rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation, version 2. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| 11 | * NON INFRINGEMENT. See the GNU General Public License for |
| 12 | * more details. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/mm.h> |
| 16 | #include <linux/dma-mapping.h> |
| 17 | #include <linux/swiotlb.h> |
| 18 | #include <linux/vmalloc.h> |
| 19 | #include <linux/export.h> |
| 20 | #include <asm/tlbflush.h> |
| 21 | #include <asm/homecache.h> |
| 22 | |
| 23 | /* Generic DMA mapping functions: */ |
| 24 | |
| 25 | /* |
| 26 | * Allocate what Linux calls "coherent" memory. On TILEPro this is |
| 27 | * uncached memory; on TILE-Gx it is hash-for-home memory. |
| 28 | */ |
| 29 | #ifdef __tilepro__ |
| 30 | #define PAGE_HOME_DMA PAGE_HOME_UNCACHED |
| 31 | #else |
| 32 | #define PAGE_HOME_DMA PAGE_HOME_HASH |
| 33 | #endif |
| 34 | |
| 35 | static void *tile_dma_alloc_coherent(struct device *dev, size_t size, |
| 36 | dma_addr_t *dma_handle, gfp_t gfp, |
| 37 | unsigned long attrs) |
| 38 | { |
| 39 | u64 dma_mask = (dev && dev->coherent_dma_mask) ? |
| 40 | dev->coherent_dma_mask : DMA_BIT_MASK(32); |
| 41 | int node = dev ? dev_to_node(dev) : 0; |
| 42 | int order = get_order(size); |
| 43 | struct page *pg; |
| 44 | dma_addr_t addr; |
| 45 | |
| 46 | gfp |= __GFP_ZERO; |
| 47 | |
| 48 | /* |
| 49 | * If the mask specifies that the memory be in the first 4 GB, then |
| 50 | * we force the allocation to come from the DMA zone. We also |
| 51 | * force the node to 0 since that's the only node where the DMA |
| 52 | * zone isn't empty. If the mask size is smaller than 32 bits, we |
| 53 | * may still not be able to guarantee a suitable memory address, in |
| 54 | * which case we will return NULL. But such devices are uncommon. |
| 55 | */ |
| 56 | if (dma_mask <= DMA_BIT_MASK(32)) { |
| 57 | gfp |= GFP_DMA; |
| 58 | node = 0; |
| 59 | } |
| 60 | |
| 61 | pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA); |
| 62 | if (pg == NULL) |
| 63 | return NULL; |
| 64 | |
| 65 | addr = page_to_phys(pg); |
| 66 | if (addr + size > dma_mask) { |
| 67 | __homecache_free_pages(pg, order); |
| 68 | return NULL; |
| 69 | } |
| 70 | |
| 71 | *dma_handle = addr; |
| 72 | |
| 73 | return page_address(pg); |
| 74 | } |
| 75 | |
| 76 | /* |
| 77 | * Free memory that was allocated with tile_dma_alloc_coherent. |
| 78 | */ |
| 79 | static void tile_dma_free_coherent(struct device *dev, size_t size, |
| 80 | void *vaddr, dma_addr_t dma_handle, |
| 81 | unsigned long attrs) |
| 82 | { |
| 83 | homecache_free_pages((unsigned long)vaddr, get_order(size)); |
| 84 | } |
| 85 | |
| 86 | /* |
| 87 | * The map routines "map" the specified address range for DMA |
| 88 | * accesses. The memory belongs to the device after this call is |
| 89 | * issued, until it is unmapped with dma_unmap_single. |
| 90 | * |
| 91 | * We don't need to do any mapping, we just flush the address range |
| 92 | * out of the cache and return a DMA address. |
| 93 | * |
| 94 | * The unmap routines do whatever is necessary before the processor |
| 95 | * accesses the memory again, and must be called before the driver |
| 96 | * touches the memory. We can get away with a cache invalidate if we |
| 97 | * can count on nothing having been touched. |
| 98 | */ |
| 99 | |
| 100 | /* Set up a single page for DMA access. */ |
| 101 | static void __dma_prep_page(struct page *page, unsigned long offset, |
| 102 | size_t size, enum dma_data_direction direction) |
| 103 | { |
| 104 | /* |
| 105 | * Flush the page from cache if necessary. |
| 106 | * On tilegx, data is delivered to hash-for-home L3; on tilepro, |
| 107 | * data is delivered direct to memory. |
| 108 | * |
| 109 | * NOTE: If we were just doing DMA_TO_DEVICE we could optimize |
| 110 | * this to be a "flush" not a "finv" and keep some of the |
| 111 | * state in cache across the DMA operation, but it doesn't seem |
| 112 | * worth creating the necessary flush_buffer_xxx() infrastructure. |
| 113 | */ |
| 114 | int home = page_home(page); |
| 115 | switch (home) { |
| 116 | case PAGE_HOME_HASH: |
| 117 | #ifdef __tilegx__ |
| 118 | return; |
| 119 | #endif |
| 120 | break; |
| 121 | case PAGE_HOME_UNCACHED: |
| 122 | #ifdef __tilepro__ |
| 123 | return; |
| 124 | #endif |
| 125 | break; |
| 126 | case PAGE_HOME_IMMUTABLE: |
| 127 | /* Should be going to the device only. */ |
| 128 | BUG_ON(direction == DMA_FROM_DEVICE || |
| 129 | direction == DMA_BIDIRECTIONAL); |
| 130 | return; |
| 131 | case PAGE_HOME_INCOHERENT: |
| 132 | /* Incoherent anyway, so no need to work hard here. */ |
| 133 | return; |
| 134 | default: |
| 135 | BUG_ON(home < 0 || home >= NR_CPUS); |
| 136 | break; |
| 137 | } |
| 138 | homecache_finv_page(page); |
| 139 | |
| 140 | #ifdef DEBUG_ALIGNMENT |
| 141 | /* Warn if the region isn't cacheline aligned. */ |
| 142 | if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1))) |
| 143 | pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n", |
| 144 | PFN_PHYS(page_to_pfn(page)) + offset, size); |
| 145 | #endif |
| 146 | } |
| 147 | |
| 148 | /* Make the page ready to be read by the core. */ |
| 149 | static void __dma_complete_page(struct page *page, unsigned long offset, |
| 150 | size_t size, enum dma_data_direction direction) |
| 151 | { |
| 152 | #ifdef __tilegx__ |
| 153 | switch (page_home(page)) { |
| 154 | case PAGE_HOME_HASH: |
| 155 | /* I/O device delivered data the way the cpu wanted it. */ |
| 156 | break; |
| 157 | case PAGE_HOME_INCOHERENT: |
| 158 | /* Incoherent anyway, so no need to work hard here. */ |
| 159 | break; |
| 160 | case PAGE_HOME_IMMUTABLE: |
| 161 | /* Extra read-only copies are not a problem. */ |
| 162 | break; |
| 163 | default: |
| 164 | /* Flush the bogus hash-for-home I/O entries to memory. */ |
| 165 | homecache_finv_map_page(page, PAGE_HOME_HASH); |
| 166 | break; |
| 167 | } |
| 168 | #endif |
| 169 | } |
| 170 | |
| 171 | static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size, |
| 172 | enum dma_data_direction direction) |
| 173 | { |
| 174 | struct page *page = pfn_to_page(PFN_DOWN(dma_addr)); |
| 175 | unsigned long offset = dma_addr & (PAGE_SIZE - 1); |
| 176 | size_t bytes = min(size, (size_t)(PAGE_SIZE - offset)); |
| 177 | |
| 178 | while (size != 0) { |
| 179 | __dma_prep_page(page, offset, bytes, direction); |
| 180 | size -= bytes; |
| 181 | ++page; |
| 182 | offset = 0; |
| 183 | bytes = min((size_t)PAGE_SIZE, size); |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size, |
| 188 | enum dma_data_direction direction) |
| 189 | { |
| 190 | struct page *page = pfn_to_page(PFN_DOWN(dma_addr)); |
| 191 | unsigned long offset = dma_addr & (PAGE_SIZE - 1); |
| 192 | size_t bytes = min(size, (size_t)(PAGE_SIZE - offset)); |
| 193 | |
| 194 | while (size != 0) { |
| 195 | __dma_complete_page(page, offset, bytes, direction); |
| 196 | size -= bytes; |
| 197 | ++page; |
| 198 | offset = 0; |
| 199 | bytes = min((size_t)PAGE_SIZE, size); |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist, |
| 204 | int nents, enum dma_data_direction direction, |
| 205 | unsigned long attrs) |
| 206 | { |
| 207 | struct scatterlist *sg; |
| 208 | int i; |
| 209 | |
| 210 | BUG_ON(!valid_dma_direction(direction)); |
| 211 | |
| 212 | WARN_ON(nents == 0 || sglist->length == 0); |
| 213 | |
| 214 | for_each_sg(sglist, sg, nents, i) { |
| 215 | sg->dma_address = sg_phys(sg); |
| 216 | #ifdef CONFIG_NEED_SG_DMA_LENGTH |
| 217 | sg->dma_length = sg->length; |
| 218 | #endif |
| 219 | if (attrs & DMA_ATTR_SKIP_CPU_SYNC) |
| 220 | continue; |
| 221 | __dma_prep_pa_range(sg->dma_address, sg->length, direction); |
| 222 | } |
| 223 | |
| 224 | return nents; |
| 225 | } |
| 226 | |
| 227 | static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, |
| 228 | int nents, enum dma_data_direction direction, |
| 229 | unsigned long attrs) |
| 230 | { |
| 231 | struct scatterlist *sg; |
| 232 | int i; |
| 233 | |
| 234 | BUG_ON(!valid_dma_direction(direction)); |
| 235 | for_each_sg(sglist, sg, nents, i) { |
| 236 | sg->dma_address = sg_phys(sg); |
| 237 | if (attrs & DMA_ATTR_SKIP_CPU_SYNC) |
| 238 | continue; |
| 239 | __dma_complete_pa_range(sg->dma_address, sg->length, |
| 240 | direction); |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page, |
| 245 | unsigned long offset, size_t size, |
| 246 | enum dma_data_direction direction, |
| 247 | unsigned long attrs) |
| 248 | { |
| 249 | BUG_ON(!valid_dma_direction(direction)); |
| 250 | |
| 251 | BUG_ON(offset + size > PAGE_SIZE); |
| 252 | if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| 253 | __dma_prep_page(page, offset, size, direction); |
| 254 | |
| 255 | return page_to_pa(page) + offset; |
| 256 | } |
| 257 | |
| 258 | static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address, |
| 259 | size_t size, enum dma_data_direction direction, |
| 260 | unsigned long attrs) |
| 261 | { |
| 262 | BUG_ON(!valid_dma_direction(direction)); |
| 263 | |
| 264 | if (attrs & DMA_ATTR_SKIP_CPU_SYNC) |
| 265 | return; |
| 266 | |
| 267 | __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)), |
| 268 | dma_address & (PAGE_SIZE - 1), size, direction); |
| 269 | } |
| 270 | |
| 271 | static void tile_dma_sync_single_for_cpu(struct device *dev, |
| 272 | dma_addr_t dma_handle, |
| 273 | size_t size, |
| 274 | enum dma_data_direction direction) |
| 275 | { |
| 276 | BUG_ON(!valid_dma_direction(direction)); |
| 277 | |
| 278 | __dma_complete_pa_range(dma_handle, size, direction); |
| 279 | } |
| 280 | |
| 281 | static void tile_dma_sync_single_for_device(struct device *dev, |
| 282 | dma_addr_t dma_handle, size_t size, |
| 283 | enum dma_data_direction direction) |
| 284 | { |
| 285 | __dma_prep_pa_range(dma_handle, size, direction); |
| 286 | } |
| 287 | |
| 288 | static void tile_dma_sync_sg_for_cpu(struct device *dev, |
| 289 | struct scatterlist *sglist, int nelems, |
| 290 | enum dma_data_direction direction) |
| 291 | { |
| 292 | struct scatterlist *sg; |
| 293 | int i; |
| 294 | |
| 295 | BUG_ON(!valid_dma_direction(direction)); |
| 296 | WARN_ON(nelems == 0 || sglist->length == 0); |
| 297 | |
| 298 | for_each_sg(sglist, sg, nelems, i) { |
| 299 | dma_sync_single_for_cpu(dev, sg->dma_address, |
| 300 | sg_dma_len(sg), direction); |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | static void tile_dma_sync_sg_for_device(struct device *dev, |
| 305 | struct scatterlist *sglist, int nelems, |
| 306 | enum dma_data_direction direction) |
| 307 | { |
| 308 | struct scatterlist *sg; |
| 309 | int i; |
| 310 | |
| 311 | BUG_ON(!valid_dma_direction(direction)); |
| 312 | WARN_ON(nelems == 0 || sglist->length == 0); |
| 313 | |
| 314 | for_each_sg(sglist, sg, nelems, i) { |
| 315 | dma_sync_single_for_device(dev, sg->dma_address, |
| 316 | sg_dma_len(sg), direction); |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | static const struct dma_map_ops tile_default_dma_map_ops = { |
| 321 | .alloc = tile_dma_alloc_coherent, |
| 322 | .free = tile_dma_free_coherent, |
| 323 | .map_page = tile_dma_map_page, |
| 324 | .unmap_page = tile_dma_unmap_page, |
| 325 | .map_sg = tile_dma_map_sg, |
| 326 | .unmap_sg = tile_dma_unmap_sg, |
| 327 | .sync_single_for_cpu = tile_dma_sync_single_for_cpu, |
| 328 | .sync_single_for_device = tile_dma_sync_single_for_device, |
| 329 | .sync_sg_for_cpu = tile_dma_sync_sg_for_cpu, |
| 330 | .sync_sg_for_device = tile_dma_sync_sg_for_device, |
| 331 | }; |
| 332 | |
| 333 | const struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops; |
| 334 | EXPORT_SYMBOL(tile_dma_map_ops); |
| 335 | |
| 336 | /* Generic PCI DMA mapping functions */ |
| 337 | |
| 338 | static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size, |
| 339 | dma_addr_t *dma_handle, gfp_t gfp, |
| 340 | unsigned long attrs) |
| 341 | { |
| 342 | int node = dev_to_node(dev); |
| 343 | int order = get_order(size); |
| 344 | struct page *pg; |
| 345 | dma_addr_t addr; |
| 346 | |
| 347 | gfp |= __GFP_ZERO; |
| 348 | |
| 349 | pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA); |
| 350 | if (pg == NULL) |
| 351 | return NULL; |
| 352 | |
| 353 | addr = page_to_phys(pg); |
| 354 | |
| 355 | *dma_handle = addr + get_dma_offset(dev); |
| 356 | |
| 357 | return page_address(pg); |
| 358 | } |
| 359 | |
| 360 | /* |
| 361 | * Free memory that was allocated with tile_pci_dma_alloc_coherent. |
| 362 | */ |
| 363 | static void tile_pci_dma_free_coherent(struct device *dev, size_t size, |
| 364 | void *vaddr, dma_addr_t dma_handle, |
| 365 | unsigned long attrs) |
| 366 | { |
| 367 | homecache_free_pages((unsigned long)vaddr, get_order(size)); |
| 368 | } |
| 369 | |
| 370 | static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist, |
| 371 | int nents, enum dma_data_direction direction, |
| 372 | unsigned long attrs) |
| 373 | { |
| 374 | struct scatterlist *sg; |
| 375 | int i; |
| 376 | |
| 377 | BUG_ON(!valid_dma_direction(direction)); |
| 378 | |
| 379 | WARN_ON(nents == 0 || sglist->length == 0); |
| 380 | |
| 381 | for_each_sg(sglist, sg, nents, i) { |
| 382 | sg->dma_address = sg_phys(sg); |
| 383 | __dma_prep_pa_range(sg->dma_address, sg->length, direction); |
| 384 | |
| 385 | sg->dma_address = sg->dma_address + get_dma_offset(dev); |
| 386 | #ifdef CONFIG_NEED_SG_DMA_LENGTH |
| 387 | sg->dma_length = sg->length; |
| 388 | #endif |
| 389 | } |
| 390 | |
| 391 | return nents; |
| 392 | } |
| 393 | |
| 394 | static void tile_pci_dma_unmap_sg(struct device *dev, |
| 395 | struct scatterlist *sglist, int nents, |
| 396 | enum dma_data_direction direction, |
| 397 | unsigned long attrs) |
| 398 | { |
| 399 | struct scatterlist *sg; |
| 400 | int i; |
| 401 | |
| 402 | BUG_ON(!valid_dma_direction(direction)); |
| 403 | for_each_sg(sglist, sg, nents, i) { |
| 404 | sg->dma_address = sg_phys(sg); |
| 405 | __dma_complete_pa_range(sg->dma_address, sg->length, |
| 406 | direction); |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page, |
| 411 | unsigned long offset, size_t size, |
| 412 | enum dma_data_direction direction, |
| 413 | unsigned long attrs) |
| 414 | { |
| 415 | BUG_ON(!valid_dma_direction(direction)); |
| 416 | |
| 417 | BUG_ON(offset + size > PAGE_SIZE); |
| 418 | __dma_prep_page(page, offset, size, direction); |
| 419 | |
| 420 | return page_to_pa(page) + offset + get_dma_offset(dev); |
| 421 | } |
| 422 | |
| 423 | static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address, |
| 424 | size_t size, |
| 425 | enum dma_data_direction direction, |
| 426 | unsigned long attrs) |
| 427 | { |
| 428 | BUG_ON(!valid_dma_direction(direction)); |
| 429 | |
| 430 | dma_address -= get_dma_offset(dev); |
| 431 | |
| 432 | __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)), |
| 433 | dma_address & (PAGE_SIZE - 1), size, direction); |
| 434 | } |
| 435 | |
| 436 | static void tile_pci_dma_sync_single_for_cpu(struct device *dev, |
| 437 | dma_addr_t dma_handle, |
| 438 | size_t size, |
| 439 | enum dma_data_direction direction) |
| 440 | { |
| 441 | BUG_ON(!valid_dma_direction(direction)); |
| 442 | |
| 443 | dma_handle -= get_dma_offset(dev); |
| 444 | |
| 445 | __dma_complete_pa_range(dma_handle, size, direction); |
| 446 | } |
| 447 | |
| 448 | static void tile_pci_dma_sync_single_for_device(struct device *dev, |
| 449 | dma_addr_t dma_handle, |
| 450 | size_t size, |
| 451 | enum dma_data_direction |
| 452 | direction) |
| 453 | { |
| 454 | dma_handle -= get_dma_offset(dev); |
| 455 | |
| 456 | __dma_prep_pa_range(dma_handle, size, direction); |
| 457 | } |
| 458 | |
| 459 | static void tile_pci_dma_sync_sg_for_cpu(struct device *dev, |
| 460 | struct scatterlist *sglist, |
| 461 | int nelems, |
| 462 | enum dma_data_direction direction) |
| 463 | { |
| 464 | struct scatterlist *sg; |
| 465 | int i; |
| 466 | |
| 467 | BUG_ON(!valid_dma_direction(direction)); |
| 468 | WARN_ON(nelems == 0 || sglist->length == 0); |
| 469 | |
| 470 | for_each_sg(sglist, sg, nelems, i) { |
| 471 | dma_sync_single_for_cpu(dev, sg->dma_address, |
| 472 | sg_dma_len(sg), direction); |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | static void tile_pci_dma_sync_sg_for_device(struct device *dev, |
| 477 | struct scatterlist *sglist, |
| 478 | int nelems, |
| 479 | enum dma_data_direction direction) |
| 480 | { |
| 481 | struct scatterlist *sg; |
| 482 | int i; |
| 483 | |
| 484 | BUG_ON(!valid_dma_direction(direction)); |
| 485 | WARN_ON(nelems == 0 || sglist->length == 0); |
| 486 | |
| 487 | for_each_sg(sglist, sg, nelems, i) { |
| 488 | dma_sync_single_for_device(dev, sg->dma_address, |
| 489 | sg_dma_len(sg), direction); |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | static const struct dma_map_ops tile_pci_default_dma_map_ops = { |
| 494 | .alloc = tile_pci_dma_alloc_coherent, |
| 495 | .free = tile_pci_dma_free_coherent, |
| 496 | .map_page = tile_pci_dma_map_page, |
| 497 | .unmap_page = tile_pci_dma_unmap_page, |
| 498 | .map_sg = tile_pci_dma_map_sg, |
| 499 | .unmap_sg = tile_pci_dma_unmap_sg, |
| 500 | .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu, |
| 501 | .sync_single_for_device = tile_pci_dma_sync_single_for_device, |
| 502 | .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu, |
| 503 | .sync_sg_for_device = tile_pci_dma_sync_sg_for_device, |
| 504 | }; |
| 505 | |
| 506 | const struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops; |
| 507 | EXPORT_SYMBOL(gx_pci_dma_map_ops); |
| 508 | |
| 509 | /* PCI DMA mapping functions for legacy PCI devices */ |
| 510 | |
| 511 | #ifdef CONFIG_SWIOTLB |
| 512 | static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size, |
| 513 | dma_addr_t *dma_handle, gfp_t gfp, |
| 514 | unsigned long attrs) |
| 515 | { |
| 516 | gfp |= GFP_DMA; |
| 517 | return swiotlb_alloc_coherent(dev, size, dma_handle, gfp); |
| 518 | } |
| 519 | |
| 520 | static void tile_swiotlb_free_coherent(struct device *dev, size_t size, |
| 521 | void *vaddr, dma_addr_t dma_addr, |
| 522 | unsigned long attrs) |
| 523 | { |
| 524 | swiotlb_free_coherent(dev, size, vaddr, dma_addr); |
| 525 | } |
| 526 | |
| 527 | static const struct dma_map_ops pci_swiotlb_dma_ops = { |
| 528 | .alloc = tile_swiotlb_alloc_coherent, |
| 529 | .free = tile_swiotlb_free_coherent, |
| 530 | .map_page = swiotlb_map_page, |
| 531 | .unmap_page = swiotlb_unmap_page, |
| 532 | .map_sg = swiotlb_map_sg_attrs, |
| 533 | .unmap_sg = swiotlb_unmap_sg_attrs, |
| 534 | .sync_single_for_cpu = swiotlb_sync_single_for_cpu, |
| 535 | .sync_single_for_device = swiotlb_sync_single_for_device, |
| 536 | .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu, |
| 537 | .sync_sg_for_device = swiotlb_sync_sg_for_device, |
| 538 | .dma_supported = swiotlb_dma_supported, |
| 539 | .mapping_error = swiotlb_dma_mapping_error, |
| 540 | }; |
| 541 | |
| 542 | static const struct dma_map_ops pci_hybrid_dma_ops = { |
| 543 | .alloc = tile_swiotlb_alloc_coherent, |
| 544 | .free = tile_swiotlb_free_coherent, |
| 545 | .map_page = tile_pci_dma_map_page, |
| 546 | .unmap_page = tile_pci_dma_unmap_page, |
| 547 | .map_sg = tile_pci_dma_map_sg, |
| 548 | .unmap_sg = tile_pci_dma_unmap_sg, |
| 549 | .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu, |
| 550 | .sync_single_for_device = tile_pci_dma_sync_single_for_device, |
| 551 | .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu, |
| 552 | .sync_sg_for_device = tile_pci_dma_sync_sg_for_device, |
| 553 | }; |
| 554 | |
| 555 | const struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops; |
| 556 | const struct dma_map_ops *gx_hybrid_pci_dma_map_ops = &pci_hybrid_dma_ops; |
| 557 | #else |
| 558 | const struct dma_map_ops *gx_legacy_pci_dma_map_ops; |
| 559 | const struct dma_map_ops *gx_hybrid_pci_dma_map_ops; |
| 560 | #endif |
| 561 | EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops); |
| 562 | EXPORT_SYMBOL(gx_hybrid_pci_dma_map_ops); |
| 563 | |
| 564 | int dma_set_mask(struct device *dev, u64 mask) |
| 565 | { |
| 566 | const struct dma_map_ops *dma_ops = get_dma_ops(dev); |
| 567 | |
| 568 | /* |
| 569 | * For PCI devices with 64-bit DMA addressing capability, promote |
| 570 | * the dma_ops to hybrid, with the consistent memory DMA space limited |
| 571 | * to 32-bit. For 32-bit capable devices, limit the streaming DMA |
| 572 | * address range to max_direct_dma_addr. |
| 573 | */ |
| 574 | if (dma_ops == gx_pci_dma_map_ops || |
| 575 | dma_ops == gx_hybrid_pci_dma_map_ops || |
| 576 | dma_ops == gx_legacy_pci_dma_map_ops) { |
| 577 | if (mask == DMA_BIT_MASK(64) && |
| 578 | dma_ops == gx_legacy_pci_dma_map_ops) |
| 579 | set_dma_ops(dev, gx_hybrid_pci_dma_map_ops); |
| 580 | else if (mask > dev->archdata.max_direct_dma_addr) |
| 581 | mask = dev->archdata.max_direct_dma_addr; |
| 582 | } |
| 583 | |
| 584 | if (!dev->dma_mask || !dma_supported(dev, mask)) |
| 585 | return -EIO; |
| 586 | |
| 587 | *dev->dma_mask = mask; |
| 588 | |
| 589 | return 0; |
| 590 | } |
| 591 | EXPORT_SYMBOL(dma_set_mask); |
| 592 | |
| 593 | #ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK |
| 594 | int dma_set_coherent_mask(struct device *dev, u64 mask) |
| 595 | { |
| 596 | const struct dma_map_ops *dma_ops = get_dma_ops(dev); |
| 597 | |
| 598 | /* |
| 599 | * For PCI devices with 64-bit DMA addressing capability, promote |
| 600 | * the dma_ops to full capability for both streams and consistent |
| 601 | * memory access. For 32-bit capable devices, limit the consistent |
| 602 | * memory DMA range to max_direct_dma_addr. |
| 603 | */ |
| 604 | if (dma_ops == gx_pci_dma_map_ops || |
| 605 | dma_ops == gx_hybrid_pci_dma_map_ops || |
| 606 | dma_ops == gx_legacy_pci_dma_map_ops) { |
| 607 | if (mask == DMA_BIT_MASK(64)) |
| 608 | set_dma_ops(dev, gx_pci_dma_map_ops); |
| 609 | else if (mask > dev->archdata.max_direct_dma_addr) |
| 610 | mask = dev->archdata.max_direct_dma_addr; |
| 611 | } |
| 612 | |
| 613 | if (!dma_supported(dev, mask)) |
| 614 | return -EIO; |
| 615 | dev->coherent_dma_mask = mask; |
| 616 | return 0; |
| 617 | } |
| 618 | EXPORT_SYMBOL(dma_set_coherent_mask); |
| 619 | #endif |
| 620 | |
| 621 | #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK |
| 622 | /* |
| 623 | * The generic dma_get_required_mask() uses the highest physical address |
| 624 | * (max_pfn) to provide the hint to the PCI drivers regarding 32-bit or |
| 625 | * 64-bit DMA configuration. Since TILEGx has I/O TLB/MMU, allowing the |
| 626 | * DMAs to use the full 64-bit PCI address space and not limited by |
| 627 | * the physical memory space, we always let the PCI devices use |
| 628 | * 64-bit DMA if they have that capability, by returning the 64-bit |
| 629 | * DMA mask here. The device driver has the option to use 32-bit DMA if |
| 630 | * the device is not capable of 64-bit DMA. |
| 631 | */ |
| 632 | u64 dma_get_required_mask(struct device *dev) |
| 633 | { |
| 634 | return DMA_BIT_MASK(64); |
| 635 | } |
| 636 | EXPORT_SYMBOL_GPL(dma_get_required_mask); |
| 637 | #endif |