rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * linux/arch/arm/mm/nommu.c |
| 3 | * |
| 4 | * ARM uCLinux supporting functions. |
| 5 | */ |
| 6 | #include <linux/module.h> |
| 7 | #include <linux/mm.h> |
| 8 | #include <linux/pagemap.h> |
| 9 | #include <linux/io.h> |
| 10 | #include <linux/memblock.h> |
| 11 | #include <linux/kernel.h> |
| 12 | |
| 13 | #include <asm/cacheflush.h> |
| 14 | #include <asm/cp15.h> |
| 15 | #include <asm/sections.h> |
| 16 | #include <asm/page.h> |
| 17 | #include <asm/setup.h> |
| 18 | #include <asm/traps.h> |
| 19 | #include <asm/mach/arch.h> |
| 20 | #include <asm/cputype.h> |
| 21 | #include <asm/mpu.h> |
| 22 | #include <asm/procinfo.h> |
| 23 | |
| 24 | #include "mm.h" |
| 25 | |
| 26 | unsigned long vectors_base; |
| 27 | |
| 28 | #ifdef CONFIG_ARM_MPU |
| 29 | struct mpu_rgn_info mpu_rgn_info; |
| 30 | |
| 31 | /* Region number */ |
| 32 | static void rgnr_write(u32 v) |
| 33 | { |
| 34 | asm("mcr p15, 0, %0, c6, c2, 0" : : "r" (v)); |
| 35 | } |
| 36 | |
| 37 | /* Data-side / unified region attributes */ |
| 38 | |
| 39 | /* Region access control register */ |
| 40 | static void dracr_write(u32 v) |
| 41 | { |
| 42 | asm("mcr p15, 0, %0, c6, c1, 4" : : "r" (v)); |
| 43 | } |
| 44 | |
| 45 | /* Region size register */ |
| 46 | static void drsr_write(u32 v) |
| 47 | { |
| 48 | asm("mcr p15, 0, %0, c6, c1, 2" : : "r" (v)); |
| 49 | } |
| 50 | |
| 51 | /* Region base address register */ |
| 52 | static void drbar_write(u32 v) |
| 53 | { |
| 54 | asm("mcr p15, 0, %0, c6, c1, 0" : : "r" (v)); |
| 55 | } |
| 56 | |
| 57 | static u32 drbar_read(void) |
| 58 | { |
| 59 | u32 v; |
| 60 | asm("mrc p15, 0, %0, c6, c1, 0" : "=r" (v)); |
| 61 | return v; |
| 62 | } |
| 63 | /* Optional instruction-side region attributes */ |
| 64 | |
| 65 | /* I-side Region access control register */ |
| 66 | static void iracr_write(u32 v) |
| 67 | { |
| 68 | asm("mcr p15, 0, %0, c6, c1, 5" : : "r" (v)); |
| 69 | } |
| 70 | |
| 71 | /* I-side Region size register */ |
| 72 | static void irsr_write(u32 v) |
| 73 | { |
| 74 | asm("mcr p15, 0, %0, c6, c1, 3" : : "r" (v)); |
| 75 | } |
| 76 | |
| 77 | /* I-side Region base address register */ |
| 78 | static void irbar_write(u32 v) |
| 79 | { |
| 80 | asm("mcr p15, 0, %0, c6, c1, 1" : : "r" (v)); |
| 81 | } |
| 82 | |
| 83 | static unsigned long irbar_read(void) |
| 84 | { |
| 85 | unsigned long v; |
| 86 | asm("mrc p15, 0, %0, c6, c1, 1" : "=r" (v)); |
| 87 | return v; |
| 88 | } |
| 89 | |
| 90 | /* MPU initialisation functions */ |
| 91 | void __init adjust_lowmem_bounds_mpu(void) |
| 92 | { |
| 93 | phys_addr_t phys_offset = PHYS_OFFSET; |
| 94 | phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size; |
| 95 | struct memblock_region *reg; |
| 96 | bool first = true; |
| 97 | phys_addr_t mem_start; |
| 98 | phys_addr_t mem_end; |
| 99 | |
| 100 | for_each_memblock(memory, reg) { |
| 101 | if (first) { |
| 102 | /* |
| 103 | * Initially only use memory continuous from |
| 104 | * PHYS_OFFSET */ |
| 105 | if (reg->base != phys_offset) |
| 106 | panic("First memory bank must be contiguous from PHYS_OFFSET"); |
| 107 | |
| 108 | mem_start = reg->base; |
| 109 | mem_end = reg->base + reg->size; |
| 110 | specified_mem_size = reg->size; |
| 111 | first = false; |
| 112 | } else { |
| 113 | /* |
| 114 | * memblock auto merges contiguous blocks, remove |
| 115 | * all blocks afterwards in one go (we can't remove |
| 116 | * blocks separately while iterating) |
| 117 | */ |
| 118 | pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n", |
| 119 | &mem_end, ®->base); |
| 120 | memblock_remove(reg->base, 0 - reg->base); |
| 121 | break; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | /* |
| 126 | * MPU has curious alignment requirements: Size must be power of 2, and |
| 127 | * region start must be aligned to the region size |
| 128 | */ |
| 129 | if (phys_offset != 0) |
| 130 | pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n"); |
| 131 | |
| 132 | /* |
| 133 | * Maximum aligned region might overflow phys_addr_t if phys_offset is |
| 134 | * 0. Hence we keep everything below 4G until we take the smaller of |
| 135 | * the aligned_region_size and rounded_mem_size, one of which is |
| 136 | * guaranteed to be smaller than the maximum physical address. |
| 137 | */ |
| 138 | aligned_region_size = (phys_offset - 1) ^ (phys_offset); |
| 139 | /* Find the max power-of-two sized region that fits inside our bank */ |
| 140 | rounded_mem_size = (1 << __fls(specified_mem_size)) - 1; |
| 141 | |
| 142 | /* The actual region size is the smaller of the two */ |
| 143 | aligned_region_size = aligned_region_size < rounded_mem_size |
| 144 | ? aligned_region_size + 1 |
| 145 | : rounded_mem_size + 1; |
| 146 | |
| 147 | if (aligned_region_size != specified_mem_size) { |
| 148 | pr_warn("Truncating memory from %pa to %pa (MPU region constraints)", |
| 149 | &specified_mem_size, &aligned_region_size); |
| 150 | memblock_remove(mem_start + aligned_region_size, |
| 151 | specified_mem_size - aligned_region_size); |
| 152 | |
| 153 | mem_end = mem_start + aligned_region_size; |
| 154 | } |
| 155 | |
| 156 | pr_debug("MPU Region from %pa size %pa (end %pa))\n", |
| 157 | &phys_offset, &aligned_region_size, &mem_end); |
| 158 | |
| 159 | } |
| 160 | |
| 161 | static int mpu_present(void) |
| 162 | { |
| 163 | return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7); |
| 164 | } |
| 165 | |
| 166 | static int mpu_max_regions(void) |
| 167 | { |
| 168 | /* |
| 169 | * We don't support a different number of I/D side regions so if we |
| 170 | * have separate instruction and data memory maps then return |
| 171 | * whichever side has a smaller number of supported regions. |
| 172 | */ |
| 173 | u32 dregions, iregions, mpuir; |
| 174 | mpuir = read_cpuid(CPUID_MPUIR); |
| 175 | |
| 176 | dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION; |
| 177 | |
| 178 | /* Check for separate d-side and i-side memory maps */ |
| 179 | if (mpuir & MPUIR_nU) |
| 180 | iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION; |
| 181 | |
| 182 | /* Use the smallest of the two maxima */ |
| 183 | return min(dregions, iregions); |
| 184 | } |
| 185 | |
| 186 | static int mpu_iside_independent(void) |
| 187 | { |
| 188 | /* MPUIR.nU specifies whether there is *not* a unified memory map */ |
| 189 | return read_cpuid(CPUID_MPUIR) & MPUIR_nU; |
| 190 | } |
| 191 | |
| 192 | static int mpu_min_region_order(void) |
| 193 | { |
| 194 | u32 drbar_result, irbar_result; |
| 195 | /* We've kept a region free for this probing */ |
| 196 | rgnr_write(MPU_PROBE_REGION); |
| 197 | isb(); |
| 198 | /* |
| 199 | * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum |
| 200 | * region order |
| 201 | */ |
| 202 | drbar_write(0xFFFFFFFC); |
| 203 | drbar_result = irbar_result = drbar_read(); |
| 204 | drbar_write(0x0); |
| 205 | /* If the MPU is non-unified, we use the larger of the two minima*/ |
| 206 | if (mpu_iside_independent()) { |
| 207 | irbar_write(0xFFFFFFFC); |
| 208 | irbar_result = irbar_read(); |
| 209 | irbar_write(0x0); |
| 210 | } |
| 211 | isb(); /* Ensure that MPU region operations have completed */ |
| 212 | /* Return whichever result is larger */ |
| 213 | return __ffs(max(drbar_result, irbar_result)); |
| 214 | } |
| 215 | |
| 216 | static int mpu_setup_region(unsigned int number, phys_addr_t start, |
| 217 | unsigned int size_order, unsigned int properties) |
| 218 | { |
| 219 | u32 size_data; |
| 220 | |
| 221 | /* We kept a region free for probing resolution of MPU regions*/ |
| 222 | if (number > mpu_max_regions() || number == MPU_PROBE_REGION) |
| 223 | return -ENOENT; |
| 224 | |
| 225 | if (size_order > 32) |
| 226 | return -ENOMEM; |
| 227 | |
| 228 | if (size_order < mpu_min_region_order()) |
| 229 | return -ENOMEM; |
| 230 | |
| 231 | /* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */ |
| 232 | size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN; |
| 233 | |
| 234 | dsb(); /* Ensure all previous data accesses occur with old mappings */ |
| 235 | rgnr_write(number); |
| 236 | isb(); |
| 237 | drbar_write(start); |
| 238 | dracr_write(properties); |
| 239 | isb(); /* Propagate properties before enabling region */ |
| 240 | drsr_write(size_data); |
| 241 | |
| 242 | /* Check for independent I-side registers */ |
| 243 | if (mpu_iside_independent()) { |
| 244 | irbar_write(start); |
| 245 | iracr_write(properties); |
| 246 | isb(); |
| 247 | irsr_write(size_data); |
| 248 | } |
| 249 | isb(); |
| 250 | |
| 251 | /* Store region info (we treat i/d side the same, so only store d) */ |
| 252 | mpu_rgn_info.rgns[number].dracr = properties; |
| 253 | mpu_rgn_info.rgns[number].drbar = start; |
| 254 | mpu_rgn_info.rgns[number].drsr = size_data; |
| 255 | return 0; |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * Set up default MPU regions, doing nothing if there is no MPU |
| 260 | */ |
| 261 | void __init mpu_setup(void) |
| 262 | { |
| 263 | int region_err; |
| 264 | if (!mpu_present()) |
| 265 | return; |
| 266 | |
| 267 | region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET, |
| 268 | ilog2(memblock.memory.regions[0].size), |
| 269 | MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL); |
| 270 | if (region_err) { |
| 271 | panic("MPU region initialization failure! %d", region_err); |
| 272 | } else { |
| 273 | pr_info("Using ARMv7 PMSA Compliant MPU. " |
| 274 | "Region independence: %s, Max regions: %d\n", |
| 275 | mpu_iside_independent() ? "Yes" : "No", |
| 276 | mpu_max_regions()); |
| 277 | } |
| 278 | } |
| 279 | #else |
| 280 | static void adjust_lowmem_bounds_mpu(void) {} |
| 281 | static void __init mpu_setup(void) {} |
| 282 | #endif /* CONFIG_ARM_MPU */ |
| 283 | |
| 284 | #ifdef CONFIG_CPU_CP15 |
| 285 | #ifdef CONFIG_CPU_HIGH_VECTOR |
| 286 | static unsigned long __init setup_vectors_base(void) |
| 287 | { |
| 288 | unsigned long reg = get_cr(); |
| 289 | |
| 290 | set_cr(reg | CR_V); |
| 291 | return 0xffff0000; |
| 292 | } |
| 293 | #else /* CONFIG_CPU_HIGH_VECTOR */ |
| 294 | /* Write exception base address to VBAR */ |
| 295 | static inline void set_vbar(unsigned long val) |
| 296 | { |
| 297 | asm("mcr p15, 0, %0, c12, c0, 0" : : "r" (val) : "cc"); |
| 298 | } |
| 299 | |
| 300 | /* |
| 301 | * Security extensions, bits[7:4], permitted values, |
| 302 | * 0b0000 - not implemented, 0b0001/0b0010 - implemented |
| 303 | */ |
| 304 | static inline bool security_extensions_enabled(void) |
| 305 | { |
| 306 | /* Check CPUID Identification Scheme before ID_PFR1 read */ |
| 307 | if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) |
| 308 | return !!cpuid_feature_extract(CPUID_EXT_PFR1, 4); |
| 309 | return 0; |
| 310 | } |
| 311 | |
| 312 | static unsigned long __init setup_vectors_base(void) |
| 313 | { |
| 314 | unsigned long base = 0, reg = get_cr(); |
| 315 | |
| 316 | set_cr(reg & ~CR_V); |
| 317 | if (security_extensions_enabled()) { |
| 318 | if (IS_ENABLED(CONFIG_REMAP_VECTORS_TO_RAM)) |
| 319 | base = CONFIG_DRAM_BASE; |
| 320 | set_vbar(base); |
| 321 | } else if (IS_ENABLED(CONFIG_REMAP_VECTORS_TO_RAM)) { |
| 322 | if (CONFIG_DRAM_BASE != 0) |
| 323 | pr_err("Security extensions not enabled, vectors cannot be remapped to RAM, vectors base will be 0x00000000\n"); |
| 324 | } |
| 325 | |
| 326 | return base; |
| 327 | } |
| 328 | #endif /* CONFIG_CPU_HIGH_VECTOR */ |
| 329 | #endif /* CONFIG_CPU_CP15 */ |
| 330 | |
| 331 | void __init arm_mm_memblock_reserve(void) |
| 332 | { |
| 333 | #ifndef CONFIG_CPU_V7M |
| 334 | vectors_base = IS_ENABLED(CONFIG_CPU_CP15) ? setup_vectors_base() : 0; |
| 335 | /* |
| 336 | * Register the exception vector page. |
| 337 | * some architectures which the DRAM is the exception vector to trap, |
| 338 | * alloc_page breaks with error, although it is not NULL, but "0." |
| 339 | */ |
| 340 | memblock_reserve(vectors_base, 2 * PAGE_SIZE); |
| 341 | #else /* ifndef CONFIG_CPU_V7M */ |
| 342 | /* |
| 343 | * There is no dedicated vector page on V7-M. So nothing needs to be |
| 344 | * reserved here. |
| 345 | */ |
| 346 | #endif |
| 347 | /* |
| 348 | * In any case, always ensure address 0 is never used as many things |
| 349 | * get very confused if 0 is returned as a legitimate address. |
| 350 | */ |
| 351 | memblock_reserve(0, 1); |
| 352 | } |
| 353 | |
| 354 | void __init adjust_lowmem_bounds(void) |
| 355 | { |
| 356 | phys_addr_t end; |
| 357 | adjust_lowmem_bounds_mpu(); |
| 358 | end = memblock_end_of_DRAM(); |
| 359 | high_memory = __va(end - 1) + 1; |
| 360 | memblock_set_current_limit(end); |
| 361 | } |
| 362 | |
| 363 | /* |
| 364 | * paging_init() sets up the page tables, initialises the zone memory |
| 365 | * maps, and sets up the zero page, bad page and bad page tables. |
| 366 | */ |
| 367 | void __init paging_init(const struct machine_desc *mdesc) |
| 368 | { |
| 369 | early_trap_init((void *)vectors_base); |
| 370 | mpu_setup(); |
| 371 | bootmem_init(); |
| 372 | } |
| 373 | |
| 374 | /* |
| 375 | * We don't need to do anything here for nommu machines. |
| 376 | */ |
| 377 | void setup_mm_for_reboot(void) |
| 378 | { |
| 379 | } |
| 380 | |
| 381 | void flush_dcache_page(struct page *page) |
| 382 | { |
| 383 | __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); |
| 384 | } |
| 385 | EXPORT_SYMBOL(flush_dcache_page); |
| 386 | |
| 387 | void flush_kernel_dcache_page(struct page *page) |
| 388 | { |
| 389 | __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); |
| 390 | } |
| 391 | EXPORT_SYMBOL(flush_kernel_dcache_page); |
| 392 | |
| 393 | void copy_to_user_page(struct vm_area_struct *vma, struct page *page, |
| 394 | unsigned long uaddr, void *dst, const void *src, |
| 395 | unsigned long len) |
| 396 | { |
| 397 | memcpy(dst, src, len); |
| 398 | if (vma->vm_flags & VM_EXEC) |
| 399 | __cpuc_coherent_user_range(uaddr, uaddr + len); |
| 400 | } |
| 401 | |
| 402 | void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, |
| 403 | size_t size, unsigned int mtype) |
| 404 | { |
| 405 | if (pfn >= (0x100000000ULL >> PAGE_SHIFT)) |
| 406 | return NULL; |
| 407 | return (void __iomem *) (offset + (pfn << PAGE_SHIFT)); |
| 408 | } |
| 409 | EXPORT_SYMBOL(__arm_ioremap_pfn); |
| 410 | |
| 411 | void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size, |
| 412 | unsigned int mtype, void *caller) |
| 413 | { |
| 414 | return (void __iomem *)phys_addr; |
| 415 | } |
| 416 | |
| 417 | void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *); |
| 418 | |
| 419 | void __iomem *ioremap(resource_size_t res_cookie, size_t size) |
| 420 | { |
| 421 | return __arm_ioremap_caller(res_cookie, size, MT_DEVICE, |
| 422 | __builtin_return_address(0)); |
| 423 | } |
| 424 | EXPORT_SYMBOL(ioremap); |
| 425 | |
| 426 | void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size) |
| 427 | __alias(ioremap_cached); |
| 428 | |
| 429 | void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size) |
| 430 | { |
| 431 | return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED, |
| 432 | __builtin_return_address(0)); |
| 433 | } |
| 434 | EXPORT_SYMBOL(ioremap_cache); |
| 435 | EXPORT_SYMBOL(ioremap_cached); |
| 436 | |
| 437 | void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size) |
| 438 | { |
| 439 | return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC, |
| 440 | __builtin_return_address(0)); |
| 441 | } |
| 442 | EXPORT_SYMBOL(ioremap_wc); |
| 443 | |
| 444 | #ifdef CONFIG_PCI |
| 445 | |
| 446 | #include <asm/mach/map.h> |
| 447 | |
| 448 | void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size) |
| 449 | { |
| 450 | return arch_ioremap_caller(res_cookie, size, MT_UNCACHED, |
| 451 | __builtin_return_address(0)); |
| 452 | } |
| 453 | EXPORT_SYMBOL_GPL(pci_remap_cfgspace); |
| 454 | #endif |
| 455 | |
| 456 | void *arch_memremap_wb(phys_addr_t phys_addr, size_t size) |
| 457 | { |
| 458 | return (void *)phys_addr; |
| 459 | } |
| 460 | |
| 461 | void __iounmap(volatile void __iomem *addr) |
| 462 | { |
| 463 | } |
| 464 | EXPORT_SYMBOL(__iounmap); |
| 465 | |
| 466 | void (*arch_iounmap)(volatile void __iomem *); |
| 467 | |
| 468 | void iounmap(volatile void __iomem *addr) |
| 469 | { |
| 470 | } |
| 471 | EXPORT_SYMBOL(iounmap); |