138 * will require awareness of nodes in the
3139 * dirty-throttling and the flusher threads.
3140 */
3141 if (ac->spread_dirty_pages) {
3142 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3143 continue;
3144
3145 if (!node_dirty_ok(zone->zone_pgdat)) {
3146 last_pgdat_dirty_limit = zone->zone_pgdat;
3147 continue;
3148 }
3149 }
3150
3151 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3152 if (!zone_watermark_fast(zone, order, mark,
3153 ac_classzone_idx(ac), alloc_flags)) {
3154 int ret;
3155
3156 /* Checked here to keep the fast path fast */
3157 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3158 if (alloc_flags & ALLOC_NO_WATERMARKS)
3159 goto try_this_zone;
3160
3161 if (node_reclaim_mode == 0 ||
3162 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3163 continue;
3164
3165 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3166 switch (ret) {
3167 case NODE_RECLAIM_NOSCAN:
3168 /* did not scan */
3169 continue;
3170 case NODE_RECLAIM_FULL:
3171 /* scanned but unreclaimable */
3172 continue;
3173 default:
3174 /* did we reclaim enough */
3175 if (zone_watermark_ok(zone, order, mark,
3176 ac_classzone_idx(ac), alloc_flags))
3177 goto try_this_zone;
3178
3179 continue;
3180 }
3181 }
3182
3183try_this_zone:
3184 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3185 gfp_mask, alloc_flags, ac->migratetype);
3186 if (page) {
3187 prep_new_page(page, order, gfp_mask, alloc_flags);
3188
3189 /*
3190 * If this is a high-order atomic allocation then check
3191 * if the pageblock should be reserved for the future
3192 */
3193 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3194 reserve_highatomic_pageblock(page, zone, order);
3195
3196 return page;
3197 }
3198 }
3199
3200 return NULL;
3201}
3202
3203/*
3204 * Large machines with many possible nodes should not always dump per-node
3205 * meminfo in irq context.
3206 */
3207static inline bool should_suppress_show_mem(void)
3208{
3209 bool ret = false;
3210
3211#if NODES_SHIFT > 8
3212 ret = in_interrupt();
3213#endif
3214 return ret;
3215}
3216
3217static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3218{
3219 unsigned int filter = SHOW_MEM_FILTER_NODES;
3220 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3221
3222 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3223 return;
3224
3225 /*
3226 * This documents exceptions given to allocations in certain
3227 * contexts that are allowed to allocate outside current's set
3228 * of allowed nodes.
3229 */
3230 if (!(gfp_mask & __GFP_NOMEMALLOC))
3231 if (tsk_is_oom_victim(current) ||
3232 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3233 filter &= ~SHOW_MEM_FILTER_NODES;
3234 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3235 filter &= ~SHOW_MEM_FILTER_NODES;
3236
3237 show_mem(filter, nodemask);
3238}
3239
3240void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3241{
3242 struct va_format vaf;
3243 va_list args;
3244 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3245 DEFAULT_RATELIMIT_BURST);
3246
3247 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3248 return;
3249
3250 pr_warn("%s: ", current->comm);
3251
3252 va_start(args, fmt);
3253 vaf.fmt = fmt;
3254 vaf.va = &args;
3255 pr_cont("%pV", &vaf);
3256 va_end(args);
3257
3258 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3259 if (nodemask)
3260 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3261 else
3262 pr_cont("(null)\n");
3263
3264 cpuset_print_current_mems_allowed();
3265
3266 dump_stack();
3267 warn_alloc_show_mem(gfp_mask, nodemask);
3268}
3269
3270static inline struct page *
3271__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3272 unsigned int alloc_flags,
3273 const struct alloc_context *ac)
3274{
3275 struct page *page;
3276
3277 page = get_page_from_freelist(gfp_mask, order,
3278 alloc_flags|ALLOC_CPUSET, ac);
3279 /*
3280 * fallback to ignore cpuset restriction if our nodes
3281 * are depleted
3282 */
3283 if (!page)
3284 page = get_page_from_freelist(gfp_mask, order,
3285 alloc_flags, ac);
3286
3287 return page;
3288}
3289
3290static inline struct page *
3291__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3292 const struct alloc_context *ac, unsigned long *did_some_progress)
3293{
3294 struct oom_control oc = {
3295 .zonelist = ac->zonelist,
3296 .nodemask = ac->nodemask,
3297 .memcg = NULL,
3298 .gfp_mask = gfp_mask,
3299 .order = order,
3300 };
3301 struct page *page;
3302
3303 *did_some_progress = 0;
3304
3305 /*
3306 * Acquire the oom lock. If that fails, somebody else is
3307 * making progress for us.
3308 */
3309 if (!mutex_trylock(&oom_lock)) {
3310 *did_some_progress = 1;
3311 schedule_timeout_uninterruptible(1);
3312 return NULL;
3313 }
3314
3315 /*
3316 * Go through the zonelist yet one more time, keep very high watermark
3317 * here, this is only to catch a parallel oom killing, we must fail if
3318 * we're still under heavy pressure. But make sure that this reclaim
3319 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3320 * allocation which will never fail due to oom_lock already held.
3321 */
3322 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3323 ~__GFP_DIRECT_RECLAIM, order,
3324 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3325 if (page)
3326 goto out;
3327
3328 /* Coredumps can quickly deplete all memory reserves */
3329 if (current->flags & PF_DUMPCORE)
3330 goto out;
3331 /* The OOM killer will not help higher order allocs */
3332 if (order > PAGE_ALLOC_COSTLY_ORDER)
3333 goto out;
3334 /*
3335 * We have already exhausted all our reclaim opportunities without any
3336 * success so it is time to admit defeat. We will skip the OOM killer
3337 * because it is very likely that the caller has a more reasonable
3338 * fallback than shooting a random task.
3339 */
3340 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3341 goto out;
3342 /* The OOM killer does not needlessly kill tasks for lowmem */
3343 if (ac->high_zoneidx < ZONE_NORMAL)
3344 goto out;
3345 if (pm_suspended_storage())
3346 goto out;
3347 /*
3348 * XXX: GFP_NOFS allocations should rather fail than rely on
3349 * other request to make a forward progress.
3350 * We are in an unfortunate situation where out_of_memory cannot
3351 * do much for this context but let's try it to at least get
3352 * access to memory reserved if the current task is killed (see
3353 * out_of_memory). Once filesystems are ready to handle allocation
3354 * failures more gracefully we should just bail out here.
3355 */
3356
3357 /* The OOM killer may not free memory on a specific node */
3358 if (gfp_mask & __GFP_THISNODE)
3359 goto out;
3360
3361 /* Exhausted what can be done so it's blamo time */
3362 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3363 *did_some_progress = 1;
3364
3365 /*
3366 * Help non-failing allocations by giving them access to memory
3367 * reserves
3368 */
3369 if (gfp_mask & __GFP_NOFAIL)
3370 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3371 ALLOC_NO_WATERMARKS, ac);
3372 }
3373out:
3374 mutex_unlock(&oom_lock);
3375 return page;
3376}
3377
3378/*
3379 * Maximum number of compaction retries wit a progress before OOM
3380 * killer is consider as the only way to move forward.
3381 */
3382#define MAX_COMPACT_RETRIES 16
3383
3384#ifdef CONFIG_COMPACTION
3385/* Try memory compaction for high-order allocations before reclaim */
3386static struct page *
3387__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3388 unsigned int alloc_flags, const struct alloc_context *ac,
3389 enum compact_priority prio, enum compact_result *compact_result)
3390{
3391 struct page *page;
3392 unsigned int noreclaim_flag;
3393
3394 if (!order)
3395 return NULL;
3396
3397 noreclaim_flag = memalloc_noreclaim_save();
3398 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3399 prio);
3400 memalloc_noreclaim_restore(noreclaim_flag);
3401
3402 if (*compact_result <= COMPACT_INACTIVE)
3403 return NULL;
3404
3405 /*
3406 * At least in one zone compaction wasn't deferred or skipped, so let's
3407 * count a compaction stall
3408 */
3409 count_vm_event(COMPACTSTALL);
3410
3411 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3412
3413 if (page) {
3414 struct zone *zone = page_zone(page);
3415
3416 zone->compact_blockskip_flush = false;
3417 compaction_defer_reset(zone, order, true);
3418 count_vm_event(COMPACTSUCCESS);
3419 return page;
3420 }
3421
3422 /*
3423 * It's bad if compaction run occurs and fails. The most likely reason
3424 * is that pages exist, but not enough to satisfy watermarks.
3425 */
3426 count_vm_event(COMPACTFAIL);
3427
3428 cond_resched();
3429
3430 return NULL;
3431}
3432
3433static inline bool
3434should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3435 enum compact_result compact_result,
3436 enum compact_priority *compact_priority,
3437 int *compaction_retries)
3438{
3439 int max_retries = MAX_COMPACT_RETRIES;
3440 int min_priority;
3441 bool ret = false;
3442 int retries = *compaction_retries;
3443 enum compact_priority priority = *compact_priority;
3444
3445 if (!order)
3446 return false;
3447
3448 if (compaction_made_progress(compact_result))
3449 (*compaction_retries)++;
3450
3451 /*
3452 * compaction considers all the zone as desperately out of memory
3453 * so it doesn't really make much sense to retry except when the
3454 * failure could be caused by insufficient priority
3455 */
3456 if (compaction_failed(compact_result))
3457 goto check_priority;
3458
3459 /*
3460 * make sure the compaction wasn't deferred or didn't bail out early
3461 * due to locks contention before we declare that we should give up.
3462 * But do not retry if the given zonelist is not suitable for
3463 * compaction.
3464 */
3465 if (compaction_withdrawn(compact_result)) {
3466 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3467 goto out;
3468 }
3469
3470 /*
3471 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3472 * costly ones because they are de facto nofail and invoke OOM
3473 * killer to move on while costly can fail and users are ready
3474 * to cope with that. 1/4 retries is rather arbitrary but we
3475 * would need much more detailed feedback from compaction to
3476 * make a better decision.
3477 */
3478 if (order > PAGE_ALLOC_COSTLY_ORDER)
3479 max_retries /= 4;
3480 if (*compaction_retries <= max_retries) {
3481 ret = true;
3482 goto out;
3483 }
3484
3485 /*
3486 * Make sure there are attempts at the highest priority if we exhausted
3487 * all retries or failed at the lower priorities.
3488 */
3489check_priority:
3490 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3491 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3492
3493 if (*compact_priority > min_priority) {
3494 (*compact_priority)--;
3495 *compaction_retries = 0;
3496 ret = true;
3497 }
3498out:
3499 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3500 return ret;
3501}
3502#else
3503static inline struct page *
3504__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3505 unsigned int alloc_flags, const struct alloc_context *ac,
3506 enum compact_priority prio, enum compact_result *compact_result)
3507{
3508 *compact_result = COMPACT_SKIPPED;
3509 return NULL;
3510}
3511
3512static inline bool
3513should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3514 enum compact_result compact_result,
3515 enum compact_priority *compact_priority,
3516 int *compaction_retries)
3517{
3518 struct zone *zone;
3519 struct zoneref *z;
3520
3521 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3522 return false;
3523
3524 /*
3525 * There are setups with compaction disabled which would prefer to loop
3526 * inside the allocator rather than hit the oom killer prematurely.
3527 * Let's give them a good hope and keep retrying while the order-0
3528 * watermarks are OK.
3529 */
3530 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3531 ac->nodemask) {
3532 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3533 ac_classzone_idx(ac), alloc_flags))
3534 return true;
3535 }
3536 return false;
3537}
3538#endif /* CONFIG_COMPACTION */
3539
3540#ifdef CONFIG_LOCKDEP
3541struct lockdep_map __fs_reclaim_map =
3542 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3543
3544static bool __need_fs_reclaim(gfp_t gfp_mask)
3545{
3546 gfp_mask = current_gfp_context(gfp_mask);
3547
3548 /* no reclaim without waiting on it */
3549 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3550 return false;
3551
3552 /* this guy won't enter reclaim */
3553 if (current->flags & PF_MEMALLOC)
3554 return false;
3555
3556 /* We're only interested __GFP_FS allocations for now */
3557 if (!(gfp_mask & __GFP_FS))
3558 return false;
3559
3560 if (gfp_mask & __GFP_NOLOCKDEP)
3561 return false;
3562
3563 return true;
3564}
3565
3566void fs_reclaim_acquire(gfp_t gfp_mask)
3567{
3568 if (__need_fs_reclaim(gfp_mask))
3569 lock_map_acquire(&__fs_reclaim_map);
3570}
3571EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3572
3573void fs_reclaim_release(gfp_t gfp_mask)
3574{
3575 if (__need_fs_reclaim(gfp_mask))
3576 lock_map_release(&__fs_reclaim_map);
3577}
3578EXPORT_SYMBOL_GPL(fs_reclaim_release);
3579#endif
3580
3581/* Perform direct synchronous page reclaim */
3582static int
3583__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3584 const struct alloc_context *ac)
3585{
3586 struct reclaim_state reclaim_state;
3587 int progress;
3588 unsigned int noreclaim_flag;
3589
3590 cond_resched();
3591
3592 /* We now go into synchronous reclaim */
3593 cpuset_memory_pressure_bump();
3594 noreclaim_flag = memalloc_noreclaim_save();
3595 fs_reclaim_acquire(gfp_mask);
3596 reclaim_state.reclaimed_slab = 0;
3597 current->reclaim_state = &reclaim_state;
3598
3599 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3600 ac->nodemask);
3601
3602 current->reclaim_state = NULL;
3603 fs_reclaim_release(gfp_mask);
3604 memalloc_noreclaim_restore(noreclaim_flag);
3605
3606 cond_resched();
3607
3608 return progress;
3609}
3610
3611/* The really slow allocator path where we enter direct reclaim */
3612static inline struct page *
3613__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3614 unsigned int alloc_flags, const struct alloc_context *ac,
3615 unsigned long *did_some_progress)
3616{
3617 struct page *page = NULL;
3618 bool drained = false;
3619
3620 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3621 if (unlikely(!(*did_some_progress)))
3622 return NULL;
3623
3624retry:
3625 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3626
3627 /*
3628 * If an allocation failed after direct reclaim, it could be because
3629 * pages are pinned on the per-cpu lists or in high alloc reserves.
3630 * Shrink them them and try again
3631 */
3632 if (!page && !drained) {
3633 unreserve_highatomic_pageblock(ac, false);
3634 drain_all_pages(NULL);
3635 drained = true;
3636 goto retry;
3637 }
3638
3639 return page;
3640}
3641
3642static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3643{
3644 struct zoneref *z;
3645 struct zone *zone;
3646 pg_data_t *last_pgdat = NULL;
3647
3648 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3649 ac->high_zoneidx, ac->nodemask) {
3650 if (last_pgdat != zone->zone_pgdat)
3651 wakeup_kswapd(zone, order, ac->high_zoneidx);
3652 last_pgdat = zone->zone_pgdat;
3653 }
3654}
3655
3656static inline unsigned int
3657gfp_to_alloc_flags(gfp_t gfp_mask)
3658{
3659 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3660
3661 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3662 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3663
3664 /*
3665 * The caller may dip into page reserves a bit more if the caller
3666 * cannot run direct reclaim, or if the caller has realtime scheduling
3667 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3668 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3669 */
3670 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3671
3672 if (gfp_mask & __GFP_ATOMIC) {
3673 /*
3674 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3675 * if it can't schedule.
3676 */
3677 if (!(gfp_mask & __GFP_NOMEMALLOC))
3678 alloc_flags |= ALLOC_HARDER;
3679 /*
3680 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3681 * comment for __cpuset_node_allowed().
3682 */
3683 alloc_flags &= ~ALLOC_CPUSET;
3684 } else if (unlikely(rt_task(current)) && !in_interrupt())
3685 alloc_flags |= ALLOC_HARDER;
3686
3687#ifdef CONFIG_CMA
3688 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3689 alloc_flags |= ALLOC_CMA;
3690#endif
3691 return alloc_flags;
3692}
3693
3694static bool oom_reserves_allowed(struct task_struct *tsk)
3695{
3696 if (!tsk_is_oom_victim(tsk))
3697 return false;
3698
3699 /*
3700 * !MMU doesn't have oom reaper so give access to memory reserves
3701 * only to the thread with TIF_MEMDIE set
3702 */
3703 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3704 return false;
3705
3706 return true;
3707}
3708
3709/*
3710 * Distinguish requests which really need access to full memory
3711 * reserves from oom victims which can live with a portion of it
3712 */
3713static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3714{
3715 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3716 return 0;
3717 if (gfp_mask & __GFP_MEMALLOC)
3718 return ALLOC_NO_WATERMARKS;
3719 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3720 return ALLOC_NO_WATERMARKS;
3721 if (!in_interrupt()) {
3722 if (current->flags & PF_MEMALLOC)
3723 return ALLOC_NO_WATERMARKS;
3724 else if (oom_reserves_allowed(current))
3725 return ALLOC_OOM;
3726 }
3727
3728 return 0;
3729}
3730
3731bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3732{
3733 return !!__gfp_pfmemalloc_flags(gfp_mask);
3734}
3735
3736/*
3737 * Checks whether it makes sense to retry the reclaim to make a forward progress
3738 * for the given allocation request.
3739 *
3740 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3741 * without success, or when we couldn't even meet the watermark if we
3742 * reclaimed all remaining pages on the LRU lists.
3743 *
3744 * Returns true if a retry is viable or false to enter the oom path.
3745 */
3746static inline bool
3747should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3748 struct alloc_context *ac, int alloc_flags,
3749 bool did_some_progress, int *no_progress_loops)
3750{
3751 struct zone *zone;
3752 struct zoneref *z;
3753
3754 /*
3755 * Costly allocations might have made a progress but this doesn't mean
3756 * their order will become available due to high fragmentation so
3757 * always increment the no progress counter for them
3758 */
3759 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3760 *no_progress_loops = 0;
3761 else
3762 (*no_progress_loops)++;
3763
3764 /*
3765 * Make sure we converge to OOM if we cannot make any progress
3766 * several times in the row.
3767 */
3768 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3769 /* Before OOM, exhaust highatomic_reserve */
3770 return unreserve_highatomic_pageblock(ac, true);
3771 }
3772
3773 /*
3774 * Keep reclaiming pages while there is a chance this will lead
3775 * somewhere. If none of the target zones can satisfy our allocation
3776 * request even if all reclaimable pages are considered then we are
3777 * screwed and have to go OOM.
3778 */
3779 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3780 ac->nodemask) {
3781 unsigned long available;
3782 unsigned long reclaimable;
3783 unsigned long min_wmark = min_wmark_pages(zone);
3784 bool wmark;
3785
3786 available = reclaimable = zone_reclaimable_pages(zone);
3787 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3788
3789 /*
3790 * Would the allocation succeed if we reclaimed all
3791 * reclaimable pages?
3792 */
3793 wmark = __zone_watermark_ok(zone, order, min_wmark,
3794 ac_classzone_idx(ac), alloc_flags, available);
3795 trace_reclaim_retry_zone(z, order, reclaimable,
3796 available, min_wmark, *no_progress_loops, wmark);
3797 if (wmark) {
3798 /*
3799 * If we didn't make any progress and have a lot of
3800 * dirty + writeback pages then we should wait for
3801 * an IO to complete to slow down the reclaim and
3802 * prevent from pre mature OOM
3803 */
3804 if (!did_some_progress) {
3805 unsigned long write_pending;
3806
3807 write_pending = zone_page_state_snapshot(zone,
3808 NR_ZONE_WRITE_PENDING);
3809
3810 if (2 * write_pending > reclaimable) {
3811 congestion_wait(BLK_RW_ASYNC, HZ/10);
3812 return true;
3813 }
3814 }
3815
3816 /*
3817 * Memory allocation/reclaim might be called from a WQ
3818 * context and the current implementation of the WQ
3819 * concurrency control doesn't recognize that
3820 * a particular WQ is congested if the worker thread is
3821 * looping without ever sleeping. Therefore we have to
3822 * do a short sleep here rather than calling
3823 * cond_resched().
3824 */
3825 if (current->flags & PF_WQ_WORKER)
3826 schedule_timeout_uninterruptible(1);
3827 else
3828 cond_resched();
3829
3830 return true;
3831 }
3832 }
3833
3834 return false;
3835}
3836
3837static inline bool
3838check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3839{
3840 /*
3841 * It's possible that cpuset's mems_allowed and the nodemask from
3842 * mempolicy don't intersect. This should be normally dealt with by
3843 * policy_nodemask(), but it's possible to race with cpuset update in
3844 * such a way the check therein was true, and then it became false
3845 * before we got our cpuset_mems_cookie here.
3846 * This assumes that for all allocations, ac->nodemask can come only
3847 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3848 * when it does not intersect with the cpuset restrictions) or the
3849 * caller can deal with a violated nodemask.
3850 */
3851 if (cpusets_enabled() && ac->nodemask &&
3852 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3853 ac->nodemask = NULL;
3854 return true;
3855 }
3856
3857 /*
3858 * When updating a task's mems_allowed or mempolicy nodemask, it is
3859 * possible to race with parallel threads in such a way that our
3860 * allocation can fail while the mask is being updated. If we are about
3861 * to fail, check if the cpuset changed during allocation and if so,
3862 * retry.
3863 */
3864 if (read_mems_allowed_retry(cpuset_mems_cookie))
3865 return true;
3866
3867 return false;
3868}
3869
3870static inline struct page *
3871__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3872 struct alloc_context *ac)
3873{
3874 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3875 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3876 struct page *page = NULL;
3877 unsigned int alloc_flags;
3878 unsigned long did_some_progress;
3879 enum compact_priority compact_priority;
3880 enum compact_result compact_result;
3881 int compaction_retries;
3882 int no_progress_loops;
3883 unsigned int cpuset_mems_cookie;
3884 int reserve_flags;
3885
3886 /*
3887 * We also sanity check to catch abuse of atomic reserves being used by
3888 * callers that are not in atomic context.
3889 */
3890 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3891 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3892 gfp_mask &= ~__GFP_ATOMIC;
3893
3894retry_cpuset:
3895 compaction_retries = 0;
3896 no_progress_loops = 0;
3897 compact_priority = DEF_COMPACT_PRIORITY;
3898 cpuset_mems_cookie = read_mems_allowed_begin();
3899
3900 /*
3901 * The fast path uses conservative alloc_flags to succeed only until
3902 * kswapd needs to be woken up, and to avoid the cost of setting up
3903 * alloc_flags precisely. So we do that now.
3904 */
3905 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3906
3907 /*
3908 * We need to recalculate the starting point for the zonelist iterator
3909 * because we might have used different nodemask in the fast path, or
3910 * there was a cpuset modification and we are retrying - otherwise we
3911 * could end up iterating over non-eligible zones endlessly.
3912 */
3913 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3914 ac->high_zoneidx, ac->nodemask);
3915 if (!ac->preferred_zoneref->zone)
3916 goto nopage;
3917
3918 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3919 wake_all_kswapds(order, ac);
3920
3921 /*
3922 * The adjusted alloc_flags might result in immediate success, so try
3923 * that first
3924 */
3925 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3926 if (page)
3927 goto got_pg;
3928
3929 /*
3930 * For costly allocations, try direct compaction first, as it's likely
3931 * that we have enough base pages and don't need to reclaim. For non-
3932 * movable high-order allocations, do that as well, as compaction will
3933 * try prevent permanent fragmentation by migrating from blocks of the
3934 * same migratetype.
3935 * Don't try this for allocations that are allowed to ignore
3936 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3937 */
3938 if (can_direct_reclaim &&
3939 (costly_order ||
3940 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3941 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3942 page = __alloc_pages_direct_compact(gfp_mask, order,
3943 alloc_flags, ac,
3944 INIT_COMPACT_PRIORITY,
3945 &compact_result);
3946 if (page)
3947 goto got_pg;
3948
3949 /*
3950 * Checks for costly allocations with __GFP_NORETRY, which
3951 * includes THP page fault allocations
3952 */
3953 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3954 /*
3955 * If compaction is deferred for high-order allocations,
3956 * it is because sync compaction recently failed. If
3957 * this is the case and the caller requested a THP
3958 * allocation, we do not want to heavily disrupt the
3959 * system, so we fail the allocation instead of entering
3960 * direct reclaim.
3961 */
3962 if (compact_result == COMPACT_DEFERRED)
3963 goto nopage;
3964
3965 /*
3966 * Looks like reclaim/compaction is worth trying, but
3967 * sync compaction could be very expensive, so keep
3968 * using async compaction.
3969 */
3970 compact_priority = INIT_COMPACT_PRIORITY;
3971 }
3972 }
3973
3974retry:
3975 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3976 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3977 wake_all_kswapds(order, ac);
3978
3979 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
3980 if (reserve_flags)
3981 alloc_flags = reserve_flags;
3982
3983 /*
3984 * Reset the zonelist iterators if memory policies can be ignored.
3985 * These allocations are high priority and system rather than user
3986 * orientated.
3987 */
3988 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
3989 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3990 ac->high_zoneidx, ac->nodemask);
3991 }
3992
3993 /* Attempt with potentially adjusted zonelist and alloc_flags */
3994 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3995 if (page)
3996 goto got_pg;
3997
3998 /* Caller is not willing to reclaim, we can't balance anything */
3999 if (!can_direct_reclaim)
4000 goto nopage;
4001
4002 /* Avoid recursion of direct reclaim */
4003 if (current->flags & PF_MEMALLOC)
4004 goto nopage;
4005
4006 /* Try direct reclaim and then allocating */
4007 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4008 &did_some_progress);
4009 if (page)
4010 goto got_pg;
4011
4012 /* Try direct compaction and then allocating */
4013 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4014 compact_priority, &compact_result);
4015 if (page)
4016 goto got_pg;
4017
4018 /* Do not loop if specifically requested */
4019 if (gfp_mask & __GFP_NORETRY)
4020 goto nopage;
4021
4022 /*
4023 * Do not retry costly high order allocations unless they are
4024 * __GFP_RETRY_MAYFAIL
4025 */
4026 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4027 goto nopage;
4028
4029 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4030 did_some_progress > 0, &no_progress_loops))
4031 goto retry;
4032
4033 /*
4034 * It doesn't make any sense to retry for the compaction if the order-0
4035 * reclaim is not able to make any progress because the current
4036 * implementation of the compaction depends on the sufficient amount
4037 * of free memory (see __compaction_suitable)
4038 */
4039 if (did_some_progress > 0 &&
4040 should_compact_retry(ac, order, alloc_flags,
4041 compact_result, &compact_priority,
4042 &compaction_retries))
4043 goto retry;
4044
4045
4046 /* Deal with possible cpuset update races before we start OOM killing */
4047 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4048 goto retry_cpuset;
4049
4050 /* Reclaim has failed us, start killing things */
4051 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4052 if (page)
4053 goto got_pg;
4054
4055 /* Avoid allocations with no watermarks from looping endlessly */
4056 if (tsk_is_oom_victim(current) &&
4057 (alloc_flags == ALLOC_OOM ||
4058 (gfp_mask & __GFP_NOMEMALLOC)))
4059 goto nopage;
4060
4061 /* Retry as long as the OOM killer is making progress */
4062 if (did_some_progress) {
4063 no_progress_loops = 0;
4064 goto retry;
4065 }
4066
4067nopage:
4068 /* Deal with possible cpuset update races before we fail */
4069 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4070 goto retry_cpuset;
4071
4072 /*
4073 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4074 * we always retry
4075 */
4076 if (gfp_mask & __GFP_NOFAIL) {
4077 /*
4078 * All existing users of the __GFP_NOFAIL are blockable, so warn
4079 * of any new users that actually require GFP_NOWAIT
4080 */
4081 if (WARN_ON_ONCE(!can_direct_reclaim))
4082 goto fail;
4083
4084 /*
4085 * PF_MEMALLOC request from this context is rather bizarre
4086 * because we cannot reclaim anything and only can loop waiting
4087 * for somebody to do a work for us
4088 */
4089 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4090
4091 /*
4092 * non failing costly orders are a hard requirement which we
4093 * are not prepared for much so let's warn about these users
4094 * so that we can identify them and convert them to something
4095 * else.
4096 */
4097 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4098
4099 /*
4100 * Help non-failing allocations by giving them access to memory
4101 * reserves but do not use ALLOC_NO_WATERMARKS because this
4102 * could deplete whole memory reserves which would just make
4103 * the situation worse
4104 */
4105 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4106 if (page)
4107 goto got_pg;
4108
4109 cond_resched();
4110 goto retry;
4111 }
4112fail:
4113 warn_alloc(gfp_mask, ac->nodemask,
4114 "page allocation failure: order:%u", order);
4115got_pg:
4116 return page;
4117}
4118
4119static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4120 int preferred_nid, nodemask_t *nodemask,
4121 struct alloc_context *ac, gfp_t *alloc_mask,
4122 unsigned int *alloc_flags)
4123{
4124 ac->high_zoneidx = gfp_zone(gfp_mask);
4125 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4126 ac->nodemask = nodemask;
4127 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4128
4129 if (cpusets_enabled()) {
4130 *alloc_mask |= __GFP_HARDWALL;
4131 if (!ac->nodemask)
4132 ac->nodemask = &cpuset_current_mems_allowed;
4133 else
4134 *alloc_flags |= ALLOC_CPUSET;
4135 }
4136
4137 fs_reclaim_acquire(gfp_mask);
4138 fs_reclaim_release(gfp_mask);
4139
4140 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4141
4142 if (should_fail_alloc_page(gfp_mask, order))
4143 return false;
4144
4145 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4146 *alloc_flags |= ALLOC_CMA;
4147
4148 return true;
4149}
4150
4151/* Determine whether to spread dirty pages and what the first usable zone */
4152static inline void finalise_ac(gfp_t gfp_mask,
4153 unsigned int order, struct alloc_context *ac)
4154{
4155 /* Dirty zone balancing only done in the fast path */
4156 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4157
4158 /*
4159 * The preferred zone is used for statistics but crucially it is
4160 * also used as the starting point for the zonelist iterator. It
4161 * may get reset for allocations that ignore memory policies.
4162 */
4163 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4164 ac->high_zoneidx, ac->nodemask);
4165}
4166
4167/*
4168 * This is the 'heart' of the zoned buddy allocator.
4169 */
4170struct page *
4171__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4172 nodemask_t *nodemask)
4173{
4174 struct page *page;
4175 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4176 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4177 struct alloc_context ac = { };
4178
4179 /*
4180 * There are several places where we assume that the order value is sane
4181 * so bail out early if the request is out of bound.
4182 */
4183 if (unlikely(order >= MAX_ORDER)) {
4184 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4185 return NULL;
4186 }
4187
4188 gfp_mask &= gfp_allowed_mask;
4189 alloc_mask = gfp_mask;
4190 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4191 return NULL;
4192
4193 finalise_ac(gfp_mask, order, &ac);
4194
4195 /* First allocation attempt */
4196 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4197 if (likely(page))
4198 goto out;
4199
4200 /*
4201 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4202 * resp. GFP_NOIO which has to be inherited for all allocation requests
4203 * from a particular context which has been marked by
4204 * memalloc_no{fs,io}_{save,restore}.
4205 */
4206 alloc_mask = current_gfp_context(gfp_mask);
4207 ac.spread_dirty_pages = false;
4208
4209 /*
4210 * Restore the original nodemask if it was potentially replaced with
4211 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4212 */
4213 if (unlikely(ac.nodemask != nodemask))
4214 ac.nodemask = nodemask;
4215
4216 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4217
4218out:
4219 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4220 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4221 __free_pages(page, order);
4222 page = NULL;
4223 }
4224
4225 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4226
4227 return page;
4228}
4229EXPORT_SYMBOL(__alloc_pages_nodemask);
4230
4231/*
4232 * Common helper functions.
4233 */
4234unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4235{
4236 struct page *page;
4237
4238 /*
4239 * __get_free_pages() returns a 32-bit address, which cannot represent
4240 * a highmem page
4241 */
4242 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4243
4244 page = alloc_pages(gfp_mask, order);
4245 if (!page)
4246 return 0;
4247 return (unsigned long) page_address(page);
4248}
4249EXPORT_SYMBOL(__get_free_pages);
4250
4251unsigned long get_zeroed_page(gfp_t gfp_mask)
4252{
4253 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4254}
4255EXPORT_SYMBOL(get_zeroed_page);
4256
4257void __free_pages(struct page *page, unsigned int order)
4258{
4259 if (put_page_testzero(page)) {
4260 if (order == 0)
4261 free_hot_cold_page(page, false);
4262 else
4263 __free_pages_ok(page, order);
4264 }
4265}
4266
4267EXPORT_SYMBOL(__free_pages);
4268
4269void free_pages(unsigned long addr, unsigned int order)
4270{
4271 if (addr != 0) {
4272 VM_BUG_ON(!virt_addr_valid((void *)addr));
4273 __free_pages(virt_to_page((void *)addr), order);
4274 }
4275}
4276
4277EXPORT_SYMBOL(free_pages);
4278
4279/*
4280 * Page Fragment:
4281 * An arbitrary-length arbitrary-offset area of memory which resides
4282 * within a 0 or higher order page. Multiple fragments within that page
4283 * are individually refcounted, in the page's reference counter.
4284 *
4285 * The page_frag functions below provide a simple allocation framework for
4286 * page fragments. This is used by the network stack and network device
4287 * drivers to provide a backing region of memory for use as either an
4288 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4289 */
4290static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4291 gfp_t gfp_mask)
4292{
4293 struct page *page = NULL;
4294 gfp_t gfp = gfp_mask;
4295
4296#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4297 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4298 __GFP_NOMEMALLOC;
4299 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4300 PAGE_FRAG_CACHE_MAX_ORDER);
4301 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4302#endif
4303 if (unlikely(!page))
4304 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4305
4306 nc->va = page ? page_address(page) : NULL;
4307
4308 return page;
4309}
4310
4311void __page_frag_cache_drain(struct page *page, unsigned int count)
4312{
4313 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4314
4315 if (page_ref_sub_and_test(page, count)) {
4316 unsigned int order = compound_order(page);
4317
4318 if (order == 0)
4319 free_hot_cold_page(page, false);
4320 else
4321 __free_pages_ok(page, order);
4322 }
4323}
4324EXPORT_SYMBOL(__page_frag_cache_drain);
4325
4326void *page_frag_alloc(struct page_frag_cache *nc,
4327 unsigned int fragsz, gfp_t gfp_mask)
4328{
4329 unsigned int size = PAGE_SIZE;
4330 struct page *page;
4331 int offset;
4332
4333 if (unlikely(!nc->va)) {
4334refill:
4335 page = __page_frag_cache_refill(nc, gfp_mask);
4336 if (!page)
4337 return NULL;
4338
4339#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4340 /* if size can vary use size else just use PAGE_SIZE */
4341 size = nc->size;
4342#endif
4343 /* Even if we own the page, we do not use atomic_set().
4344 * This would break get_page_unless_zero() users.
4345 */
4346 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4347
4348 /* reset page count bias and offset to start of new frag */
4349 nc->pfmemalloc = page_is_pfmemalloc(page);
4350 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4351 nc->offset = size;
4352 }
4353
4354 offset = nc->offset - fragsz;
4355 if (unlikely(offset < 0)) {
4356 page = virt_to_page(nc->va);
4357
4358 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4359 goto refill;
4360
4361#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4362 /* if size can vary use size else just use PAGE_SIZE */
4363 size = nc->size;
4364#endif
4365 /* OK, page count is 0, we can safely set it */
4366 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4367
4368 /* reset page count bias and offset to start of new frag */
4369 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4370 offset = size - fragsz;
4371 }
4372
4373 nc->pagecnt_bias--;
4374 nc->offset = offset;
4375
4376 return nc->va + offset;
4377}
4378EXPORT_SYMBOL(page_frag_alloc);
4379
4380/*
4381 * Frees a page fragment allocated out of either a compound or order 0 page.
4382 */
4383void page_frag_free(void *addr)
4384{
4385 struct page *page = virt_to_head_page(addr);
4386
4387 if (unlikely(put_page_testzero(page)))
4388 __free_pages_ok(page, compound_order(page));
4389}
4390EXPORT_SYMBOL(page_frag_free);
4391
4392static void *make_alloc_exact(unsigned long addr, unsigned int order,
4393 size_t size)
4394{
4395 if (addr) {
4396 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4397 unsigned long used = addr + PAGE_ALIGN(size);
4398
4399 split_page(virt_to_page((void *)addr), order);
4400 while (used < alloc_end) {
4401 free_page(used);
4402 used += PAGE_SIZE;
4403 }
4404 }
4405 return (void *)addr;
4406}
4407
4408/**
4409 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4410 * @size: the number of bytes to allocate
4411 * @gfp_mask: GFP flags for the allocation
4412 *
4413 * This function is similar to alloc_pages(), except that it allocates the
4414 * minimum number of pages to satisfy the request. alloc_pages() can only
4415 * allocate memory in power-of-two pages.
4416 *
4417 * This function is also limited by MAX_ORDER.
4418 *
4419 * Memory allocated by this function must be released by free_pages_exact().
4420 */
4421void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4422{
4423 unsigned int order = get_order(size);
4424 unsigned long addr;
4425
4426 addr = __get_free_pages(gfp_mask, order);
4427 return make_alloc_exact(addr, order, size);
4428}
4429EXPORT_SYMBOL(alloc_pages_exact);
4430
4431/**
4432 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4433 * pages on a node.
4434 * @nid: the preferred node ID where memory should be allocated
4435 * @size: the number of bytes to allocate
4436 * @gfp_mask: GFP flags for the allocation
4437 *
4438 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4439 * back.
4440 */
4441void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4442{
4443 unsigned int order = get_order(size);
4444 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4445 if (!p)
4446 return NULL;
4447 return make_alloc_exact((unsigned long)page_address(p), order, size);
4448}
4449
4450/**
4451 * free_pages_exact - release memory allocated via alloc_pages_exact()
4452 * @virt: the value returned by alloc_pages_exact.
4453 * @size: size of allocation, same value as passed to alloc_pages_exact().
4454 *
4455 * Release the memory allocated by a previous call to alloc_pages_exact.
4456 */
4457void free_pages_exact(void *virt, size_t size)
4458{
4459 unsigned long addr = (unsigned long)virt;
4460 unsigned long end = addr + PAGE_ALIGN(size);
4461
4462 while (addr < end) {
4463 free_page(addr);
4464 addr += PAGE_SIZE;
4465 }
4466}
4467EXPORT_SYMBOL(free_pages_exact);
4468
4469/**
4470 * nr_free_zone_pages - count number of pages beyond high watermark
4471 * @offset: The zone index of the highest zone
4472 *
4473 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4474 * high watermark within all zones at or below a given zone index. For each
4475 * zone, the number of pages is calculated as:
4476 *
4477 * nr_free_zone_pages = managed_pages - high_pages
4478 */
4479static unsigned long nr_free_zone_pages(int offset)
4480{
4481 struct zoneref *z;
4482 struct zone *zone;
4483
4484 /* Just pick one node, since fallback list is circular */
4485 unsigned long sum = 0;
4486
4487 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4488
4489 for_each_zone_zonelist(zone, z, zonelist, offset) {
4490 unsigned long size = zone->managed_pages;
4491 unsigned long high = high_wmark_pages(zone);
4492 if (size > high)
4493 sum += size - high;
4494 }
4495
4496 return sum;
4497}
4498
4499/**
4500 * nr_free_buffer_pages - count number of pages beyond high watermark
4501 *
4502 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4503 * watermark within ZONE_DMA and ZONE_NORMAL.
4504 */
4505unsigned long nr_free_buffer_pages(void)
4506{
4507 return nr_free_zone_pages(gfp_zone(GFP_USER));
4508}
4509EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4510
4511/**
4512 * nr_free_pagecache_pages - count number of pages beyond high watermark
4513 *
4514 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4515 * high watermark within all zones.
4516 */
4517unsigned long nr_free_pagecache_pages(void)
4518{
4519 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4520}
4521
4522static inline void show_node(struct zone *zone)
4523{
4524 if (IS_ENABLED(CONFIG_NUMA))
4525 printk("Node %d ", zone_to_nid(zone));
4526}
4527
4528long si_mem_available(void)
4529{
4530 long available;
4531 unsigned long pagecache;
4532 unsigned long wmark_low = 0;
4533 unsigned long pages[NR_LRU_LISTS];
4534 struct zone *zone;
4535 int lru;
4536
4537 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4538 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4539
4540 for_each_zone(zone)
4541 wmark_low += zone->watermark[WMARK_LOW];
4542
4543 /*
4544 * Estimate the amount of memory available for userspace allocations,
4545 * without causing swapping.
4546 */
4547 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4548
4549 /*
4550 * Not all the page cache can be freed, otherwise the system will
4551 * start swapping. Assume at least half of the page cache, or the
4552 * low watermark worth of cache, needs to stay.
4553 */
4554 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4555 pagecache -= min(pagecache / 2, wmark_low);
4556 available += pagecache;
4557
4558 /*
4559 * Part of the reclaimable slab consists of items that are in use,
4560 * and cannot be freed. Cap this estimate at the low watermark.
4561 */
4562 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4563 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4564 wmark_low);
4565
4566 /*
4567 * Part of the kernel memory, which can be released under memory
4568 * pressure.
4569 */
4570 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4571 PAGE_SHIFT;
4572
4573 if (available < 0)
4574 available = 0;
4575 return available;
4576}
4577EXPORT_SYMBOL_GPL(si_mem_available);
4578
4579void si_meminfo(struct sysinfo *val)
4580{
4581 val->totalram = totalram_pages;
4582 val->sharedram = global_node_page_state(NR_SHMEM);
4583 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4584 val->bufferram = nr_blockdev_pages();
4585 val->totalhigh = totalhigh_pages;
4586 val->freehigh = nr_free_highpages();
4587 val->mem_unit = PAGE_SIZE;
4588}
4589
4590EXPORT_SYMBOL(si_meminfo);
4591
4592#ifdef CONFIG_NUMA
4593void si_meminfo_node(struct sysinfo *val, int nid)
4594{
4595 int zone_type; /* needs to be signed */
4596 unsigned long managed_pages = 0;
4597 unsigned long managed_highpages = 0;
4598 unsigned long free_highpages = 0;
4599 pg_data_t *pgdat = NODE_DATA(nid);
4600
4601 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4602 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4603 val->totalram = managed_pages;
4604 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4605 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4606#ifdef CONFIG_HIGHMEM
4607 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4608 struct zone *zone = &pgdat->node_zones[zone_type];
4609
4610 if (is_highmem(zone)) {
4611 managed_highpages += zone->managed_pages;
4612 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4613 }
4614 }
4615 val->totalhigh = managed_highpages;
4616 val->freehigh = free_highpages;
4617#else
4618 val->totalhigh = managed_highpages;
4619 val->freehigh = free_highpages;
4620#endif
4621 val->mem_unit = PAGE_SIZE;
4622}
4623#endif
4624
4625/*
4626 * Determine whether the node should be displayed or not, depending on whether
4627 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4628 */
4629static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4630{
4631 if (!(flags & SHOW_MEM_FILTER_NODES))
4632 return false;
4633
4634 /*
4635 * no node mask - aka implicit memory numa policy. Do not bother with
4636 * the synchronization - read_mems_allowed_begin - because we do not
4637 * have to be precise here.
4638 */
4639 if (!nodemask)
4640 nodemask = &cpuset_current_mems_allowed;
4641
4642 return !node_isset(nid, *nodemask);
4643}
4644
4645#define K(x) ((x) << (PAGE_SHIFT-10))
4646
4647static void show_migration_types(unsigned char type)
4648{
4649 static const char types[MIGRATE_TYPES] = {
4650 [MIGRATE_UNMOVABLE] = 'U',
4651 [MIGRATE_MOVABLE] = 'M',
4652 [MIGRATE_RECLAIMABLE] = 'E',
4653 [MIGRATE_HIGHATOMIC] = 'H',
4654#ifdef CONFIG_CMA
4655 [MIGRATE_CMA] = 'C',
4656#endif
4657#ifdef CONFIG_MEMORY_ISOLATION
4658 [MIGRATE_ISOLATE] = 'I',
4659#endif
4660 };
4661 char tmp[MIGRATE_TYPES + 1];
4662 char *p = tmp;
4663 int i;
4664
4665 for (i = 0; i < MIGRATE_TYPES; i++) {
4666 if (type & (1 << i))
4667 *p++ = types[i];
4668 }
4669
4670 *p = '\0';
4671 printk(KERN_CONT "(%s) ", tmp);
4672}
4673
4674/*
4675 * Show free area list (used inside shift_scroll-lock stuff)
4676 * We also calculate the percentage fragmentation. We do this by counting the
4677 * memory on each free list with the exception of the first item on the list.
4678 *
4679 * Bits in @filter:
4680 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4681 * cpuset.
4682 */
4683void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4684{
4685 unsigned long free_pcp = 0;
4686 int cpu;
4687 struct zone *zone;
4688 pg_data_t *pgdat;
4689
4690 for_each_populated_zone(zone) {
4691 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4692 continue;
4693
4694 for_each_online_cpu(cpu)
4695 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4696 }
4697
4698 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4699 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4700 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4701 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4702 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4703 " free:%lu free_pcp:%lu free_cma:%lu\n",
4704 global_node_page_state(NR_ACTIVE_ANON),
4705 global_node_page_state(NR_INACTIVE_ANON),
4706 global_node_page_state(NR_ISOLATED_ANON),
4707 global_node_page_state(NR_ACTIVE_FILE),
4708 global_node_page_state(NR_INACTIVE_FILE),
4709 global_node_page_state(NR_ISOLATED_FILE),
4710 global_node_page_state(NR_UNEVICTABLE),
4711 global_node_page_state(NR_FILE_DIRTY),
4712 global_node_page_state(NR_WRITEBACK),
4713 global_node_page_state(NR_UNSTABLE_NFS),
4714 global_node_page_state(NR_SLAB_RECLAIMABLE),
4715 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4716 global_node_page_state(NR_FILE_MAPPED),
4717 global_node_page_state(NR_SHMEM),
4718 global_zone_page_state(NR_PAGETABLE),
4719 global_zone_page_state(NR_BOUNCE),
4720 global_zone_page_state(NR_FREE_PAGES),
4721 free_pcp,
4722 global_zone_page_state(NR_FREE_CMA_PAGES));
4723
4724 for_each_online_pgdat(pgdat) {
4725 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4726 continue;
4727
4728 printk("Node %d"
4729 " active_anon:%lukB"
4730 " inactive_anon:%lukB"
4731 " active_file:%lukB"
4732 " inactive_file:%lukB"
4733 " unevictable:%lukB"
4734 " isolated(anon):%lukB"
4735 " isolated(file):%lukB"
4736 " mapped:%lukB"
4737 " dirty:%lukB"
4738 " writeback:%lukB"
4739 " shmem:%lukB"
4740#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4741 " shmem_thp: %lukB"
4742 " shmem_pmdmapped: %lukB"
4743 " anon_thp: %lukB"
4744#endif
4745 " writeback_tmp:%lukB"
4746 " unstable:%lukB"
4747 " all_unreclaimable? %s"
4748 "\n",
4749 pgdat->node_id,
4750 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4751 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4752 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4753 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4754 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4755 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4756 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4757 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4758 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4759 K(node_page_state(pgdat, NR_WRITEBACK)),
4760 K(node_page_state(pgdat, NR_SHMEM)),
4761#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4762 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4763 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4764 * HPAGE_PMD_NR),
4765 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4766#endif
4767 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4768 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4769 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4770 "yes" : "no");
4771 }
4772
4773 for_each_populated_zone(zone) {
4774 int i;
4775
4776 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4777 continue;
4778
4779 free_pcp = 0;
4780 for_each_online_cpu(cpu)
4781 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4782
4783 show_node(zone);
4784 printk(KERN_CONT
4785 "%s"
4786 " free:%lukB"
4787 " min:%lukB"
4788 " low:%lukB"
4789 " high:%lukB"
4790 " active_anon:%lukB"
4791 " inactive_anon:%lukB"
4792 " active_file:%lukB"
4793 " inactive_file:%lukB"
4794 " unevictable:%lukB"
4795 " writepending:%lukB"
4796 " present:%lukB"
4797 " managed:%lukB"
4798 " mlocked:%lukB"
4799 " kernel_stack:%lukB"
4800 " pagetables:%lukB"
4801 " bounce:%lukB"
4802 " free_pcp:%lukB"
4803 " local_pcp:%ukB"
4804 " free_cma:%lukB"
4805 "\n",
4806 zone->name,
4807 K(zone_page_state(zone, NR_FREE_PAGES)),
4808 K(min_wmark_pages(zone)),
4809 K(low_wmark_pages(zone)),
4810 K(high_wmark_pages(zone)),
4811 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4812 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4813 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4814 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4815 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4816 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4817 K(zone->present_pages),
4818 K(zone->managed_pages),
4819 K(zone_page_state(zone, NR_MLOCK)),
4820 zone_page_state(zone, NR_KERNEL_STACK_KB),
4821 K(zone_page_state(zone, NR_PAGETABLE)),
4822 K(zone_page_state(zone, NR_BOUNCE)),
4823 K(free_pcp),
4824 K(this_cpu_read(zone->pageset->pcp.count)),
4825 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4826 printk("lowmem_reserve[]:");
4827 for (i = 0; i < MAX_NR_ZONES; i++)
4828 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4829 printk(KERN_CONT "\n");
4830 }
4831
4832 for_each_populated_zone(zone) {
4833 unsigned int order;
4834 unsigned long nr[MAX_ORDER], flags, total = 0;
4835 unsigned char types[MAX_ORDER];
4836
4837 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4838 continue;
4839 show_node(zone);
4840 printk(KERN_CONT "%s: ", zone->name);
4841
4842 spin_lock_irqsave(&zone->lock, flags);
4843 for (order = 0; order < MAX_ORDER; order++) {
4844 struct free_area *area = &zone->free_area[order];
4845 int type;
4846
4847 nr[order] = area->nr_free;
4848 total += nr[order] << order;
4849
4850 types[order] = 0;
4851 for (type = 0; type < MIGRATE_TYPES; type++) {
4852 if (!list_empty(&area->free_list[type]))
4853 types[order] |= 1 << type;
4854 }
4855 }
4856 spin_unlock_irqrestore(&zone->lock, flags);
4857 for (order = 0; order < MAX_ORDER; order++) {
4858 printk(KERN_CONT "%lu*%lukB ",
4859 nr[order], K(1UL) << order);
4860 if (nr[order])
4861 show_migration_types(types[order]);
4862 }
4863 printk(KERN_CONT "= %lukB\n", K(total));
4864 }
4865
4866 hugetlb_show_meminfo();
4867
4868 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4869
4870 show_swap_cache_info();
4871}
4872
4873static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4874{
4875 zoneref->zone = zone;
4876 zoneref->zone_idx = zone_idx(zone);
4877}
4878
4879/*
4880 * Builds allocation fallback zone lists.
4881 *
4882 * Add all populated zones of a node to the zonelist.
4883 */
4884static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4885{
4886 struct zone *zone;
4887 enum zone_type zone_type = MAX_NR_ZONES;
4888 int nr_zones = 0;
4889
4890 do {
4891 zone_type--;
4892 zone = pgdat->node_zones + zone_type;
4893 if (managed_zone(zone)) {
4894 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4895 check_highest_zone(zone_type);
4896 }
4897 } while (zone_type);
4898
4899 return nr_zones;
4900}
4901
4902#ifdef CONFIG_NUMA
4903
4904static int __parse_numa_zonelist_order(char *s)
4905{
4906 /*
4907 * We used to support different zonlists modes but they turned
4908 * out to be just not useful. Let's keep the warning in place
4909 * if somebody still use the cmd line parameter so that we do
4910 * not fail it silently
4911 */
4912 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4913 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4914 return -EINVAL;
4915 }
4916 return 0;
4917}
4918
4919static __init int setup_numa_zonelist_order(char *s)
4920{
4921 if (!s)
4922 return 0;
4923
4924 return __parse_numa_zonelist_order(s);
4925}
4926early_param("numa_zonelist_order", setup_numa_zonelist_order);
4927
4928char numa_zonelist_order[] = "Node";
4929
4930/*
4931 * sysctl handler for numa_zonelist_order
4932 */
4933int numa_zonelist_order_handler(struct ctl_table *table, int write,
4934 void __user *buffer, size_t *length,
4935 loff_t *ppos)
4936{
4937 char *str;
4938 int ret;
4939
4940 if (!write)
4941 return proc_dostring(table, write, buffer, length, ppos);
4942 str = memdup_user_nul(buffer, 16);
4943 if (IS_ERR(str))
4944 return PTR_ERR(str);
4945
4946 ret = __parse_numa_zonelist_order(str);
4947 kfree(str);
4948 return ret;
4949}
4950
4951
4952#define MAX_NODE_LOAD (nr_online_nodes)
4953static int node_load[MAX_NUMNODES];
4954
4955/**
4956 * find_next_best_node - find the next node that should appear in a given node's fallback list
4957 * @node: node whose fallback list we're appending
4958 * @used_node_mask: nodemask_t of already used nodes
4959 *
4960 * We use a number of factors to determine which is the next node that should
4961 * appear on a given node's fallback list. The node should not have appeared
4962 * already in @node's fallback list, and it should be the next closest node
4963 * according to the distance array (which contains arbitrary distance values
4964 * from each node to each node in the system), and should also prefer nodes
4965 * with no CPUs, since presumably they'll have very little allocation pressure
4966 * on them otherwise.
4967 * It returns -1 if no node is found.
4968 */
4969static int find_next_best_node(int node, nodemask_t *used_node_mask)
4970{
4971 int n, val;
4972 int min_val = INT_MAX;
4973 int best_node = NUMA_NO_NODE;
4974 const struct cpumask *tmp = cpumask_of_node(0);
4975
4976 /* Use the local node if we haven't already */
4977 if (!node_isset(node, *used_node_mask)) {
4978 node_set(node, *used_node_mask);
4979 return node;
4980 }
4981
4982 for_each_node_state(n, N_MEMORY) {
4983
4984 /* Don't want a node to appear more than once */
4985 if (node_isset(n, *used_node_mask))
4986 continue;
4987
4988 /* Use the distance array to find the distance */
4989 val = node_distance(node, n);
4990
4991 /* Penalize nodes under us ("prefer the next node") */
4992 val += (n < node);
4993
4994 /* Give preference to headless and unused nodes */
4995 tmp = cpumask_of_node(n);
4996 if (!cpumask_empty(tmp))
4997 val += PENALTY_FOR_NODE_WITH_CPUS;
4998
4999 /* Slight preference for less loaded node */
5000 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5001 val += node_load[n];
5002
5003 if (val < min_val) {
5004 min_val = val;
5005 best_node = n;
5006 }
5007 }
5008
5009 if (best_node >= 0)
5010 node_set(best_node, *used_node_mask);
5011
5012 return best_node;
5013}
5014
5015
5016/*
5017 * Build zonelists ordered by node and zones within node.
5018 * This results in maximum locality--normal zone overflows into local
5019 * DMA zone, if any--but risks exhausting DMA zone.
5020 */
5021static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5022 unsigned nr_nodes)
5023{
5024 struct zoneref *zonerefs;
5025 int i;
5026
5027 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5028
5029 for (i = 0; i < nr_nodes; i++) {
5030 int nr_zones;
5031
5032 pg_data_t *node = NODE_DATA(node_order[i]);
5033
5034 nr_zones = build_zonerefs_node(node, zonerefs);
5035 zonerefs += nr_zones;
5036 }
5037 zonerefs->zone = NULL;
5038 zonerefs->zone_idx = 0;
5039}
5040
5041/*
5042 * Build gfp_thisnode zonelists
5043 */
5044static void build_thisnode_zonelists(pg_data_t *pgdat)
5045{
5046 struct zoneref *zonerefs;
5047 int nr_zones;
5048
5049 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5050 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5051 zonerefs += nr_zones;
5052 zonerefs->zone = NULL;
5053 zonerefs->zone_idx = 0;
5054}
5055
5056/*
5057 * Build zonelists ordered by zone and nodes within zones.
5058 * This results in conserving DMA zone[s] until all Normal memory is
5059 * exhausted, but results in overflowing to remote node while memory
5060 * may still exist in local DMA zone.
5061 */
5062
5063static void build_zonelists(pg_data_t *pgdat)
5064{
5065 static int node_order[MAX_NUMNODES];
5066 int node, load, nr_nodes = 0;
5067 nodemask_t used_mask;
5068 int local_node, prev_node;
5069
5070 /* NUMA-aware ordering of nodes */
5071 local_node = pgdat->node_id;
5072 load = nr_online_nodes;
5073 prev_node = local_node;
5074 nodes_clear(used_mask);
5075
5076 memset(node_order, 0, sizeof(node_order));
5077 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5078 /*
5079 * We don't want to pressure a particular node.
5080 * So adding penalty to the first node in same
5081 * distance group to make it round-robin.
5082 */
5083 if (node_distance(local_node, node) !=
5084 node_distance(local_node, prev_node))
5085 node_load[node] = load;
5086
5087 node_order[nr_nodes++] = node;
5088 prev_node = node;
5089 load--;
5090 }
5091
5092 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5093 build_thisnode_zonelists(pgdat);
5094}
5095
5096#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5097/*
5098 * Return node id of node used for "local" allocations.
5099 * I.e., first node id of first zone in arg node's generic zonelist.
5100 * Used for initializing percpu 'numa_mem', which is used primarily
5101 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5102 */
5103int local_memory_node(int node)
5104{
5105 struct zoneref *z;
5106
5107 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5108 gfp_zone(GFP_KERNEL),
5109 NULL);
5110 return z->zone->node;
5111}
5112#endif
5113
5114static void setup_min_unmapped_ratio(void);
5115static void setup_min_slab_ratio(void);
5116#else /* CONFIG_NUMA */
5117
5118static void build_zonelists(pg_data_t *pgdat)
5119{
5120 int node, local_node;
5121 struct zoneref *zonerefs;
5122 int nr_zones;
5123
5124 local_node = pgdat->node_id;
5125
5126 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5127 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5128 zonerefs += nr_zones;
5129
5130 /*
5131 * Now we build the zonelist so that it contains the zones
5132 * of all the other nodes.
5133 * We don't want to pressure a particular node, so when
5134 * building the zones for node N, we make sure that the
5135 * zones coming right after the local ones are those from
5136 * node N+1 (modulo N)
5137 */
5138 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5139 if (!node_online(node))
5140 continue;
5141 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5142 zonerefs += nr_zones;
5143 }
5144 for (node = 0; node < local_node; node++) {
5145 if (!node_online(node))
5146 continue;
5147 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5148 zonerefs += nr_zones;
5149 }
5150
5151 zonerefs->zone = NULL;
5152 zonerefs->zone_idx = 0;
5153}
5154
5155#endif /* CONFIG_NUMA */
5156
5157/*
5158 * Boot pageset table. One per cpu which is going to be used for all
5159 * zones and all nodes. The parameters will be set in such a way
5160 * that an item put on a list will immediately be handed over to
5161 * the buddy list. This is safe since pageset manipulation is done
5162 * with interrupts disabled.
5163 *
5164 * The boot_pagesets must be kept even after bootup is complete for
5165 * unused processors and/or zones. They do play a role for bootstrapping
5166 * hotplugged processors.
5167 *
5168 * zoneinfo_show() and maybe other functions do
5169 * not check if the processor is online before following the pageset pointer.
5170 * Other parts of the kernel may not check if the zone is available.
5171 */
5172static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5173static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5174static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5175
5176static void __build_all_zonelists(void *data)
5177{
5178 int nid;
5179 int __maybe_unused cpu;
5180 pg_data_t *self = data;
5181 static DEFINE_SPINLOCK(lock);
5182
5183 spin_lock(&lock);
5184
5185#ifdef CONFIG_NUMA
5186 memset(node_load, 0, sizeof(node_load));
5187#endif
5188
5189 /*
5190 * This node is hotadded and no memory is yet present. So just
5191 * building zonelists is fine - no need to touch other nodes.
5192 */
5193 if (self && !node_online(self->node_id)) {
5194 build_zonelists(self);
5195 } else {
5196 for_each_online_node(nid) {
5197 pg_data_t *pgdat = NODE_DATA(nid);
5198
5199 build_zonelists(pgdat);
5200 }
5201
5202#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5203 /*
5204 * We now know the "local memory node" for each node--
5205 * i.e., the node of the first zone in the generic zonelist.
5206 * Set up numa_mem percpu variable for on-line cpus. During
5207 * boot, only the boot cpu should be on-line; we'll init the
5208 * secondary cpus' numa_mem as they come on-line. During
5209 * node/memory hotplug, we'll fixup all on-line cpus.
5210 */
5211 for_each_online_cpu(cpu)
5212 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5213#endif
5214 }
5215
5216 spin_unlock(&lock);
5217}
5218
5219static noinline void __init
5220build_all_zonelists_init(void)
5221{
5222 int cpu;
5223
5224 __build_all_zonelists(NULL);
5225
5226 /*
5227 * Initialize the boot_pagesets that are going to be used
5228 * for bootstrapping processors. The real pagesets for
5229 * each zone will be allocated later when the per cpu
5230 * allocator is available.
5231 *
5232 * boot_pagesets are used also for bootstrapping offline
5233 * cpus if the system is already booted because the pagesets
5234 * are needed to initialize allocators on a specific cpu too.
5235 * F.e. the percpu allocator needs the page allocator which
5236 * needs the percpu allocator in order to allocate its pagesets
5237 * (a chicken-egg dilemma).
5238 */
5239 for_each_possible_cpu(cpu)
5240 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5241
5242 mminit_verify_zonelist();
5243 cpuset_init_current_mems_allowed();
5244}
5245
5246/*
5247 * unless system_state == SYSTEM_BOOTING.
5248 *
5249 * __ref due to call of __init annotated helper build_all_zonelists_init
5250 * [protected by SYSTEM_BOOTING].
5251 */
5252void __ref build_all_zonelists(pg_data_t *pgdat)
5253{
5254 if (system_state == SYSTEM_BOOTING) {
5255 build_all_zonelists_init();
5256 } else {
5257 __build_all_zonelists(pgdat);
5258 /* cpuset refresh routine should be here */
5259 }
5260 vm_total_pages = nr_free_pagecache_pages();
5261 /*
5262 * Disable grouping by mobility if the number of pages in the
5263 * system is too low to allow the mechanism to work. It would be
5264 * more accurate, but expensive to check per-zone. This check is
5265 * made on memory-hotadd so a system can start with mobility
5266 * disabled and enable it later
5267 */
5268 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5269 page_group_by_mobility_disabled = 1;
5270 else
5271 page_group_by_mobility_disabled = 0;
5272
5273 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5274 nr_online_nodes,
5275 page_group_by_mobility_disabled ? "off" : "on",
5276 vm_total_pages);
5277#ifdef CONFIG_NUMA
5278 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5279#endif
5280}
5281
5282/*
5283 * Initially all pages are reserved - free ones are freed
5284 * up by free_all_bootmem() once the early boot process is
5285 * done. Non-atomic initialization, single-pass.
5286 */
5287void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5288 unsigned long start_pfn, enum memmap_context context)
5289{
5290 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5291 unsigned long end_pfn = start_pfn + size;
5292 pg_data_t *pgdat = NODE_DATA(nid);
5293 unsigned long pfn;
5294 unsigned long nr_initialised = 0;
5295#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5296 struct memblock_region *r = NULL, *tmp;
5297#endif
5298
5299 if (highest_memmap_pfn < end_pfn - 1)
5300 highest_memmap_pfn = end_pfn - 1;
5301
5302 /*
5303 * Honor reservation requested by the driver for this ZONE_DEVICE
5304 * memory
5305 */
5306 if (altmap && start_pfn == altmap->base_pfn)
5307 start_pfn += altmap->reserve;
5308
5309 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5310 /*
5311 * There can be holes in boot-time mem_map[]s handed to this
5312 * function. They do not exist on hotplugged memory.
5313 */
5314 if (context != MEMMAP_EARLY)
5315 goto not_early;
5316
5317 if (!early_pfn_valid(pfn))
5318 continue;
5319 if (!early_pfn_in_nid(pfn, nid))
5320 continue;
5321 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5322 break;
5323
5324#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5325 /*
5326 * Check given memblock attribute by firmware which can affect
5327 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5328 * mirrored, it's an overlapped memmap init. skip it.
5329 */
5330 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5331 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5332 for_each_memblock(memory, tmp)
5333 if (pfn < memblock_region_memory_end_pfn(tmp))
5334 break;
5335 r = tmp;
5336 }
5337 if (pfn >= memblock_region_memory_base_pfn(r) &&
5338 memblock_is_mirror(r)) {
5339 /* already initialized as NORMAL */
5340 pfn = memblock_region_memory_end_pfn(r);
5341 continue;
5342 }
5343 }
5344#endif
5345
5346not_early:
5347 /*
5348 * Mark the block movable so that blocks are reserved for
5349 * movable at startup. This will force kernel allocations
5350 * to reserve their blocks rather than leaking throughout
5351 * the address space during boot when many long-lived
5352 * kernel allocations are made.
5353 *
5354 * bitmap is created for zone's valid pfn range. but memmap
5355 * can be created for invalid pages (for alignment)
5356 * check here not to call set_pageblock_migratetype() against
5357 * pfn out of zone.
5358 */
5359 if (!(pfn & (pageblock_nr_pages - 1))) {
5360 struct page *page = pfn_to_page(pfn);
5361
5362 __init_single_page(page, pfn, zone, nid);
5363 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5364 cond_resched();
5365 } else {
5366 __init_single_pfn(pfn, zone, nid);
5367 }
5368 }
5369}
5370
5371static void __meminit zone_init_free_lists(struct zone *zone)
5372{
5373 unsigned int order, t;
5374 for_each_migratetype_order(order, t) {
5375 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5376 zone->free_area[order].nr_free = 0;
5377 }
5378}
5379
5380#ifndef __HAVE_ARCH_MEMMAP_INIT
5381#define memmap_init(size, nid, zone, start_pfn) \
5382 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5383#endif
5384
5385static int zone_batchsize(struct zone *zone)
5386{
5387#ifdef CONFIG_MMU
5388 int batch;
5389
5390 /*
5391 * The per-cpu-pages pools are set to around 1000th of the
5392 * size of the zone. But no more than 1/2 of a meg.
5393 *
5394 * OK, so we don't know how big the cache is. So guess.
5395 */
5396 batch = zone->managed_pages / 1024;
5397 if (batch * PAGE_SIZE > 512 * 1024)
5398 batch = (512 * 1024) / PAGE_SIZE;
5399 batch /= 4; /* We effectively *= 4 below */
5400 if (batch < 1)
5401 batch = 1;
5402
5403 /*
5404 * Clamp the batch to a 2^n - 1 value. Having a power
5405 * of 2 value was found to be more likely to have
5406 * suboptimal cache aliasing properties in some cases.
5407 *
5408 * For example if 2 tasks are alternately allocating
5409 * batches of pages, one task can end up with a lot
5410 * of pages of one half of the possible page colors
5411 * and the other with pages of the other colors.
5412 */
5413 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5414
5415 return batch;
5416
5417#else
5418 /* The deferral and batching of frees should be suppressed under NOMMU
5419 * conditions.
5420 *
5421 * The problem is that NOMMU needs to be able to allocate large chunks
5422 * of contiguous memory as there's no hardware page translation to
5423 * assemble apparent contiguous memory from discontiguous pages.
5424 *
5425 * Queueing large contiguous runs of pages for batching, however,
5426 * causes the pages to actually be freed in smaller chunks. As there
5427 * can be a significant delay between the individual batches being
5428 * recycled, this leads to the once large chunks of space being
5429 * fragmented and becoming unavailable for high-order allocations.
5430 */
5431 return 0;
5432#endif
5433}
5434
5435/*
5436 * pcp->high and pcp->batch values are related and dependent on one another:
5437 * ->batch must never be higher then ->high.
5438 * The following function updates them in a safe manner without read side
5439 * locking.
5440 *
5441 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5442 * those fields changing asynchronously (acording the the above rule).
5443 *
5444 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5445 * outside of boot time (or some other assurance that no concurrent updaters
5446 * exist).
5447 */
5448static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5449 unsigned long batch)
5450{
5451 /* start with a fail safe value for batch */
5452 pcp->batch = 1;
5453 smp_wmb();
5454
5455 /* Update high, then batch, in order */
5456 pcp->high = high;
5457 smp_wmb();
5458
5459 pcp->batch = batch;
5460}
5461
5462/* a companion to pageset_set_high() */
5463static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5464{
5465 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5466}
5467
5468static void pageset_init(struct per_cpu_pageset *p)
5469{
5470 struct per_cpu_pages *pcp;
5471 int migratetype;
5472
5473 memset(p, 0, sizeof(*p));
5474
5475 pcp = &p->pcp;
5476 pcp->count = 0;
5477 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5478 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5479}
5480
5481static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5482{
5483 pageset_init(p);
5484 pageset_set_batch(p, batch);
5485}
5486
5487/*
5488 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5489 * to the value high for the pageset p.
5490 */
5491static void pageset_set_high(struct per_cpu_pageset *p,
5492 unsigned long high)
5493{
5494 unsigned long batch = max(1UL, high / 4);
5495 if ((high / 4) > (PAGE_SHIFT * 8))
5496 batch = PAGE_SHIFT * 8;
5497
5498 pageset_update(&p->pcp, high, batch);
5499}
5500
5501static void pageset_set_high_and_batch(struct zone *zone,
5502 struct per_cpu_pageset *pcp)
5503{
5504 if (percpu_pagelist_fraction)
5505 pageset_set_high(pcp,
5506 (zone->managed_pages /
5507 percpu_pagelist_fraction));
5508 else
5509 pageset_set_batch(pcp, zone_batchsize(zone));
5510}
5511
5512static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5513{
5514 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5515
5516 pageset_init(pcp);
5517 pageset_set_high_and_batch(zone, pcp);
5518}
5519
5520void __meminit setup_zone_pageset(struct zone *zone)
5521{
5522 int cpu;
5523 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5524 for_each_possible_cpu(cpu)
5525 zone_pageset_init(zone, cpu);
5526}
5527
5528/*
5529 * Allocate per cpu pagesets and initialize them.
5530 * Before this call only boot pagesets were available.
5531 */
5532void __init setup_per_cpu_pageset(void)
5533{
5534 struct pglist_data *pgdat;
5535 struct zone *zone;
5536
5537 for_each_populated_zone(zone)
5538 setup_zone_pageset(zone);
5539
5540 for_each_online_pgdat(pgdat)
5541 pgdat->per_cpu_nodestats =
5542 alloc_percpu(struct per_cpu_nodestat);
5543}
5544
5545static __meminit void zone_pcp_init(struct zone *zone)
5546{
5547 /*
5548 * per cpu subsystem is not up at this point. The following code
5549 * relies on the ability of the linker to provide the
5550 * offset of a (static) per cpu variable into the per cpu area.
5551 */
5552 zone->pageset = &boot_pageset;
5553
5554 if (populated_zone(zone))
5555 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5556 zone->name, zone->present_pages,
5557 zone_batchsize(zone));
5558}
5559
5560void __meminit init_currently_empty_zone(struct zone *zone,
5561 unsigned long zone_start_pfn,
5562 unsigned long size)
5563{
5564 struct pglist_data *pgdat = zone->zone_pgdat;
5565 int zone_idx = zone_idx(zone) + 1;
5566
5567 if (zone_idx > pgdat->nr_zones)
5568 pgdat->nr_zones = zone_idx;
5569
5570 zone->zone_start_pfn = zone_start_pfn;
5571
5572 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5573 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5574 pgdat->node_id,
5575 (unsigned long)zone_idx(zone),
5576 zone_start_pfn, (zone_start_pfn + size));
5577
5578 zone_init_free_lists(zone);
5579 zone->initialized = 1;
5580}
5581
5582#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5583#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5584
5585/*
5586 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5587 */
5588int __meminit __early_pfn_to_nid(unsigned long pfn,
5589 struct mminit_pfnnid_cache *state)
5590{
5591 unsigned long start_pfn, end_pfn;
5592 int nid;
5593
5594 if (state->last_start <= pfn && pfn < state->last_end)
5595 return state->last_nid;
5596
5597 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5598 if (nid != -1) {
5599 state->last_start = start_pfn;
5600 state->last_end = end_pfn;
5601 state->last_nid = nid;
5602 }
5603
5604 return nid;
5605}
5606#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5607
5608/**
5609 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5610 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5611 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5612 *
5613 * If an architecture guarantees that all ranges registered contain no holes
5614 * and may be freed, this this function may be used instead of calling
5615 * memblock_free_early_nid() manually.
5616 */
5617void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5618{
5619 unsigned long start_pfn, end_pfn;
5620 int i, this_nid;
5621
5622 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5623 start_pfn = min(start_pfn, max_low_pfn);
5624 end_pfn = min(end_pfn, max_low_pfn);
5625
5626 if (start_pfn < end_pfn)
5627 memblock_free_early_nid(PFN_PHYS(start_pfn),
5628 (end_pfn - start_pfn) << PAGE_SHIFT,
5629 this_nid);
5630 }
5631}
5632
5633/**
5634 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5635 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5636 *
5637 * If an architecture guarantees that all ranges registered contain no holes and may
5638 * be freed, this function may be used instead of calling memory_present() manually.
5639 */
5640void __init sparse_memory_present_with_active_regions(int nid)
5641{
5642 unsigned long start_pfn, end_pfn;
5643 int i, this_nid;
5644
5645 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5646 memory_present(this_nid, start_pfn, end_pfn);
5647}
5648
5649/**
5650 * get_pfn_range_for_nid - Return the start and end page frames for a node
5651 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5652 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5653 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5654 *
5655 * It returns the start and end page frame of a node based on information
5656 * provided by memblock_set_node(). If called for a node
5657 * with no available memory, a warning is printed and the start and end
5658 * PFNs will be 0.
5659 */
5660void __meminit get_pfn_range_for_nid(unsigned int nid,
5661 unsigned long *start_pfn, unsigned long *end_pfn)
5662{
5663 unsigned long this_start_pfn, this_end_pfn;
5664 int i;
5665
5666 *start_pfn = -1UL;
5667 *end_pfn = 0;
5668
5669 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5670 *start_pfn = min(*start_pfn, this_start_pfn);
5671 *end_pfn = max(*end_pfn, this_end_pfn);
5672 }
5673
5674 if (*start_pfn == -1UL)
5675 *start_pfn = 0;
5676}
5677
5678/*
5679 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5680 * assumption is made that zones within a node are ordered in monotonic
5681 * increasing memory addresses so that the "highest" populated zone is used
5682 */
5683static void __init find_usable_zone_for_movable(void)
5684{
5685 int zone_index;
5686 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5687 if (zone_index == ZONE_MOVABLE)
5688 continue;
5689
5690 if (arch_zone_highest_possible_pfn[zone_index] >
5691 arch_zone_lowest_possible_pfn[zone_index])
5692 break;
5693 }
5694
5695 VM_BUG_ON(zone_index == -1);
5696 movable_zone = zone_index;
5697}
5698
5699/*
5700 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5701 * because it is sized independent of architecture. Unlike the other zones,
5702 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5703 * in each node depending on the size of each node and how evenly kernelcore
5704 * is distributed. This helper function adjusts the zone ranges
5705 * provided by the architecture for a given node by using the end of the
5706 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5707 * zones within a node are in order of monotonic increases memory addresses
5708 */
5709static void __meminit adjust_zone_range_for_zone_movable(int nid,
5710 unsigned long zone_type,
5711 unsigned long node_start_pfn,
5712 unsigned long node_end_pfn,
5713 unsigned long *zone_start_pfn,
5714 unsigned long *zone_end_pfn)
5715{
5716 /* Only adjust if ZONE_MOVABLE is on this node */
5717 if (zone_movable_pfn[nid]) {
5718 /* Size ZONE_MOVABLE */
5719 if (zone_type == ZONE_MOVABLE) {
5720 *zone_start_pfn = zone_movable_pfn[nid];
5721 *zone_end_pfn = min(node_end_pfn,
5722 arch_zone_highest_possible_pfn[movable_zone]);
5723
5724 /* Adjust for ZONE_MOVABLE starting within this range */
5725 } else if (!mirrored_kernelcore &&
5726 *zone_start_pfn < zone_movable_pfn[nid] &&
5727 *zone_end_pfn > zone_movable_pfn[nid]) {
5728 *zone_end_pfn = zone_movable_pfn[nid];
5729
5730 /* Check if this whole range is within ZONE_MOVABLE */
5731 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5732 *zone_start_pfn = *zone_end_pfn;
5733 }
5734}
5735
5736/*
5737 * Return the number of pages a zone spans in a node, including holes
5738 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5739 */
5740static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5741 unsigned long zone_type,
5742 unsigned long node_start_pfn,
5743 unsigned long node_end_pfn,
5744 unsigned long *zone_start_pfn,
5745 unsigned long *zone_end_pfn,
5746 unsigned long *ignored)
5747{
5748 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5749 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5750 /* When hotadd a new node from cpu_up(), the node should be empty */
5751 if (!node_start_pfn && !node_end_pfn)
5752 return 0;
5753
5754 /* Get the start and end of the zone */
5755 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5756 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5757 adjust_zone_range_for_zone_movable(nid, zone_type,
5758 node_start_pfn, node_end_pfn,
5759 zone_start_pfn, zone_end_pfn);
5760
5761 /* Check that this node has pages within the zone's required range */
5762 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5763 return 0;
5764
5765 /* Move the zone boundaries inside the node if necessary */
5766 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5767 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5768
5769 /* Return the spanned pages */
5770 return *zone_end_pfn - *zone_start_pfn;
5771}
5772
5773/*
5774 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5775 * then all holes in the requested range will be accounted for.
5776 */
5777unsigned long __meminit __absent_pages_in_range(int nid,
5778 unsigned long range_start_pfn,
5779 unsigned long range_end_pfn)
5780{
5781 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5782 unsigned long start_pfn, end_pfn;
5783 int i;
5784
5785 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5786 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5787 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5788 nr_absent -= end_pfn - start_pfn;
5789 }
5790 return nr_absent;
5791}
5792
5793/**
5794 * absent_pages_in_range - Return number of page frames in holes within a range
5795 * @start_pfn: The start PFN to start searching for holes
5796 * @end_pfn: The end PFN to stop searching for holes
5797 *
5798 * It returns the number of pages frames in memory holes within a range.
5799 */
5800unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5801 unsigned long end_pfn)
5802{
5803 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5804}
5805
5806/* Return the number of page frames in holes in a zone on a node */
5807static unsigned long __meminit zone_absent_pages_in_node(int nid,
5808 unsigned long zone_type,
5809 unsigned long node_start_pfn,
5810 unsigned long node_end_pfn,
5811 unsigned long *ignored)
5812{
5813 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5814 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5815 unsigned long zone_start_pfn, zone_end_pfn;
5816 unsigned long nr_absent;
5817
5818 /* When hotadd a new node from cpu_up(), the node should be empty */
5819 if (!node_start_pfn && !node_end_pfn)
5820 return 0;
5821
5822 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5823 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5824
5825 adjust_zone_range_for_zone_movable(nid, zone_type,
5826 node_start_pfn, node_end_pfn,
5827 &zone_start_pfn, &zone_end_pfn);
5828 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5829
5830 /*
5831 * ZONE_MOVABLE handling.
5832 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5833 * and vice versa.
5834 */
5835 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5836 unsigned long start_pfn, end_pfn;
5837 struct memblock_region *r;
5838
5839 for_each_memblock(memory, r) {
5840 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5841 zone_start_pfn, zone_end_pfn);
5842 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5843 zone_start_pfn, zone_end_pfn);
5844
5845 if (zone_type == ZONE_MOVABLE &&
5846 memblock_is_mirror(r))
5847 nr_absent += end_pfn - start_pfn;
5848
5849 if (zone_type == ZONE_NORMAL &&
5850 !memblock_is_mirror(r))
5851 nr_absent += end_pfn - start_pfn;
5852 }
5853 }
5854
5855 return nr_absent;
5856}
5857
5858#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5859static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5860 unsigned long zone_type,
5861 unsigned long node_start_pfn,
5862 unsigned long node_end_pfn,
5863 unsigned long *zone_start_pfn,
5864 unsigned long *zone_end_pfn,
5865 unsigned long *zones_size)
5866{
5867 unsigned int zone;
5868
5869 *zone_start_pfn = node_start_pfn;
5870 for (zone = 0; zone < zone_type; zone++)
5871 *zone_start_pfn += zones_size[zone];
5872
5873 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5874
5875 return zones_size[zone_type];
5876}
5877
5878static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5879 unsigned long zone_type,
5880 unsigned long node_start_pfn,
5881 unsigned long node_end_pfn,
5882 unsigned long *zholes_size)
5883{
5884 if (!zholes_size)
5885 return 0;
5886
5887 return zholes_size[zone_type];
5888}
5889
5890#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5891
5892static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5893 unsigned long node_start_pfn,
5894 unsigned long node_end_pfn,
5895 unsigned long *zones_size,
5896 unsigned long *zholes_size)
5897{
5898 unsigned long realtotalpages = 0, totalpages = 0;
5899 enum zone_type i;
5900
5901 for (i = 0; i < MAX_NR_ZONES; i++) {
5902 struct zone *zone = pgdat->node_zones + i;
5903 unsigned long zone_start_pfn, zone_end_pfn;
5904 unsigned long size, real_size;
5905
5906 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5907 node_start_pfn,
5908 node_end_pfn,
5909 &zone_start_pfn,
5910 &zone_end_pfn,
5911 zones_size);
5912 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5913 node_start_pfn, node_end_pfn,
5914 zholes_size);
5915 if (size)
5916 zone->zone_start_pfn = zone_start_pfn;
5917 else
5918 zone->zone_start_pfn = 0;
5919 zone->spanned_pages = size;
5920 zone->present_pages = real_size;
5921
5922 totalpages += size;
5923 realtotalpages += real_size;
5924 }
5925
5926 pgdat->node_spanned_pages = totalpages;
5927 pgdat->node_present_pages = realtotalpages;
5928 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5929 realtotalpages);
5930}
5931
5932#ifndef CONFIG_SPARSEMEM
5933/*
5934 * Calculate the size of the zone->blockflags rounded to an unsigned long
5935 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5936 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5937 * round what is now in bits to nearest long in bits, then return it in
5938 * bytes.
5939 */
5940static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5941{
5942 unsigned long usemapsize;
5943
5944 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5945 usemapsize = roundup(zonesize, pageblock_nr_pages);
5946 usemapsize = usemapsize >> pageblock_order;
5947 usemapsize *= NR_PAGEBLOCK_BITS;
5948 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5949
5950 return usemapsize / 8;
5951}
5952
5953static void __init setup_usemap(struct pglist_data *pgdat,
5954 struct zone *zone,
5955 unsigned long zone_start_pfn,
5956 unsigned long zonesize)
5957{
5958 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5959 zone->pageblock_flags = NULL;
5960 if (usemapsize)
5961 zone->pageblock_flags =
5962 memblock_virt_alloc_node_nopanic(usemapsize,
5963 pgdat->node_id);
5964}
5965#else
5966static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5967 unsigned long zone_start_pfn, unsigned long zonesize) {}
5968#endif /* CONFIG_SPARSEMEM */
5969
5970#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5971
5972/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5973void __paginginit set_pageblock_order(void)
5974{
5975 unsigned int order;
5976
5977 /* Check that pageblock_nr_pages has not already been setup */
5978 if (pageblock_order)
5979 return;
5980
5981 if (HPAGE_SHIFT > PAGE_SHIFT)
5982 order = HUGETLB_PAGE_ORDER;
5983 else
5984 order = MAX_ORDER - 1;
5985
5986 /*
5987 * Assume the largest contiguous order of interest is a huge page.
5988 * This value may be variable depending on boot parameters on IA64 and
5989 * powerpc.
5990 */
5991 pageblock_order = order;
5992}
5993#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5994
5995/*
5996 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5997 * is unused as pageblock_order is set at compile-time. See
5998 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5999 * the kernel config
6000 */
6001void __paginginit set_pageblock_order(void)
6002{
6003}
6004
6005#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6006
6007static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6008 unsigned long present_pages)
6009{
6010 unsigned long pages = spanned_pages;
6011
6012 /*
6013 * Provide a more accurate estimation if there are holes within
6014 * the zone and SPARSEMEM is in use. If there are holes within the
6015 * zone, each populated memory region may cost us one or two extra
6016 * memmap pages due to alignment because memmap pages for each
6017 * populated regions may not be naturally aligned on page boundary.
6018 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6019 */
6020 if (spanned_pages > present_pages + (present_pages >> 4) &&
6021 IS_ENABLED(CONFIG_SPARSEMEM))
6022 pages = present_pages;
6023
6024 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6025}
6026
6027/*
6028 * Set up the zone data structures:
6029 * - mark all pages reserved
6030 * - mark all memory queues empty
6031 * - clear the memory bitmaps
6032 *
6033 * NOTE: pgdat should get zeroed by caller.
6034 */
6035static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6036{
6037 enum zone_type j;
6038 int nid = pgdat->node_id;
6039
6040 pgdat_resize_init(pgdat);
6041#ifdef CONFIG_NUMA_BALANCING
6042 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6043 pgdat->numabalancing_migrate_nr_pages = 0;
6044 pgdat->numabalancing_migrate_next_window = jiffies;
6045#endif
6046#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6047 spin_lock_init(&pgdat->split_queue_lock);
6048 INIT_LIST_HEAD(&pgdat->split_queue);
6049 pgdat->split_queue_len = 0;
6050#endif
6051 init_waitqueue_head(&pgdat->kswapd_wait);
6052 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6053#ifdef CONFIG_COMPACTION
6054 init_waitqueue_head(&pgdat->kcompactd_wait);
6055#endif
6056 pgdat_page_ext_init(pgdat);
6057 spin_lock_init(&pgdat->lru_lock);
6058 lruvec_init(node_lruvec(pgdat));
6059
6060 pgdat->per_cpu_nodestats = &boot_nodestats;
6061
6062 for (j = 0; j < MAX_NR_ZONES; j++) {
6063 struct zone *zone = pgdat->node_zones + j;
6064 unsigned long size, realsize, freesize, memmap_pages;
6065 unsigned long zone_start_pfn = zone->zone_start_pfn;
6066
6067 size = zone->spanned_pages;
6068 realsize = freesize = zone->present_pages;
6069
6070 /*
6071 * Adjust freesize so that it accounts for how much memory
6072 * is used by this zone for memmap. This affects the watermark
6073 * and per-cpu initialisations
6074 */
6075 memmap_pages = calc_memmap_size(size, realsize);
6076 if (!is_highmem_idx(j)) {
6077 if (freesize >= memmap_pages) {
6078 freesize -= memmap_pages;
6079 if (memmap_pages)
6080 printk(KERN_DEBUG
6081 " %s zone: %lu pages used for memmap\n",
6082 zone_names[j], memmap_pages);
6083 } else
6084 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6085 zone_names[j], memmap_pages, freesize);
6086 }
6087
6088 /* Account for reserved pages */
6089 if (j == 0 && freesize > dma_reserve) {
6090 freesize -= dma_reserve;
6091 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6092 zone_names[0], dma_reserve);
6093 }
6094
6095 if (!is_highmem_idx(j))
6096 nr_kernel_pages += freesize;
6097 /* Charge for highmem memmap if there are enough kernel pages */
6098 else if (nr_kernel_pages > memmap_pages * 2)
6099 nr_kernel_pages -= memmap_pages;
6100 nr_all_pages += freesize;
6101
6102 /*
6103 * Set an approximate value for lowmem here, it will be adjusted
6104 * when the bootmem allocator frees pages into the buddy system.
6105 * And all highmem pages will be managed by the buddy system.
6106 */
6107 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6108#ifdef CONFIG_NUMA
6109 zone->node = nid;
6110#endif
6111 zone->name = zone_names[j];
6112 zone->zone_pgdat = pgdat;
6113 spin_lock_init(&zone->lock);
6114 zone_seqlock_init(zone);
6115 zone_pcp_init(zone);
6116
6117 if (!size)
6118 continue;
6119
6120 set_pageblock_order();
6121 setup_usemap(pgdat, zone, zone_start_pfn, size);
6122 init_currently_empty_zone(zone, zone_start_pfn, size);
6123 memmap_init(size, nid, j, zone_start_pfn);
6124 }
6125}
6126
6127static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6128{
6129 unsigned long __maybe_unused start = 0;
6130 unsigned long __maybe_unused offset = 0;
6131
6132 /* Skip empty nodes */
6133 if (!pgdat->node_spanned_pages)
6134 return;
6135
6136#ifdef CONFIG_FLAT_NODE_MEM_MAP
6137 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6138 offset = pgdat->node_start_pfn - start;
6139 /* ia64 gets its own node_mem_map, before this, without bootmem */
6140 if (!pgdat->node_mem_map) {
6141 unsigned long size, end;
6142 struct page *map;
6143
6144 /*
6145 * The zone's endpoints aren't required to be MAX_ORDER
6146 * aligned but the node_mem_map endpoints must be in order
6147 * for the buddy allocator to function correctly.
6148 */
6149 end = pgdat_end_pfn(pgdat);
6150 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6151 size = (end - start) * sizeof(struct page);
6152 map = alloc_remap(pgdat->node_id, size);
6153 if (!map)
6154 map = memblock_virt_alloc_node_nopanic(size,
6155 pgdat->node_id);
6156 pgdat->node_mem_map = map + offset;
6157 }
6158#ifndef CONFIG_NEED_MULTIPLE_NODES
6159 /*
6160 * With no DISCONTIG, the global mem_map is just set as node 0's
6161 */
6162 if (pgdat == NODE_DATA(0)) {
6163 mem_map = NODE_DATA(0)->node_mem_map;
6164#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6165 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6166 mem_map -= offset;
6167#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6168 }
6169#endif
6170#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6171}
6172
6173void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6174 unsigned long node_start_pfn, unsigned long *zholes_size)
6175{
6176 pg_data_t *pgdat = NODE_DATA(nid);
6177 unsigned long start_pfn = 0;
6178 unsigned long end_pfn = 0;
6179
6180 /* pg_data_t should be reset to zero when it's allocated */
6181 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6182
6183 pgdat->node_id = nid;
6184 pgdat->node_start_pfn = node_start_pfn;
6185 pgdat->per_cpu_nodestats = NULL;
6186#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6187 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6188 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6189 (u64)start_pfn << PAGE_SHIFT,
6190 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6191#else
6192 start_pfn = node_start_pfn;
6193#endif
6194 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6195 zones_size, zholes_size);
6196
6197 alloc_node_mem_map(pgdat);
6198#ifdef CONFIG_FLAT_NODE_MEM_MAP
6199 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6200 nid, (unsigned long)pgdat,
6201 (unsigned long)pgdat->node_mem_map);
6202#endif
6203
6204 reset_deferred_meminit(pgdat);
6205 free_area_init_core(pgdat);
6206}
6207
6208#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6209
6210#if MAX_NUMNODES > 1
6211/*
6212 * Figure out the number of possible node ids.
6213 */
6214void __init setup_nr_node_ids(void)
6215{
6216 unsigned int highest;
6217
6218 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6219 nr_node_ids = highest + 1;
6220}
6221#endif
6222
6223/**
6224 * node_map_pfn_alignment - determine the maximum internode alignment
6225 *
6226 * This function should be called after node map is populated and sorted.
6227 * It calculates the maximum power of two alignment which can distinguish
6228 * all the nodes.
6229 *
6230 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6231 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6232 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6233 * shifted, 1GiB is enough and this function will indicate so.
6234 *
6235 * This is used to test whether pfn -> nid mapping of the chosen memory
6236 * model has fine enough granularity to avoid incorrect mapping for the
6237 * populated node map.
6238 *
6239 * Returns the determined alignment in pfn's. 0 if there is no alignment
6240 * requirement (single node).
6241 */
6242unsigned long __init node_map_pfn_alignment(void)
6243{
6244 unsigned long accl_mask = 0, last_end = 0;
6245 unsigned long start, end, mask;
6246 int last_nid = -1;
6247 int i, nid;
6248
6249 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6250 if (!start || last_nid < 0 || last_nid == nid) {
6251 last_nid = nid;
6252 last_end = end;
6253 continue;
6254 }
6255
6256 /*
6257 * Start with a mask granular enough to pin-point to the
6258 * start pfn and tick off bits one-by-one until it becomes
6259 * too coarse to separate the current node from the last.
6260 */
6261 mask = ~((1 << __ffs(start)) - 1);
6262 while (mask && last_end <= (start & (mask << 1)))
6263 mask <<= 1;
6264
6265 /* accumulate all internode masks */
6266 accl_mask |= mask;
6267 }
6268
6269 /* convert mask to number of pages */
6270 return ~accl_mask + 1;
6271}
6272
6273/* Find the lowest pfn for a node */
6274static unsigned long __init find_min_pfn_for_node(int nid)
6275{
6276 unsigned long min_pfn = ULONG_MAX;
6277 unsigned long start_pfn;
6278 int i;
6279
6280 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6281 min_pfn = min(min_pfn, start_pfn);
6282
6283 if (min_pfn == ULONG_MAX) {
6284 pr_warn("Could not find start_pfn for node %d\n", nid);
6285 return 0;
6286 }
6287
6288 return min_pfn;
6289}
6290
6291/**
6292 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6293 *
6294 * It returns the minimum PFN based on information provided via
6295 * memblock_set_node().
6296 */
6297unsigned long __init find_min_pfn_with_active_regions(void)
6298{
6299 return find_min_pfn_for_node(MAX_NUMNODES);
6300}
6301
6302/*
6303 * early_calculate_totalpages()
6304 * Sum pages in active regions for movable zone.
6305 * Populate N_MEMORY for calculating usable_nodes.
6306 */
6307static unsigned long __init early_calculate_totalpages(void)
6308{
6309 unsigned long totalpages = 0;
6310 unsigned long start_pfn, end_pfn;
6311 int i, nid;
6312
6313 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6314 unsigned long pages = end_pfn - start_pfn;
6315
6316 totalpages += pages;
6317 if (pages)
6318 node_set_state(nid, N_MEMORY);
6319 }
6320 return totalpages;
6321}
6322
6323/*
6324 * Find the PFN the Movable zone begins in each node. Kernel memory
6325 * is spread evenly between nodes as long as the nodes have enough
6326 * memory. When they don't, some nodes will have more kernelcore than
6327 * others
6328 */
6329static void __init find_zone_movable_pfns_for_nodes(void)
6330{
6331 int i, nid;
6332 unsigned long usable_startpfn;
6333 unsigned long kernelcore_node, kernelcore_remaining;
6334 /* save the state before borrow the nodemask */
6335 nodemask_t saved_node_state = node_states[N_MEMORY];
6336 unsigned long totalpages = early_calculate_totalpages();
6337 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6338 struct memblock_region *r;
6339
6340 /* Need to find movable_zone earlier when movable_node is specified. */
6341 find_usable_zone_for_movable();
6342
6343 /*
6344 * If movable_node is specified, ignore kernelcore and movablecore
6345 * options.
6346 */
6347 if (movable_node_is_enabled()) {
6348 for_each_memblock(memory, r) {
6349 if (!memblock_is_hotpluggable(r))
6350 continue;
6351
6352 nid = r->nid;
6353
6354 usable_startpfn = PFN_DOWN(r->base);
6355 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6356 min(usable_startpfn, zone_movable_pfn[nid]) :
6357 usable_startpfn;
6358 }
6359
6360 goto out2;
6361 }
6362
6363 /*
6364 * If kernelcore=mirror is specified, ignore movablecore option
6365 */
6366 if (mirrored_kernelcore) {
6367 bool mem_below_4gb_not_mirrored = false;
6368
6369 for_each_memblock(memory, r) {
6370 if (memblock_is_mirror(r))
6371 continue;
6372
6373 nid = r->nid;
6374
6375 usable_startpfn = memblock_region_memory_base_pfn(r);
6376
6377 if (usable_startpfn < 0x100000) {
6378 mem_below_4gb_not_mirrored = true;
6379 continue;
6380 }
6381
6382 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6383 min(usable_startpfn, zone_movable_pfn[nid]) :
6384 usable_startpfn;
6385 }
6386
6387 if (mem_below_4gb_not_mirrored)
6388 pr_warn("This configuration results in unmirrored kernel memory.");
6389
6390 goto out2;
6391 }
6392
6393 /*
6394 * If movablecore=nn[KMG] was specified, calculate what size of
6395 * kernelcore that corresponds so that memory usable for
6396 * any allocation type is evenly spread. If both kernelcore
6397 * and movablecore are specified, then the value of kernelcore
6398 * will be used for required_kernelcore if it's greater than
6399 * what movablecore would have allowed.
6400 */
6401 if (required_movablecore) {
6402 unsigned long corepages;
6403
6404 /*
6405 * Round-up so that ZONE_MOVABLE is at least as large as what
6406 * was requested by the user
6407 */
6408 required_movablecore =
6409 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6410 required_movablecore = min(totalpages, required_movablecore);
6411 corepages = totalpages - required_movablecore;
6412
6413 required_kernelcore = max(required_kernelcore, corepages);
6414 }
6415
6416 /*
6417 * If kernelcore was not specified or kernelcore size is larger
6418 * than totalpages, there is no ZONE_MOVABLE.
6419 */
6420 if (!required_kernelcore || required_kernelcore >= totalpages)
6421 goto out;
6422
6423 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6424 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6425
6426restart:
6427 /* Spread kernelcore memory as evenly as possible throughout nodes */
6428 kernelcore_node = required_kernelcore / usable_nodes;
6429 for_each_node_state(nid, N_MEMORY) {
6430 unsigned long start_pfn, end_pfn;
6431
6432 /*
6433 * Recalculate kernelcore_node if the division per node
6434 * now exceeds what is necessary to satisfy the requested
6435 * amount of memory for the kernel
6436 */
6437 if (required_kernelcore < kernelcore_node)
6438 kernelcore_node = required_kernelcore / usable_nodes;
6439
6440 /*
6441 * As the map is walked, we track how much memory is usable
6442 * by the kernel using kernelcore_remaining. When it is
6443 * 0, the rest of the node is usable by ZONE_MOVABLE
6444 */
6445 kernelcore_remaining = kernelcore_node;
6446
6447 /* Go through each range of PFNs within this node */
6448 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6449 unsigned long size_pages;
6450
6451 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6452 if (start_pfn >= end_pfn)
6453 continue;
6454
6455 /* Account for what is only usable for kernelcore */
6456 if (start_pfn < usable_startpfn) {
6457 unsigned long kernel_pages;
6458 kernel_pages = min(end_pfn, usable_startpfn)
6459 - start_pfn;
6460
6461 kernelcore_remaining -= min(kernel_pages,
6462 kernelcore_remaining);
6463 required_kernelcore -= min(kernel_pages,
6464 required_kernelcore);
6465
6466 /* Continue if range is now fully accounted */
6467 if (end_pfn <= usable_startpfn) {
6468
6469 /*
6470 * Push zone_movable_pfn to the end so
6471 * that if we have to rebalance
6472 * kernelcore across nodes, we will
6473 * not double account here
6474 */
6475 zone_movable_pfn[nid] = end_pfn;
6476 continue;
6477 }
6478 start_pfn = usable_startpfn;
6479 }
6480
6481 /*
6482 * The usable PFN range for ZONE_MOVABLE is from
6483 * start_pfn->end_pfn. Calculate size_pages as the
6484 * number of pages used as kernelcore
6485 */
6486 size_pages = end_pfn - start_pfn;
6487 if (size_pages > kernelcore_remaining)
6488 size_pages = kernelcore_remaining;
6489 zone_movable_pfn[nid] = start_pfn + size_pages;
6490
6491 /*
6492 * Some kernelcore has been met, update counts and
6493 * break if the kernelcore for this node has been
6494 * satisfied
6495 */
6496 required_kernelcore -= min(required_kernelcore,
6497 size_pages);
6498 kernelcore_remaining -= size_pages;
6499 if (!kernelcore_remaining)
6500 break;
6501 }
6502 }
6503
6504 /*
6505 * If there is still required_kernelcore, we do another pass with one
6506 * less node in the count. This will push zone_movable_pfn[nid] further
6507 * along on the nodes that still have memory until kernelcore is
6508 * satisfied
6509 */
6510 usable_nodes--;
6511 if (usable_nodes && required_kernelcore > usable_nodes)
6512 goto restart;
6513
6514out2:
6515 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6516 for (nid = 0; nid < MAX_NUMNODES; nid++)
6517 zone_movable_pfn[nid] =
6518 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6519
6520out:
6521 /* restore the node_state */
6522 node_states[N_MEMORY] = saved_node_state;
6523}
6524
6525/* Any regular or high memory on that node ? */
6526static void check_for_memory(pg_data_t *pgdat, int nid)
6527{
6528 enum zone_type zone_type;
6529
6530 if (N_MEMORY == N_NORMAL_MEMORY)
6531 return;
6532
6533 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6534 struct zone *zone = &pgdat->node_zones[zone_type];
6535 if (populated_zone(zone)) {
6536 node_set_state(nid, N_HIGH_MEMORY);
6537 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6538 zone_type <= ZONE_NORMAL)
6539 node_set_state(nid, N_NORMAL_MEMORY);
6540 break;
6541 }
6542 }
6543}
6544
6545/**
6546 * free_area_init_nodes - Initialise all pg_data_t and zone data
6547 * @max_zone_pfn: an array of max PFNs for each zone
6548 *
6549 * This will call free_area_init_node() for each active node in the system.
6550 * Using the page ranges provided by memblock_set_node(), the size of each
6551 * zone in each node and their holes is calculated. If the maximum PFN
6552 * between two adjacent zones match, it is assumed that the zone is empty.
6553 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6554 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6555 * starts where the previous one ended. For example, ZONE_DMA32 starts
6556 * at arch_max_dma_pfn.
6557 */
6558void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6559{
6560 unsigned long start_pfn, end_pfn;
6561 int i, nid;
6562
6563 /* Record where the zone boundaries are */
6564 memset(arch_zone_lowest_possible_pfn, 0,
6565 sizeof(arch_zone_lowest_possible_pfn));
6566 memset(arch_zone_highest_possible_pfn, 0,
6567 sizeof(arch_zone_highest_possible_pfn));
6568
6569 start_pfn = find_min_pfn_with_active_regions();
6570
6571 for (i = 0; i < MAX_NR_ZONES; i++) {
6572 if (i == ZONE_MOVABLE)
6573 continue;
6574
6575 end_pfn = max(max_zone_pfn[i], start_pfn);
6576 arch_zone_lowest_possible_pfn[i] = start_pfn;
6577 arch_zone_highest_possible_pfn[i] = end_pfn;
6578
6579 start_pfn = end_pfn;
6580 }
6581
6582 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6583 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6584 find_zone_movable_pfns_for_nodes();
6585
6586 /* Print out the zone ranges */
6587 pr_info("Zone ranges:\n");
6588 for (i = 0; i < MAX_NR_ZONES; i++) {
6589 if (i == ZONE_MOVABLE)
6590 continue;
6591 pr_info(" %-8s ", zone_names[i]);
6592 if (arch_zone_lowest_possible_pfn[i] ==
6593 arch_zone_highest_possible_pfn[i])
6594 pr_cont("empty\n");
6595 else
6596 pr_cont("[mem %#018Lx-%#018Lx]\n",
6597 (u64)arch_zone_lowest_possible_pfn[i]
6598 << PAGE_SHIFT,
6599 ((u64)arch_zone_highest_possible_pfn[i]
6600 << PAGE_SHIFT) - 1);
6601 }
6602
6603 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6604 pr_info("Movable zone start for each node\n");
6605 for (i = 0; i < MAX_NUMNODES; i++) {
6606 if (zone_movable_pfn[i])
6607 pr_info(" Node %d: %#018Lx\n", i,
6608 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6609 }
6610
6611 /* Print out the early node map */
6612 pr_info("Early memory node ranges\n");
6613 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6614 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6615 (u64)start_pfn << PAGE_SHIFT,
6616 ((u64)end_pfn << PAGE_SHIFT) - 1);
6617
6618 /* Initialise every node */
6619 mminit_verify_pageflags_layout();
6620 setup_nr_node_ids();
6621 for_each_online_node(nid) {
6622 pg_data_t *pgdat = NODE_DATA(nid);
6623 free_area_init_node(nid, NULL,
6624 find_min_pfn_for_node(nid), NULL);
6625
6626 /* Any memory on that node */
6627 if (pgdat->node_present_pages)
6628 node_set_state(nid, N_MEMORY);
6629 check_for_memory(pgdat, nid);
6630 }
6631}
6632
6633static int __init cmdline_parse_core(char *p, unsigned long *core)
6634{
6635 unsigned long long coremem;
6636 if (!p)
6637 return -EINVAL;
6638
6639 coremem = memparse(p, &p);
6640 *core = coremem >> PAGE_SHIFT;
6641
6642 /* Paranoid check that UL is enough for the coremem value */
6643 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6644
6645 return 0;
6646}
6647
6648/*
6649 * kernelcore=size sets the amount of memory for use for allocations that
6650 * cannot be reclaimed or migrated.
6651 */
6652static int __init cmdline_parse_kernelcore(char *p)
6653{
6654 /* parse kernelcore=mirror */
6655 if (parse_option_str(p, "mirror")) {
6656 mirrored_kernelcore = true;
6657 return 0;
6658 }
6659
6660 return cmdline_parse_core(p, &required_kernelcore);
6661}
6662
6663/*
6664 * movablecore=size sets the amount of memory for use for allocations that
6665 * can be reclaimed or migrated.
6666 */
6667static int __init cmdline_parse_movablecore(char *p)
6668{
6669 return cmdline_parse_core(p, &required_movablecore);
6670}
6671
6672early_param("kernelcore", cmdline_parse_kernelcore);
6673early_param("movablecore", cmdline_parse_movablecore);
6674
6675#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6676
6677void adjust_managed_page_count(struct page *page, long count)
6678{
6679 spin_lock(&managed_page_count_lock);
6680 page_zone(page)->managed_pages += count;
6681 totalram_pages += count;
6682#ifdef CONFIG_HIGHMEM
6683 if (PageHighMem(page))
6684 totalhigh_pages += count;
6685#endif
6686 spin_unlock(&managed_page_count_lock);
6687}
6688EXPORT_SYMBOL(adjust_managed_page_count);
6689
6690unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6691{
6692 void *pos;
6693 unsigned long pages = 0;
6694
6695 start = (void *)PAGE_ALIGN((unsigned long)start);
6696 end = (void *)((unsigned long)end & PAGE_MASK);
6697 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6698 if ((unsigned int)poison <= 0xFF)
6699 memset(pos, poison, PAGE_SIZE);
6700 free_reserved_page(virt_to_page(pos));
6701 }
6702
6703 if (pages && s)
6704 pr_info("Freeing %s memory: %ldK\n",
6705 s, pages << (PAGE_SHIFT - 10));
6706
6707 return pages;
6708}
6709EXPORT_SYMBOL(free_reserved_area);
6710
6711#ifdef CONFIG_HIGHMEM
6712void free_highmem_page(struct page *page)
6713{
6714 __free_reserved_page(page);
6715 totalram_pages++;
6716 page_zone(page)->managed_pages++;
6717 totalhigh_pages++;
6718}
6719#endif
6720
6721
6722void __init mem_init_print_info(const char *str)
6723{
6724 unsigned long physpages, codesize, datasize, rosize, bss_size;
6725 unsigned long init_code_size, init_data_size;
6726
6727 physpages = get_num_physpages();
6728 codesize = _etext - _stext;
6729 datasize = _edata - _sdata;
6730 rosize = __end_rodata - __start_rodata;
6731 bss_size = __bss_stop - __bss_start;
6732 init_data_size = __init_end - __init_begin;
6733 init_code_size = _einittext - _sinittext;
6734
6735 /*
6736 * Detect special cases and adjust section sizes accordingly:
6737 * 1) .init.* may be embedded into .data sections
6738 * 2) .init.text.* may be out of [__init_begin, __init_end],
6739 * please refer to arch/tile/kernel/vmlinux.lds.S.
6740 * 3) .rodata.* may be embedded into .text or .data sections.
6741 */
6742#define adj_init_size(start, end, size, pos, adj) \
6743 do { \
6744 if (start <= pos && pos < end && size > adj) \
6745 size -= adj; \
6746 } while (0)
6747
6748 adj_init_size(__init_begin, __init_end, init_data_size,
6749 _sinittext, init_code_size);
6750 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6751 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6752 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6753 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6754
6755#undef adj_init_size
6756
6757 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6758#ifdef CONFIG_HIGHMEM
6759 ", %luK highmem"
6760#endif
6761 "%s%s)\n",
6762 nr_free_pages() << (PAGE_SHIFT - 10),
6763 physpages << (PAGE_SHIFT - 10),
6764 codesize >> 10, datasize >> 10, rosize >> 10,
6765 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6766 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6767 totalcma_pages << (PAGE_SHIFT - 10),
6768#ifdef CONFIG_HIGHMEM
6769 totalhigh_pages << (PAGE_SHIFT - 10),
6770#endif
6771 str ? ", " : "", str ? str : "");
6772}
6773
6774/**
6775 * set_dma_reserve - set the specified number of pages reserved in the first zone
6776 * @new_dma_reserve: The number of pages to mark reserved
6777 *
6778 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6779 * In the DMA zone, a significant percentage may be consumed by kernel image
6780 * and other unfreeable allocations which can skew the watermarks badly. This
6781 * function may optionally be used to account for unfreeable pages in the
6782 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6783 * smaller per-cpu batchsize.
6784 */
6785void __init set_dma_reserve(unsigned long new_dma_reserve)
6786{
6787 dma_reserve = new_dma_reserve;
6788}
6789
6790void __init free_area_init(unsigned long *zones_size)
6791{
6792 free_area_init_node(0, zones_size,
6793 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6794}
6795
6796static int page_alloc_cpu_dead(unsigned int cpu)
6797{
6798
6799 lru_add_drain_cpu(cpu);
6800 drain_pages(cpu);
6801
6802 /*
6803 * Spill the event counters of the dead processor
6804 * into the current processors event counters.
6805 * This artificially elevates the count of the current
6806 * processor.
6807 */
6808 vm_events_fold_cpu(cpu);
6809
6810 /*
6811 * Zero the differential counters of the dead processor
6812 * so that the vm statistics are consistent.
6813 *
6814 * This is only okay since the processor is dead and cannot
6815 * race with what we are doing.
6816 */
6817 cpu_vm_stats_fold(cpu);
6818 return 0;
6819}
6820
6821void __init page_alloc_init(void)
6822{
6823 int ret;
6824
6825 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6826 "mm/page_alloc:dead", NULL,
6827 page_alloc_cpu_dead);
6828 WARN_ON(ret < 0);
6829}
6830
6831/*
6832 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6833 * or min_free_kbytes changes.
6834 */
6835static void calculate_totalreserve_pages(void)
6836{
6837 struct pglist_data *pgdat;
6838 unsigned long reserve_pages = 0;
6839 enum zone_type i, j;
6840
6841 for_each_online_pgdat(pgdat) {
6842
6843 pgdat->totalreserve_pages = 0;
6844
6845 for (i = 0; i < MAX_NR_ZONES; i++) {
6846 struct zone *zone = pgdat->node_zones + i;
6847 long max = 0;
6848
6849 /* Find valid and maximum lowmem_reserve in the zone */
6850 for (j = i; j < MAX_NR_ZONES; j++) {
6851 if (zone->lowmem_reserve[j] > max)
6852 max = zone->lowmem_reserve[j];
6853 }
6854
6855 /* we treat the high watermark as reserved pages. */
6856 max += high_wmark_pages(zone);
6857
6858 if (max > zone->managed_pages)
6859 max = zone->managed_pages;
6860
6861 pgdat->totalreserve_pages += max;
6862
6863 reserve_pages += max;
6864 }
6865 }
6866 totalreserve_pages = reserve_pages;
6867}
6868
6869/*
6870 * setup_per_zone_lowmem_reserve - called whenever
6871 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6872 * has a correct pages reserved value, so an adequate number of
6873 * pages are left in the zone after a successful __alloc_pages().
6874 */
6875static void setup_per_zone_lowmem_reserve(void)
6876{
6877 struct pglist_data *pgdat;
6878 enum zone_type j, idx;
6879
6880 for_each_online_pgdat(pgdat) {
6881 for (j = 0; j < MAX_NR_ZONES; j++) {
6882 struct zone *zone = pgdat->node_zones + j;
6883 unsigned long managed_pages = zone->managed_pages;
6884
6885 zone->lowmem_reserve[j] = 0;
6886
6887 idx = j;
6888 while (idx) {
6889 struct zone *lower_zone;
6890
6891 idx--;
6892
6893 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6894 sysctl_lowmem_reserve_ratio[idx] = 1;
6895
6896 lower_zone = pgdat->node_zones + idx;
6897 lower_zone->lowmem_reserve[j] = managed_pages /
6898 sysctl_lowmem_reserve_ratio[idx];
6899 managed_pages += lower_zone->managed_pages;
6900 }
6901 }
6902 }
6903
6904 /* update totalreserve_pages */
6905 calculate_totalreserve_pages();
6906}
6907
6908static void __setup_per_zone_wmarks(void)
6909{
6910 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6911 unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
6912 unsigned long lowmem_pages = 0;
6913 struct zone *zone;
6914 unsigned long flags;
6915
6916 /* Calculate total number of !ZONE_HIGHMEM pages */
6917 for_each_zone(zone) {
6918 if (!is_highmem(zone))
6919 lowmem_pages += zone->managed_pages;
6920 }
6921
6922 for_each_zone(zone) {
6923 u64 min, low;
6924
6925 spin_lock_irqsave(&zone->lock, flags);
6926 min = (u64)pages_min * zone->managed_pages;
6927 do_div(min, lowmem_pages);
6928 low = (u64)pages_low * zone->managed_pages;
6929 do_div(low, vm_total_pages);
6930
6931 if (is_highmem(zone)) {
6932 /*
6933 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6934 * need highmem pages, so cap pages_min to a small
6935 * value here.
6936 *
6937 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6938 * deltas control asynch page reclaim, and so should
6939 * not be capped for highmem.
6940 */
6941 unsigned long min_pages;
6942
6943 min_pages = zone->managed_pages / 1024;
6944 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6945 zone->watermark[WMARK_MIN] = min_pages;
6946 } else {
6947 /*
6948 * If it's a lowmem zone, reserve a number of pages
6949 * proportionate to the zone's size.
6950 */
6951 zone->watermark[WMARK_MIN] = min;
6952 }
6953
6954 /*
6955 * Set the kswapd watermarks distance according to the
6956 * scale factor in proportion to available memory, but
6957 * ensure a minimum size on small systems.
6958 */
6959 min = max_t(u64, min >> 2,
6960 mult_frac(zone->managed_pages,
6961 watermark_scale_factor, 10000));
6962
6963 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) +
6964 low + min;
6965 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) +
6966 low + min * 2;
6967
6968 spin_unlock_irqrestore(&zone->lock, flags);
6969 }
6970
6971 /* update totalreserve_pages */
6972 calculate_totalreserve_pages();
6973}
6974
6975/**
6976 * setup_per_zone_wmarks - called when min_free_kbytes changes
6977 * or when memory is hot-{added|removed}
6978 *
6979 * Ensures that the watermark[min,low,high] values for each zone are set
6980 * correctly with respect to min_free_kbytes.
6981 */
6982void setup_per_zone_wmarks(void)
6983{
6984 static DEFINE_SPINLOCK(lock);
6985
6986 spin_lock(&lock);
6987 __setup_per_zone_wmarks();
6988 spin_unlock(&lock);
6989}
6990
6991/*
6992 * Initialise min_free_kbytes.
6993 *
6994 * For small machines we want it small (128k min). For large machines
6995 * we want it large (64MB max). But it is not linear, because network
6996 * bandwidth does not increase linearly with machine size. We use
6997 *
6998 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6999 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7000 *
7001 * which yields
7002 *
7003 * 16MB: 512k
7004 * 32MB: 724k
7005 * 64MB: 1024k
7006 * 128MB: 1448k
7007 * 256MB: 2048k
7008 * 512MB: 2896k
7009 * 1024MB: 4096k
7010 * 2048MB: 5792k
7011 * 4096MB: 8192k
7012 * 8192MB: 11584k
7013 * 16384MB: 16384k
7014 */
7015int __meminit init_per_zone_wmark_min(void)
7016{
7017 unsigned long lowmem_kbytes;
7018 int new_min_free_kbytes;
7019
7020 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7021 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7022
7023 if (new_min_free_kbytes > user_min_free_kbytes) {
7024 min_free_kbytes = new_min_free_kbytes;
7025 if (min_free_kbytes < 128)
7026 min_free_kbytes = 128;
7027 if (min_free_kbytes > 65536)
7028 min_free_kbytes = 65536;
7029 } else {
7030 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7031 new_min_free_kbytes, user_min_free_kbytes);
7032 }
7033 setup_per_zone_wmarks();
7034 refresh_zone_stat_thresholds();
7035 setup_per_zone_lowmem_reserve();
7036
7037#ifdef CONFIG_NUMA
7038 setup_min_unmapped_ratio();
7039 setup_min_slab_ratio();
7040#endif
7041
7042 return 0;
7043}
7044postcore_initcall(init_per_zone_wmark_min)
7045
7046/*
7047 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7048 * that we can call two helper functions whenever min_free_kbytes
7049 * or extra_free_kbytes changes.
7050 */
7051int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7052 void __user *buffer, size_t *length, loff_t *ppos)
7053{
7054 int rc;
7055
7056 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7057 if (rc)
7058 return rc;
7059
7060 if (write) {
7061 user_min_free_kbytes = min_free_kbytes;
7062 setup_per_zone_wmarks();
7063 }
7064 return 0;
7065}
7066
7067int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7068 void __user *buffer, size_t *length, loff_t *ppos)
7069{
7070 int rc;
7071
7072 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7073 if (rc)
7074 return rc;
7075
7076 if (write)
7077 setup_per_zone_wmarks();
7078
7079 return 0;
7080}
7081
7082#ifdef CONFIG_NUMA
7083static void setup_min_unmapped_ratio(void)
7084{
7085 pg_data_t *pgdat;
7086 struct zone *zone;
7087
7088 for_each_online_pgdat(pgdat)
7089 pgdat->min_unmapped_pages = 0;
7090
7091 for_each_zone(zone)
7092 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7093 sysctl_min_unmapped_ratio) / 100;
7094}
7095
7096
7097int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7098 void __user *buffer, size_t *length, loff_t *ppos)
7099{
7100 int rc;
7101
7102 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7103 if (rc)
7104 return rc;
7105
7106 setup_min_unmapped_ratio();
7107
7108 return 0;
7109}
7110
7111static void setup_min_slab_ratio(void)
7112{
7113 pg_data_t *pgdat;
7114 struct zone *zone;
7115
7116 for_each_online_pgdat(pgdat)
7117 pgdat->min_slab_pages = 0;
7118
7119 for_each_zone(zone)
7120 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7121 sysctl_min_slab_ratio) / 100;
7122}
7123
7124int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7125 void __user *buffer, size_t *length, loff_t *ppos)
7126{
7127 int rc;
7128
7129 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7130 if (rc)
7131 return rc;
7132
7133 setup_min_slab_ratio();
7134
7135 return 0;
7136}
7137#endif
7138
7139/*
7140 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7141 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7142 * whenever sysctl_lowmem_reserve_ratio changes.
7143 *
7144 * The reserve ratio obviously has absolutely no relation with the
7145 * minimum watermarks. The lowmem reserve ratio can only make sense
7146 * if in function of the boot time zone sizes.
7147 */
7148int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7149 void __user *buffer, size_t *length, loff_t *ppos)
7150{
7151 proc_dointvec_minmax(table, write, buffer, length, ppos);
7152 setup_per_zone_lowmem_reserve();
7153 return 0;
7154}
7155
7156/*
7157 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7158 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7159 * pagelist can have before it gets flushed back to buddy allocator.
7160 */
7161int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7162 void __user *buffer, size_t *length, loff_t *ppos)
7163{
7164 struct zone *zone;
7165 int old_percpu_pagelist_fraction;
7166 int ret;
7167
7168 mutex_lock(&pcp_batch_high_lock);
7169 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7170
7171 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7172 if (!write || ret < 0)
7173 goto out;
7174
7175 /* Sanity checking to avoid pcp imbalance */
7176 if (percpu_pagelist_fraction &&
7177 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7178 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7179 ret = -EINVAL;
7180 goto out;
7181 }
7182
7183 /* No change? */
7184 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7185 goto out;
7186
7187 for_each_populated_zone(zone) {
7188 unsigned int cpu;
7189
7190 for_each_possible_cpu(cpu)
7191 pageset_set_high_and_batch(zone,
7192 per_cpu_ptr(zone->pageset, cpu));
7193 }
7194out:
7195 mutex_unlock(&pcp_batch_high_lock);
7196 return ret;
7197}
7198
7199#ifdef CONFIG_NUMA
7200int hashdist = HASHDIST_DEFAULT;
7201
7202static int __init set_hashdist(char *str)
7203{
7204 if (!str)
7205 return 0;
7206 hashdist = simple_strtoul(str, &str, 0);
7207 return 1;
7208}
7209__setup("hashdist=", set_hashdist);
7210#endif
7211
7212#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7213/*
7214 * Returns the number of pages that arch has reserved but
7215 * is not known to alloc_large_system_hash().
7216 */
7217static unsigned long __init arch_reserved_kernel_pages(void)
7218{
7219 return 0;
7220}
7221#endif
7222
7223/*
7224 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7225 * machines. As memory size is increased the scale is also increased but at
7226 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7227 * quadruples the scale is increased by one, which means the size of hash table
7228 * only doubles, instead of quadrupling as well.
7229 * Because 32-bit systems cannot have large physical memory, where this scaling
7230 * makes sense, it is disabled on such platforms.
7231 */
7232#if __BITS_PER_LONG > 32
7233#define ADAPT_SCALE_BASE (64ul << 30)
7234#define ADAPT_SCALE_SHIFT 2
7235#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7236#endif
7237
7238/*
7239 * allocate a large system hash table from bootmem
7240 * - it is assumed that the hash table must contain an exact power-of-2
7241 * quantity of entries
7242 * - limit is the number of hash buckets, not the total allocation size
7243 */
7244void *__init alloc_large_system_hash(const char *tablename,
7245 unsigned long bucketsize,
7246 unsigned long numentries,
7247 int scale,
7248 int flags,
7249 unsigned int *_hash_shift,
7250 unsigned int *_hash_mask,
7251 unsigned long low_limit,
7252 unsigned long high_limit)
7253{
7254 unsigned long long max = high_limit;
7255 unsigned long log2qty, size;
7256 void *table = NULL;
7257 gfp_t gfp_flags;
7258
7259 /* allow the kernel cmdline to have a say */
7260 if (!numentries) {
7261 /* round applicable memory size up to nearest megabyte */
7262 numentries = nr_kernel_pages;
7263 numentries -= arch_reserved_kernel_pages();
7264
7265 /* It isn't necessary when PAGE_SIZE >= 1MB */
7266 if (PAGE_SHIFT < 20)
7267 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7268
7269#if __BITS_PER_LONG > 32
7270 if (!high_limit) {
7271 unsigned long adapt;
7272
7273 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7274 adapt <<= ADAPT_SCALE_SHIFT)
7275 scale++;
7276 }
7277#endif
7278
7279 /* limit to 1 bucket per 2^scale bytes of low memory */
7280 if (scale > PAGE_SHIFT)
7281 numentries >>= (scale - PAGE_SHIFT);
7282 else
7283 numentries <<= (PAGE_SHIFT - scale);
7284
7285 /* Make sure we've got at least a 0-order allocation.. */
7286 if (unlikely(flags & HASH_SMALL)) {
7287 /* Makes no sense without HASH_EARLY */
7288 WARN_ON(!(flags & HASH_EARLY));
7289 if (!(numentries >> *_hash_shift)) {
7290 numentries = 1UL << *_hash_shift;
7291 BUG_ON(!numentries);
7292 }
7293 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7294 numentries = PAGE_SIZE / bucketsize;
7295 }
7296 numentries = roundup_pow_of_two(numentries);
7297
7298 /* limit allocation size to 1/16 total memory by default */
7299 if (max == 0) {
7300 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7301 do_div(max, bucketsize);
7302 }
7303 max = min(max, 0x80000000ULL);
7304
7305 if (numentries < low_limit)
7306 numentries = low_limit;
7307 if (numentries > max)
7308 numentries = max;
7309
7310 log2qty = ilog2(numentries);
7311
7312 /*
7313 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7314 * currently not used when HASH_EARLY is specified.
7315 */
7316 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7317 do {
7318 size = bucketsize << log2qty;
7319 if (flags & HASH_EARLY)
7320 table = memblock_virt_alloc_nopanic(size, 0);
7321 else if (hashdist)
7322 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7323 else {
7324 /*
7325 * If bucketsize is not a power-of-two, we may free
7326 * some pages at the end of hash table which
7327 * alloc_pages_exact() automatically does
7328 */
7329 if (get_order(size) < MAX_ORDER) {
7330 table = alloc_pages_exact(size, gfp_flags);
7331 kmemleak_alloc(table, size, 1, gfp_flags);
7332 }
7333 }
7334 } while (!table && size > PAGE_SIZE && --log2qty);
7335
7336 if (!table)
7337 panic("Failed to allocate %s hash table\n", tablename);
7338
7339 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7340 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7341
7342 if (_hash_shift)
7343 *_hash_shift = log2qty;
7344 if (_hash_mask)
7345 *_hash_mask = (1 << log2qty) - 1;
7346
7347 return table;
7348}
7349
7350/*
7351 * This function checks whether pageblock includes unmovable pages or not.
7352 * If @count is not zero, it is okay to include less @count unmovable pages
7353 *
7354 * PageLRU check without isolation or lru_lock could race so that
7355 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7356 * check without lock_page also may miss some movable non-lru pages at
7357 * race condition. So you can't expect this function should be exact.
7358 */
7359bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7360 bool skip_hwpoisoned_pages)
7361{
7362 unsigned long pfn, iter, found;
7363 int mt;
7364
7365 /*
7366 * For avoiding noise data, lru_add_drain_all() should be called
7367 * If ZONE_MOVABLE, the zone never contains unmovable pages
7368 */
7369 if (zone_idx(zone) == ZONE_MOVABLE)
7370 return false;
7371 mt = get_pageblock_migratetype(page);
7372 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7373 return false;
7374
7375 pfn = page_to_pfn(page);
7376 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7377 unsigned long check = pfn + iter;
7378
7379 if (!pfn_valid_within(check))
7380 continue;
7381
7382 page = pfn_to_page(check);
7383
7384 /*
7385 * Hugepages are not in LRU lists, but they're movable.
7386 * We need not scan over tail pages bacause we don't
7387 * handle each tail page individually in migration.
7388 */
7389 if (PageHuge(page)) {
7390 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7391 continue;
7392 }
7393
7394 /*
7395 * We can't use page_count without pin a page
7396 * because another CPU can free compound page.
7397 * This check already skips compound tails of THP
7398 * because their page->_refcount is zero at all time.
7399 */
7400 if (!page_ref_count(page)) {
7401 if (PageBuddy(page))
7402 iter += (1 << page_order(page)) - 1;
7403 continue;
7404 }
7405
7406 /*
7407 * The HWPoisoned page may be not in buddy system, and
7408 * page_count() is not 0.
7409 */
7410 if (skip_hwpoisoned_pages && PageHWPoison(page))
7411 continue;
7412
7413 if (__PageMovable(page))
7414 continue;
7415
7416 if (!PageLRU(page))
7417 found++;
7418 /*
7419 * If there are RECLAIMABLE pages, we need to check
7420 * it. But now, memory offline itself doesn't call
7421 * shrink_node_slabs() and it still to be fixed.
7422 */
7423 /*
7424 * If the page is not RAM, page_count()should be 0.
7425 * we don't need more check. This is an _used_ not-movable page.
7426 *
7427 * The problematic thing here is PG_reserved pages. PG_reserved
7428 * is set to both of a memory hole page and a _used_ kernel
7429 * page at boot.
7430 */
7431 if (found > count)
7432 return true;
7433 }
7434 return false;
7435}
7436
7437bool is_pageblock_removable_nolock(struct page *page)
7438{
7439 struct zone *zone;
7440 unsigned long pfn;
7441
7442 /*
7443 * We have to be careful here because we are iterating over memory
7444 * sections which are not zone aware so we might end up outside of
7445 * the zone but still within the section.
7446 * We have to take care about the node as well. If the node is offline
7447 * its NODE_DATA will be NULL - see page_zone.
7448 */
7449 if (!node_online(page_to_nid(page)))
7450 return false;
7451
7452 zone = page_zone(page);
7453 pfn = page_to_pfn(page);
7454 if (!zone_spans_pfn(zone, pfn))
7455 return false;
7456
7457 return !has_unmovable_pages(zone, page, 0, true);
7458}
7459
7460#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7461
7462static unsigned long pfn_max_align_down(unsigned long pfn)
7463{
7464 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7465 pageblock_nr_pages) - 1);
7466}
7467
7468static unsigned long pfn_max_align_up(unsigned long pfn)
7469{
7470 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7471 pageblock_nr_pages));
7472}
7473
7474/* [start, end) must belong to a single zone. */
7475static int __alloc_contig_migrate_range(struct compact_control *cc,
7476 unsigned long start, unsigned long end)
7477{
7478 /* This function is based on compact_zone() from compaction.c. */
7479 unsigned long nr_reclaimed;
7480 unsigned long pfn = start;
7481 unsigned int tries = 0;
7482 int ret = 0;
7483
7484 migrate_prep();
7485
7486 while (pfn < end || !list_empty(&cc->migratepages)) {
7487 if (fatal_signal_pending(current)) {
7488 ret = -EINTR;
7489 break;
7490 }
7491
7492 if (list_empty(&cc->migratepages)) {
7493 cc->nr_migratepages = 0;
7494 pfn = isolate_migratepages_range(cc, pfn, end);
7495 if (!pfn) {
7496 ret = -EINTR;
7497 break;
7498 }
7499 tries = 0;
7500 } else if (++tries == 5) {
7501 ret = ret < 0 ? ret : -EBUSY;
7502 break;
7503 }
7504
7505 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7506 &cc->migratepages);
7507 cc->nr_migratepages -= nr_reclaimed;
7508
7509 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7510 NULL, 0, cc->mode, MR_CMA);
7511 }
7512 if (ret < 0) {
7513 putback_movable_pages(&cc->migratepages);
7514 return ret;
7515 }
7516 return 0;
7517}
7518
7519/**
7520 * alloc_contig_range() -- tries to allocate given range of pages
7521 * @start: start PFN to allocate
7522 * @end: one-past-the-last PFN to allocate
7523 * @migratetype: migratetype of the underlaying pageblocks (either
7524 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7525 * in range must have the same migratetype and it must
7526 * be either of the two.
7527 * @gfp_mask: GFP mask to use during compaction
7528 *
7529 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7530 * aligned, however it's the caller's responsibility to guarantee that
7531 * we are the only thread that changes migrate type of pageblocks the
7532 * pages fall in.
7533 *
7534 * The PFN range must belong to a single zone.
7535 *
7536 * Returns zero on success or negative error code. On success all
7537 * pages which PFN is in [start, end) are allocated for the caller and
7538 * need to be freed with free_contig_range().
7539 */
7540int alloc_contig_range(unsigned long start, unsigned long end,
7541 unsigned migratetype, gfp_t gfp_mask)
7542{
7543 unsigned long outer_start, outer_end;
7544 unsigned int order;
7545 int ret = 0;
7546
7547 struct compact_control cc = {
7548 .nr_migratepages = 0,
7549 .order = -1,
7550 .zone = page_zone(pfn_to_page(start)),
7551 .mode = MIGRATE_SYNC,
7552 .ignore_skip_hint = true,
7553 .gfp_mask = current_gfp_context(gfp_mask),
7554 };
7555 INIT_LIST_HEAD(&cc.migratepages);
7556
7557 /*
7558 * What we do here is we mark all pageblocks in range as
7559 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7560 * have different sizes, and due to the way page allocator
7561 * work, we align the range to biggest of the two pages so
7562 * that page allocator won't try to merge buddies from
7563 * different pageblocks and change MIGRATE_ISOLATE to some
7564 * other migration type.
7565 *
7566 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7567 * migrate the pages from an unaligned range (ie. pages that
7568 * we are interested in). This will put all the pages in
7569 * range back to page allocator as MIGRATE_ISOLATE.
7570 *
7571 * When this is done, we take the pages in range from page
7572 * allocator removing them from the buddy system. This way
7573 * page allocator will never consider using them.
7574 *
7575 * This lets us mark the pageblocks back as
7576 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7577 * aligned range but not in the unaligned, original range are
7578 * put back to page allocator so that buddy can use them.
7579 */
7580
7581 ret = start_isolate_page_range(pfn_max_align_down(start),
7582 pfn_max_align_up(end), migratetype,
7583 false);
7584 if (ret)
7585 return ret;
7586
7587 /*
7588 * In case of -EBUSY, we'd like to know which page causes problem.
7589 * So, just fall through. test_pages_isolated() has a tracepoint
7590 * which will report the busy page.
7591 *
7592 * It is possible that busy pages could become available before
7593 * the call to test_pages_isolated, and the range will actually be
7594 * allocated. So, if we fall through be sure to clear ret so that
7595 * -EBUSY is not accidentally used or returned to caller.
7596 */
7597 ret = __alloc_contig_migrate_range(&cc, start, end);
7598 if (ret && ret != -EBUSY)
7599 goto done;
7600 ret =0;
7601
7602 /*
7603 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7604 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7605 * more, all pages in [start, end) are free in page allocator.
7606 * What we are going to do is to allocate all pages from
7607 * [start, end) (that is remove them from page allocator).
7608 *
7609 * The only problem is that pages at the beginning and at the
7610 * end of interesting range may be not aligned with pages that
7611 * page allocator holds, ie. they can be part of higher order
7612 * pages. Because of this, we reserve the bigger range and
7613 * once this is done free the pages we are not interested in.
7614 *
7615 * We don't have to hold zone->lock here because the pages are
7616 * isolated thus they won't get removed from buddy.
7617 */
7618
7619 lru_add_drain_all();
7620 drain_all_pages(cc.zone);
7621
7622 order = 0;
7623 outer_start = start;
7624 while (!PageBuddy(pfn_to_page(outer_start))) {
7625 if (++order >= MAX_ORDER) {
7626 outer_start = start;
7627 break;
7628 }
7629 outer_start &= ~0UL << order;
7630 }
7631
7632 if (outer_start != start) {
7633 order = page_order(pfn_to_page(outer_start));
7634
7635 /*
7636 * outer_start page could be small order buddy page and
7637 * it doesn't include start page. Adjust outer_start
7638 * in this case to report failed page properly
7639 * on tracepoint in test_pages_isolated()
7640 */
7641 if (outer_start + (1UL << order) <= start)
7642 outer_start = start;
7643 }
7644
7645 /* Make sure the range is really isolated. */
7646 if (test_pages_isolated(outer_start, end, false)) {
7647 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7648 __func__, outer_start, end);
7649 ret = -EBUSY;
7650 goto done;
7651 }
7652
7653 /* Grab isolated pages from freelists. */
7654 outer_end = isolate_freepages_range(&cc, outer_start, end);
7655 if (!outer_end) {
7656 ret = -EBUSY;
7657 goto done;
7658 }
7659
7660 /* Free head and tail (if any) */
7661 if (start != outer_start)
7662 free_contig_range(outer_start, start - outer_start);
7663 if (end != outer_end)
7664 free_contig_range(end, outer_end - end);
7665
7666done:
7667 undo_isolate_page_range(pfn_max_align_down(start),
7668 pfn_max_align_up(end), migratetype);
7669 return ret;
7670}
7671
7672void free_contig_range(unsigned long pfn, unsigned nr_pages)
7673{
7674 unsigned int count = 0;
7675
7676 for (; nr_pages--; pfn++) {
7677 struct page *page = pfn_to_page(pfn);
7678
7679 count += page_count(page) != 1;
7680 __free_page(page);
7681 }
7682 WARN(count != 0, "%d pages are still in use!\n", count);
7683}
7684#endif
7685
7686#ifdef CONFIG_MEMORY_HOTPLUG
7687/*
7688 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7689 * page high values need to be recalulated.
7690 */
7691void __meminit zone_pcp_update(struct zone *zone)
7692{
7693 unsigned cpu;
7694 mutex_lock(&pcp_batch_high_lock);
7695 for_each_possible_cpu(cpu)
7696 pageset_set_high_and_batch(zone,
7697 per_cpu_ptr(zone->pageset, cpu));
7698 mutex_unlock(&pcp_batch_high_lock);
7699}
7700#endif
7701
7702void zone_pcp_reset(struct zone *zone)
7703{
7704 unsigned long flags;
7705 int cpu;
7706 struct per_cpu_pageset *pset;
7707
7708 /* avoid races with drain_pages() */
7709 local_irq_save(flags);
7710 if (zone->pageset != &boot_pageset) {
7711 for_each_online_cpu(cpu) {
7712 pset = per_cpu_ptr(zone->pageset, cpu);
7713 drain_zonestat(zone, pset);
7714 }
7715 free_percpu(zone->pageset);
7716 zone->pageset = &boot_pageset;
7717 }
7718 local_irq_restore(flags);
7719}
7720
7721#ifdef CONFIG_MEMORY_HOTREMOVE
7722/*
7723 * All pages in the range must be in a single zone and isolated
7724 * before calling this.
7725 */
7726void
7727__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7728{
7729 struct page *page;
7730 struct zone *zone;
7731 unsigned int order, i;
7732 unsigned long pfn;
7733 unsigned long flags;
7734 /* find the first valid pfn */
7735 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7736 if (pfn_valid(pfn))
7737 break;
7738 if (pfn == end_pfn)
7739 return;
7740 offline_mem_sections(pfn, end_pfn);
7741 zone = page_zone(pfn_to_page(pfn));
7742 spin_lock_irqsave(&zone->lock, flags);
7743 pfn = start_pfn;
7744 while (pfn < end_pfn) {
7745 if (!pfn_valid(pfn)) {
7746 pfn++;
7747 continue;
7748 }
7749 page = pfn_to_page(pfn);
7750 /*
7751 * The HWPoisoned page may be not in buddy system, and
7752 * page_count() is not 0.
7753 */
7754 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7755 pfn++;
7756 SetPageReserved(page);
7757 continue;
7758 }
7759
7760 BUG_ON(page_count(page));
7761 BUG_ON(!PageBuddy(page));
7762 order = page_order(page);
7763#ifdef CONFIG_DEBUG_VM
7764 pr_info("remove from free list %lx %d %lx\n",
7765 pfn, 1 << order, end_pfn);
7766#endif
7767 list_del(&page->lru);
7768 rmv_page_order(page);
7769 zone->free_area[order].nr_free--;
7770 for (i = 0; i < (1 << order); i++)
7771 SetPageReserved((page+i));
7772 pfn += (1 << order);
7773 }
7774 spin_unlock_irqrestore(&zone->lock, flags);
7775}
7776#endif
7777
7778bool is_free_buddy_page(struct page *page)
7779{
7780 struct zone *zone = page_zone(page);
7781 unsigned long pfn = page_to_pfn(page);
7782 unsigned long flags;
7783 unsigned int order;
7784
7785 spin_lock_irqsave(&zone->lock, flags);
7786 for (order = 0; order < MAX_ORDER; order++) {
7787 struct page *page_head = page - (pfn & ((1 << order) - 1));
7788
7789 if (PageBuddy(page_head) && page_order(page_head) >= order)
7790 break;
7791 }
7792 spin_unlock_irqrestore(&zone->lock, flags);
7793
7794 return order < MAX_ORDER;
7795}