blob: e7b5ac65278578e2d3bc7fce9ab7c2a94d51cc73 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * SWIOTLB-based DMA API implementation
3 *
4 * Copyright (C) 2012 ARM Ltd.
5 * Author: Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <linux/gfp.h>
21#include <linux/acpi.h>
22#include <linux/bootmem.h>
23#include <linux/cache.h>
24#include <linux/export.h>
25#include <linux/slab.h>
26#include <linux/genalloc.h>
27#include <linux/dma-mapping.h>
28#include <linux/dma-contiguous.h>
29#include <linux/iova.h>
30#include <linux/vmalloc.h>
31#include <linux/swiotlb.h>
32#include <linux/pci.h>
33
34#include <asm/cacheflush.h>
35
36static int swiotlb __ro_after_init;
37
38static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
39 bool coherent)
40{
41 if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
42 return pgprot_writecombine(prot);
43 return prot;
44}
45
46static struct gen_pool *atomic_pool __ro_after_init;
47
48#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
49static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
50
51static int __init early_coherent_pool(char *p)
52{
53 atomic_pool_size = memparse(p, &p);
54 return 0;
55}
56early_param("coherent_pool", early_coherent_pool);
57
58static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
59{
60 unsigned long val;
61 void *ptr = NULL;
62
63 if (!atomic_pool) {
64 WARN(1, "coherent pool not initialised!\n");
65 return NULL;
66 }
67
68 val = gen_pool_alloc(atomic_pool, size);
69 if (val) {
70 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
71
72 *ret_page = phys_to_page(phys);
73 ptr = (void *)val;
74 memset(ptr, 0, size);
75 }
76
77 return ptr;
78}
79
80static bool __in_atomic_pool(void *start, size_t size)
81{
82 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
83}
84
85static int __free_from_pool(void *start, size_t size)
86{
87 if (!__in_atomic_pool(start, size))
88 return 0;
89
90 gen_pool_free(atomic_pool, (unsigned long)start, size);
91
92 return 1;
93}
94
95static void *__dma_alloc_coherent(struct device *dev, size_t size,
96 dma_addr_t *dma_handle, gfp_t flags,
97 unsigned long attrs)
98{
99 if (IS_ENABLED(CONFIG_ZONE_DMA) &&
100 dev->coherent_dma_mask <= DMA_BIT_MASK(32))
101 flags |= GFP_DMA;
102 if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
103 struct page *page;
104 void *addr;
105
106 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
107 get_order(size), flags);
108 if (!page)
109 return NULL;
110
111 *dma_handle = phys_to_dma(dev, page_to_phys(page));
112 addr = page_address(page);
113 memset(addr, 0, size);
114 return addr;
115 } else {
116 return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
117 }
118}
119
120static void __dma_free_coherent(struct device *dev, size_t size,
121 void *vaddr, dma_addr_t dma_handle,
122 unsigned long attrs)
123{
124 bool freed;
125 phys_addr_t paddr = dma_to_phys(dev, dma_handle);
126
127
128 freed = dma_release_from_contiguous(dev,
129 phys_to_page(paddr),
130 size >> PAGE_SHIFT);
131 if (!freed)
132 swiotlb_free_coherent(dev, size, vaddr, dma_handle);
133}
134
135static void *__dma_alloc(struct device *dev, size_t size,
136 dma_addr_t *dma_handle, gfp_t flags,
137 unsigned long attrs)
138{
139 struct page *page;
140 void *ptr, *coherent_ptr;
141 bool coherent = is_device_dma_coherent(dev);
142 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
143
144 size = PAGE_ALIGN(size);
145
146 if (!coherent && !gfpflags_allow_blocking(flags)) {
147 struct page *page = NULL;
148 void *addr = __alloc_from_pool(size, &page, flags);
149
150 if (addr)
151 *dma_handle = phys_to_dma(dev, page_to_phys(page));
152
153 return addr;
154 }
155
156 ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
157 if (!ptr)
158 goto no_mem;
159
160 /* no need for non-cacheable mapping if coherent */
161 if (coherent)
162 return ptr;
163
164 /* remove any dirty cache lines on the kernel alias */
165 __dma_flush_area(ptr, size);
166
167 /* create a coherent mapping */
168 page = virt_to_page(ptr);
169 coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
170 prot, __builtin_return_address(0));
171 if (!coherent_ptr)
172 goto no_map;
173
174 return coherent_ptr;
175
176no_map:
177 __dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
178no_mem:
179 return NULL;
180}
181
182static void __dma_free(struct device *dev, size_t size,
183 void *vaddr, dma_addr_t dma_handle,
184 unsigned long attrs)
185{
186 void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
187
188 size = PAGE_ALIGN(size);
189
190 if (!is_device_dma_coherent(dev)) {
191 if (__free_from_pool(vaddr, size))
192 return;
193 vunmap(vaddr);
194 }
195 __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
196}
197
198static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
199 unsigned long offset, size_t size,
200 enum dma_data_direction dir,
201 unsigned long attrs)
202{
203 dma_addr_t dev_addr;
204
205 dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
206 if (!is_device_dma_coherent(dev) &&
207 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
208 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
209
210 return dev_addr;
211}
212
213
214static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
215 size_t size, enum dma_data_direction dir,
216 unsigned long attrs)
217{
218 if (!is_device_dma_coherent(dev) &&
219 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
220 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
221 swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
222}
223
224static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
225 int nelems, enum dma_data_direction dir,
226 unsigned long attrs)
227{
228 struct scatterlist *sg;
229 int i, ret;
230
231 ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
232 if (!is_device_dma_coherent(dev) &&
233 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
234 for_each_sg(sgl, sg, ret, i)
235 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
236 sg->length, dir);
237
238 return ret;
239}
240
241static void __swiotlb_unmap_sg_attrs(struct device *dev,
242 struct scatterlist *sgl, int nelems,
243 enum dma_data_direction dir,
244 unsigned long attrs)
245{
246 struct scatterlist *sg;
247 int i;
248
249 if (!is_device_dma_coherent(dev) &&
250 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
251 for_each_sg(sgl, sg, nelems, i)
252 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
253 sg->length, dir);
254 swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
255}
256
257static void __swiotlb_sync_single_for_cpu(struct device *dev,
258 dma_addr_t dev_addr, size_t size,
259 enum dma_data_direction dir)
260{
261 if (!is_device_dma_coherent(dev))
262 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
263 swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
264}
265
266static void __swiotlb_sync_single_for_device(struct device *dev,
267 dma_addr_t dev_addr, size_t size,
268 enum dma_data_direction dir)
269{
270 swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
271 if (!is_device_dma_coherent(dev))
272 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
273}
274
275static void __swiotlb_sync_sg_for_cpu(struct device *dev,
276 struct scatterlist *sgl, int nelems,
277 enum dma_data_direction dir)
278{
279 struct scatterlist *sg;
280 int i;
281
282 if (!is_device_dma_coherent(dev))
283 for_each_sg(sgl, sg, nelems, i)
284 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
285 sg->length, dir);
286 swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
287}
288
289static void __swiotlb_sync_sg_for_device(struct device *dev,
290 struct scatterlist *sgl, int nelems,
291 enum dma_data_direction dir)
292{
293 struct scatterlist *sg;
294 int i;
295
296 swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
297 if (!is_device_dma_coherent(dev))
298 for_each_sg(sgl, sg, nelems, i)
299 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
300 sg->length, dir);
301}
302
303static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
304 unsigned long pfn, size_t size)
305{
306 int ret = -ENXIO;
307 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
308 PAGE_SHIFT;
309 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
310 unsigned long off = vma->vm_pgoff;
311
312 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
313 ret = remap_pfn_range(vma, vma->vm_start,
314 pfn + off,
315 vma->vm_end - vma->vm_start,
316 vma->vm_page_prot);
317 }
318
319 return ret;
320}
321
322static int __swiotlb_mmap(struct device *dev,
323 struct vm_area_struct *vma,
324 void *cpu_addr, dma_addr_t dma_addr, size_t size,
325 unsigned long attrs)
326{
327 int ret;
328 unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
329
330 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
331 is_device_dma_coherent(dev));
332
333 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
334 return ret;
335
336 return __swiotlb_mmap_pfn(vma, pfn, size);
337}
338
339static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
340 struct page *page, size_t size)
341{
342 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
343
344 if (!ret)
345 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
346
347 return ret;
348}
349
350static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
351 void *cpu_addr, dma_addr_t handle, size_t size,
352 unsigned long attrs)
353{
354 struct page *page = phys_to_page(dma_to_phys(dev, handle));
355
356 return __swiotlb_get_sgtable_page(sgt, page, size);
357}
358
359static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
360{
361 if (swiotlb)
362 return swiotlb_dma_supported(hwdev, mask);
363 return 1;
364}
365
366static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr)
367{
368 if (swiotlb)
369 return swiotlb_dma_mapping_error(hwdev, addr);
370 return 0;
371}
372
373static const struct dma_map_ops swiotlb_dma_ops = {
374 .alloc = __dma_alloc,
375 .free = __dma_free,
376 .mmap = __swiotlb_mmap,
377 .get_sgtable = __swiotlb_get_sgtable,
378 .map_page = __swiotlb_map_page,
379 .unmap_page = __swiotlb_unmap_page,
380 .map_sg = __swiotlb_map_sg_attrs,
381 .unmap_sg = __swiotlb_unmap_sg_attrs,
382 .sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
383 .sync_single_for_device = __swiotlb_sync_single_for_device,
384 .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
385 .sync_sg_for_device = __swiotlb_sync_sg_for_device,
386 .dma_supported = __swiotlb_dma_supported,
387 .mapping_error = __swiotlb_dma_mapping_error,
388};
389
390static int __init atomic_pool_init(void)
391{
392 pgprot_t prot = __pgprot(PROT_NORMAL_NC);
393 unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
394 struct page *page;
395 void *addr;
396 unsigned int pool_size_order = get_order(atomic_pool_size);
397
398 if (dev_get_cma_area(NULL))
399 page = dma_alloc_from_contiguous(NULL, nr_pages,
400 pool_size_order, GFP_KERNEL);
401 else
402 page = alloc_pages(GFP_DMA, pool_size_order);
403
404 if (page) {
405 int ret;
406 void *page_addr = page_address(page);
407
408 memset(page_addr, 0, atomic_pool_size);
409 __dma_flush_area(page_addr, atomic_pool_size);
410
411 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
412 if (!atomic_pool)
413 goto free_page;
414
415 addr = dma_common_contiguous_remap(page, atomic_pool_size,
416 VM_USERMAP, prot, atomic_pool_init);
417
418 if (!addr)
419 goto destroy_genpool;
420
421 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
422 page_to_phys(page),
423 atomic_pool_size, -1);
424 if (ret)
425 goto remove_mapping;
426
427 gen_pool_set_algo(atomic_pool,
428 gen_pool_first_fit_order_align,
429 NULL);
430
431 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
432 atomic_pool_size / 1024);
433 return 0;
434 }
435 goto out;
436
437remove_mapping:
438 dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
439destroy_genpool:
440 gen_pool_destroy(atomic_pool);
441 atomic_pool = NULL;
442free_page:
443 if (!dma_release_from_contiguous(NULL, page, nr_pages))
444 __free_pages(page, pool_size_order);
445out:
446 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
447 atomic_pool_size / 1024);
448 return -ENOMEM;
449}
450
451/********************************************
452 * The following APIs are for dummy DMA ops *
453 ********************************************/
454
455static void *__dummy_alloc(struct device *dev, size_t size,
456 dma_addr_t *dma_handle, gfp_t flags,
457 unsigned long attrs)
458{
459 return NULL;
460}
461
462static void __dummy_free(struct device *dev, size_t size,
463 void *vaddr, dma_addr_t dma_handle,
464 unsigned long attrs)
465{
466}
467
468static int __dummy_mmap(struct device *dev,
469 struct vm_area_struct *vma,
470 void *cpu_addr, dma_addr_t dma_addr, size_t size,
471 unsigned long attrs)
472{
473 return -ENXIO;
474}
475
476static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
477 unsigned long offset, size_t size,
478 enum dma_data_direction dir,
479 unsigned long attrs)
480{
481 return 0;
482}
483
484static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
485 size_t size, enum dma_data_direction dir,
486 unsigned long attrs)
487{
488}
489
490static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
491 int nelems, enum dma_data_direction dir,
492 unsigned long attrs)
493{
494 return 0;
495}
496
497static void __dummy_unmap_sg(struct device *dev,
498 struct scatterlist *sgl, int nelems,
499 enum dma_data_direction dir,
500 unsigned long attrs)
501{
502}
503
504static void __dummy_sync_single(struct device *dev,
505 dma_addr_t dev_addr, size_t size,
506 enum dma_data_direction dir)
507{
508}
509
510static void __dummy_sync_sg(struct device *dev,
511 struct scatterlist *sgl, int nelems,
512 enum dma_data_direction dir)
513{
514}
515
516static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
517{
518 return 1;
519}
520
521static int __dummy_dma_supported(struct device *hwdev, u64 mask)
522{
523 return 0;
524}
525
526const struct dma_map_ops dummy_dma_ops = {
527 .alloc = __dummy_alloc,
528 .free = __dummy_free,
529 .mmap = __dummy_mmap,
530 .map_page = __dummy_map_page,
531 .unmap_page = __dummy_unmap_page,
532 .map_sg = __dummy_map_sg,
533 .unmap_sg = __dummy_unmap_sg,
534 .sync_single_for_cpu = __dummy_sync_single,
535 .sync_single_for_device = __dummy_sync_single,
536 .sync_sg_for_cpu = __dummy_sync_sg,
537 .sync_sg_for_device = __dummy_sync_sg,
538 .mapping_error = __dummy_mapping_error,
539 .dma_supported = __dummy_dma_supported,
540};
541EXPORT_SYMBOL(dummy_dma_ops);
542
543static int __init arm64_dma_init(void)
544{
545 if (swiotlb_force == SWIOTLB_FORCE ||
546 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
547 swiotlb = 1;
548
549 return atomic_pool_init();
550}
551arch_initcall(arm64_dma_init);
552
553#define PREALLOC_DMA_DEBUG_ENTRIES 4096
554
555static int __init dma_debug_do_init(void)
556{
557 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
558 return 0;
559}
560fs_initcall(dma_debug_do_init);
561
562
563#ifdef CONFIG_IOMMU_DMA
564#include <linux/dma-iommu.h>
565#include <linux/platform_device.h>
566#include <linux/amba/bus.h>
567
568/* Thankfully, all cache ops are by VA so we can ignore phys here */
569static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
570{
571 __dma_flush_area(virt, PAGE_SIZE);
572}
573
574static void *__iommu_alloc_attrs(struct device *dev, size_t size,
575 dma_addr_t *handle, gfp_t gfp,
576 unsigned long attrs)
577{
578 bool coherent = is_device_dma_coherent(dev);
579 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
580 size_t iosize = size;
581 void *addr;
582
583 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
584 return NULL;
585
586 size = PAGE_ALIGN(size);
587
588 /*
589 * Some drivers rely on this, and we probably don't want the
590 * possibility of stale kernel data being read by devices anyway.
591 */
592 gfp |= __GFP_ZERO;
593
594 if (!gfpflags_allow_blocking(gfp)) {
595 struct page *page;
596 /*
597 * In atomic context we can't remap anything, so we'll only
598 * get the virtually contiguous buffer we need by way of a
599 * physically contiguous allocation.
600 */
601 if (coherent) {
602 page = alloc_pages(gfp, get_order(size));
603 addr = page ? page_address(page) : NULL;
604 } else {
605 addr = __alloc_from_pool(size, &page, gfp);
606 }
607 if (!addr)
608 return NULL;
609
610 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
611 if (iommu_dma_mapping_error(dev, *handle)) {
612 if (coherent)
613 __free_pages(page, get_order(size));
614 else
615 __free_from_pool(addr, size);
616 addr = NULL;
617 }
618 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
619 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
620 struct page *page;
621
622 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
623 get_order(size), gfp);
624 if (!page)
625 return NULL;
626
627 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
628 if (iommu_dma_mapping_error(dev, *handle)) {
629 dma_release_from_contiguous(dev, page,
630 size >> PAGE_SHIFT);
631 return NULL;
632 }
633 addr = dma_common_contiguous_remap(page, size, VM_USERMAP,
634 prot,
635 __builtin_return_address(0));
636 if (addr) {
637 if (!coherent)
638 __dma_flush_area(page_to_virt(page), iosize);
639 memset(addr, 0, size);
640 } else {
641 iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs);
642 dma_release_from_contiguous(dev, page,
643 size >> PAGE_SHIFT);
644 }
645 } else {
646 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
647 struct page **pages;
648
649 pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
650 handle, flush_page);
651 if (!pages)
652 return NULL;
653
654 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
655 __builtin_return_address(0));
656 if (!addr)
657 iommu_dma_free(dev, pages, iosize, handle);
658 }
659 return addr;
660}
661
662static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
663 dma_addr_t handle, unsigned long attrs)
664{
665 size_t iosize = size;
666
667 size = PAGE_ALIGN(size);
668 /*
669 * @cpu_addr will be one of 4 things depending on how it was allocated:
670 * - A remapped array of pages for contiguous allocations.
671 * - A remapped array of pages from iommu_dma_alloc(), for all
672 * non-atomic allocations.
673 * - A non-cacheable alias from the atomic pool, for atomic
674 * allocations by non-coherent devices.
675 * - A normal lowmem address, for atomic allocations by
676 * coherent devices.
677 * Hence how dodgy the below logic looks...
678 */
679 if (__in_atomic_pool(cpu_addr, size)) {
680 iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
681 __free_from_pool(cpu_addr, size);
682 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
683 struct page *page = vmalloc_to_page(cpu_addr);
684
685 iommu_dma_unmap_page(dev, handle, iosize, 0, attrs);
686 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
687 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
688 } else if (is_vmalloc_addr(cpu_addr)){
689 struct vm_struct *area = find_vm_area(cpu_addr);
690
691 if (WARN_ON(!area || !area->pages))
692 return;
693 iommu_dma_free(dev, area->pages, iosize, &handle);
694 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
695 } else {
696 iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
697 __free_pages(virt_to_page(cpu_addr), get_order(size));
698 }
699}
700
701static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
702 void *cpu_addr, dma_addr_t dma_addr, size_t size,
703 unsigned long attrs)
704{
705 struct vm_struct *area;
706 int ret;
707
708 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
709 is_device_dma_coherent(dev));
710
711 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
712 return ret;
713
714 if (!is_vmalloc_addr(cpu_addr)) {
715 unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
716 return __swiotlb_mmap_pfn(vma, pfn, size);
717 }
718
719 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
720 /*
721 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
722 * hence in the vmalloc space.
723 */
724 unsigned long pfn = vmalloc_to_pfn(cpu_addr);
725 return __swiotlb_mmap_pfn(vma, pfn, size);
726 }
727
728 area = find_vm_area(cpu_addr);
729 if (WARN_ON(!area || !area->pages))
730 return -ENXIO;
731
732 return iommu_dma_mmap(area->pages, size, vma);
733}
734
735static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
736 void *cpu_addr, dma_addr_t dma_addr,
737 size_t size, unsigned long attrs)
738{
739 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
740 struct vm_struct *area = find_vm_area(cpu_addr);
741
742 if (!is_vmalloc_addr(cpu_addr)) {
743 struct page *page = virt_to_page(cpu_addr);
744 return __swiotlb_get_sgtable_page(sgt, page, size);
745 }
746
747 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
748 /*
749 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
750 * hence in the vmalloc space.
751 */
752 struct page *page = vmalloc_to_page(cpu_addr);
753 return __swiotlb_get_sgtable_page(sgt, page, size);
754 }
755
756 if (WARN_ON(!area || !area->pages))
757 return -ENXIO;
758
759 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
760 GFP_KERNEL);
761}
762
763static void __iommu_sync_single_for_cpu(struct device *dev,
764 dma_addr_t dev_addr, size_t size,
765 enum dma_data_direction dir)
766{
767 phys_addr_t phys;
768
769 if (is_device_dma_coherent(dev))
770 return;
771
772 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
773 __dma_unmap_area(phys_to_virt(phys), size, dir);
774}
775
776static void __iommu_sync_single_for_device(struct device *dev,
777 dma_addr_t dev_addr, size_t size,
778 enum dma_data_direction dir)
779{
780 phys_addr_t phys;
781
782 if (is_device_dma_coherent(dev))
783 return;
784
785 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
786 __dma_map_area(phys_to_virt(phys), size, dir);
787}
788
789static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
790 unsigned long offset, size_t size,
791 enum dma_data_direction dir,
792 unsigned long attrs)
793{
794 bool coherent = is_device_dma_coherent(dev);
795 int prot = dma_info_to_prot(dir, coherent, attrs);
796 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
797
798 if (!iommu_dma_mapping_error(dev, dev_addr) &&
799 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
800 __iommu_sync_single_for_device(dev, dev_addr, size, dir);
801
802 return dev_addr;
803}
804
805static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
806 size_t size, enum dma_data_direction dir,
807 unsigned long attrs)
808{
809 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
810 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
811
812 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
813}
814
815static void __iommu_sync_sg_for_cpu(struct device *dev,
816 struct scatterlist *sgl, int nelems,
817 enum dma_data_direction dir)
818{
819 struct scatterlist *sg;
820 int i;
821
822 if (is_device_dma_coherent(dev))
823 return;
824
825 for_each_sg(sgl, sg, nelems, i)
826 __dma_unmap_area(sg_virt(sg), sg->length, dir);
827}
828
829static void __iommu_sync_sg_for_device(struct device *dev,
830 struct scatterlist *sgl, int nelems,
831 enum dma_data_direction dir)
832{
833 struct scatterlist *sg;
834 int i;
835
836 if (is_device_dma_coherent(dev))
837 return;
838
839 for_each_sg(sgl, sg, nelems, i)
840 __dma_map_area(sg_virt(sg), sg->length, dir);
841}
842
843static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
844 int nelems, enum dma_data_direction dir,
845 unsigned long attrs)
846{
847 bool coherent = is_device_dma_coherent(dev);
848
849 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
850 __iommu_sync_sg_for_device(dev, sgl, nelems, dir);
851
852 return iommu_dma_map_sg(dev, sgl, nelems,
853 dma_info_to_prot(dir, coherent, attrs));
854}
855
856static void __iommu_unmap_sg_attrs(struct device *dev,
857 struct scatterlist *sgl, int nelems,
858 enum dma_data_direction dir,
859 unsigned long attrs)
860{
861 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
862 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
863
864 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
865}
866
867static const struct dma_map_ops iommu_dma_ops = {
868 .alloc = __iommu_alloc_attrs,
869 .free = __iommu_free_attrs,
870 .mmap = __iommu_mmap_attrs,
871 .get_sgtable = __iommu_get_sgtable,
872 .map_page = __iommu_map_page,
873 .unmap_page = __iommu_unmap_page,
874 .map_sg = __iommu_map_sg_attrs,
875 .unmap_sg = __iommu_unmap_sg_attrs,
876 .sync_single_for_cpu = __iommu_sync_single_for_cpu,
877 .sync_single_for_device = __iommu_sync_single_for_device,
878 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
879 .sync_sg_for_device = __iommu_sync_sg_for_device,
880 .map_resource = iommu_dma_map_resource,
881 .unmap_resource = iommu_dma_unmap_resource,
882 .mapping_error = iommu_dma_mapping_error,
883};
884
885static int __init __iommu_dma_init(void)
886{
887 return iommu_dma_init();
888}
889arch_initcall(__iommu_dma_init);
890
891static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
892 const struct iommu_ops *ops)
893{
894 struct iommu_domain *domain;
895
896 if (!ops)
897 return;
898
899 /*
900 * The IOMMU core code allocates the default DMA domain, which the
901 * underlying IOMMU driver needs to support via the dma-iommu layer.
902 */
903 domain = iommu_get_domain_for_dev(dev);
904
905 if (!domain)
906 goto out_err;
907
908 if (domain->type == IOMMU_DOMAIN_DMA) {
909 if (iommu_dma_init_domain(domain, dma_base, size, dev))
910 goto out_err;
911
912 dev->dma_ops = &iommu_dma_ops;
913 }
914
915 return;
916
917out_err:
918 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
919 dev_name(dev));
920}
921
922void arch_teardown_dma_ops(struct device *dev)
923{
924 dev->dma_ops = NULL;
925}
926
927/*
928 * let user pass the parameters including
929 * 1. iommu device
930 * 2. the desired dma_addr from reserved range
931 * (the iova start address is managed by user)
932 * 3. the iova buffer size
933 * 4. gfp flag
934 * return the va of caller space
935 */
936void *dma_alloc_coherent_fix_iova(struct device *dev, dma_addr_t dma_addr,
937 size_t size, gfp_t flag)
938{
939 /* User pass the desired dma start address and size from the
940 * reserved iova range. Then it maps the va and pa into a
941 * scaterlist, uses the iova and scatterlist to complete the
942 * iommu pagetable, finally it returns the va to caller.
943 */
944 unsigned long attrs = DMA_ATTR_ALLOC_SINGLE_PAGES;
945 bool coherent = is_device_dma_coherent(dev);
946 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
947 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
948 struct page **pages;
949 size_t iosize = size;
950 void *addr = NULL;
951
952 pages = iommu_dma_alloc_fix_iova(dev, iosize, flag, attrs, ioprot,
953 dma_addr, flush_page);
954 if (!pages)
955 return NULL;
956
957 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
958 __builtin_return_address(0));
959 if (!addr)
960 iommu_dma_free_from_reserved_range(dev, pages, iosize,
961 &dma_addr);
962 return addr;
963}
964EXPORT_SYMBOL(dma_alloc_coherent_fix_iova);
965
966void dma_free_coherent_fix_iova(struct device *dev, void *cpu_addr,
967 dma_addr_t dma_addr, size_t size)
968{
969 struct vm_struct *area = find_vm_area(cpu_addr);
970 size_t iosize = size;
971
972 size = PAGE_ALIGN(size);
973
974 if (WARN_ON(!area || !area->pages))
975 return;
976 iommu_dma_free_from_reserved_range(dev, area->pages, iosize, &dma_addr);
977 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
978}
979EXPORT_SYMBOL(dma_free_coherent_fix_iova);
980
981#else
982
983static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
984 const struct iommu_ops *iommu)
985{ }
986
987#endif /* CONFIG_IOMMU_DMA */
988
989void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
990 const struct iommu_ops *iommu, bool coherent)
991{
992 if (!dev->dma_ops)
993 dev->dma_ops = &swiotlb_dma_ops;
994
995 dev->archdata.dma_coherent = coherent;
996 __iommu_setup_dma_ops(dev, dma_base, size, iommu);
997
998#ifdef CONFIG_XEN
999 if (xen_initial_domain()) {
1000 dev->archdata.dev_dma_ops = dev->dma_ops;
1001 dev->dma_ops = xen_dma_ops;
1002 }
1003#endif
1004}