rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2014-2015 Broadcom Corporation |
| 3 | * Copyright 2014 Linaro Limited |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU General Public License as |
| 7 | * published by the Free Software Foundation version 2. |
| 8 | * |
| 9 | * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| 10 | * kind, whether express or implied; without even the implied warranty |
| 11 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/cpumask.h> |
| 16 | #include <linux/delay.h> |
| 17 | #include <linux/errno.h> |
| 18 | #include <linux/init.h> |
| 19 | #include <linux/io.h> |
| 20 | #include <linux/jiffies.h> |
| 21 | #include <linux/of.h> |
| 22 | #include <linux/of_address.h> |
| 23 | #include <linux/sched.h> |
| 24 | #include <linux/sched/clock.h> |
| 25 | #include <linux/smp.h> |
| 26 | |
| 27 | #include <asm/cacheflush.h> |
| 28 | #include <asm/smp.h> |
| 29 | #include <asm/smp_plat.h> |
| 30 | #include <asm/smp_scu.h> |
| 31 | |
| 32 | /* Size of mapped Cortex A9 SCU address space */ |
| 33 | #define CORTEX_A9_SCU_SIZE 0x58 |
| 34 | |
| 35 | #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */ |
| 36 | #define BOOT_ADDR_CPUID_MASK 0x3 |
| 37 | |
| 38 | /* Name of device node property defining secondary boot register location */ |
| 39 | #define OF_SECONDARY_BOOT "secondary-boot-reg" |
| 40 | #define MPIDR_CPUID_BITMASK 0x3 |
| 41 | |
| 42 | /* |
| 43 | * Enable the Cortex A9 Snoop Control Unit |
| 44 | * |
| 45 | * By the time this is called we already know there are multiple |
| 46 | * cores present. We assume we're running on a Cortex A9 processor, |
| 47 | * so any trouble getting the base address register or getting the |
| 48 | * SCU base is a problem. |
| 49 | * |
| 50 | * Return 0 if successful or an error code otherwise. |
| 51 | */ |
| 52 | static int __init scu_a9_enable(void) |
| 53 | { |
| 54 | unsigned long config_base; |
| 55 | void __iomem *scu_base; |
| 56 | |
| 57 | if (!scu_a9_has_base()) { |
| 58 | pr_err("no configuration base address register!\n"); |
| 59 | return -ENXIO; |
| 60 | } |
| 61 | |
| 62 | /* Config base address register value is zero for uniprocessor */ |
| 63 | config_base = scu_a9_get_base(); |
| 64 | if (!config_base) { |
| 65 | pr_err("hardware reports only one core\n"); |
| 66 | return -ENOENT; |
| 67 | } |
| 68 | |
| 69 | scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE); |
| 70 | if (!scu_base) { |
| 71 | pr_err("failed to remap config base (%lu/%u) for SCU\n", |
| 72 | config_base, CORTEX_A9_SCU_SIZE); |
| 73 | return -ENOMEM; |
| 74 | } |
| 75 | |
| 76 | scu_enable(scu_base); |
| 77 | |
| 78 | iounmap(scu_base); /* That's the last we'll need of this */ |
| 79 | |
| 80 | return 0; |
| 81 | } |
| 82 | |
| 83 | static u32 secondary_boot_addr_for(unsigned int cpu) |
| 84 | { |
| 85 | u32 secondary_boot_addr = 0; |
| 86 | struct device_node *cpu_node = of_get_cpu_node(cpu, NULL); |
| 87 | |
| 88 | if (!cpu_node) { |
| 89 | pr_err("Failed to find device tree node for CPU%u\n", cpu); |
| 90 | return 0; |
| 91 | } |
| 92 | |
| 93 | if (of_property_read_u32(cpu_node, |
| 94 | OF_SECONDARY_BOOT, |
| 95 | &secondary_boot_addr)) |
| 96 | pr_err("required secondary boot register not specified for CPU%u\n", |
| 97 | cpu); |
| 98 | |
| 99 | of_node_put(cpu_node); |
| 100 | |
| 101 | return secondary_boot_addr; |
| 102 | } |
| 103 | |
| 104 | static int nsp_write_lut(unsigned int cpu) |
| 105 | { |
| 106 | void __iomem *sku_rom_lut; |
| 107 | phys_addr_t secondary_startup_phy; |
| 108 | const u32 secondary_boot_addr = secondary_boot_addr_for(cpu); |
| 109 | |
| 110 | if (!secondary_boot_addr) |
| 111 | return -EINVAL; |
| 112 | |
| 113 | sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr, |
| 114 | sizeof(phys_addr_t)); |
| 115 | if (!sku_rom_lut) { |
| 116 | pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu); |
| 117 | return -ENOMEM; |
| 118 | } |
| 119 | |
| 120 | secondary_startup_phy = __pa_symbol(secondary_startup); |
| 121 | BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX); |
| 122 | |
| 123 | writel_relaxed(secondary_startup_phy, sku_rom_lut); |
| 124 | |
| 125 | /* Ensure the write is visible to the secondary core */ |
| 126 | smp_wmb(); |
| 127 | |
| 128 | iounmap(sku_rom_lut); |
| 129 | |
| 130 | return 0; |
| 131 | } |
| 132 | |
| 133 | static void __init bcm_smp_prepare_cpus(unsigned int max_cpus) |
| 134 | { |
| 135 | const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 }; |
| 136 | |
| 137 | /* Enable the SCU on Cortex A9 based SoCs */ |
| 138 | if (scu_a9_enable()) { |
| 139 | /* Update the CPU present map to reflect uniprocessor mode */ |
| 140 | pr_warn("failed to enable A9 SCU - disabling SMP\n"); |
| 141 | init_cpu_present(&only_cpu_0); |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * The ROM code has the secondary cores looping, waiting for an event. |
| 147 | * When an event occurs each core examines the bottom two bits of the |
| 148 | * secondary boot register. When a core finds those bits contain its |
| 149 | * own core id, it performs initialization, including computing its boot |
| 150 | * address by clearing the boot register value's bottom two bits. The |
| 151 | * core signals that it is beginning its execution by writing its boot |
| 152 | * address back to the secondary boot register, and finally jumps to |
| 153 | * that address. |
| 154 | * |
| 155 | * So to start a core executing we need to: |
| 156 | * - Encode the (hardware) CPU id with the bottom bits of the secondary |
| 157 | * start address. |
| 158 | * - Write that value into the secondary boot register. |
| 159 | * - Generate an event to wake up the secondary CPU(s). |
| 160 | * - Wait for the secondary boot register to be re-written, which |
| 161 | * indicates the secondary core has started. |
| 162 | */ |
| 163 | static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle) |
| 164 | { |
| 165 | void __iomem *boot_reg; |
| 166 | phys_addr_t boot_func; |
| 167 | u64 start_clock; |
| 168 | u32 cpu_id; |
| 169 | u32 boot_val; |
| 170 | bool timeout = false; |
| 171 | const u32 secondary_boot_addr = secondary_boot_addr_for(cpu); |
| 172 | |
| 173 | cpu_id = cpu_logical_map(cpu); |
| 174 | if (cpu_id & ~BOOT_ADDR_CPUID_MASK) { |
| 175 | pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK); |
| 176 | return -EINVAL; |
| 177 | } |
| 178 | |
| 179 | if (!secondary_boot_addr) |
| 180 | return -EINVAL; |
| 181 | |
| 182 | boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr, |
| 183 | sizeof(phys_addr_t)); |
| 184 | if (!boot_reg) { |
| 185 | pr_err("unable to map boot register for cpu %u\n", cpu_id); |
| 186 | return -ENOMEM; |
| 187 | } |
| 188 | |
| 189 | /* |
| 190 | * Secondary cores will start in secondary_startup(), |
| 191 | * defined in "arch/arm/kernel/head.S" |
| 192 | */ |
| 193 | boot_func = __pa_symbol(secondary_startup); |
| 194 | BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK); |
| 195 | BUG_ON(boot_func > (phys_addr_t)U32_MAX); |
| 196 | |
| 197 | /* The core to start is encoded in the low bits */ |
| 198 | boot_val = (u32)boot_func | cpu_id; |
| 199 | writel_relaxed(boot_val, boot_reg); |
| 200 | |
| 201 | sev(); |
| 202 | |
| 203 | /* The low bits will be cleared once the core has started */ |
| 204 | start_clock = local_clock(); |
| 205 | while (!timeout && readl_relaxed(boot_reg) == boot_val) |
| 206 | timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS; |
| 207 | |
| 208 | iounmap(boot_reg); |
| 209 | |
| 210 | if (!timeout) |
| 211 | return 0; |
| 212 | |
| 213 | pr_err("timeout waiting for cpu %u to start\n", cpu_id); |
| 214 | |
| 215 | return -ENXIO; |
| 216 | } |
| 217 | |
| 218 | /* Cluster Dormant Control command to bring CPU into a running state */ |
| 219 | #define CDC_CMD 6 |
| 220 | #define CDC_CMD_OFFSET 0 |
| 221 | #define CDC_CMD_REG(cpu) (CDC_CMD_OFFSET + 4*(cpu)) |
| 222 | |
| 223 | /* |
| 224 | * BCM23550 has a Cluster Dormant Control block that keeps the core in |
| 225 | * idle state. A command needs to be sent to the block to bring the CPU |
| 226 | * into running state. |
| 227 | */ |
| 228 | static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle) |
| 229 | { |
| 230 | void __iomem *cdc_base; |
| 231 | struct device_node *dn; |
| 232 | char *name; |
| 233 | int ret; |
| 234 | |
| 235 | /* Make sure a CDC node exists before booting the |
| 236 | * secondary core. |
| 237 | */ |
| 238 | name = "brcm,bcm23550-cdc"; |
| 239 | dn = of_find_compatible_node(NULL, NULL, name); |
| 240 | if (!dn) { |
| 241 | pr_err("unable to find cdc node\n"); |
| 242 | return -ENODEV; |
| 243 | } |
| 244 | |
| 245 | cdc_base = of_iomap(dn, 0); |
| 246 | of_node_put(dn); |
| 247 | |
| 248 | if (!cdc_base) { |
| 249 | pr_err("unable to remap cdc base register\n"); |
| 250 | return -ENOMEM; |
| 251 | } |
| 252 | |
| 253 | /* Boot the secondary core */ |
| 254 | ret = kona_boot_secondary(cpu, idle); |
| 255 | if (ret) |
| 256 | goto out; |
| 257 | |
| 258 | /* Bring this CPU to RUN state so that nIRQ nFIQ |
| 259 | * signals are unblocked. |
| 260 | */ |
| 261 | writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu)); |
| 262 | |
| 263 | out: |
| 264 | iounmap(cdc_base); |
| 265 | |
| 266 | return ret; |
| 267 | } |
| 268 | |
| 269 | static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle) |
| 270 | { |
| 271 | int ret; |
| 272 | |
| 273 | /* |
| 274 | * After wake up, secondary core branches to the startup |
| 275 | * address programmed at SKU ROM LUT location. |
| 276 | */ |
| 277 | ret = nsp_write_lut(cpu); |
| 278 | if (ret) { |
| 279 | pr_err("unable to write startup addr to SKU ROM LUT\n"); |
| 280 | goto out; |
| 281 | } |
| 282 | |
| 283 | /* Send a CPU wakeup interrupt to the secondary core */ |
| 284 | arch_send_wakeup_ipi_mask(cpumask_of(cpu)); |
| 285 | |
| 286 | out: |
| 287 | return ret; |
| 288 | } |
| 289 | |
| 290 | static const struct smp_operations kona_smp_ops __initconst = { |
| 291 | .smp_prepare_cpus = bcm_smp_prepare_cpus, |
| 292 | .smp_boot_secondary = kona_boot_secondary, |
| 293 | }; |
| 294 | CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method", |
| 295 | &kona_smp_ops); |
| 296 | |
| 297 | static const struct smp_operations bcm23550_smp_ops __initconst = { |
| 298 | .smp_boot_secondary = bcm23550_boot_secondary, |
| 299 | }; |
| 300 | CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550", |
| 301 | &bcm23550_smp_ops); |
| 302 | |
| 303 | static const struct smp_operations nsp_smp_ops __initconst = { |
| 304 | .smp_prepare_cpus = bcm_smp_prepare_cpus, |
| 305 | .smp_boot_secondary = nsp_boot_secondary, |
| 306 | }; |
| 307 | CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops); |