rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License version 2 as |
| 6 | * published by the Free Software Foundation. |
| 7 | */ |
| 8 | |
| 9 | /* |
| 10 | * DMA Coherent API Notes |
| 11 | * |
| 12 | * I/O is inherently non-coherent on ARC. So a coherent DMA buffer is |
| 13 | * implemented by accessing it using a kernel virtual address, with |
| 14 | * Cache bit off in the TLB entry. |
| 15 | * |
| 16 | * The default DMA address == Phy address which is 0x8000_0000 based. |
| 17 | */ |
| 18 | |
| 19 | #include <linux/dma-mapping.h> |
| 20 | #include <asm/cache.h> |
| 21 | #include <asm/cacheflush.h> |
| 22 | |
| 23 | |
| 24 | static void *arc_dma_alloc(struct device *dev, size_t size, |
| 25 | dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) |
| 26 | { |
| 27 | unsigned long order = get_order(size); |
| 28 | struct page *page; |
| 29 | phys_addr_t paddr; |
| 30 | void *kvaddr; |
| 31 | int need_coh = 1, need_kvaddr = 0; |
| 32 | |
| 33 | page = alloc_pages(gfp, order); |
| 34 | if (!page) |
| 35 | return NULL; |
| 36 | |
| 37 | /* |
| 38 | * IOC relies on all data (even coherent DMA data) being in cache |
| 39 | * Thus allocate normal cached memory |
| 40 | * |
| 41 | * The gains with IOC are two pronged: |
| 42 | * -For streaming data, elides need for cache maintenance, saving |
| 43 | * cycles in flush code, and bus bandwidth as all the lines of a |
| 44 | * buffer need to be flushed out to memory |
| 45 | * -For coherent data, Read/Write to buffers terminate early in cache |
| 46 | * (vs. always going to memory - thus are faster) |
| 47 | */ |
| 48 | if ((is_isa_arcv2() && ioc_enable) || |
| 49 | (attrs & DMA_ATTR_NON_CONSISTENT)) |
| 50 | need_coh = 0; |
| 51 | |
| 52 | /* |
| 53 | * - A coherent buffer needs MMU mapping to enforce non-cachability |
| 54 | * - A highmem page needs a virtual handle (hence MMU mapping) |
| 55 | * independent of cachability |
| 56 | */ |
| 57 | if (PageHighMem(page) || need_coh) |
| 58 | need_kvaddr = 1; |
| 59 | |
| 60 | /* This is linear addr (0x8000_0000 based) */ |
| 61 | paddr = page_to_phys(page); |
| 62 | |
| 63 | *dma_handle = plat_phys_to_dma(dev, paddr); |
| 64 | |
| 65 | /* This is kernel Virtual address (0x7000_0000 based) */ |
| 66 | if (need_kvaddr) { |
| 67 | kvaddr = ioremap_nocache(paddr, size); |
| 68 | if (kvaddr == NULL) { |
| 69 | __free_pages(page, order); |
| 70 | return NULL; |
| 71 | } |
| 72 | } else { |
| 73 | kvaddr = (void *)(u32)paddr; |
| 74 | } |
| 75 | |
| 76 | /* |
| 77 | * Evict any existing L1 and/or L2 lines for the backing page |
| 78 | * in case it was used earlier as a normal "cached" page. |
| 79 | * Yeah this bit us - STAR 9000898266 |
| 80 | * |
| 81 | * Although core does call flush_cache_vmap(), it gets kvaddr hence |
| 82 | * can't be used to efficiently flush L1 and/or L2 which need paddr |
| 83 | * Currently flush_cache_vmap nukes the L1 cache completely which |
| 84 | * will be optimized as a separate commit |
| 85 | */ |
| 86 | if (need_coh) |
| 87 | dma_cache_wback_inv(paddr, size); |
| 88 | |
| 89 | return kvaddr; |
| 90 | } |
| 91 | |
| 92 | static void arc_dma_free(struct device *dev, size_t size, void *vaddr, |
| 93 | dma_addr_t dma_handle, unsigned long attrs) |
| 94 | { |
| 95 | phys_addr_t paddr = plat_dma_to_phys(dev, dma_handle); |
| 96 | struct page *page = virt_to_page(paddr); |
| 97 | int is_non_coh = 1; |
| 98 | |
| 99 | is_non_coh = (attrs & DMA_ATTR_NON_CONSISTENT) || |
| 100 | (is_isa_arcv2() && ioc_enable); |
| 101 | |
| 102 | if (PageHighMem(page) || !is_non_coh) |
| 103 | iounmap((void __force __iomem *)vaddr); |
| 104 | |
| 105 | __free_pages(page, get_order(size)); |
| 106 | } |
| 107 | |
| 108 | static int arc_dma_mmap(struct device *dev, struct vm_area_struct *vma, |
| 109 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 110 | unsigned long attrs) |
| 111 | { |
| 112 | unsigned long user_count = vma_pages(vma); |
| 113 | unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 114 | unsigned long pfn = __phys_to_pfn(plat_dma_to_phys(dev, dma_addr)); |
| 115 | unsigned long off = vma->vm_pgoff; |
| 116 | int ret = -ENXIO; |
| 117 | |
| 118 | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| 119 | |
| 120 | if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) |
| 121 | return ret; |
| 122 | |
| 123 | if (off < count && user_count <= (count - off)) { |
| 124 | ret = remap_pfn_range(vma, vma->vm_start, |
| 125 | pfn + off, |
| 126 | user_count << PAGE_SHIFT, |
| 127 | vma->vm_page_prot); |
| 128 | } |
| 129 | |
| 130 | return ret; |
| 131 | } |
| 132 | |
| 133 | /* |
| 134 | * streaming DMA Mapping API... |
| 135 | * CPU accesses page via normal paddr, thus needs to explicitly made |
| 136 | * consistent before each use |
| 137 | */ |
| 138 | static void _dma_cache_sync(phys_addr_t paddr, size_t size, |
| 139 | enum dma_data_direction dir) |
| 140 | { |
| 141 | switch (dir) { |
| 142 | case DMA_FROM_DEVICE: |
| 143 | dma_cache_inv(paddr, size); |
| 144 | break; |
| 145 | case DMA_TO_DEVICE: |
| 146 | dma_cache_wback(paddr, size); |
| 147 | break; |
| 148 | case DMA_BIDIRECTIONAL: |
| 149 | dma_cache_wback_inv(paddr, size); |
| 150 | break; |
| 151 | default: |
| 152 | pr_err("Invalid DMA dir [%d] for OP @ %pa[p]\n", dir, &paddr); |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | /* |
| 157 | * arc_dma_map_page - map a portion of a page for streaming DMA |
| 158 | * |
| 159 | * Ensure that any data held in the cache is appropriately discarded |
| 160 | * or written back. |
| 161 | * |
| 162 | * The device owns this memory once this call has completed. The CPU |
| 163 | * can regain ownership by calling dma_unmap_page(). |
| 164 | * |
| 165 | * Note: while it takes struct page as arg, caller can "abuse" it to pass |
| 166 | * a region larger than PAGE_SIZE, provided it is physically contiguous |
| 167 | * and this still works correctly |
| 168 | */ |
| 169 | static dma_addr_t arc_dma_map_page(struct device *dev, struct page *page, |
| 170 | unsigned long offset, size_t size, enum dma_data_direction dir, |
| 171 | unsigned long attrs) |
| 172 | { |
| 173 | phys_addr_t paddr = page_to_phys(page) + offset; |
| 174 | |
| 175 | if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| 176 | _dma_cache_sync(paddr, size, dir); |
| 177 | |
| 178 | return plat_phys_to_dma(dev, paddr); |
| 179 | } |
| 180 | |
| 181 | /* |
| 182 | * arc_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() |
| 183 | * |
| 184 | * After this call, reads by the CPU to the buffer are guaranteed to see |
| 185 | * whatever the device wrote there. |
| 186 | * |
| 187 | * Note: historically this routine was not implemented for ARC |
| 188 | */ |
| 189 | static void arc_dma_unmap_page(struct device *dev, dma_addr_t handle, |
| 190 | size_t size, enum dma_data_direction dir, |
| 191 | unsigned long attrs) |
| 192 | { |
| 193 | phys_addr_t paddr = plat_dma_to_phys(dev, handle); |
| 194 | |
| 195 | if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| 196 | _dma_cache_sync(paddr, size, dir); |
| 197 | } |
| 198 | |
| 199 | static int arc_dma_map_sg(struct device *dev, struct scatterlist *sg, |
| 200 | int nents, enum dma_data_direction dir, unsigned long attrs) |
| 201 | { |
| 202 | struct scatterlist *s; |
| 203 | int i; |
| 204 | |
| 205 | for_each_sg(sg, s, nents, i) |
| 206 | s->dma_address = dma_map_page(dev, sg_page(s), s->offset, |
| 207 | s->length, dir); |
| 208 | |
| 209 | return nents; |
| 210 | } |
| 211 | |
| 212 | static void arc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, |
| 213 | int nents, enum dma_data_direction dir, |
| 214 | unsigned long attrs) |
| 215 | { |
| 216 | struct scatterlist *s; |
| 217 | int i; |
| 218 | |
| 219 | for_each_sg(sg, s, nents, i) |
| 220 | arc_dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, |
| 221 | attrs); |
| 222 | } |
| 223 | |
| 224 | static void arc_dma_sync_single_for_cpu(struct device *dev, |
| 225 | dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) |
| 226 | { |
| 227 | _dma_cache_sync(plat_dma_to_phys(dev, dma_handle), size, DMA_FROM_DEVICE); |
| 228 | } |
| 229 | |
| 230 | static void arc_dma_sync_single_for_device(struct device *dev, |
| 231 | dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) |
| 232 | { |
| 233 | _dma_cache_sync(plat_dma_to_phys(dev, dma_handle), size, DMA_TO_DEVICE); |
| 234 | } |
| 235 | |
| 236 | static void arc_dma_sync_sg_for_cpu(struct device *dev, |
| 237 | struct scatterlist *sglist, int nelems, |
| 238 | enum dma_data_direction dir) |
| 239 | { |
| 240 | int i; |
| 241 | struct scatterlist *sg; |
| 242 | |
| 243 | for_each_sg(sglist, sg, nelems, i) |
| 244 | _dma_cache_sync(sg_phys(sg), sg->length, dir); |
| 245 | } |
| 246 | |
| 247 | static void arc_dma_sync_sg_for_device(struct device *dev, |
| 248 | struct scatterlist *sglist, int nelems, |
| 249 | enum dma_data_direction dir) |
| 250 | { |
| 251 | int i; |
| 252 | struct scatterlist *sg; |
| 253 | |
| 254 | for_each_sg(sglist, sg, nelems, i) |
| 255 | _dma_cache_sync(sg_phys(sg), sg->length, dir); |
| 256 | } |
| 257 | |
| 258 | static int arc_dma_supported(struct device *dev, u64 dma_mask) |
| 259 | { |
| 260 | /* Support 32 bit DMA mask exclusively */ |
| 261 | return dma_mask == DMA_BIT_MASK(32); |
| 262 | } |
| 263 | |
| 264 | const struct dma_map_ops arc_dma_ops = { |
| 265 | .alloc = arc_dma_alloc, |
| 266 | .free = arc_dma_free, |
| 267 | .mmap = arc_dma_mmap, |
| 268 | .map_page = arc_dma_map_page, |
| 269 | .unmap_page = arc_dma_unmap_page, |
| 270 | .map_sg = arc_dma_map_sg, |
| 271 | .unmap_sg = arc_dma_unmap_sg, |
| 272 | .sync_single_for_device = arc_dma_sync_single_for_device, |
| 273 | .sync_single_for_cpu = arc_dma_sync_single_for_cpu, |
| 274 | .sync_sg_for_cpu = arc_dma_sync_sg_for_cpu, |
| 275 | .sync_sg_for_device = arc_dma_sync_sg_for_device, |
| 276 | .dma_supported = arc_dma_supported, |
| 277 | }; |
| 278 | EXPORT_SYMBOL(arc_dma_ops); |