blob: 25249491a9c7bea04781fd7f2e0613725c4c76f2 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (c) 2015 Google, Inc. All rights reserved
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining
5 * a copy of this software and associated documentation files
6 * (the "Software"), to deal in the Software without restriction,
7 * including without limitation the rights to use, copy, modify, merge,
8 * publish, distribute, sublicense, and/or sell copies of the Software,
9 * and to permit persons to whom the Software is furnished to do so,
10 * subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be
13 * included in all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
18 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
19 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
20 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
21 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23#include <debug.h>
24#include <trace.h>
25#include <assert.h>
26#include <stdio.h>
27#include <stdlib.h>
28#include <string.h>
29#include <kernel/thread.h>
30#include <kernel/mutex.h>
31#include <kernel/spinlock.h>
32#include <lib/cmpctmalloc.h>
33#include <lib/heap.h>
34#include <lib/page_alloc.h>
35
36// Malloc implementation tuned for space.
37//
38// Allocation strategy takes place with a global mutex. Freelist entries are
39// kept in linked lists with 8 different sizes per binary order of magnitude
40// and the header size is two words with eager coalescing on free.
41
42#ifdef DEBUG
43#define CMPCT_DEBUG
44#endif
45
46#define LOCAL_TRACE 0
47
48#define ALLOC_FILL 0x99
49#define FREE_FILL 0x77
50#define PADDING_FILL 0x55
51
52#if WITH_KERNEL_VM && !defined(HEAP_GROW_SIZE)
53#define HEAP_GROW_SIZE (1 * 1024 * 1024) /* Grow aggressively */
54#elif !defined(HEAP_GROW_SIZE)
55#define HEAP_GROW_SIZE (4 * 1024) /* Grow less aggressively */
56#endif
57
58STATIC_ASSERT(IS_PAGE_ALIGNED(HEAP_GROW_SIZE));
59
60// Individual allocations above 4Mbytes are just fetched directly from the
61// block allocator.
62#define HEAP_ALLOC_VIRTUAL_BITS 22
63
64// When we grow the heap we have to have somewhere in the freelist to put the
65// resulting freelist entry, so the freelist has to have a certain number of
66// buckets.
67STATIC_ASSERT(HEAP_GROW_SIZE <= (1u << HEAP_ALLOC_VIRTUAL_BITS));
68
69// Buckets for allocations. The smallest 15 buckets are 8, 16, 24, etc. up to
70// 120 bytes. After that we round up to the nearest size that can be written
71// /^0*1...0*$/, giving 8 buckets per order of binary magnitude. The freelist
72// entries in a given bucket have at least the given size, plus the header
73// size. On 64 bit, the 8 byte bucket is useless, since the freelist header
74// is 16 bytes larger than the header, but we have it for simplicity.
75#define NUMBER_OF_BUCKETS (1 + 15 + (HEAP_ALLOC_VIRTUAL_BITS - 7) * 8)
76
77// All individual memory areas on the heap start with this.
78typedef struct header_struct {
79 struct header_struct *left; // Pointer to the previous area in memory order.
80 size_t size;
81} header_t;
82
83typedef struct free_struct {
84 header_t header;
85 struct free_struct *next;
86 struct free_struct *prev;
87} free_t;
88
89struct heap {
90 size_t size;
91 size_t remaining;
92 mutex_t lock;
93 free_t *free_lists[NUMBER_OF_BUCKETS];
94 // We have some 32 bit words that tell us whether there is an entry in the
95 // freelist.
96#define BUCKET_WORDS (((NUMBER_OF_BUCKETS) + 31) >> 5)
97 uint32_t free_list_bits[BUCKET_WORDS];
98};
99
100// Heap static vars.
101static struct heap theheap;
102
103static ssize_t heap_grow(size_t len, free_t **bucket);
104
105static void lock(void)
106{
107 mutex_acquire(&theheap.lock);
108}
109
110static void unlock(void)
111{
112 mutex_release(&theheap.lock);
113}
114
115static void dump_free(header_t *header)
116{
117 dprintf(INFO, "\t\tbase %p, end 0x%lx, len 0x%zx\n", header, (vaddr_t)header + header->size, header->size);
118}
119
120void cmpct_dump(void)
121{
122 lock();
123 dprintf(INFO, "Heap dump (using cmpctmalloc):\n");
124 dprintf(INFO, "\tsize %lu, remaining %lu\n",
125 (unsigned long)theheap.size,
126 (unsigned long)theheap.remaining);
127
128 dprintf(INFO, "\tfree list:\n");
129 for (int i = 0; i < NUMBER_OF_BUCKETS; i++) {
130 bool header_printed = false;
131 free_t *free_area = theheap.free_lists[i];
132 for (; free_area != NULL; free_area = free_area->next) {
133 ASSERT(free_area != free_area->next);
134 if (!header_printed) {
135 dprintf(INFO, "\tbucket %d\n", i);
136 header_printed = true;
137 }
138 dump_free(&free_area->header);
139 }
140 }
141 unlock();
142}
143
144// Operates in sizes that don't include the allocation header.
145static int size_to_index_helper(
146 size_t size, size_t *rounded_up_out, int adjust, int increment)
147{
148 // First buckets are simply 8-spaced up to 128.
149 if (size <= 128) {
150 if (sizeof(size_t) == 8u && size <= sizeof(free_t) - sizeof(header_t)) {
151 *rounded_up_out = sizeof(free_t) - sizeof(header_t);
152 } else {
153 *rounded_up_out = size;
154 }
155 // No allocation is smaller than 8 bytes, so the first bucket is for 8
156 // byte spaces (not including the header). For 64 bit, the free list
157 // struct is 16 bytes larger than the header, so no allocation can be
158 // smaller than that (otherwise how to free it), but we have empty 8
159 // and 16 byte buckets for simplicity.
160 return (size >> 3) - 1;
161 }
162
163 // We are going to go up to the next size to round up, but if we hit a
164 // bucket size exactly we don't want to go up. By subtracting 8 here, we
165 // will do the right thing (the carry propagates up for the round numbers
166 // we are interested in).
167 size += adjust;
168 // After 128 the buckets are logarithmically spaced, every 16 up to 256,
169 // every 32 up to 512 etc. This can be thought of as rows of 8 buckets.
170 // GCC intrinsic count-leading-zeros.
171 // Eg. 128-255 has 24 leading zeros and we want row to be 4.
172 unsigned row = sizeof(size_t) * 8 - 4 - __builtin_clzl(size);
173 // For row 4 we want to shift down 4 bits.
174 unsigned column = (size >> row) & 7;
175 int row_column = (row << 3) | column;
176 row_column += increment;
177 size = (8 + (row_column & 7)) << (row_column >> 3);
178 *rounded_up_out = size;
179 // We start with 15 buckets, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96,
180 // 104, 112, 120. Then we have row 4, sizes 128 and up, with the
181 // row-column 8 and up.
182 int answer = row_column + 15 - 32;
183 DEBUG_ASSERT(answer < NUMBER_OF_BUCKETS);
184 return answer;
185}
186
187// Round up size to next bucket when allocating.
188static int size_to_index_allocating(size_t size, size_t *rounded_up_out)
189{
190 size_t rounded = ROUNDUP(size, 8);
191 return size_to_index_helper(rounded, rounded_up_out, -8, 1);
192}
193
194// Round down size to next bucket when freeing.
195static int size_to_index_freeing(size_t size)
196{
197 size_t dummy;
198 return size_to_index_helper(size, &dummy, 0, 0);
199}
200
201inline header_t *tag_as_free(void *left)
202{
203 return (header_t *)((uintptr_t)left | 1);
204}
205
206inline bool is_tagged_as_free(header_t *header)
207{
208 return ((uintptr_t)(header->left) & 1) != 0;
209}
210
211inline header_t *untag(void *left)
212{
213 return (header_t *)((uintptr_t)left & ~1);
214}
215
216inline header_t *right_header(header_t *header)
217{
218 return (header_t *)((char *)header + header->size);
219}
220
221inline static void set_free_list_bit(int index)
222{
223 theheap.free_list_bits[index >> 5] |= (1u << (31 - (index & 0x1f)));
224}
225
226inline static void clear_free_list_bit(int index)
227{
228 theheap.free_list_bits[index >> 5] &= ~(1u << (31 - (index & 0x1f)));
229}
230
231static int find_nonempty_bucket(int index)
232{
233 uint32_t mask = (1u << (31 - (index & 0x1f))) - 1;
234 mask = mask * 2 + 1;
235 mask &= theheap.free_list_bits[index >> 5];
236 if (mask != 0) return (index & ~0x1f) + __builtin_clz(mask);
237 for (index = ROUNDUP(index + 1, 32); index <= NUMBER_OF_BUCKETS; index += 32) {
238 mask = theheap.free_list_bits[index >> 5];
239 if (mask != 0u) return index + __builtin_clz(mask);
240 }
241 return -1;
242}
243
244static bool is_start_of_os_allocation(header_t *header)
245{
246 return header->left == untag(NULL);
247}
248
249static void create_free_area(void *address, void *left, size_t size, free_t **bucket)
250{
251 free_t *free_area = (free_t *)address;
252 free_area->header.size = size;
253 free_area->header.left = tag_as_free(left);
254 if (bucket == NULL) {
255 int index = size_to_index_freeing(size - sizeof(header_t));
256 set_free_list_bit(index);
257 bucket = &theheap.free_lists[index];
258 }
259 free_t *old_head = *bucket;
260 if (old_head != NULL) old_head->prev = free_area;
261 free_area->next = old_head;
262 free_area->prev = NULL;
263 *bucket = free_area;
264 theheap.remaining += size;
265#ifdef CMPCT_DEBUG
266 memset(free_area + 1, FREE_FILL, size - sizeof(free_t));
267#endif
268}
269
270static bool is_end_of_os_allocation(char *address)
271{
272 return ((header_t *)address)->size == 0;
273}
274
275static void free_to_os(header_t *header, size_t size)
276{
277 DEBUG_ASSERT(IS_PAGE_ALIGNED(size));
278 page_free(header, size >> PAGE_SIZE_SHIFT);
279 theheap.size -= size;
280}
281
282static void free_memory(void *address, void *left, size_t size)
283{
284 left = untag(left);
285 if (IS_PAGE_ALIGNED(left) &&
286 is_start_of_os_allocation(left) &&
287 is_end_of_os_allocation((char *)address + size)) {
288 free_to_os(left, size + ((header_t *)left)->size + sizeof(header_t));
289 } else {
290 create_free_area(address, left, size, NULL);
291 }
292}
293
294static void unlink_free(free_t *free_area, int bucket)
295{
296 theheap.remaining -= free_area->header.size;
297 ASSERT(theheap.remaining < 4000000000u);
298 free_t *next = free_area->next;
299 free_t *prev = free_area->prev;
300 if (theheap.free_lists[bucket] == free_area) {
301 theheap.free_lists[bucket] = next;
302 if (next == NULL) clear_free_list_bit(bucket);
303 }
304 if (prev != NULL) prev->next = next;
305 if (next != NULL) next->prev = prev;
306}
307
308static void unlink_free_unknown_bucket(free_t *free_area)
309{
310 return unlink_free(free_area, size_to_index_freeing(free_area->header.size - sizeof(header_t)));
311}
312
313static void *create_allocation_header(
314 void *address, size_t offset, size_t size, void *left)
315{
316 header_t *standalone = (header_t *)((char *)address + offset);
317 standalone->left = untag(left);
318 standalone->size = size;
319 return standalone + 1;
320}
321
322static void FixLeftPointer(header_t *right, header_t *new_left)
323{
324 int tag = (uintptr_t)right->left & 1;
325 right->left = (header_t *)(((uintptr_t)new_left & ~1) | tag);
326}
327
328static void WasteFreeMemory(void)
329{
330 while (theheap.remaining != 0) cmpct_alloc(1);
331}
332
333// If we just make a big allocation it gets rounded off. If we actually
334// want to use a reasonably accurate amount of memory for test purposes, we
335// have to do many small allocations.
336static void *TestTrimHelper(ssize_t target)
337{
338 char *answer = NULL;
339 size_t remaining = theheap.remaining;
340 while (theheap.remaining - target > 512) {
341 char *next_block = cmpct_alloc(8 + ((theheap.remaining - target) >> 2));
342 *(char**)next_block = answer;
343 answer = next_block;
344 if (theheap.remaining > remaining) return answer;
345 // Abandon attemt to hit particular freelist entry size if we accidentally got more memory
346 // from the OS.
347 remaining = theheap.remaining;
348 }
349 return answer;
350}
351
352static void TestTrimFreeHelper(char *block)
353{
354 while (block) {
355 char *next_block = *(char **)block;
356 cmpct_free(block);
357 block = next_block;
358 }
359}
360
361static void cmpct_test_trim(void)
362{
363 WasteFreeMemory();
364
365 size_t test_sizes[200];
366 int sizes = 0;
367
368 for (size_t s = 1; s < PAGE_SIZE * 4; s = (s + 1) * 1.1) {
369 test_sizes[sizes++] = s;
370 ASSERT(sizes < 200);
371 }
372 for (ssize_t s = -32; s <= 32; s += 8) {
373 test_sizes[sizes++] = PAGE_SIZE + s;
374 ASSERT(sizes < 200);
375 }
376
377 // Test allocations at the start of an OS allocation.
378 for (int with_second_alloc = 0; with_second_alloc < 2; with_second_alloc++) {
379 for (int i = 0; i < sizes; i++) {
380 size_t s = test_sizes[i];
381
382 char *a, *a2 = NULL;
383 a = cmpct_alloc(s);
384 if (with_second_alloc) {
385 a2 = cmpct_alloc(1);
386 if (s < PAGE_SIZE >> 1) {
387 // It is the intention of the test that a is at the start of an OS allocation
388 // and that a2 is "right after" it. Otherwise we are not testing what I
389 // thought. OS allocations are certainly not smaller than a page, so check in
390 // that case.
391 ASSERT((uintptr_t)(a2 - a) < s * 1.13 + 48);
392 }
393 }
394 cmpct_trim();
395 size_t remaining = theheap.remaining;
396 // We should have < 1 page on either side of the a allocation.
397 ASSERT(remaining < PAGE_SIZE * 2);
398 cmpct_free(a);
399 if (with_second_alloc) {
400 // Now only a2 is holding onto the OS allocation.
401 ASSERT(theheap.remaining > remaining);
402 } else {
403 ASSERT(theheap.remaining == 0);
404 }
405 remaining = theheap.remaining;
406 cmpct_trim();
407 ASSERT(theheap.remaining <= remaining);
408 // If a was at least one page then the trim should have freed up that page.
409 if (s >= PAGE_SIZE && with_second_alloc) ASSERT(theheap.remaining < remaining);
410 if (with_second_alloc) cmpct_free(a2);
411 }
412 ASSERT(theheap.remaining == 0);
413 }
414
415 ASSERT(theheap.remaining == 0);
416
417 // Now test allocations near the end of an OS allocation.
418 for (ssize_t wobble = -64; wobble <= 64; wobble += 8) {
419 for (int i = 0; i < sizes; i++) {
420 size_t s = test_sizes[i];
421
422 if ((ssize_t)s + wobble < 0) continue;
423
424 char *start_of_os_alloc = cmpct_alloc(1);
425
426 // If the OS allocations are very small this test does not make sense.
427 if (theheap.remaining <= s + wobble) {
428 cmpct_free(start_of_os_alloc);
429 continue;
430 }
431
432 char *big_bit_in_the_middle = TestTrimHelper(s + wobble);
433 size_t remaining = theheap.remaining;
434
435 // If the remaining is big we started a new OS allocation and the test
436 // makes no sense.
437 if (remaining > 128 + s * 1.13 + wobble) {
438 cmpct_free(start_of_os_alloc);
439 TestTrimFreeHelper(big_bit_in_the_middle);
440 continue;
441 }
442
443 cmpct_free(start_of_os_alloc);
444 remaining = theheap.remaining;
445
446 // This trim should sometimes trim a page off the end of the OS allocation.
447 cmpct_trim();
448 ASSERT(theheap.remaining <= remaining);
449 remaining = theheap.remaining;
450
451 // We should have < 1 page on either side of the big allocation.
452 ASSERT(remaining < PAGE_SIZE * 2);
453
454 TestTrimFreeHelper(big_bit_in_the_middle);
455 }
456 }
457}
458
459
460static void cmpct_test_buckets(void)
461{
462 size_t rounded;
463 unsigned bucket;
464 // Check for the 8-spaced buckets up to 128.
465 for (unsigned i = 1; i <= 128; i++) {
466 // Round up when allocating.
467 bucket = size_to_index_allocating(i, &rounded);
468 unsigned expected = (ROUNDUP(i, 8) >> 3) - 1;
469 ASSERT(bucket == expected);
470 ASSERT(IS_ALIGNED(rounded, 8));
471 ASSERT(rounded >= i);
472 if (i >= sizeof(free_t) - sizeof(header_t)) {
473 // Once we get above the size of the free area struct (4 words), we
474 // won't round up much for these small size.
475 ASSERT(rounded - i < 8);
476 }
477 // Only rounded sizes are freed.
478 if ((i & 7) == 0) {
479 // Up to size 128 we have exact buckets for each multiple of 8.
480 ASSERT(bucket == (unsigned)size_to_index_freeing(i));
481 }
482 }
483 int bucket_base = 7;
484 for (unsigned j = 16; j < 1024; j *= 2, bucket_base += 8) {
485 // Note the "<=", which ensures that we test the powers of 2 twice to ensure
486 // that both ways of calculating the bucket number match.
487 for (unsigned i = j * 8; i <= j * 16; i++) {
488 // Round up to j multiple in this range when allocating.
489 bucket = size_to_index_allocating(i, &rounded);
490 unsigned expected = bucket_base + ROUNDUP(i, j) / j;
491 ASSERT(bucket == expected);
492 ASSERT(IS_ALIGNED(rounded, j));
493 ASSERT(rounded >= i);
494 ASSERT(rounded - i < j);
495 // Only 8-rounded sizes are freed or chopped off the end of a free area
496 // when allocating.
497 if ((i & 7) == 0) {
498 // When freeing, if we don't hit the size of the bucket precisely,
499 // we have to put the free space into a smaller bucket, because
500 // the buckets have entries that will always be big enough for
501 // the corresponding allocation size (so we don't have to
502 // traverse the free chains to find a big enough one).
503 if ((i % j) == 0) {
504 ASSERT((int)bucket == size_to_index_freeing(i));
505 } else {
506 ASSERT((int)bucket - 1 == size_to_index_freeing(i));
507 }
508 }
509 }
510 }
511}
512
513static void cmpct_test_get_back_newly_freed_helper(size_t size)
514{
515 void *allocated = cmpct_alloc(size);
516 if (allocated == NULL) return;
517 char *allocated2 = cmpct_alloc(8);
518 char *expected_position = (char *)allocated + size;
519 if (allocated2 < expected_position || allocated2 > expected_position + 128) {
520 // If the allocated2 allocation is not in the same OS allocation as the
521 // first allocation then the test may not work as expected (the memory
522 // may be returned to the OS when we free the first allocation, and we
523 // might not get it back).
524 cmpct_free(allocated);
525 cmpct_free(allocated2);
526 return;
527 }
528
529 cmpct_free(allocated);
530 void *allocated3 = cmpct_alloc(size);
531 // To avoid churn and fragmentation we would want to get the newly freed
532 // memory back again when we allocate the same size shortly after.
533 ASSERT(allocated3 == allocated);
534 cmpct_free(allocated2);
535 cmpct_free(allocated3);
536}
537
538static void cmpct_test_get_back_newly_freed(void)
539{
540 size_t increment = 16;
541 for (size_t i = 128; i <= 0x8000000; i *= 2, increment *= 2) {
542 for (size_t j = i; j < i * 2; j += increment) {
543 cmpct_test_get_back_newly_freed_helper(i - 8);
544 cmpct_test_get_back_newly_freed_helper(i);
545 cmpct_test_get_back_newly_freed_helper(i + 1);
546 }
547 }
548 for (size_t i = 1024; i <= 2048; i++) {
549 cmpct_test_get_back_newly_freed_helper(i);
550 }
551}
552
553static void cmpct_test_return_to_os(void)
554{
555 cmpct_trim();
556 size_t remaining = theheap.remaining;
557 // This goes in a new OS allocation since the trim above removed any free
558 // area big enough to contain it.
559 void *a = cmpct_alloc(5000);
560 void *b = cmpct_alloc(2500);
561 cmpct_free(a);
562 cmpct_free(b);
563 // If things work as expected the new allocation is at the start of an OS
564 // allocation. There's just one sentinel and one header to the left of it.
565 // It that's not the case then the allocation was met from some space in
566 // the middle of an OS allocation, and our test won't work as expected, so
567 // bail out.
568 if (((uintptr_t)a & (PAGE_SIZE - 1)) != sizeof(header_t) * 2) return;
569 // No trim needed when the entire OS allocation is free.
570 ASSERT(remaining == theheap.remaining);
571}
572
573void cmpct_test(void)
574{
575 cmpct_test_buckets();
576 cmpct_test_get_back_newly_freed();
577 cmpct_test_return_to_os();
578 cmpct_test_trim();
579 cmpct_dump();
580 void *ptr[16];
581
582 ptr[0] = cmpct_alloc(8);
583 ptr[1] = cmpct_alloc(32);
584 ptr[2] = cmpct_alloc(7);
585 cmpct_trim();
586 ptr[3] = cmpct_alloc(0);
587 ptr[4] = cmpct_alloc(98713);
588 ptr[5] = cmpct_alloc(16);
589
590 cmpct_free(ptr[5]);
591 cmpct_free(ptr[1]);
592 cmpct_free(ptr[3]);
593 cmpct_free(ptr[0]);
594 cmpct_free(ptr[4]);
595 cmpct_free(ptr[2]);
596
597 cmpct_dump();
598 cmpct_trim();
599 cmpct_dump();
600
601 int i;
602 for (i=0; i < 16; i++)
603 ptr[i] = 0;
604
605 for (i=0; i < 32768; i++) {
606 unsigned int index = (unsigned int)rand() % 16;
607
608 if ((i % (16*1024)) == 0)
609 printf("pass %d\n", i);
610
611// printf("index 0x%x\n", index);
612 if (ptr[index]) {
613// printf("freeing ptr[0x%x] = %p\n", index, ptr[index]);
614 cmpct_free(ptr[index]);
615 ptr[index] = 0;
616 }
617 unsigned int align = 1 << ((unsigned int)rand() % 8);
618 ptr[index] = cmpct_memalign((unsigned int)rand() % 32768, align);
619// printf("ptr[0x%x] = %p, align 0x%x\n", index, ptr[index], align);
620
621 DEBUG_ASSERT(((addr_t)ptr[index] % align) == 0);
622// cmpct_dump();
623 }
624
625 for (i=0; i < 16; i++) {
626 if (ptr[i])
627 cmpct_free(ptr[i]);
628 }
629
630 cmpct_dump();
631}
632
633static void *large_alloc(size_t size)
634{
635#ifdef CMPCT_DEBUG
636 size_t requested_size = size;
637#endif
638 size = ROUNDUP(size, 8);
639 free_t *free_area = NULL;
640 lock();
641 heap_grow(size, &free_area);
642 void *result =
643 create_allocation_header(free_area, 0, free_area->header.size, free_area->header.left);
644 // Normally the 'remaining free space' counter would be decremented when we
645 // unlink the free area from its bucket. However in this case the free
646 // area was too big to go in any bucket and we had it in our own
647 // "free_area" variable so there is no unlinking and we have to adjust the
648 // counter here.
649 theheap.remaining -= free_area->header.size;
650 unlock();
651#ifdef CMPCT_DEBUG
652 memset(result, ALLOC_FILL, requested_size);
653 memset((char *)result + requested_size, PADDING_FILL, free_area->header.size - requested_size);
654#endif
655 return result;
656}
657
658void cmpct_trim(void)
659{
660 // Look at free list entries that are at least as large as one page plus a
661 // header. They might be at the start or the end of a block, so we can trim
662 // them and free the page(s).
663 lock();
664 for (int bucket = size_to_index_freeing(PAGE_SIZE);
665 bucket < NUMBER_OF_BUCKETS;
666 bucket++) {
667 free_t * next;
668 for (free_t *free_area = theheap.free_lists[bucket];
669 free_area != NULL;
670 free_area = next) {
671 DEBUG_ASSERT(free_area->header.size >= PAGE_SIZE + sizeof(header_t));
672 next = free_area->next;
673 header_t *right = right_header(&free_area->header);
674 if (is_end_of_os_allocation((char *)right)) {
675 char *old_os_allocation_end = (char *)ROUNDUP((uintptr_t)right, PAGE_SIZE);
676 // The page will end with a smaller free list entry and a header-sized sentinel.
677 char *new_os_allocation_end = (char *)
678 ROUNDUP((uintptr_t)free_area + sizeof(header_t) + sizeof(free_t), PAGE_SIZE);
679 size_t freed_up = old_os_allocation_end - new_os_allocation_end;
680 DEBUG_ASSERT(IS_PAGE_ALIGNED(freed_up));
681 // Rare, because we only look at large freelist entries, but unlucky rounding
682 // could mean we can't actually free anything here.
683 if (freed_up == 0) continue;
684 unlink_free(free_area, bucket);
685 size_t new_free_size = free_area->header.size - freed_up;
686 DEBUG_ASSERT(new_free_size >= sizeof(free_t));
687 // Right sentinel, not free, stops attempts to coalesce right.
688 create_allocation_header(free_area, new_free_size, 0, free_area);
689 // Also puts it in the correct bucket.
690 create_free_area(free_area, untag(free_area->header.left), new_free_size, NULL);
691 page_free(new_os_allocation_end, freed_up >> PAGE_SIZE_SHIFT);
692 theheap.size -= freed_up;
693 } else if (is_start_of_os_allocation(untag(free_area->header.left))) {
694 char *old_os_allocation_start =
695 (char *)ROUNDDOWN((uintptr_t)free_area, PAGE_SIZE);
696 // For the sentinel, we need at least one header-size of space between the page
697 // edge and the first allocation to the right of the free area.
698 char *new_os_allocation_start =
699 (char *)ROUNDDOWN((uintptr_t)(right - 1), PAGE_SIZE);
700 size_t freed_up = new_os_allocation_start - old_os_allocation_start;
701 DEBUG_ASSERT(IS_PAGE_ALIGNED(freed_up));
702 // This should not happen because we only look at the large free list buckets.
703 if (freed_up == 0) continue;
704 unlink_free(free_area, bucket);
705 size_t sentinel_size = sizeof(header_t);
706 size_t new_free_size = free_area->header.size - freed_up;
707 if (new_free_size < sizeof(free_t)) {
708 sentinel_size += new_free_size;
709 new_free_size = 0;
710 }
711 // Left sentinel, not free, stops attempts to coalesce left.
712 create_allocation_header(new_os_allocation_start, 0, sentinel_size, NULL);
713 if (new_free_size == 0) {
714 FixLeftPointer(right, (header_t *)new_os_allocation_start);
715 } else {
716 DEBUG_ASSERT(new_free_size >= sizeof(free_t));
717 char *new_free = new_os_allocation_start + sentinel_size;
718 // Also puts it in the correct bucket.
719 create_free_area(new_free, new_os_allocation_start, new_free_size, NULL);
720 FixLeftPointer(right, (header_t *)new_free);
721 }
722 page_free(old_os_allocation_start, freed_up >> PAGE_SIZE_SHIFT);
723 theheap.size -= freed_up;
724 }
725 }
726 }
727 unlock();
728}
729
730void *cmpct_alloc(size_t size)
731{
732 if (size == 0u) return NULL;
733
734 if (size + sizeof(header_t) > (1u << HEAP_ALLOC_VIRTUAL_BITS)) return large_alloc(size);
735
736 size_t rounded_up;
737 int start_bucket = size_to_index_allocating(size, &rounded_up);
738
739 rounded_up += sizeof(header_t);
740
741 lock();
742 int bucket = find_nonempty_bucket(start_bucket);
743 if (bucket == -1) {
744 // Grow heap by at least 12% if we can.
745 size_t growby = MIN(1u << HEAP_ALLOC_VIRTUAL_BITS,
746 MAX(theheap.size >> 3,
747 MAX(HEAP_GROW_SIZE, rounded_up)));
748 while (heap_grow(growby, NULL) < 0) {
749 if (growby <= rounded_up) {
750 unlock();
751 return NULL;
752 }
753 growby = MAX(growby >> 1, rounded_up);
754 }
755 bucket = find_nonempty_bucket(start_bucket);
756 }
757 free_t *head = theheap.free_lists[bucket];
758 size_t left_over = head->header.size - rounded_up;
759 // We can't carve off the rest for a new free space if it's smaller than the
760 // free-list linked structure. We also don't carve it off if it's less than
761 // 1.6% the size of the allocation. This is to avoid small long-lived
762 // allocations being placed right next to large allocations, hindering
763 // coalescing and returning pages to the OS.
764 if (left_over >= sizeof(free_t) && left_over > (size >> 6)) {
765 header_t *right = right_header(&head->header);
766 unlink_free(head, bucket);
767 void *free = (char *)head + rounded_up;
768 create_free_area(free, head, left_over, NULL);
769 FixLeftPointer(right, (header_t *)free);
770 head->header.size -= left_over;
771 } else {
772 unlink_free(head, bucket);
773 }
774 void *result =
775 create_allocation_header(head, 0, head->header.size, head->header.left);
776#ifdef CMPCT_DEBUG
777 memset(result, ALLOC_FILL, size);
778 memset(((char *)result) + size, PADDING_FILL, rounded_up - size - sizeof(header_t));
779#endif
780 unlock();
781 return result;
782}
783
784void *cmpct_memalign(size_t size, size_t alignment)
785{
786 if (alignment < 8) return cmpct_alloc(size);
787 size_t padded_size =
788 size + alignment + sizeof(free_t) + sizeof(header_t);
789 char *unaligned = (char *)cmpct_alloc(padded_size);
790 lock();
791 size_t mask = alignment - 1;
792 uintptr_t payload_int = (uintptr_t)unaligned + sizeof(free_t) +
793 sizeof(header_t) + mask;
794 char *payload = (char *)(payload_int & ~mask);
795 if (unaligned != payload) {
796 header_t *unaligned_header = (header_t *)unaligned - 1;
797 header_t *header = (header_t *)payload - 1;
798 size_t left_over = payload - unaligned;
799 create_allocation_header(
800 header, 0, unaligned_header->size - left_over, unaligned_header);
801 header_t *right = right_header(unaligned_header);
802 unaligned_header->size = left_over;
803 FixLeftPointer(right, header);
804 unlock();
805 cmpct_free(unaligned);
806 } else {
807 unlock();
808 }
809 // TODO: Free the part after the aligned allocation.
810 return payload;
811}
812
813void cmpct_free(void *payload)
814{
815 if (payload == NULL) return;
816 header_t *header = (header_t *)payload - 1;
817 DEBUG_ASSERT(!is_tagged_as_free(header)); // Double free!
818 size_t size = header->size;
819 lock();
820 header_t *left = header->left;
821 if (left != NULL && is_tagged_as_free(left)) {
822 // Coalesce with left free object.
823 unlink_free_unknown_bucket((free_t *)left);
824 header_t *right = right_header(header);
825 if (is_tagged_as_free(right)) {
826 // Coalesce both sides.
827 unlink_free_unknown_bucket((free_t *)right);
828 header_t *right_right = right_header(right);
829 FixLeftPointer(right_right, left);
830 free_memory(left, left->left, left->size + size + right->size);
831 } else {
832 // Coalesce only left.
833 FixLeftPointer(right, left);
834 free_memory(left, left->left, left->size + size);
835 }
836 } else {
837 header_t *right = right_header(header);
838 if (is_tagged_as_free(right)) {
839 // Coalesce only right.
840 header_t *right_right = right_header(right);
841 unlink_free_unknown_bucket((free_t *)right);
842 FixLeftPointer(right_right, header);
843 free_memory(header, left, size + right->size);
844 } else {
845 free_memory(header, left, size);
846 }
847 }
848 unlock();
849}
850
851void *cmpct_realloc(void *payload, size_t size)
852{
853 if (payload == NULL) return cmpct_alloc(size);
854 header_t *header = (header_t *)payload - 1;
855 size_t old_size = header->size - sizeof(header_t);
856 void *new_payload = cmpct_alloc(size);
857 memcpy(new_payload, payload, MIN(size, old_size));
858 cmpct_free(payload);
859 return new_payload;
860}
861
862static void add_to_heap(void *new_area, size_t size, free_t **bucket)
863{
864 void *top = (char *)new_area + size;
865 header_t *left_sentinel = (header_t *)new_area;
866 // Not free, stops attempts to coalesce left.
867 create_allocation_header(left_sentinel, 0, sizeof(header_t), NULL);
868 header_t *new_header = left_sentinel + 1;
869 size_t free_size = size - 2 * sizeof(header_t);
870 create_free_area(new_header, left_sentinel, free_size, bucket);
871 header_t *right_sentinel = (header_t *)(top - sizeof(header_t));
872 // Not free, stops attempts to coalesce right.
873 create_allocation_header(right_sentinel, 0, 0, new_header);
874}
875
876// Create a new free-list entry of at least size bytes (including the
877// allocation header). Called with the lock, apart from during init.
878static ssize_t heap_grow(size_t size, free_t **bucket)
879{
880 // The new free list entry will have a header on each side (the
881 // sentinels) so we need to grow the gross heap size by this much more.
882 size += 2 * sizeof(header_t);
883 size = ROUNDUP(size, PAGE_SIZE);
884 void *ptr = page_alloc(size >> PAGE_SIZE_SHIFT);
885 theheap.size += size;
886 if (ptr == NULL) return -1;
887 LTRACEF("growing heap by 0x%zx bytes, new ptr %p\n", size, ptr);
888 add_to_heap(ptr, size, bucket);
889 return size;
890}
891
892void cmpct_init(void)
893{
894 LTRACE_ENTRY;
895
896 // Create a mutex.
897 mutex_init(&theheap.lock);
898
899 // Initialize the free list.
900 for (int i = 0; i < NUMBER_OF_BUCKETS; i++) {
901 theheap.free_lists[i] = NULL;
902 }
903 for (int i = 0; i < BUCKET_WORDS; i++) {
904 theheap.free_list_bits[i] = 0;
905 }
906
907 size_t initial_alloc = HEAP_GROW_SIZE - 2 * sizeof(header_t);
908
909 theheap.remaining = 0;
910
911 heap_grow(initial_alloc, NULL);
912}