rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd. |
| 3 | * http://www.samsung.com |
| 4 | * |
| 5 | * Cloned from linux/arch/arm/mach-vexpress/platsmp.c |
| 6 | * |
| 7 | * Copyright (C) 2002 ARM Ltd. |
| 8 | * All Rights Reserved |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of the GNU General Public License version 2 as |
| 12 | * published by the Free Software Foundation. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/init.h> |
| 16 | #include <linux/errno.h> |
| 17 | #include <linux/delay.h> |
| 18 | #include <linux/jiffies.h> |
| 19 | #include <linux/smp.h> |
| 20 | #include <linux/io.h> |
| 21 | #include <linux/of_address.h> |
| 22 | #include <linux/soc/samsung/exynos-regs-pmu.h> |
| 23 | |
| 24 | #include <asm/cacheflush.h> |
| 25 | #include <asm/cp15.h> |
| 26 | #include <asm/smp_plat.h> |
| 27 | #include <asm/smp_scu.h> |
| 28 | #include <asm/firmware.h> |
| 29 | |
| 30 | #include <mach/map.h> |
| 31 | |
| 32 | #include "common.h" |
| 33 | |
| 34 | extern void exynos4_secondary_startup(void); |
| 35 | |
| 36 | #ifdef CONFIG_HOTPLUG_CPU |
| 37 | static inline void cpu_leave_lowpower(u32 core_id) |
| 38 | { |
| 39 | unsigned int v; |
| 40 | |
| 41 | asm volatile( |
| 42 | "mrc p15, 0, %0, c1, c0, 0\n" |
| 43 | " orr %0, %0, %1\n" |
| 44 | " mcr p15, 0, %0, c1, c0, 0\n" |
| 45 | " mrc p15, 0, %0, c1, c0, 1\n" |
| 46 | " orr %0, %0, %2\n" |
| 47 | " mcr p15, 0, %0, c1, c0, 1\n" |
| 48 | : "=&r" (v) |
| 49 | : "Ir" (CR_C), "Ir" (0x40) |
| 50 | : "cc"); |
| 51 | } |
| 52 | |
| 53 | static inline void platform_do_lowpower(unsigned int cpu, int *spurious) |
| 54 | { |
| 55 | u32 mpidr = cpu_logical_map(cpu); |
| 56 | u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| 57 | |
| 58 | for (;;) { |
| 59 | |
| 60 | /* Turn the CPU off on next WFI instruction. */ |
| 61 | exynos_cpu_power_down(core_id); |
| 62 | |
| 63 | wfi(); |
| 64 | |
| 65 | if (pen_release == core_id) { |
| 66 | /* |
| 67 | * OK, proper wakeup, we're done |
| 68 | */ |
| 69 | break; |
| 70 | } |
| 71 | |
| 72 | /* |
| 73 | * Getting here, means that we have come out of WFI without |
| 74 | * having been woken up - this shouldn't happen |
| 75 | * |
| 76 | * Just note it happening - when we're woken, we can report |
| 77 | * its occurrence. |
| 78 | */ |
| 79 | (*spurious)++; |
| 80 | } |
| 81 | } |
| 82 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 83 | |
| 84 | /** |
| 85 | * exynos_core_power_down : power down the specified cpu |
| 86 | * @cpu : the cpu to power down |
| 87 | * |
| 88 | * Power down the specified cpu. The sequence must be finished by a |
| 89 | * call to cpu_do_idle() |
| 90 | * |
| 91 | */ |
| 92 | void exynos_cpu_power_down(int cpu) |
| 93 | { |
| 94 | u32 core_conf; |
| 95 | |
| 96 | if (cpu == 0 && (soc_is_exynos5420() || soc_is_exynos5800())) { |
| 97 | /* |
| 98 | * Bypass power down for CPU0 during suspend. Check for |
| 99 | * the SYS_PWR_REG value to decide if we are suspending |
| 100 | * the system. |
| 101 | */ |
| 102 | int val = pmu_raw_readl(EXYNOS5_ARM_CORE0_SYS_PWR_REG); |
| 103 | |
| 104 | if (!(val & S5P_CORE_LOCAL_PWR_EN)) |
| 105 | return; |
| 106 | } |
| 107 | |
| 108 | core_conf = pmu_raw_readl(EXYNOS_ARM_CORE_CONFIGURATION(cpu)); |
| 109 | core_conf &= ~S5P_CORE_LOCAL_PWR_EN; |
| 110 | pmu_raw_writel(core_conf, EXYNOS_ARM_CORE_CONFIGURATION(cpu)); |
| 111 | } |
| 112 | |
| 113 | /** |
| 114 | * exynos_cpu_power_up : power up the specified cpu |
| 115 | * @cpu : the cpu to power up |
| 116 | * |
| 117 | * Power up the specified cpu |
| 118 | */ |
| 119 | void exynos_cpu_power_up(int cpu) |
| 120 | { |
| 121 | u32 core_conf = S5P_CORE_LOCAL_PWR_EN; |
| 122 | |
| 123 | if (soc_is_exynos3250()) |
| 124 | core_conf |= S5P_CORE_AUTOWAKEUP_EN; |
| 125 | |
| 126 | pmu_raw_writel(core_conf, |
| 127 | EXYNOS_ARM_CORE_CONFIGURATION(cpu)); |
| 128 | } |
| 129 | |
| 130 | /** |
| 131 | * exynos_cpu_power_state : returns the power state of the cpu |
| 132 | * @cpu : the cpu to retrieve the power state from |
| 133 | * |
| 134 | */ |
| 135 | int exynos_cpu_power_state(int cpu) |
| 136 | { |
| 137 | return (pmu_raw_readl(EXYNOS_ARM_CORE_STATUS(cpu)) & |
| 138 | S5P_CORE_LOCAL_PWR_EN); |
| 139 | } |
| 140 | |
| 141 | /** |
| 142 | * exynos_cluster_power_down : power down the specified cluster |
| 143 | * @cluster : the cluster to power down |
| 144 | */ |
| 145 | void exynos_cluster_power_down(int cluster) |
| 146 | { |
| 147 | pmu_raw_writel(0, EXYNOS_COMMON_CONFIGURATION(cluster)); |
| 148 | } |
| 149 | |
| 150 | /** |
| 151 | * exynos_cluster_power_up : power up the specified cluster |
| 152 | * @cluster : the cluster to power up |
| 153 | */ |
| 154 | void exynos_cluster_power_up(int cluster) |
| 155 | { |
| 156 | pmu_raw_writel(S5P_CORE_LOCAL_PWR_EN, |
| 157 | EXYNOS_COMMON_CONFIGURATION(cluster)); |
| 158 | } |
| 159 | |
| 160 | /** |
| 161 | * exynos_cluster_power_state : returns the power state of the cluster |
| 162 | * @cluster : the cluster to retrieve the power state from |
| 163 | * |
| 164 | */ |
| 165 | int exynos_cluster_power_state(int cluster) |
| 166 | { |
| 167 | return (pmu_raw_readl(EXYNOS_COMMON_STATUS(cluster)) & |
| 168 | S5P_CORE_LOCAL_PWR_EN); |
| 169 | } |
| 170 | |
| 171 | static void __iomem *cpu_boot_reg_base(void) |
| 172 | { |
| 173 | if (soc_is_exynos4210() && samsung_rev() == EXYNOS4210_REV_1_1) |
| 174 | return pmu_base_addr + S5P_INFORM5; |
| 175 | return sysram_base_addr; |
| 176 | } |
| 177 | |
| 178 | static inline void __iomem *cpu_boot_reg(int cpu) |
| 179 | { |
| 180 | void __iomem *boot_reg; |
| 181 | |
| 182 | boot_reg = cpu_boot_reg_base(); |
| 183 | if (!boot_reg) |
| 184 | return IOMEM_ERR_PTR(-ENODEV); |
| 185 | if (soc_is_exynos4412()) |
| 186 | boot_reg += 4*cpu; |
| 187 | else if (soc_is_exynos5420() || soc_is_exynos5800()) |
| 188 | boot_reg += 4; |
| 189 | return boot_reg; |
| 190 | } |
| 191 | |
| 192 | /* |
| 193 | * Set wake up by local power mode and execute software reset for given core. |
| 194 | * |
| 195 | * Currently this is needed only when booting secondary CPU on Exynos3250. |
| 196 | */ |
| 197 | void exynos_core_restart(u32 core_id) |
| 198 | { |
| 199 | u32 val; |
| 200 | |
| 201 | if (!of_machine_is_compatible("samsung,exynos3250")) |
| 202 | return; |
| 203 | |
| 204 | while (!pmu_raw_readl(S5P_PMU_SPARE2)) |
| 205 | udelay(10); |
| 206 | udelay(10); |
| 207 | |
| 208 | val = pmu_raw_readl(EXYNOS_ARM_CORE_STATUS(core_id)); |
| 209 | val |= S5P_CORE_WAKEUP_FROM_LOCAL_CFG; |
| 210 | pmu_raw_writel(val, EXYNOS_ARM_CORE_STATUS(core_id)); |
| 211 | |
| 212 | pmu_raw_writel(EXYNOS_CORE_PO_RESET(core_id), EXYNOS_SWRESET); |
| 213 | } |
| 214 | |
| 215 | /* |
| 216 | * Write pen_release in a way that is guaranteed to be visible to all |
| 217 | * observers, irrespective of whether they're taking part in coherency |
| 218 | * or not. This is necessary for the hotplug code to work reliably. |
| 219 | */ |
| 220 | static void write_pen_release(int val) |
| 221 | { |
| 222 | pen_release = val; |
| 223 | smp_wmb(); |
| 224 | sync_cache_w(&pen_release); |
| 225 | } |
| 226 | |
| 227 | static void __iomem *scu_base_addr(void) |
| 228 | { |
| 229 | return (void __iomem *)(S5P_VA_SCU); |
| 230 | } |
| 231 | |
| 232 | static DEFINE_SPINLOCK(boot_lock); |
| 233 | |
| 234 | static void exynos_secondary_init(unsigned int cpu) |
| 235 | { |
| 236 | /* |
| 237 | * let the primary processor know we're out of the |
| 238 | * pen, then head off into the C entry point |
| 239 | */ |
| 240 | write_pen_release(-1); |
| 241 | |
| 242 | /* |
| 243 | * Synchronise with the boot thread. |
| 244 | */ |
| 245 | spin_lock(&boot_lock); |
| 246 | spin_unlock(&boot_lock); |
| 247 | } |
| 248 | |
| 249 | int exynos_set_boot_addr(u32 core_id, unsigned long boot_addr) |
| 250 | { |
| 251 | int ret; |
| 252 | |
| 253 | /* |
| 254 | * Try to set boot address using firmware first |
| 255 | * and fall back to boot register if it fails. |
| 256 | */ |
| 257 | ret = call_firmware_op(set_cpu_boot_addr, core_id, boot_addr); |
| 258 | if (ret && ret != -ENOSYS) |
| 259 | goto fail; |
| 260 | if (ret == -ENOSYS) { |
| 261 | void __iomem *boot_reg = cpu_boot_reg(core_id); |
| 262 | |
| 263 | if (IS_ERR(boot_reg)) { |
| 264 | ret = PTR_ERR(boot_reg); |
| 265 | goto fail; |
| 266 | } |
| 267 | writel_relaxed(boot_addr, boot_reg); |
| 268 | ret = 0; |
| 269 | } |
| 270 | fail: |
| 271 | return ret; |
| 272 | } |
| 273 | |
| 274 | int exynos_get_boot_addr(u32 core_id, unsigned long *boot_addr) |
| 275 | { |
| 276 | int ret; |
| 277 | |
| 278 | /* |
| 279 | * Try to get boot address using firmware first |
| 280 | * and fall back to boot register if it fails. |
| 281 | */ |
| 282 | ret = call_firmware_op(get_cpu_boot_addr, core_id, boot_addr); |
| 283 | if (ret && ret != -ENOSYS) |
| 284 | goto fail; |
| 285 | if (ret == -ENOSYS) { |
| 286 | void __iomem *boot_reg = cpu_boot_reg(core_id); |
| 287 | |
| 288 | if (IS_ERR(boot_reg)) { |
| 289 | ret = PTR_ERR(boot_reg); |
| 290 | goto fail; |
| 291 | } |
| 292 | *boot_addr = readl_relaxed(boot_reg); |
| 293 | ret = 0; |
| 294 | } |
| 295 | fail: |
| 296 | return ret; |
| 297 | } |
| 298 | |
| 299 | static int exynos_boot_secondary(unsigned int cpu, struct task_struct *idle) |
| 300 | { |
| 301 | unsigned long timeout; |
| 302 | u32 mpidr = cpu_logical_map(cpu); |
| 303 | u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| 304 | int ret = -ENOSYS; |
| 305 | |
| 306 | /* |
| 307 | * Set synchronisation state between this boot processor |
| 308 | * and the secondary one |
| 309 | */ |
| 310 | spin_lock(&boot_lock); |
| 311 | |
| 312 | /* |
| 313 | * The secondary processor is waiting to be released from |
| 314 | * the holding pen - release it, then wait for it to flag |
| 315 | * that it has been released by resetting pen_release. |
| 316 | * |
| 317 | * Note that "pen_release" is the hardware CPU core ID, whereas |
| 318 | * "cpu" is Linux's internal ID. |
| 319 | */ |
| 320 | write_pen_release(core_id); |
| 321 | |
| 322 | if (!exynos_cpu_power_state(core_id)) { |
| 323 | exynos_cpu_power_up(core_id); |
| 324 | timeout = 10; |
| 325 | |
| 326 | /* wait max 10 ms until cpu1 is on */ |
| 327 | while (exynos_cpu_power_state(core_id) |
| 328 | != S5P_CORE_LOCAL_PWR_EN) { |
| 329 | if (timeout-- == 0) |
| 330 | break; |
| 331 | |
| 332 | mdelay(1); |
| 333 | } |
| 334 | |
| 335 | if (timeout == 0) { |
| 336 | printk(KERN_ERR "cpu1 power enable failed"); |
| 337 | spin_unlock(&boot_lock); |
| 338 | return -ETIMEDOUT; |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | exynos_core_restart(core_id); |
| 343 | |
| 344 | /* |
| 345 | * Send the secondary CPU a soft interrupt, thereby causing |
| 346 | * the boot monitor to read the system wide flags register, |
| 347 | * and branch to the address found there. |
| 348 | */ |
| 349 | |
| 350 | timeout = jiffies + (1 * HZ); |
| 351 | while (time_before(jiffies, timeout)) { |
| 352 | unsigned long boot_addr; |
| 353 | |
| 354 | smp_rmb(); |
| 355 | |
| 356 | boot_addr = __pa_symbol(exynos4_secondary_startup); |
| 357 | |
| 358 | ret = exynos_set_boot_addr(core_id, boot_addr); |
| 359 | if (ret) |
| 360 | goto fail; |
| 361 | |
| 362 | call_firmware_op(cpu_boot, core_id); |
| 363 | |
| 364 | if (soc_is_exynos3250()) |
| 365 | dsb_sev(); |
| 366 | else |
| 367 | arch_send_wakeup_ipi_mask(cpumask_of(cpu)); |
| 368 | |
| 369 | if (pen_release == -1) |
| 370 | break; |
| 371 | |
| 372 | udelay(10); |
| 373 | } |
| 374 | |
| 375 | if (pen_release != -1) |
| 376 | ret = -ETIMEDOUT; |
| 377 | |
| 378 | /* |
| 379 | * now the secondary core is starting up let it run its |
| 380 | * calibrations, then wait for it to finish |
| 381 | */ |
| 382 | fail: |
| 383 | spin_unlock(&boot_lock); |
| 384 | |
| 385 | return pen_release != -1 ? ret : 0; |
| 386 | } |
| 387 | |
| 388 | static void __init exynos_smp_prepare_cpus(unsigned int max_cpus) |
| 389 | { |
| 390 | int i; |
| 391 | |
| 392 | exynos_sysram_init(); |
| 393 | |
| 394 | exynos_set_delayed_reset_assertion(true); |
| 395 | |
| 396 | if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9) |
| 397 | scu_enable(scu_base_addr()); |
| 398 | |
| 399 | /* |
| 400 | * Write the address of secondary startup into the |
| 401 | * system-wide flags register. The boot monitor waits |
| 402 | * until it receives a soft interrupt, and then the |
| 403 | * secondary CPU branches to this address. |
| 404 | * |
| 405 | * Try using firmware operation first and fall back to |
| 406 | * boot register if it fails. |
| 407 | */ |
| 408 | for (i = 1; i < max_cpus; ++i) { |
| 409 | unsigned long boot_addr; |
| 410 | u32 mpidr; |
| 411 | u32 core_id; |
| 412 | int ret; |
| 413 | |
| 414 | mpidr = cpu_logical_map(i); |
| 415 | core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| 416 | boot_addr = __pa_symbol(exynos4_secondary_startup); |
| 417 | |
| 418 | ret = exynos_set_boot_addr(core_id, boot_addr); |
| 419 | if (ret) |
| 420 | break; |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | #ifdef CONFIG_HOTPLUG_CPU |
| 425 | /* |
| 426 | * platform-specific code to shutdown a CPU |
| 427 | * |
| 428 | * Called with IRQs disabled |
| 429 | */ |
| 430 | static void exynos_cpu_die(unsigned int cpu) |
| 431 | { |
| 432 | int spurious = 0; |
| 433 | u32 mpidr = cpu_logical_map(cpu); |
| 434 | u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| 435 | |
| 436 | v7_exit_coherency_flush(louis); |
| 437 | |
| 438 | platform_do_lowpower(cpu, &spurious); |
| 439 | |
| 440 | /* |
| 441 | * bring this CPU back into the world of cache |
| 442 | * coherency, and then restore interrupts |
| 443 | */ |
| 444 | cpu_leave_lowpower(core_id); |
| 445 | |
| 446 | if (spurious) |
| 447 | pr_warn("CPU%u: %u spurious wakeup calls\n", cpu, spurious); |
| 448 | } |
| 449 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 450 | |
| 451 | const struct smp_operations exynos_smp_ops __initconst = { |
| 452 | .smp_prepare_cpus = exynos_smp_prepare_cpus, |
| 453 | .smp_secondary_init = exynos_secondary_init, |
| 454 | .smp_boot_secondary = exynos_boot_secondary, |
| 455 | #ifdef CONFIG_HOTPLUG_CPU |
| 456 | .cpu_die = exynos_cpu_die, |
| 457 | #endif |
| 458 | }; |